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Abstract—Face reenactment aims to synthesis a photo-realistic
video of the source face by imitating the motion and expression
of the driving video while keeping the source appearance (i.e.
identity). Although good results have achieved recently, most
state-of-the-art methods remain vulnerable to extreme conditions,
which greatly restricts the application in the real world. Among
various extreme conditions, the large pose problem is the most
common one. We clarify that the large pose problem is mainly
caused by the severe motion change between the source image
and the current driving frame. An intuitive solution is to divide
the severe motion change into a sequence of subtle motions.
Therefore, we propose a new scheme that exploring the temporal
coherence between previous neighbor frame and current frame.
The smaller motion change between consecutive frames help to
solve the large pose problem. Furthermore, a calibration net is
designed to eliminate the error accumulation of the previous step.
Extensive experiments demonstrate that our method performs
better on large pose face reenactment than the state-of-the-art
in terms of large pose cases and visual quality.

Index Terms—Face Reenactment, Integrator, Deep Learning

I. INTRODUCTION

Face reenactment aims to synthesis a photo-realistic video

of the source face by imitating the motion and expression of

the driving video while keeping the source appearance (i.e.

identity). It owns a wide range of applications such as digital

human, video compression, virtual reality and etc.

Face reenactment is essentially a problem of feature de-

coupling. A typical reenactment process is as follows. Motion

features, expression features and identity features of the source

and driving are first decoupled. Then, identity features of the

source, motion and expression features of the driving are fused

together to synthesis the reenacted face.

Most state-of-the-art methods [1]–[3] follow the above

reenactment process and achieved remarkable results. How-

ever, these methods are not robust enough to handle extreme

conditions, which severely hindered the practical application

of these methods. Among various extreme conditions, the large

pose problem is the most common one.

A typical failure case caused by large pose problem is shown

in Figure 1. We choose a self-reenacted video to show the com-

mon large pose problem. In self-reenacted process, the source

person is one of the driving video frames. The self-reenactment
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Fig. 1: The large pose problem. We reenact the source

utilizing the same video as driving. It can be noticed that with

the pose divergence getting larger, blurry regions gradually

dominate the reenacted videos. We mark the blurry area with

a red rectangle.
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Fig. 2: Three types of inference schemes by how to use motion

feature. Where di is the ith frame of the driving video. s
represents the source face image. yi is the current reenacted

frame. M is a motion model to extract motion feature from x
to y, denoted as mx→y . G is the generator to synthesize the

final reenacted results.

case, compared with the cross-identity reenactment, is much

simpler and the driving videos are also the ground truth. It

can be noticed that severe performance decrease occurs on

reenacted videos when the pose divergence between the source

and the driving frames comes larger. First is the woman’s ear

become vague and then the whole area of neck and ear comes
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Fig. 3: Error propagation in (c). We reenact the source by the

inference scheme (c). It can be seen that error propagate and

accumulate over time, finally leading to corrupted outputs.

to a blur.

The mainly factor that leads to the large pose problem

is the severe motion change between the source and the

driving faces. Most of the existing methods directly use the

motion change for generation, while neglecting the temporal

coherence. We claim that severe motion change can be divided

to a sequence of small motions between consecutive frames

that can be easily captured. As illustrated in Figure 2, we

display three types of inference schemes represented as (a),

(b) and (c). (a) is the scheme adopted by most current

methods, which is also the most intuitive one. (a) directly

predicts the motion from the source S to the current driving

frame di. Due to the face structure difference between the

driving and the source, methods adopting (a) will suffer the

identity mismatch problem when applied to cross identity

reenactment. (b) predicts the motion between the d0 and di,
and apply the predicted motion to the source. (b) will not

cause identity mismatch problem. However, Adopting these

inference schemes, temporal consistency between frames is

neglected and only the current driving frame will be taken

into consideration. Great pose will lead to large motion change

which make performance degradation.

In contrast, we propose the scheme (c). (c) receives the

output yi−1 of the previous time step and predicts the motion

between consecutive frames. Great pose changes can never

occur in consecutive frames, for there are only microseconds

between frames for the talking face to move. In this way, large

pose problem is solved at ease. However, (c) has the problem

of error propagation. Error in previous time step will be passed

to the current time step. And the error will accumulate over

time. As illustrated in Figure 3, the accumulated error enforces

an inside motion to the talking face and leads to a corrupted

output.

Therefore, we propose a method that integrates both

schemes (b) and (c). We categorize (b) as a global integrator,

and (c) is a local integrator. And then combine both (b) and (c)

to get more accurate reenactment results. In our framework,

the output of scheme (c) help to solve the large pose problem

by using the subtle motion of consecutive frames instead of

the severe motion. And the output of scheme (b) help to reduce

the propagation of the truncation error of (c). Furthermore, we

propose a calibration net to correct the mismatch in identities.

The main contributions of our work are:

• To reduce the large pose problem of face reenactment,

we propose a novel scheme about using subtle motions

of consecutive frames to limit the motion change between

current generated frame and referent frame.

• We integrate both the local and global integrators to

decrease the truncation error. In addition, a discrete latent

code is introduced to limit the error propagation.

• Both qualitative and quantitative experimental results

show that our method outperforms state-of-the-arts in

large pose cases.

II. RELATED WORKS

As mentioned above, face reenactment tasks aims to transfer

the driving motion to the source. The most intuitive idea is

to decouple the motion and identity of the face and directly

exchange the motion and the identity. Thus, a large part

of works [4], [5] focus on how to accurately decouple the

motion and identity. These methods often model identity as

a specific face representation, such as facial landmark [6],

keypoints or face-parsing segmentation maps. However, these

face representations can only reconstruct coarse-grained face

and fail to show personal characteristics, which gives rise to

severe identity-mismatch problem.

To overcome the identity-mismatch problem, motion-based

methods [1]–[3] are proposed. Motion-based methods adopt

a two-stage strategy. They first capture the motion from the

source face to the driving face, and then warp the source face

according to the captured motion. The most representative

method is FOMM [7], which is also a pioneering work of

these methods. FOMM first separately predicts the keypoints

of the source and the driving and then derives the motion from

the keypoints using First Order Taylor Expansion. As a first-

order expansion, FOMM models the motion as a combination

of local linear motions, which does not works for all the situ-

ations. Based on FOMM, a large number of works have been

proposed to get more precise motions. To model the motion

of articulated objects, MRAA [1] replaces the keypoints with

the segmentation region. In this way, more accurate motions

are conveyed. TPSMM [3] models the motion using thin-plate

splines, which can better represent higher orders of the motion.

To inject 3D information into model, DAGAN [2] first predicts

the depth map of the source and driving and then fuses the

depth map to motion, expecting to represent motion more

precisely.

However, it should be noted that accurate estimated motion

does not necessarily mean a photo realistic result. As men-

tioned before, changes in motion will leave large exposed area

to inpaint, which causes the large pose problem. In contrast, we

propose a method to autoregressively synthesis the reenacted

video, which avoids the problem that may be caused by the

large pose.
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Fig. 4: The architecture of our proposed method. Our method

contains three modules: the Global Integrator G, the Local

Integrator L and the Calibration net C.

Fig. 5: The architecture of the Integrator L in the training

phase.

III. METHOD

A. Overview

Given a source face S and a driving video D =
{d0, d1, ..., dn}, face reenactment aims to generate the reen-

acted video Y = {y0, y1, ..., yn}. As illustrated in Figure 4,

our method contains three main modules: the Global Integrator

G, the Local Integrator L and the Calibration Net C.

For the global integrator G, we utilize d0, di and S to

compute yGi :

yGi = G(d0, di, S) (1)

For the local integrator L, we utilize di−1, di, yi−1 to compute

yLi :

yLi = L(di−1, di, yi−1) (2)

Output Y G suffers from the large pose problem while output

Y L are not sharp enough due to error propagation. Thus, a

calibration net C is designed to integrate these two outputs.

In addition, the source S is also taken as one of the inputs to

provide the identity information:

yi = C(yGi , y
L
i , S) (3)

B. Integrators

The Integrator G and L are designed to generate coarse

results. Thus, the inputs and outputs are the same as current

reenactment methods. We utilize the widely used architecture

which contains a keypoint detector, a dense motion network

and a generator. We first introduce the architecture of Inte-

grator L, for Integrator G can be easily derived from L by

removing the Gaussian Blur and Discrete Latent modules.

The architecture of Integrator L is illustrated in Figure 5. The

i− 1th and ith of driving frames are first fed into a keypoint

detector to obtain corresponding keypoints ki−1 and ki. Then

the keypoints ki−1 and ki are fed into a dense motion network

to predict the dense motion flow f and occlusion map O.

At training, the di−1 also plays the role as yi−1 in the

inference. It is first fed to a down sampling convolution module

then is warped by the predicted motion flow f . Finally, under

the guidance of occlusion map, exposed areas are inpainted

by the up sampling module to obtain the final output yLi .

The inputs of Integrator L include the result of previous step

which is not so clear as the source image. However, in training,

we only have clear di−1 to replace the blurry yi−1. To ensure

that the visual quality of the inputs in training and inference are

almost the same, a random Gaussian Blur is added in training

stage to simulate the blurry generated images yi−1,

y′i−1 = GaussianBlur(di−1 , σ) (4)

where σ is the variance randomly selected from 0 to 10.

Furthermore, we limit the error propagation in L by discrete

latent coding. Simply mapping the y′i−1 to a continual latent

space does no help to limit the error propagation. On the

contrary, we map the y′i−1 to a discrete latent space utilizing

gumbel softmax.

There is no error propagation for the single step Integrator

G. Thus, we remove the discrete latent code module in

Integrator G. The image distribution gap between training

and inference does not exist in G as well. So we remove the

Gaussian Blur in Integrator G. The other part of G keeps the

same as L.

C. Calibration Net

The outputs of Integrator G and L (represented as yGi and

yLi separately) have imperfections in different aspects. When

handling large pose cases, the yGi have a good performance

on global visual quality while it fails to generate good results

in large pose area. The yLi , on the contrary, owns lower visual

quality but can generate reasonable results in large pose area.

Thus, we design a calibration net to decide which output (yGi
or yLi ) should be used for a certain area. We also hope the

final output yi keep the identity unchanged. Thus, the source

face S is also added as one of the inputs for the calibration

net. The detail architecture of the calibration net can be found

in supplementary materials.

D. Loss Functions

We constrain the network with a reconstruction loss Lw.

During the training stage, we adopt the self-supervised training

scheme, which means the driving video and the source are the
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Model CSIM(↑) SSIM(↑) PSNR(↑) PRMSE(↓) AUCON(↑)

X2face [8] 0.689 0.719 22.537 3.26 0.813
NeuralHead [9] 0.229 0.635 20.818 3.76 0.719
MarioNETte [4] 0.755 0.744 23.244 3.13 0.825

FOMM [7] 0.813 0.723 30.394 3.20 0.886
MeshG [10] 0.822 0.739 30.394 3.20 0.887
OSFV [11] 0.895 0.761 30.695 1.64 0.921
DaGAN [2] 0.899 0.804 31.220 1.22 0.939
TPSMM [3] 0.834 0.736 29.547 1.27 0.896

ours 0.892 0.821 31.989 0.87 0.936

TABLE I: Quantitative results on the self reenactment on VoxCeleb1 dataset.

same person. The driving video is also the ground truth. We

calculate the reconstruction loss according to the ground truth:

Lr = ||I − Î|| (5)

where Î are the predicted images and I are the ground truth

image. We also utilize the perceptual loss [12] that is widely

used in image synthesis. The perceptual loss is defined as:

Lper =
∑

i

||φi(I)− φi(Î)|| (6)

where φi is the output of the i-th layer of the VGG19 network.

It should be noted that both the integrator and the calibration

net are expected to obtain as good synthesized results as

possible. Thus, the outputs of integrators and calibration net

leverage these loss functions:

Lnet = λr,netLr,net + λper,netLper,net (7)

where net=L,G,C representing global integrator, local inte-

grator and calibration net separately. λ is the corresponding

weight. The total loss is defined as:

Ltotal = LL + LG + LC (8)

IV. EXPERIMENT

We conduct experiments on VoxCeleb1 [13] and CelebV

[14] dataset. These experiments can be divided into two

categories: self reenactment and cross-identity reenactment.

Self reenactment first chooses a video clip as driving. Then

the first frame of the video clip is selected as the source.

Therefore, self reenactment is a task of video reconstruction.

In self-reenactment, the driving video also plays the role as

ground truth. Different from self reenactment, cross-identity

reenactment chooses a different identity as the source, and

thus there is no ground truth.

A. Experimental Setups

We follow the metrics that are used in DaGAN. We utilize

the structure similarity (SSIM) and peak signal to noise ratio

(PSNR) to evaluate the visual quality of the generated images.

We utilize the CSIM metric [15] to evaluate the identity pre-

serving ability of the model. The head Pose Root Mean Square

Error (PRMSE) and Action Unit Consistency (AUCON) [16]

are used to evaluate the head pose and expression accuracy of

the reenacted results.

Comparison Methods. We compare the proposed method

with DaGAN [2] and TPSMM [3], which are the most-of-

the-art methods. We also compare with both motion-based

and decouple-based methods. The motion-based methods are

X2face [8], FOMM [7], OSFV [11]. The decoupling-based

methods are NeuralHead [9], MarioNETte [4] and MeshG

[10].

Implementation Details. All models are implemented by

Pytorch. We train the whole model in an adversarial way [17].

A patch discriminator [18] is used to help to get high fidelity

results. Details of our network and the training methods can

be found in the supplementary materials.

B. Quantitative Comparisons.

We train the models on VoxCeleb1 datasets and conduct

both self reenactment and cross-identity reenactment to evalu-

ate the effectiveness of our proposed method. The quantitative

results of self reenactment on VoxCeleb1 are shown in Table I.

Our method gets the highest scores in SSIM, PSNR metrics,

outperforming both motion-based and decouple-based meth-

ods, which demonstrates the effectiveness of our proposed

method. Though DaGAN outperforms our method in CSIM

and AUCON metrics, the difference is very small. It should be

noted that our method gets great progress in PRMSE metrics,

which demonstrates that our method can perfectly track the

head motion of the driving.

We directly test these models on CelebV without finetuning

to evaluate the performance of the models reenacting more

complex sources. The quantitative results of cross-identity

reenactment on CelebV are shown in Table II. We get the

highest scores on PRMSE and comparable results on AUCON

metric. It should be noted that our method are weak to preserve

the source identity in CelebV dataset. (only 0.676 in CSIM)

We explain that CelebV dataset has poor temporal coherence.

More specifically, the image quality of the CelebV dataset

varies greatly with time.

Ablation analysis. In this paper, our mainly contribution is

to propose a new framework to utilize subtle motions to solve

the large pose problem. In our method, the FOMM [7] is used

as our Integrator G. It can be found that our subtle motions

framework can boost the model over all matrices especially

for the PRMSE which reflects the head pose accuracy.
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Model CSIM(↑) PRMSE(↓) AUCON(↑)

X2face [8] 0.450 3.62 0.679
NeuralHead [9] 0.108 3.30 0.722
marioNETte [4] 0.520 3.41 0.710

FOMM [7] 0.462 3.90 0.667
MeshG [10] 0.635 3.41 0.709
OSFV [11] 0.791 3.15 0.805
DaGAN [2] 0.723 2.33 0.873
TPSMM [3] 0.703 2.17 0.843

ours 0.676 1.85 0.843

TABLE II: Quantitative results of cross-identity reenactment

on CelebV dataset.

Source Driving TPSMM DAGAN Ours

Fig. 6: Qualitative comparisons of self reenactment on the

VoxCeleb1. We specially select results for large pose cases.

C. Qualitative Comparisons.

We conduct both self reenactment and cross-identity reen-

actment in VoxCeleb1 dataset. The self reenactment results are

shown in Figure 6. It can be seen that our method generates

more realistic images. The face geometry is well kept even

the head pose changes drastically.

The cross-identity reenactment results are shown in Figure

7(a). It can be seen that methods that only take one frame

into account are vulnerable to large pose changes. Our method

takes consecutive frames and is robust to large pose changes.

More results can be found in the supplementary materials. We

also conduct cross-identity reenactment in CelebV dataset to

evaluate the performance of the models reenacting more com-

plex sources. The results are shown in Figure 7(b). Previous

methods fail in extreme head pose while our method can keep

the face geometry undamaged.

CSIM PRMSE AUCON PRMSE AUCON

Intergrator G only 0.813 0.723 30.394 3.20 0.886
ours 0.892 0.821 31.989 0.87 0.936

TABLE III: Ablation studies on VoxCeleb1 dataset.

D. Ablation Study.

We conduct ablation study on VoxCeleb1 dataset. The

quantitative results of self reenactment are shown in Table III.

It can be found that our framework can boost the model over

Source Driving TPSMM DAGAN Ours

Source Driving TPSMM DAGAN Ours

(a) On the VoxCeleb1 dataset

(b) On the CelebV dataset

Fig. 7: Qualitative comparisons of cross-identity reenactment

on two datasets. We select results for large pose cases.

Model CSIM PRMSE AUCON

DaGAN 0.723 2.33 0.873
TPSMM 0.703 2.17 0.843

Integrator G only 0.462 3.90 0.667
ours 0.676 1.85 0.843

ours+DaGAN 0.735 1.97 0.888

TABLE IV: Further experiments on effectiveness of extra

priors on VoxCeleb1 dataset.

all matrices especially for the PRMSE which reflects the head

pose accuracy. We do not conduct ablations without Global

integrators because accumulated errors will lead to corrupted

results if we only use integrator L (as shown in Figure 3).

Furthermore, as our main contribution is to propose a new

framework to utilize subtle motions to solve the large pose

problem. Actually, our framework can also improve the iden-

tity preservation ability as the framework is easy to combined

with other reenactment methods. As shown in Table IV, in the

original Integrator G (Integrator G only (w/o our L&C)), we do

not use any facial structure priors or deep 3D features, which

leads worse CSIM. By using our subtle motions framework,

the CSIM and AUCON also got significant improvement. And
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(a)

(b)

Fig. 8: Performance for large pose cases. We self reenact the

first frame of the driving video and compute the PRMSE as

the x-axis. The PSNR/SSIM metric is y-axis in (a)/(b).

the integrator G can be easy replaced with other methods. We

inject the face priors by simply replacing the Integrator G

with DaGAN, the results show that all score is getting better,

especially PRMSE.

E. Performance in Large Pose Cases.

In Figure 8, we show how large pose influences the per-

formance of reenactment methods. We choose the PRMSE as

the head pose distance and take it as the x-axis. We choose

PSNR and SSIM as the y-axis. Then we plot out the relation

between head pose distance and metrics of visual quality. The

x-axis starts with 3.3 to focus on large pose cases. It can be

seen that both of these methods perform worse as the head

pose distance increases (in both PSNR and SSIM metrixs).

Comparing Figure 8(a) and 8(b), it can be concluded that

TPSMM performs well in common cases but are especially

vulnerable to large pose cases. DAGAN performs better than

TPSMM but is inferior to our method, which demonstrates the

effectiveness of our proposed method.

V. CONCLUSION

In this paper, we discuss the large pose problem in face

reenactment. Instead of using severe motion between the

source frame and the current driving frame, we divide the

severe motion into a sequence of subtle motions to achieve

better reenactment results. Both quantitative and qualitative

results demonstrate that our method is more robust to large

pose cases.
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