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Abstract—Face reenactment aims to synthesis a photo-realistic
video of the source face by imitating the motion and expression
of the driving video while keeping the source appearance (i.e.
identity). Although good results have achieved recently, most
state-of-the-art methods remain vulnerable to extreme conditions,
which greatly restricts the application in the real world. Among
various extreme conditions, the large pose problem is the most
common one. We clarify that the large pose problem is mainly
caused by the severe motion change between the source image
and the current driving frame. An intuitive solution is to divide
the severe motion change into a sequence of subtle motions.
Therefore, we propose a new scheme that exploring the temporal
coherence between previous neighbor frame and current frame.
The smaller motion change between consecutive frames help to
solve the large pose problem. Furthermore, a calibration net is
designed to eliminate the error accumulation of the previous step.
Extensive experiments demonstrate that our method performs
better on large pose face reenactment than the state-of-the-art
in terms of large pose cases and visual quality.

Index Terms—Face Reenactment, Integrator, Deep Learning

I. INTRODUCTION

Face reenactment aims to synthesis a photo-realistic video
of the source face by imitating the motion and expression of
the driving video while keeping the source appearance (i.e.
identity). It owns a wide range of applications such as digital
human, video compression, virtual reality and etc.

Face reenactment is essentially a problem of feature de-
coupling. A typical reenactment process is as follows. Motion
features, expression features and identity features of the source
and driving are first decoupled. Then, identity features of the
source, motion and expression features of the driving are fused
together to synthesis the reenacted face.

Most state-of-the-art methods [1]-[3] follow the above
reenactment process and achieved remarkable results. How-
ever, these methods are not robust enough to handle extreme
conditions, which severely hindered the practical application
of these methods. Among various extreme conditions, the large
pose problem is the most common one.

A typical failure case caused by large pose problem is shown
in Figure 1. We choose a self-reenacted video to show the com-
mon large pose problem. In self-reenacted process, the source
person is one of the driving video frames. The self-reenactment
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Fig. 1: The large pose problem. We reenact the source
utilizing the same video as driving. It can be noticed that with
the pose divergence getting larger, blurry regions gradually
dominate the reenacted videos. We mark the blurry area with
a red rectangle.
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Fig. 2: Three types of inference schemes by how to use motion
feature. Where d; is the ith frame of the driving video. s
represents the source face image. y; is the current reenacted
frame. M is a motion model to extract motion feature from =
to y, denoted as m,_.,. G is the generator to synthesize the
final reenacted results.

case, compared with the cross-identity reenactment, is much
simpler and the driving videos are also the ground truth. It
can be noticed that severe performance decrease occurs on
reenacted videos when the pose divergence between the source
and the driving frames comes larger. First is the woman’s ear
become vague and then the whole area of neck and ear comes
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Fig. 3: Error propagation in (c). We reenact the source by the
inference scheme (c). It can be seen that error propagate and
accumulate over time, finally leading to corrupted outputs.

to a blur.

The mainly factor that leads to the large pose problem
is the severe motion change between the source and the
driving faces. Most of the existing methods directly use the
motion change for generation, while neglecting the temporal
coherence. We claim that severe motion change can be divided
to a sequence of small motions between consecutive frames
that can be easily captured. As illustrated in Figure 2, we
display three types of inference schemes represented as (a),
(b) and (c). (a) is the scheme adopted by most current
methods, which is also the most intuitive one. (a) directly
predicts the motion from the source S to the current driving
frame d;. Due to the face structure difference between the
driving and the source, methods adopting (a) will suffer the
identity mismatch problem when applied to cross identity
reenactment. (b) predicts the motion between the dy and d;,
and apply the predicted motion to the source. (b) will not
cause identity mismatch problem. However, Adopting these
inference schemes, temporal consistency between frames is
neglected and only the current driving frame will be taken
into consideration. Great pose will lead to large motion change
which make performance degradation.

In contrast, we propose the scheme (c). (c) receives the
output y; 1 of the previous time step and predicts the motion
between consecutive frames. Great pose changes can never
occur in consecutive frames, for there are only microseconds
between frames for the talking face to move. In this way, large
pose problem is solved at ease. However, (c) has the problem
of error propagation. Error in previous time step will be passed
to the current time step. And the error will accumulate over
time. As illustrated in Figure 3, the accumulated error enforces
an inside motion to the talking face and leads to a corrupted
output.

Therefore, we propose a method that integrates both
schemes (b) and (c). We categorize (b) as a global integrator,
and (c) is a local integrator. And then combine both (b) and (c)
to get more accurate reenactment results. In our framework,
the output of scheme (c) help to solve the large pose problem
by using the subtle motion of consecutive frames instead of
the severe motion. And the output of scheme (b) help to reduce
the propagation of the truncation error of (c). Furthermore, we
propose a calibration net to correct the mismatch in identities.

The main contributions of our work are:

o To reduce the large pose problem of face reenactment,
we propose a novel scheme about using subtle motions
of consecutive frames to limit the motion change between
current generated frame and referent frame.

o We integrate both the local and global integrators to
decrease the truncation error. In addition, a discrete latent
code is introduced to limit the error propagation.

o Both qualitative and quantitative experimental results
show that our method outperforms state-of-the-arts in
large pose cases.

II. RELATED WORKS

As mentioned above, face reenactment tasks aims to transfer
the driving motion to the source. The most intuitive idea is
to decouple the motion and identity of the face and directly
exchange the motion and the identity. Thus, a large part
of works [4], [5] focus on how to accurately decouple the
motion and identity. These methods often model identity as
a specific face representation, such as facial landmark [6],
keypoints or face-parsing segmentation maps. However, these
face representations can only reconstruct coarse-grained face
and fail to show personal characteristics, which gives rise to
severe identity-mismatch problem.

To overcome the identity-mismatch problem, motion-based
methods [1]-[3] are proposed. Motion-based methods adopt
a two-stage strategy. They first capture the motion from the
source face to the driving face, and then warp the source face
according to the captured motion. The most representative
method is FOMM [7], which is also a pioneering work of
these methods. FOMM first separately predicts the keypoints
of the source and the driving and then derives the motion from
the keypoints using First Order Taylor Expansion. As a first-
order expansion, FOMM models the motion as a combination
of local linear motions, which does not works for all the situ-
ations. Based on FOMM, a large number of works have been
proposed to get more precise motions. To model the motion
of articulated objects, MRAA [1] replaces the keypoints with
the segmentation region. In this way, more accurate motions
are conveyed. TPSMM [3] models the motion using thin-plate
splines, which can better represent higher orders of the motion.
To inject 3D information into model, DAGAN [2] first predicts
the depth map of the source and driving and then fuses the
depth map to motion, expecting to represent motion more
precisely.

However, it should be noted that accurate estimated motion
does not necessarily mean a photo realistic result. As men-
tioned before, changes in motion will leave large exposed area
to inpaint, which causes the large pose problem. In contrast, we
propose a method to autoregressively synthesis the reenacted
video, which avoids the problem that may be caused by the
large pose.
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Fig. 4: The architecture of our proposed method. Our method
contains three modules: the Global Integrator G, the Local
Integrator L and the Calibration net C.
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Fig. 5: The architecture of the Integrator L in the training
phase.
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III. METHOD

A. Overview

Given a source face S and a driving video D
{dop,dy,...,d,}, face reenactment aims to generate the reen-
acted video Y = {yo,y1, ..., yn}. As illustrated in Figure 4,
our method contains three main modules: the Global Integrator
G, the Local Integrator L and the Calibration Net C.

For the global integrator G, we utilize dg,d; and S to
compute y1G :

y& = G(do, di, S) (1)

For the local integrator L, we utilize d;_1,d;, y;—1 to compute
vi
yr = L(d;—1,d;, yi—1) 2

Output Y'¢ suffers from the large pose problem while output
Y% are not sharp enough due to error propagation. Thus, a
calibration net C' is designed to integrate these two outputs.
In addition, the source S is also taken as one of the inputs to
provide the identity information:

B. Integrators

The Integrator G and L are designed to generate coarse
results. Thus, the inputs and outputs are the same as current
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reenactment methods. We utilize the widely used architecture
which contains a keypoint detector, a dense motion network
and a generator. We first introduce the architecture of Inte-
grator L, for Integrator G can be easily derived from L by
removing the Gaussian Blur and Discrete Latent modules.
The architecture of Integrator L is illustrated in Figure 5. The
1 — 1th and ¢th of driving frames are first fed into a keypoint
detector to obtain corresponding keypoints k; 1 and k;. Then
the keypoints k;_, and k; are fed into a dense motion network
to predict the dense motion flow f and occlusion map O.

At training, the d;_; also plays the role as y; 1 in the
inference. It is first fed to a down sampling convolution module
then is warped by the predicted motion flow f. Finally, under
the guidance of occlusion map, exposed areas are inpainted
by the up sampling module to obtain the final output y’.

The inputs of Integrator L include the result of previous step
which is not so clear as the source image. However, in training,
we only have clear d;_; to replace the blurry y; ;. To ensure
that the visual quality of the inputs in training and inference are
almost the same, a random Gaussian Blur is added in training
stage to simulate the blurry generated images ¥;_1,

“

yi_, = GaussianBlur(d;_;, o)

where o is the variance randomly selected from O to 10.

Furthermore, we limit the error propagation in L by discrete
latent coding. Simply mapping the y,_, to a continual latent
space does no help to limit the error propagation. On the
contrary, we map the y/_, to a discrete latent space utilizing
gumbel softmax.

There is no error propagation for the single step Integrator
(. Thus, we remove the discrete latent code module in
Integrator (G. The image distribution gap between training
and inference does not exist in G as well. So we remove the
Gaussian Blur in Integrator GG. The other part of G keeps the
same as L.

C. Calibration Net

The outputs of Integrator G and L (represented as y{* and
yiL separately) have imperfections in different aspects. When
handling large pose cases, the y& have a good performance
on global visual quality while it fails to generate good results
in large pose area. The yF, on the contrary, owns lower visual
quality but can generate reasonable results in large pose area.
Thus, we design a calibration net to decide which output (in
or y¥) should be used for a certain area. We also hope the
final output y; keep the identity unchanged. Thus, the source
face S is also added as one of the inputs for the calibration
net. The detail architecture of the calibration net can be found
in supplementary materials.

D. Loss Functions

We constrain the network with a reconstruction loss L,,.
During the training stage, we adopt the self-supervised training
scheme, which means the driving video and the source are the
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Model CSIM(1) SSIM() PSNR({) PRMSE(]) AUCON(1)
X2face [8] 0.689 0.719 22.537 3.26 0.813
NeuralHead [9] 0.229 0.635 20.818 3.76 0.719
MarioNETte [4]  0.755 0.744 23.244 3.13 0.825
FOMM [7] 0.813 0.723 30.394 3.20 0.886
MeshG [10] 0.822 0.739 30.394 3.20 0.887
OSFV [11] 0.895 0.761 30.695 1.64 0.921
DaGAN [2] 0.899 0.804 31.220 1.22 0.939
TPSMM [3] 0.834 0.736 29.547 127 0.896
ours 0.892 0.821 31.989 0.87 0.936

TABLE I: Quantitative results on the self reenactment on VoxCelebl dataset.

same person. The driving video is also the ground truth. We
calculate the reconstruction loss according to the ground truth:

L, =I-1|| ®)

where I are the predicted images and [ are the ground truth
image. We also utilize the perceptual loss [12] that is widely
used in image synthesis. The perceptual loss is defined as:

Lyer =D lloalD) = g:(D)| (©)

where ¢; is the output of the i-th layer of the VGG19 network.
It should be noted that both the integrator and the calibration
net are expected to obtain as good synthesized results as
possible. Thus, the outputs of integrators and calibration net
leverage these loss functions:

Enet - )\T,net‘c'r,net + )\per,netﬁper,net (7)

where net=L, G, C' representing global integrator, local inte-
grator and calibration net separately. A is the corresponding
weight. The total loss is defined as:

['total = ﬁL + £G + £C (8)

IV. EXPERIMENT

We conduct experiments on VoxCelebl [13] and CelebV
[14] dataset. These experiments can be divided into two
categories: self reenactment and cross-identity reenactment.
Self reenactment first chooses a video clip as driving. Then
the first frame of the video clip is selected as the source.
Therefore, self reenactment is a task of video reconstruction.
In self-reenactment, the driving video also plays the role as
ground truth. Different from self reenactment, cross-identity
reenactment chooses a different identity as the source, and
thus there is no ground truth.

A. Experimental Setups

We follow the metrics that are used in DaGAN. We utilize
the structure similarity (SSIM) and peak signal to noise ratio
(PSNR) to evaluate the visual quality of the generated images.
We utilize the CSIM metric [15] to evaluate the identity pre-
serving ability of the model. The head Pose Root Mean Square
Error (PRMSE) and Action Unit Consistency (AUCON) [16]
are used to evaluate the head pose and expression accuracy of
the reenacted results.

Comparison Methods. We compare the proposed method
with DaGAN [2] and TPSMM [3], which are the most-of-
the-art methods. We also compare with both motion-based
and decouple-based methods. The motion-based methods are
X2face [8], FOMM [7], OSFV [11]. The decoupling-based
methods are NeuralHead [9], MarioNETte [4] and MeshG
[10].

Implementation Details. All models are implemented by
Pytorch. We train the whole model in an adversarial way [17].
A patch discriminator [18] is used to help to get high fidelity
results. Details of our network and the training methods can
be found in the supplementary materials.

B. Quantitative Comparisons.

We train the models on VoxCelebl datasets and conduct
both self reenactment and cross-identity reenactment to evalu-
ate the effectiveness of our proposed method. The quantitative
results of self reenactment on VoxCelebl are shown in Table L.
Our method gets the highest scores in SSIM, PSNR metrics,
outperforming both motion-based and decouple-based meth-
ods, which demonstrates the effectiveness of our proposed
method. Though DaGAN outperforms our method in CSIM
and AUCON metrics, the difference is very small. It should be
noted that our method gets great progress in PRMSE metrics,
which demonstrates that our method can perfectly track the
head motion of the driving.

We directly test these models on CelebV without finetuning

to evaluate the performance of the models reenacting more
complex sources. The quantitative results of cross-identity
reenactment on CelebV are shown in Table II. We get the
highest scores on PRMSE and comparable results on AUCON
metric. It should be noted that our method are weak to preserve
the source identity in CelebV dataset. (only 0.676 in CSIM)
We explain that CelebV dataset has poor temporal coherence.
More specifically, the image quality of the CelebV dataset
varies greatly with time.
Ablation analysis. In this paper, our mainly contribution is
to propose a new framework to utilize subtle motions to solve
the large pose problem. In our method, the FOMM [7] is used
as our Integrator G. It can be found that our subtle motions
framework can boost the model over all matrices especially
for the PRMSE which reflects the head pose accuracy.
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Model CSIM(1) PRMSE() AUCON(1)

X2face [8] 0.450 3.62 0.679
NeuralHead [9] 0.108 3.30 0.722
marioNETte [4] 0.520 3.41 0.710
FOMM [7] 0.462 3.90 0.667
MeshG [10] 0.635 3.41 0.709
OSFV [11] 0.791 3.15 0.805
DaGAN [2] 0.723 2.33 0.873
TPSMM [3] 0.703 2.17 0.843
ours 0.676 1.85 0.843

TABLE II: Quantitative results of cross-identity reenactment
on CelebV dataset.

-

TPSMM

Source Driving DAGAN Ours

Fig. 6: Qualitative comparisons of self reenactment on the
VoxCelebl. We specially select results for large pose cases.

C. Qualitative Comparisons.

We conduct both self reenactment and cross-identity reen-
actment in VoxCeleb1 dataset. The self reenactment results are
shown in Figure 6. It can be seen that our method generates
more realistic images. The face geometry is well kept even
the head pose changes drastically.

The cross-identity reenactment results are shown in Figure
7(a). It can be seen that methods that only take one frame
into account are vulnerable to large pose changes. Our method
takes consecutive frames and is robust to large pose changes.
More results can be found in the supplementary materials. We
also conduct cross-identity reenactment in CelebV dataset to
evaluate the performance of the models reenacting more com-
plex sources. The results are shown in Figure 7(b). Previous
methods fail in extreme head pose while our method can keep
the face geometry undamaged.

CSIM  PRMSE AUCON PRMSE AUCON

30.394 3.20 0.886
31.989 0.87 0.936

Intergrator G only  0.813 0.723
ours 0.892 0.821

TABLE III: Ablation studies on VoxCelebl dataset.

D. Ablation Study.

We conduct ablation study on VoxCelebl dataset. The
quantitative results of self reenactment are shown in Table III.
It can be found that our framework can boost the model over

Source Driving TPSMM

(a) On the VoxCelebl dataset

TPSMM DAGAN

Source Driving

(b) On the CelebV dataset

Fig. 7: Qualitative comparisons of cross-identity reenactment
on two datasets. We select results for large pose cases.

Model CSIM PRMSE AUCON
DaGAN 0.723 2.33 0.873
TPSMM 0.703 2.17 0.843

Integrator G only  0.462 3.90 0.667
ours 0.676 1.85 0.843
ours+DaGAN 0.735 1.97 0.888

TABLE IV: Further experiments on effectiveness of extra
priors on VoxCelebl dataset.

all matrices especially for the PRMSE which reflects the head
pose accuracy. We do not conduct ablations without Global
integrators because accumulated errors will lead to corrupted
results if we only use integrator L (as shown in Figure 3).
Furthermore, as our main contribution is to propose a new
framework to utilize subtle motions to solve the large pose
problem. Actually, our framework can also improve the iden-
tity preservation ability as the framework is easy to combined
with other reenactment methods. As shown in Table IV, in the
original Integrator G (Integrator G only (w/o our L&C)), we do
not use any facial structure priors or deep 3D features, which
leads worse CSIM. By using our subtle motions framework,
the CSIM and AUCON also got significant improvement. And
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Fig. 8: Performance for large pose cases. We self reenact the
first frame of the driving video and compute the PRMSE as
the x-axis. The PSNR/SSIM metric is y-axis in (a)/(b).

the integrator G can be easy replaced with other methods. We
inject the face priors by simply replacing the Integrator G
with DaGAN, the results show that all score is getting better,
especially PRMSE.

E. Performance in Large Pose Cases.

In Figure 8, we show how large pose influences the per-
formance of reenactment methods. We choose the PRMSE as
the head pose distance and take it as the x-axis. We choose
PSNR and SSIM as the y-axis. Then we plot out the relation
between head pose distance and metrics of visual quality. The
x-axis starts with 3.3 to focus on large pose cases. It can be
seen that both of these methods perform worse as the head
pose distance increases (in both PSNR and SSIM metrixs).
Comparing Figure 8(a) and 8(b), it can be concluded that
TPSMM performs well in common cases but are especially
vulnerable to large pose cases. DAGAN performs better than
TPSMM but is inferior to our method, which demonstrates the
effectiveness of our proposed method.

V. CONCLUSION

In this paper, we discuss the large pose problem in face
reenactment. Instead of using severe motion between the
source frame and the current driving frame, we divide the
severe motion into a sequence of subtle motions to achieve
better reenactment results. Both quantitative and qualitative

results demonstrate that our method is more robust to large
pose cases.
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