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ABSTRACT

Oriented object detection is crucial for complex scenes such as aerial images
and industrial inspection, providing precise delineation by minimizing back-
ground interference. Recently, the weakly-supervised oriented object detection
has gaining attention due to its cost-effectiveness. However, the majority of exist-
ing weakly-supervised methods are either point-supervised or HBox-supervised,
which presents a challenge in achieving an optimal balance between annotation
cost and detection performance. In response, we introduce a novel form of line
annotation, which is intermediate between point-level and plane-level annotation.
Based on this, we present L2ZRBox, an end-to-end anchor-free detector that is the
first line-supervised method for oriented object detection. The fundamental objec-
tive of the L2RBox is to utilise line labels for the completion of label assignment
and the calculation of loss. In particular, the line is mapped to the correspond-
ing circle domain, which is then used to select training samples and calculate the
center-ness target by the minimum circumscribed rectangle of the circle in the di-
rection of the line. The regression loss that we propose is designed to support the
line as an optimisation target. It comprises four components, namely scale loss Ly,
height loss Ly, position loss L,, and angle loss L. Extensive experimentation on
DOTA-v1.0 and DIOR-R has demonstrated that our L2ZRBox significantly outper-
forms point-supervised methods, while requiring only a slight increase in labeling
costs. It is also noteworthy that the proposed approach also demonstrates a slight
performance advantage over the fully-supervised FCOS in certain categories.

1 INTRODUCTION

In recent years, oriented object detection has progressed rapidly, leveraging advancements in hori-
zontal object detection [Liu et al.| (2020). Its fine-grained rotated bounding box (RBox) has proven
highly effective in complex scenarios such as aerial imagery, scene text, and industrial inspection
Wen et al.|(2023)). Although detectors have made significant progress with extensive annotated data,
full supervision in oriented object detection faces several challenges: the RBox annotation format is
less prevalent in many existing datasets, and producing RBox annotations is more expensive.

To mitigate the dependence on labor-intensive RBox labeling, weakly-supervised object detection
represents a solution. As illustrated in Fig. [I] existing weakly-supervised methods employ coarser-
grained annotations as weakly-supervised signals to predict RBox, which are roughly divided into
point-supervised methods and HBox-supervised methods according to the annotation. For HBox-
supervised methods, H2RBox |Yang et al.| (2023)) and H2RBox-v2 [Yu et al|(2024b)) have explored
the HBox-to-RBox setting that learns RBox detectors from horizontal bounding box (HBox) anno-
tation. However, Plane-level annotations are still inefficient and labor-intensive. Therefore, point-
supervised methods PointOBB [Luo et al.|(2024) and Point2RBox |Yu et al.| (2024a)) have further
explored more cost-effective point-level annotation forms, but these methods suffer from lower de-
tection accuracy and often require additional knowledge or pseudo-label generation. In summary,
these weakly-supervised methods have complex structures and cannot balance detection accuracy
and annotation costs.

In response, we trade off the annotation cost with the detection accuracy for weakly-supervised
methods and first propose line annotation format for oriented object detection. Specifically, we label
the object along its central axis, and the process is flexible, allowing for some margin of error in the
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Figure 1: The top row visualizes examples of three weakly-supervised annotation forms, and the
bottom row visualizes the detection results of the same scene. Our proposed line-supervised L2ZRBox
(line-level) achieves both low cost and high accuracy.

line annotations. As shown in Fig. [I] top row, compared to the point, the line offers significantly
richer information with only a slight increase in labeling costs. For a fair comparison, we use the
annotation websiteﬂ to evaluate different annotation formats, the average time for annotating 100 in-
stances is 99.15s for point annotations, 178.8 s for line annotations, 332.7s for HBox, and 516.2s for
RBox. Based on line annotations, the detection performance of our proposed L2RBox significantly
outperforms Point-supervised methods, and is comparable to HBox-supervised methods, as shown
in Fig. [T bottom row. Additionally, to reflect the effectiveness in balancing annotation cost and per-
formance of weakly-supervised methods, we designed a trade-off metric M that considers both the
accuracy and cost, emphasizing the balance between them. Section 2] provides a comprehensive
analysis of the performance of weakly-supervised methods in terms of trade-off metrics.

The line-level annotation introduces a novel task setting: using line annotations to achieve signif-
icantly better performance than point-supervised methods. In this paper, we propose a simple yet
effective approach dubbed as L2RBox, the first line-supervised oriented object detector. As an end-
to-end anchor-free detector, the core of our L2ZRBox is to use line labels to complete label assignment
and loss calculation, where label assignment includes training sample selection and center-ness tar-
get calculation. Specifically, we map the line to the corresponding circle domain and use this to
select training samples and calculate the center-ness target by the minimum circumscribed rectan-
gle of the circle in the direction of the line (see Fig. [2] top L-LA). In the regression branch (see
Fig. ] bottom Branches), our proposed regression loss supports the line as an optimization target
comprising four components: scale loss L, height loss Ly, position loss L, and angle loss L.
Extensive experiments demonstrate that our L2ZRBox achieves significantly better performance than
point-supervised methods with only a slight increase in labeling costs. Meanwhile, our L2ZRBox
achieves optimal results on the trade-off metric, indicating that our method can effectively balance
detection accuracy and cost. Our main contributions are as follows:

1) To our best knowledge, we first propose line annotation format for oriented object detection,
which trade-off the annotation cost with the detection accuracy in weakly-supervised methods.

2) We propose specialized end-to-end detectors for line supervision, including label assignment
and loss functions that support line annotation, where label assignment includes training sample
selection and center-ness target calculation.
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3) Extensive experiments on DOTA-v1.0 and DIOR-R show that our LZRBox far outperforms Point-
supervised methods with only a slight increase in labeling costs e.g. our L2ZRBox achieves AP5q of
58.26% on DOTA, which is an improvement of 28.18% over the point-level method PointOBB. No-
tably, it also offers a slight performance advantage over fully-supervised FCOS in some categories.

2 RELATED WORK

2.1 FULLY-SUPERVISED ORIENTED OBJECT DETECTION

Oriented object detection algorithms primarily focus on aerial objects, multi-oriented scene texts,
retail, etc. Notable approaches in this field include the anchor-based detector Rotated RetinaNet |Lin
et al.| (2017c), the anchor-free detector Rotated FCOS |Tian et al| (2019)), and two-stage detectors
such as Oriented R-CNNX:ie et al.|(2021)), Rol Transformer |Ding et al.|(2019), and ReDet|Han et al.
(2021). To address the boundary problem caused by the periodicity of angles, RSDet Qian et al.
(2021) proposes a modulation loss to alleviate loss jumps. CSL|Yang & Yan|(2020) and DCL [Yang
et al.| (2021a) convert the angle into boundary-free coded data. GWD |Yang et al.| (2021b), KLD
Yang et al.| (2021c), and KFIoU Yang et al.|(2022) propose Gaussian-based losses that convert RBox
into a Gaussian distribution. PSC [Yu & Da (2023)) proposes a Phase-Shifting Coder that encodes
the orientation angle into periodic phases. Additionally, RepPoint-based approaches |Yang et al.
(2019); Hou et al.| (2023); |Li et al.| (2022a) provide new alternatives for oriented object detection by
predicting a set of sample points that bounds the spatial extent of an object. In this study, in order to
reduce the reliance on labor-intensive RBox labeling, we concentrate on the more challenging task
of weakly-supervised oriented object detection.

2.2  WEAKLY-SUPERVISED ORIENTED OBJECT DETECTION

Existing mainstream weakly-supervised oriented object detection approaches can be divided into
HBox-supervised (plane-level) and point-supervised (point-level) methods. Furthermore, we ex-
plore the feasibility of line-supervised (line-level) methods.

HBox-supervised. HBox-supervised instance segmentation methods Tian et al.| (2021); [Li et al.
(2022b); [Kirillov et al.| (2023) employ the HBox-Mask-RBox pipeline to derive RBox from the
segmentation mask, though this is less cost-effective. A pioneering approach, H2RBox |Yang et al.
(2023), bypasses the segmentation step and directly detects RBox from HBox annotations. As a
new version, H2RBox-v2 |Yu et al.| (2024b) exploits the inherent symmetry of objects. EIE Wang
et al.| (2024) leverages various contrastive cues related to angle prediction, facilitating the learning
of equivariance between boxes. Nevertheless, these techniques still necessitate the acquisition of
a considerable number of bounding box annotations. Additionally, OAOD |Igbal et al.| (2021) uses
extra object angle, whereas KCR [Zhu et al.| (2023)) employs RBox-annotated source datasets with
HBox-annotated target datasets. However, these specialized annotation forms lack universality.

Point-supervised. Point-based annotations have been widely used in horizontal object detection
Chen et al.| (2021); |Ying et al.| (2023). Due to its cost-effectiveness and efficiency, point-supervised
oriented object detection has garnered attention. P2BNet|Chen et al.| (2022)) uses Multiple Instance
Learning (MIL) to select the box with the highest confidence from multiple boxes containing points.
Point-to-Mask|Li et al.|(2023)) provides a potential method for point-supervised rotating target detec-
tion. PointOBB |Luo et al.[(2024) learns object scale and angle information through self-supervised
learning across different views, enabling the generation of oriented bounding boxes from points.
Point2RBox [Yu et al.| (2024a)) transfers object features to synthetic patterns using a sampling strat-
egy and trains output RBox on transformed images, enhancing the network’s perception of size
and rotation for improved detection accuracy. However, these methods suffer from lower detection
accuracy and often require additional knowledge or pseudo-label generation.

Line-supervised. In light of the aforementioned methods, we have sought to strike a balance be-
tween the annotation cost and the detection accuracy in weakly supervised methods. To this end,
we explore the potential of utilizing line as a means of labeling objects, which has a cost between
point-level and plane-level. This paper aims to fill this blank and provide a valuable starting point.
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Figure 2: Illustration of proposed L2RBox. The Backbone+FPN extract features from input images
and then fed into L2ZRBox Head. Line annotation-based label assignment (L-LA) of the Head con-
tains training sample selection and center-ness target computation. Branches of the Head contain
classification and regression branches. The regression loss is designed as four components.

3 PROPOSED METHOD

In this section, we introduce the first implementation of oriented object detection using line as super-
vised information. First, an overview of our L2RBox is provided in section@ Next, we introduce
the line annotation-based label assignment (L-LA) containing training sample selection and center-
ness target computation in sections 3.2 and 3.3] Finally, we present the proposed loss functions,
which guide the optimization of RBox based on line annotations in section [3.4]

3.1 OVERVIEW

For simplicity and efficiency, our L2RBox follows the FCOS-based [Tian et al. (2019) detection
paradigm, which features a one-stage, anchor-free architecture. The overview of the L2RBox is
shown in Fig. 2] Our L2RBox initially leverages a backbone and feature pyramid network (FPN)
Lin et al.|(2017a)) to extract multiscale features from original images. Notably, our detector is adapt-
able to various backbone networks, including ResNet He et al.| (2016), Swin Transformer Liu et al.
(2021)), and ConvNeXt|Liu et al.| (2022). Unless otherwise specified, all methods in this paper use
ResNet50 by default for fair comparison.

Following FPN, we detect objects of different sizes at various feature map levels. Each pyramid
level, denoted by P;, corresponds to a feature level. Specifically, Ps, P,, and Ps are derived from
the backbone CNN’s feature maps C3, Cy, and Cj, followed by a 1 x 1 convolutional layer with
top-down connections. Py and P; are generated by applying a convolutional layer with a stride of 2
on P5 and P, respectively. Each feature pyramid level { Ps, Py, Ps, Ps, P;} is then fed directly into
the L2ZRBox Head.

The L2RBox Head consists of two branches. The classification branch predicts the confidence
scores, while an additional single-layer convolution predicts the center-ness of the location in par-
allel. The other branch is responsible for RBox regression, enabling loss computation between the
predicted RBox and the ground truth lines. The total loss is calculated as the weighted sum of the
classification and regression losses. Furthermore, we propose a line annotation-based label assign-
ment strategy (L-LA) that contains training sample selection and center-ness target computation.

3.2 TRAINING SAMPLE SELECTION FOR L2RBo0X

Given a feature map F' € R7*WXC where H, W, and C correspond to the height, width, and
channel of the feature map, respectively, the set of grid locations for this feature map is represented
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Figure 3: Illustration of the center-ness for LZRBox. (a) illustrates the center-ness modeling process
using line annotations, where green represents the supervised information and orange shows the
actual bounding box. (b) compares the trend curves of center-ness component across various scales.
(c) visualization of the center-ness values and projection on the zy-axis.

as P = {(z;,:)|i = 1,2,3, ..., H x W}. The correspondence between any point (z;,y;) in the set
IP and the original image position (x¢, y¢) is as follows:
s

(tv) = (|5 ]+ oo [ 3] +uies) (M

where s denotes the stride of feature map F'. The jth ground truth line for an input image is defined
as L; = (zd, v, 21, yl, ) e Rx {1,2,...,C}, where (2, y?) and (2], y]) are the endpoints of the
line, and ¢’ is the class that the line annotation object belongs. C'is the number of classes, which is
15 for DOTA-v1.0 dataset. Different from bounding box-supervised approaches that can accurately
define the object boundaries, our method requires expanding the line into a circular region C, to
approximate the boundaries. The centre (z., y.) and radius R of circular region C, are defined as
follows:

.TjJrCﬂj yj+yj o R yjfyj
(xcayc):(%v 02 1)7R: ( 12 0)2+( 12 0)2 )

To ensure the quality of the training samples, we perform center sampling on the circular region C,
with a sampling radius R. = s X o, where s denotes the stride and o denotes the sampling ratio. The
sampling result is denoted as region C,.. We then obtain the set I, and IP., belonging to C,; and C.
in the following way:

Py = {(wiy)li € {il(xf —we)’ + (o —ye)* < R*}},
P. = {(zs,y:)]i € {i|(z¢ — 2c)® + (yf —ye)® < RZ}}

We choose not to directly use the center sampling region for selecting training samples because the
center sampling radius must be globally adjusted based on the stride of each output layer, which
can result in the radius exceeding the circular region. Instead, the final positive samples set PT =
P, N P, and the labels of positive samples determined by the corresponding GT line. Although
objects with different sizes are assigned to different feature levels, densely arranged objects at the
same level can still result in a location being assigned to more than one circular region. In such
cases, we select the ground truth line with the shortest length as the target.

3)

3.3 CENTER-NESS FOR L2RB0OX

The FCOS-based detector uses the predict center-ness as a mask to eliminate low-quality predict
bounding boxes produced by locations far away from the center of an object. The optimisation
target for center-ness is determined by the distances (I, , ¢, b) from (z¢, y¢) to the four edges of the
RBox B,.(z*,y*,w, h,d). The calculation formula is as follows:

I = (xf —x%)cost + (y — y*)sinb + %, r=(xf —2%)cost + (yi —y*)sind — %,
4)
h heo
t=—(xf —ax")sinf + (y§ —y*)cosh + 3 b= —(af —x")sinb + (v — y*)cost — 3
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where (z*, y*) is the center, w, h, and 6 are the width, height, and angle of the RBox, respectively.

Unlike box annotations that can compute all four distances (I, ,t,b), line annotations are limited
to calculating only two: ¢t and b. To overcome this limitation, as shown in Fig. we generate a
circle with the midpoint of the line as its center and the line segment as its diameter. The minimum
circumscribed rectangle of the circle, aligned with the line, is then used to approximate center-ness.
The width of a real box can then be considered as a scaling of the line in different ratios k. Our
approximate center-ness cn can be expressed as follows:

min(l,r) +v  min(t,b) h(k—1)
cn = X U=
max(l,r)+v  max(t,b) 2k

®)

According to Eq. [5] we focus on comparing the center-ness component for width, which shows a
consistent trend at various ratios, as illustrated in Fig. We also visualize the center-ness values
in Fig. with higher values found closer to the center. This confirms that our modeling approach
provides a suitable optimization target for center-ness.

3.4 Loss FUNCTIONS

Since the detector structure is based on FCOS, the losses in this part mainly include the regression
L,.g, classification L;,, and center-ness L,. The loss function for LZRBox is defined as follows:

Loss =21 ZLCIS(C?,CZ-)—&- o L.y (en},cen;)
pos Npos i

(6)

TR B Z Le;>0niLreg {Bi, Li}

> Clpos -
where L., is the focal loss|Lin et al.[{(2017b), L.,
is cross-entropy loss, and L. is regression loss X _ o
for LZRBox. N, denotes the number of positive A
samples. c¢* and c denote the probability distribu-
tion of various classes calculated by Sigmoid func-
tion and target category. B and L represent the 1T R— B
predict RBox and the GT line, respectively. cn; o2 B JEESSS—— . . e
and cn; indicate the predict and target center-ness. : h
1,>0 is the indicator function, being 1 if ¢; > 0
and 0 otherwise.

:

We present the L., to compute the regression loss SRR e s e e
between L(z%,y*, h*,0*) and the predict RBox

B(xe,ye,w,h,0). As shown in the regression Figure 4: IoU curves for circles and corre-
branch in Fig. [2} the proposed L, comprises four ~sponding minimum circumscribed rectangles.
components: scale loss L, height loss Ly, position A and B are two cases with similar scales and
loss L, and angle loss L. large-scale gaps, respectively.

Scale loss: The optimization objective is restricted to the approximate scale of the object by com-
puting the scale loss L between the corresponding circles of B and L. The formula is as follows:

r2¢(B;) N12¢(BL;)
r2¢(B;) Ul2¢(BL;)

where the r2¢(+) function converts the RBox into its minimum circumscribed circle, and the [2¢(-)
function converts the target line into a circle by taking the segment as the diameter. The scale factor 3
influences the scale of the optimization objective through the scaling line, ranging from [1, \/5] and
reaching its peak of \/2 when the bounding box is square. To simplify the computation of the loss
function, motivated by the core concept of KFloU|Yang et al.[(2022), which emphasizes constructing
loss functions that maintain trend-level consistency with the objective function, we calculate the loU
loss based on the minimum horizontal circumscribed rectangles of the circles. As shown in Fig. A
there is trend-level consistency between the intersection over union (IoU) of circles and the IoU of
their minimum horizontal circumscribed rectangles, and we also give the proof procedure in

Ly=—1In 7)
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Height loss: Leveraging supervised information to direct the optimization of the long edges of the
predict bounding box. The formula is as follows:

Ly =1 {h*, h} (3
where [; is the mean absolute error loss.

Position loss: When the IoU loss remains constant (case B, Fig. , L, guides optimization using
center distance. The formula is as follows:

Ly= > hL(t"¢) )
te(z,y)
where ¢ and ¢* represent the centers of the line and the bounding box, respectively.

Angel loss: L, takes into account the loss discontinuity caused by the periodicity of angle. The
formula is as follows:

L, = l1(sin(f — 6%),0) (10)
The regression loss L. is calculated as a sum of the L, Ly, L, and L, by the following equation:
Lyeg=aLls+(1—a)Lp+L,+ L, (11

where « is an adjustment factor designed to correlate height with scale.

4 EXPERIMENT

4.1 DATASETS AND IMPLEMENTATION DETAILS

DOTA-v1.0: DOTA-v1.0 Xia et al|(2018) is a commonly used dataset in the field of oriented
object detection, which contains 2806 large-scale images. The dataset encompasses the following
15 distinct object classes: Bridge (BR), Harbor (HA), Ship (SH), Plane (PL), Helicopter (HC), Small
vehicle (SV), Large vehicle (LV), Baseball diamond (BD), Ground track field (GTF), Tennis court
(TC), Basketball court (BC), Soccer-ball field (SBF), Roundabout (RA), Swimming pool (SP), and
Storage tank (ST). The proportion of the training set, validation set, and testing set are 1/2, 1/6, and
1/3, respectively. For training and testing, we adhere to a standard protocol by cropping images into
1,024 x 1,024 patches with a stride of 824. The detection accuracy is obtained by submitting testing
results to DOTA’s evaluation server.

DIOR-R: DIOR-R |Cheng et al.| (2022) is an aerial image dataset. Different imaging conditions,
weather, seasons, and image quality are the major challenges of DIOR-R. Besides, it has high inter-
class similarity and intra-class diversity. The dataset comprises 190,288 objects of interest across
20 categories, totaling 23,463 optical images collected from Google Earth. The categories are de-
fined as: Airplane (APL), Airport (APO), Baseball Field (BF), Basketball Court (BC), Bridge (BR),
Chimney (CH), Expressway Service Area (ESA), Expressway Toll Station (ETS), Dam (DAM), Golf
Field (GF), Ground Track Field (GTF), Harbor (HA), Overpass (OP), Ship (SH), Stadium (STA),
Storage Tank (STO), Tennis Court (TC), Train Station (TS), Vehicle (VE) and Windmill (WM).

Line Annotation: To accurately reproduce the biases during manual annotation, we apply random
translations and rotations to the labels. Translations ranges are set to 10%, 20%, and 40% of the line
length, while rotations ranges are limited to 10%, 20%, and 40% of 7/2. The effect of the range will
be discussed in Section [4.3]

Experimental Settings: All methods are implemented under the open-source PyTorch 1.13.1
Paszke et al.| (2019) framework and the rotation detection tool kits: MMRotate 1.0.0 [Zhou et al.
(2022). For a fair comparison, all models are configured based on ResNet50 |[He et al.| (2016) back-
bone and trained on Tesla A100-40g GPUs. The models are optimized using the AdamW optimizer
Loshchilov & Hutter| (2017), with an initial learning rate of 1e-4 and a mini-batch size of 2. APj is
selected as the main metric for comparison with existing methods. AP75 and AP are more stringent
evaluation metrics, where AP refers to AP5g.95, as commonly used in the object detection field. “3x”
schedule indicates 36 epochs, with 12 epochs being the default. “MS” and “RR” denote multi-scale
technique and random rotation augmentation. Random flipping is employed to prevent over-fitting.

Trade-offs Metric: Multi-criteria decision-making |Zlaugotne et al.| (2020) offers a structured ap-
proach to select the optimal option while balancing various criteria. Building on this, we develop a
trade-off evaluation metric M that accounts for annotation efficiency and detection accuracy:
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Table 1: Detection results of each category on the DOTA-v1.0 and the AP5q of all categories. ‘RC’
indicates using rectangles and circles with curve textures as basic patterns. ‘SK’ indicates using
one sketch pattern for each category as basic patterns. ‘FCOS’ and ‘R-CNN’ denote the use of
pseudo-labels generated by PointOBB to train FCOS and R-CNN detectors respectively.

Method |PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC |AP
RBox-supervised:

RetinaNet|Lin et al.|(2017c) 87.9 773 39.7 614 759 544 75.6 90.8 774 79.7 51.8 61.5 50.8 65.1 35.3|65.63
RepPoints|Yang et al.|(2019) 86.7 81.1 41.6 62.0 762 563 75.7 90.7 80.8 853 63.3 66.6 59.1 67.6 33.7|68.45
KFIoU | Yang et al [(2022) 89.1 752 49.0 69.7 78.1 75.5 86.7 90.9 83.7 845 622 629 66.7 659 50.2|72.68
FCOS Tian et al.[(2019) 88.4 75.6 48.0 60.1 79.8 77.8 86.6 90.1 782 85.0 52.8 663 64.5 68.3 40.3|70.78

HBox-supervised:
BoxLevelSet-RBox Li et al.|(2022b) | 63.5 71.3 39.3 61.1 41.9 41.0 45.8 909 74.1 72.1 47.6 63.0 50.0 56.4 28.6|56.44
SAM Kirillov et al.|(2023) 78.6 69.2 31.4 56.7 722 71.4 77.0 90.5 76.2 83.7 42.5 59.5 51.1 56.2 42.9|63.94
H2RBox |Yang et al.|(2023) 88.5 735 40.8 569 775 654 77.8 909 83.2 853 553 629 524 63.6 43.3|67.82

Point-supervised:
P2BNet|Chen et al{(2022)+H2RBox |24.7 359 7.0 279 33 12.1 175 175 0.8 34.0 63 49.6 11.6 27.2 18.8|19.63
P2BNet+H2RBoxv2Yu et al.[(2024b) | 11.0 44.8 149 154 36.8 16.7 27.8 12.1 1.8 312 34 50.6 12.6 36.7 12.5|21.87
Point2RBox-RC|Yu et al.|(2024a) 629 643 144 350 282 389 333 252 22 445 34 48.1 259 450 22.6|32.92
Point2RBox-SK|Yu et al.{(2024a) 533 639 3.7 509 40.0 392 457 76.7 10.5 56.1 54 495 242 51.2 33.8|40.27
PointOBB |Luo et al.|(2024) (FCOS) |26.1 65.7 9.1 59.4 658 349 298 0.5 23 167 0.6 49.0 21.8 41.0 36.7|30.08
PointOBB |Luo et al.|(2024) (R-CNN) [ 28.3 70.7 1.5 649 68.8 46.8 339 9.1 10.0 20.1 0.2 47.0 29.7 38.2 30.6|33.31

Line-supervised:

L2RBox (Ours) 86.1 66.2 21.2 57.5 745 55 447 90.7 80.3 62.6 55.1 45.3 26.5 68.1 32.2|54.48
L2RBox (Ours) (3%, RR) 86.2 69.5 18.7 58.6 73.7 6.4 453 90.5 794 644 56.9 40.9 26.8 70.7 32.5|54.66
L2RBox (Ours) (MS) 88.1 70.1 23.0 62.8 80.1 6.1 47.9 909 839 704 64.0 474 23.1 714 43.1|58.14
L2RBox (Ours) (MS,RR) 87.5 71.3 272 645 80.3 6.1 47.2 909 83.7 70.2 63.7 44.0 24.7 71.7 41.0 | 58.26
Mi :NG(AZ)*Nt(T'Z) (12)

where T' denotes the annotation time cost for different labeling methods. A denotes the APsy of
different training methods. N¢(-) and N,(-) refer to the normalizing processes for annotation time
cost and detection accuracy, respectively. Notably, we adopt the max-min normalization method
Jahan & Edwards|(2015) and utilize the fully-supervised method KFIou as the reference:

Na(As) = (A; = 0)/(A, — 0), N(T3) = (T, — T,)/ (T, — 0) (13)

where A, denotes the A Psq of the supervised method, Ts denotes the annotation time cost of RBox.

4.2 MAIN RESULTS

Results of trade-off metric /. We take RBox-
supervised KFIoU [Yang et al.| (2022) as the bench- 10
mark and calculate the trade-off metric M of differ-
ent weakly-supervised methods, which have the best
performance under HBox- point- and line-supervised,
respectively (performance see Table[I). As shown in
Fig. [3] red pint, green point, and blue point corre-
spond to our L2RBox, point2rbox |Yu et al| (2024a),
and H2RBox |Yang et al| (2023), respectively. The
horizontal axis is normalized time efficiency and the
vertical axis is normalized accurancy. The colour  ,|
area represents m. Though the HBox-supervised
method has the advantage in accuracy and the Point-
supervised method has the advantage in time effi-
ciency, our Line-supervised has the best trade-off ef- Figure 5: Comparison of trade-off metric
fectiveness with a highest trade-off metric score of for different weakly-supervised methods.
0.52. Experimental results show that our L2Rbox can

effectively trade-off annotation cost and performance in weakly supervised detectors.

033 ® L2RBox (Ours)
. ® Point2RBox (CVPR2024)
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0.8 . e
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Results on DOTA-v1.0. As shown in Table [} our L2RBox achieves APsq of 54.48%. When
multi-scale (MS) technique and random rotation (RR) augmentation are applied, the AP5q score
reaches up to 58.26%. Compared to Point-supervised approaches, our L2ZRBox outperforms the best-
performing Point2RBox-SK |Yu et al.| (2024a) by 17.9%. When benchmarked against the FCOS-
based PointOBB |[Luo et al.| (2024)), the improvement reaches 28.18%. This significant performance
advantage results not only from the additional information provided by line supervision over point
supervision but also from our network architecture specifically optimized for line supervision. This
design enables oriented object detection while fully leveraging the supervision information to en-
hance detection accuracy. When compared to the more information-rich HBox-supervised method
H2RBox|Yang et al.{(2023), our APy score is lower by only 9.56%. This difference is much smaller
than the improvement our L2RBox achieves over point-supervised methods. Notably, our L2ZRBox
achieves performance comparable to fully RBox-supervised methods in the categories PL, GTF, and
TC, and slightly surpasses them in AP35 scores for the categories SP, SBF, SV, and BC, demonstrat-
ing the potential of line supervision.

Results on DIOR-R. To assess the robustness of our LZRBox, we also compared L2RBox against
state-of-the-art methods using the DIOR-R dataset, as detailed in[A.2]

Table 2: Ablation for main components. Table 3: Effect of weight 3.
Dataset TSS CN Lreg ‘ AP AP50 APr5 M3 ‘ AP AP50 APrs5
v v 0.34 138 0.09 1.0 21.15 52.49 16.97
DOTA Vv V' [12.22 2941 8.46 0.7 20.62 53.75 17.68
v v v |21.84 5448 17.37 0.5 21.62 54.19 17.32
v v 0.33 1.50 0.10 0.3 21.84 54.48 17.37
DIOR Vv v | 750 2570 1.90 0.1 21.51 54.43 16.76
v v v 1621 4341 7.50
Table 4: Effect of adjustment factor . Table 5: Analysis of different scaling ratios.
(0% ‘ AP AP50 AP75 ,3 ‘ AP AP5() AP75
- 12.39 30.21 8.73 1.00 0.10 0.14 0.00
0.3 21.22 53.90 16.60 1.10 21.19 46.75 14.78
0.5 21.34 53.51 17.23 1.15 21.84 54.48 17.37
0.7 21.84 54.48 17.37 1.20 20.53 51.65 10.52
0.9 21.47 54.17 17.21 1.40 12.39 30.21 8.73

4.3 ABLATION STUDY

The ablation study is performed on the proposed L2ZRBox with 12 training epochs.

The effect of main components. Table 2] presents the ablation study of the main components. Here,
TSS, CN, and L,.4 represent our proposed training sample selection, center-ness target computa-
tion, and regression loss, respectively. TSS is consistently applied to ensure stable network training.
“w/o CN” means utilizing only the center-ness component of height, while “w/o L,..,” means di-
rectly optimizing the network with line annotations. The APsg scores are 1.38% and 29.41% on
DOTA when adding CN or L., respectively. When all the components work together, the score
achieves 54.43%. These excellent results demonstrate that our proposed method not only enables
line-supervised oriented object detection but also significantly enhances detection accuracy. The
ablation experiment on the DIOR dataset further supports this conclusion.

The effect of weight 1.3 of Eq. (6l We explore the impact of the weight pi3 of L., in total loss on
the detection performance. Table[3|shows that the overall optimum is achieved when p3 is set to 0.3.

The effect of adjustment factor «.. Table |4 examines the effect of the adjustment factor «. When
a is set to 1 or 0, it indicates that only scale loss L or only height loss L;, is used, respectively,
both resulting in a detection accuracy of 0. The symbol “-” indicates that the adjustment factor is
not applied, meaning that the weights of Ly and L;, are independent of each other. When « is set
to 0.7, the APs5q score reaches 54.48%, representing a 24.27% improvement compared to when no
adjustment factor is applied. This notable performance improvement demonstrates that the proposed
adjustment factor effectively links scale and height, jointly guiding the direction of optimization.
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The effect of scale factor J of Eq. [7, We investigate Table 6: Ablation studies of bias range. ‘T’
the impact of varying the scale factor 5 on detection apd ‘R’ represent the random translation
performance across its value range. Through a coarse and rotation, respectively. ‘T+R’ means
search shown in Table [5| we adopt 5 = 1.15. The op- “T’ and ‘R’ are used simultaneously.

timal AP5q score shows improvements of 54.34% and

24.27% compared to the scores at the boundaries of the Setting ‘ T R T+R
tested range. The results indicate that 5 helps deter-
mine the object’s scale and, in combination with height
information, can return an appropriate bounding box.

Range=0% | 54.43 5443 54.43
Range=10% | 54.61 54.01 54.59

) Range=20% | 55.12 54.90 54.61
The effect of bias range. Table[6]displays the effect of Range=40% | 52.77 54.46 52.51
different noises. The results show that random trans-

lations and rotations with the 20% range slightly im-

prove the performance while the 40% range decreases only 1.92% APj5q, demonstrating that our
method is robust to inaccurate annotations.

4.4 MODEL ANALISIS

Computational Cost and Speed. In this study,

we examine the computational cost and detection  Typle 7: Results of computational cost and de-
speed of our L2ZRBox. Given that detection speed  (ection speed.

is contingent upon the experimental environment,

we undertake a comparison of the base architec- Method ‘ GFLOPs Params(MB) FPS
ture FCOS [Tian et al.| (2019) within our experi-
mental environment, which is equipped with two FCOS 206.91 31.92 27.2
Tesla A100-40g GPUs. Table [7]illustrates that our ~ L2RBox(ours) | 206.91 3192 278
method does not result in any additional computa-

tional overhead or variation in detection speed. GFLOPs indicate model complexity, with lower val-
ues being preferable. “Params” reflects the model size, where fewer parameters are better. Frames
per second (FPS) measures inference speed, with higher values being more desirable.

Convergence Analysis. This

section examines the conver- ¢ ) 2000 200 2000
gence of the proposed model | T IR P
during the training phase.

The top row of Fig. [[(a) illus-
trates the convergence of the ‘ ‘ ‘
total loss and gradient norm \ —
curves, which both reach a \ L7 CES o
minimum as training pro- ]
gresses.  Furthermore, the Wi
loss curves for the classifica- C mo  aom  wwo e R I R T T T
tion and regression branches () Lossand gradient rorm curves (b) Evaluate accuracy curves

are provided in greater de-
tail in the bottom row of Fig.
[6a). The combined evalua-
tion accuracy curves at different Intersection over Union (IoU) thresholds in Fig. @b) demonstrate
that the proposed model converges effectively and approximates the global optimum.

Figure 6: Loss and accuracy curves during training on the DOTA.

5 CONCLUSION

This paper introduces a novel line annotation format that balances the annotation cost with the de-
tection accuracy in weakly-supervised oriented object detection methods. We also propose the first
line-supervised detector, L2ZRBox, which includes label assignment and loss functions that support
line annotation. The detector employs an anchor-free architecture, enabling end-to-end detection.
Extensive experiments demonstrate that our approach significantly outperforms point-supervised
methods while requiring only a slight increase in labeling costs.

10
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A APPENDIX

A.1 PROOF OF TREND-LEVEL CONSISTENCY

This section presents a proof of the trend-level consistency between the Intersection over Union
(IoU) of circles and the IoU of their minimum horizontal circumscribed rectangles.

As shown in Fig. [7] suppose there are two circles {(z1, y1)|2? + y? = R2}, {(22,v2)|(2v2 — d)? +
y3 = R3}, c1(z1,y1) and ca(z2, y2) are the centres of the two circles respectively. d represents
the distance between c; and c;. We establish a Cartesian coordinate system with c; as the origin
and the line between ¢y and cs as the horizontal axis, where k and p are the intersection points of
two circles, and m(z,, 0) is the point where the line segment kp intersect the horizontal axis. The
lengths {; and l5 of the line segments c¢;m and com are calculated as follows:
2 2 g2 2 2 g2
h:Rl_R2+d7 Z2:R2_R1+d (14)
2d 2d
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Figure 7: Schematic diagram for calculating Intersection over Union (IoU).

The intersection I of two circles is calculated as follows:

Ry Tm
I/2:/ \/ R} — 23dx —|—/ \/R3 — (z2 — d)%dx
. 1 1 1 iR, 2 2 2

(15)
TR} R%arcsin%+l1\/R%—l% +7TR% R%arcsinl%—klm/R%—lg
4 2 4 2
Then I can be updated with Eq. [T4]as:
T R? R} —R3+d*> R—R;+d? R} — R3 + d?
7= p2 e B 3 v 2 o (1Y 2 2
- R7 arcsin SR, 5 R —( ¥ ) 6
7R3, . RI-R}+d R%—Rf+d2\/ , RB-Ri+ad,
+ 5 — R5 arcsin SR, - 54 R: —( 54 )

When two circles approach each other, the IoU Cj,, between two circles can be divided into the
following cases:

0, R+ Ry <d

f(d)
Ry, — Ry|<d<Ri + R
Ciou = ﬂ'R%+7ngff(d)’ | 1 2|< <Ri+ Ry
amin{ Ry, R }?

mmaz{ Ry, Ra}?’

(17
0<d<|R; — Ryl

where f(-) denote Eq.

Similarly, the IoU R;,,, between minimum horizontal circumscribed rectangles of the given circles
can be divided into the following cases:

0, R+ Ry <d
2min{Ry, Ry} (R1 + Ry — d)
, |R1— Ra|<d<Ri+ R
Riow = { 4R? 4+ 4R% — 2min{R1, Ro}(R1 + R> — d) [Ry — Ry 1+ R
4min{R,, Ry}*
dmax{Ry, Ro}?’

(18)
0<d<|R; — Ryl

The monotonicity analysis of C;,,, and R;,, with respect to the variable d is as follows:

Combining the Eq. [T7]and Eq. [T8] we first discuss the monotonicity when Ry = R, = R, where R
is an arbitrary constant.

(1) Ry + Ry < d. In this case, C;,, = 0 and R;,,, = 0.
(2) |R1 — Rz|<d<R; + Rs. We calculate the derivative function for f(d) and R;,,, as follows:

4R
/d = — 4 2—d2 / - - 1
f(d) V4R <0, R, (2R+d)2<0 (19)
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Table 8: Detection results of each category on the DIOR-R and the mean APsq of all categories.
‘1024’ and ‘800’ indicate the input images are resized to 1024 x 1024 and 800 x 800, respectively.

Method ‘APL APO BF BC BR CH ESA ETS DAM GF GTF HA OP SH STA STO TC TS VE WM‘APsO
RBox-supervised:

RetinaNet 589 19.8 73.1 81.3 17.0 72.6 68.0 47.3 20.7 74.0 73.9 32.532.4 75.1 67.2 58.9 81.0 44.5 38.3 62.6|54.96
FCOS 61.4 38.7 74.3 81.1 30.9 72.0 74.1 62.0 25.3 69.7 79.0 32.8 48.5 80.0 63.9 68.2 81.4 46.4 42.7 64.4|59.83
HBox-supervised:

H2RBox 68.1 13.0 75.0 85.4 19.4 72.1 64.4 60.0 23.6 68.9 78.4 34.7 44.2 79.3 65.2 69.1 81.5 53.0 40.0 61.5|57.80
H2RBox-v2 67.2 37.7 55.6 80.8 29.3 66.8 76.1 58.4 26.4 53.9 80.3 25.3 48.9 78.8 67.6 62.4 82.5 49.7 42.0 63.1|57.64
Point-supervised:

P2BNet+H2RBox 52.7 0.1 60.6 80.0 0.1 22.6 11.5 52 0.7 02 428 2.8 0.2 25.1 86 29.1 69.8 9.6 7.4 22.6|22.59
P2BNet+H2RBox-v2 [51.6 3.0 652783 0.1 81 7.6 63 0.8 0.3 449 23 0.1 359 9.3 39.2 79.0 8.8 10.3 21.3|23.61
Point2RBox-SK 419 9.1 62952.810.8722 3.0 439 55 9.7 251 9.1 21.024.0 204 25.1 71.7 4.5 16.1 16.3|27.30
PointOBB (FCOS) 584 17.1 70.777.7 0.1 70.3 647 45 72 0.8 742 9.9 9.1 69.0 38.2 49.8 46.1 16.8 32.4 29.6|37.31
PointOBB (R-CNN) [58.2 15.3 70.5 78.6 0.1 72.2 69.6 1.8 3.7 0.3 77.3 16.7 4.0 79.2 39.6 51.7 44.9 16.8 33.6 27.7|38.08
Line-supervised:

L2RBox (Ours) (800) |66.7 3.2 74.2 80.7 9.2 71.9 43.6 30.3 13.3 63.6 749 5.7 2.0 18.7 65.1 59.9 80.4 8.2 25.0 50.7|42.40
L2RBox (Ours) (1024)|73.1 4.6 74.8 80.9 9.1 71.8 40.3 34.2 11.1 64.0 77.3 49 2.0 19.9 69.1 66.6 80.4 5.8 28.2 50.4|43.41

Note that as the Eq. [17] the sign of the

(o4

nou

is same as the f’(d). This demonstrates that the two

functions C},,, and R;,, exhibit the same monotonicity.

(3)0 < d < |Ry — Ry|. According to Eq.[17]and Eq. [18] Cjo, = 1 and Rjoy = 1.

Similarly, we discuss the monotonicity when Ry # Rs.

(1) Ry + Ry < d. In this case, C;,, = 0 and R;,,, = 0.

(2) |R1 — Ro|<d<R; + Ry. We calculate the derivative function for f(d) and R;,,, as follows:

_ /—R{ - Rj+2R}d®> + 2R}d* + 2R}R3 — d*
d
8(R? + R3)min{Ry, Ry}
[AR? + 4R2 — 2min{ Ry, Ra}(Ry + Ry — d)]

<0

f()
(20)
R

wou -

5 <0

This demonstrates that C;,,, and R;,,, exhibit the same monotonicity.

(3) 0 < d < |R; — Ry|. Combine with the Eq. and Eq. Ciou = a and R;,,, = b, where a and
b are both constants.

In conclusion, regardless of whether the two given circles have the same radius, Cj,,, and R;,y
exhibit the same monotonicity, indicating a trend-level consistency between the IoU of circles and
the IoU of their minimum horizontal circumscribed rectangles.

A.2 RESULTS ON DIOR-R

To assess the robustness of our L2ZRBox, we also compared L2RBox against state-of-the-art meth-
ods using the DIOR-R dataset, as detailed in Table[8] Our L2RBox achieves APj5 score of 43.41%.
Compared to the state-of-the-art Point-supervised method (i.e. PointOBB |Luo et al| (2024))), our
approach uses an end-to-end structure, yet obtains a competitive performance (43.41% vs. 38.08%).
When benchmarked against the end-to-end Point2RBox|Yu et al.|(20244a), our L2ZRBox demonstrates
an improvement of 16.11%. In comparison with fully RBox-supervised methods, L2ZRBox demon-
strates similar performance in the BC, CH, GTF, STO, and TC categories. Notably, in the APL
category, our L2RBox outperforms the fully RBox-supervised FCOS [Tian et al.| (2019) by 11.7%.
It is probable that this is a consequence of our utilisation of a minimum circumscribed circle to
calculate the loss, which offers greater adaptability for objects with a small aspect ratio.
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Figure 8: The labeling process for line, HBox and RBox annotation.

A.3 THEORETICAL COST

We utilize the distance moved while annotating to reflect the overhead in an ideal situation. As
shown in Fig. [8] the dotted lines with different colors indicate the trajectory of the different an-
notation methods. Assuming that the RBox of an object is (x,y,w,h,0), the distance moved when
annotating with RBox can be calculated as:

D, =2(w+h) (21)

When annotating with HBox:

Dy = \/(h - s1nf + w - cos)? 4 (w - sinf 4 h - cos)?

(22)
= Vw2 + h2 + 4sinfcosh

When annotation with Line:
D, =h (23)

D,., Dy, and D; represent the distances moved when using RBox, HBox, and Line annotations,
respectively. So the theoretical cost of line annotations is minimal.

Table 9: Ablation studies of sampling ratio

o ‘ AP AP50 AP75

1.0 | 21.45 5349 1693
1.5|21.84 54.48 17.37
20]21.22 5346 16.82

A.4 THE EFFECT OF SAMPLING RATIO

We explore the impact of the sampling ratio o introduced in Section [3.2] on detection performance.
Table 9] shows that the overall optimum is achieved when o is set to 1.5.

A.5 QUALITATIVE RESULTS

The qualitative results obtained on the DOTA-v1.0 and DIOR-R are presented in Fig. [O]and Fig. [I0}
Despite the diverse range of scenes and objects captured in the input images, which encompass a
multitude of categories and scales, the proposed L2RBox has demonstrated its capability to accu-
rately predict oriented bounding boxes that are well-aligned with the target. This illustrates that the
proposed components can achieve precise oriented object detection based on line annotations.
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Figure 9: Qualitative Results on DOTA-v1.0.
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Figure 10: Qualitative Results on DIOR-R.
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