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Abstract

This paper investigates the challenge of learning
in black-box games, where the underlying utility
function is unknown to any of the agents. While
there is an extensive body of literature on the the-
oretical analysis of algorithms for computing the
Nash equilibrium with complete information about
the game, studies on Nash equilibrium in black-box
games are less common. In this paper, we focus on
learning the Nash equilibrium when the only avail-
able information about an agent’s payoff comes
in the form of empirical queries. We provide a
no-regret learning algorithm that utilizes Gaussian
processes to identify the equilibrium in such games.
Our approach not only ensures a theoretical con-
vergence rate but also demonstrates effectiveness
across a variety collection of games through exper-
imental validation.

1 INTRODUCTION

The Nash equilibrium (NE) is a fundamental concept in
game theory and represents a stable point in strategic in-
teractions among multi-agent systems. The computation of
NE has been extensively explored. Existing computational
studies [Basar, 1987, Li and Basar, 1987, URYAs’ Ev and
Rubinstein, 1994] have provided valuable insights into equi-
librium existence, complexity, and algorithmic solutions
when agents’ utility information is public knowledge. How-
ever, when dealing with a game, particularly one involving
multiple agents, it is unrealistic to expect that anyone pos-
sesses an explicit representation of its utility function, even
if the game itself has a succinct representation. In many
real-world scenarios, a reasonable modeling assumption is
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that given the strategy profile of all agents, we can query
their corresponding utilities.

Our focus lies in developing algorithms that discover NE
through a series of queries, where each query proposes a
strategy profile and receives information about the corre-
sponding utilities of all agents. Such games are also re-
ferred to as black-box or simulation-based games [Wellman,
2006, Jordan et al., 2008, Vorobeychik, 2010, Fearnley et al.,
2015]. For instance, we can envision an agent-based combat
simulation where the analyst has the ability to configure
the strategic parameters of the adversaries and execute the
simulation to obtain a representative outcome of a battle or
campaign [Vorobeychik and Porche, 2009]. Other examples
include simulation-based game theoretic analyses of supply
chains [Vorobeychik et al., 2006] and simultaneous ascend-
ing auctions [Wellman et al., 2008]. The motivation of this
model is from a common practice today of “centralized
training, decentralized execution” in multi-agent learning
(originated from the highly impactful work of Lowe et al.
[2017]). That is, in many robotics and game-playing appli-
cations (e.g., OpenAI Gym), the learning environments are
well-defined such that the game parameters can be learned in
a centralized fashion by controlling agents’ action profiles.
Thus, the agents can learn to play the NE strategy from the
perspective of a centralized game analyst, and then deploy
the learned strategies in the decentralized environment to
play against unknown opponents.

In order to learn the NE of the aforementioned black-box
games through queries, it is crucial to estimate the distance
of each query from the NE. Essentially, we can estimate
whether each agent has an inclination to deviate from the
queried strategy. As a result, each query involves computing
the optimal deviation of all agents from the specified strat-
egy. This process is inherently computationally expensive,
as it requires optimization of an unknown utility function
for each agent. To summarize, we make the following as-
sumption about the agents’ utility function in the black-box
games mentioned above.



Assumption 1. We assume the utility functions may have
some regularity properties but are possibly strongly non-
convex. Queries on the utility functions result from an ex-
pensive process and can be corrupted by noise.

In light of the above assumption and the intrinsic cost of
querying utility functions, we employ Gaussian Process
(GP) [Garnett, 2023] as an effective tool for tackling such
black-box optimization problems. This paper investigates
the application of GP in the context of learning the Nash
equilibrium.

Our Results and Implications. Given the lack of agents’
utility information and the expensive query mentioned
above, this paper studies efficient no-regret learning of the
NE for black-box games via GP. To the best of our knowl-
edge, there were no existing GP algorithms for learning NE
with a known no-regret guarantee. The key innovation in
our work is the design of a novel GP objective specifically
for NE learning. Specifically, we characterize the equilib-
rium computation as an optimization problem involving an
unknown loss function. This function represents the maxi-
mum utility gain that agents can achieve by deviating from
the given strategy. Notably, reaching a zero value of this
function corresponds to the NE, a scenario where no agent
can improve their utility by changing their strategy given
the strategies of others.

A critical aspect of our approach is that each query to the
loss function involves calculating all agents’ optimal de-
viation from the given strategy. This process is inherently
computationally expensive, as it requires optimization of an
unknown utility function for each agent. Our main result
provides a no-regret learning algorithm that provides a theo-
retical guarantee of convergence to the Nash Equilibrium.
We demonstrate the algorithm’s effectiveness and compare
its performance in terms of regret against recent algorithms
in the literature on a collection of classical structured games
as well as the real-world marketing budget allocation game.

2 RELATED WORK

2.1 BAYESIAN OPTIMIZATION APPROACH

The most closely related line of research focuses on ad-
dressing game-theoretic models that are computationally
expensive to evaluate using Bayesian Optimization (BO)
techniques. Al-Dujaili et al. [2018] proposed a method
to find equilibria for such games in a sequential decision-
making framework using BO. Specifically, they introduced
the game-theoretical regret of a strategy profile x as the
most utility any agent i can gain by deviating from xi to
any strategy in Xi. The authors employ BO to minimize an
approximation of the game-theoretic regret and approximate
the pure strategy NE. The performance in terms of game-

theoretical regret of the proposed method is validated on
a collection of synthetic games by comparison with some
recent algorithms.

Picheny et al. [2019] also studied the same problem of solv-
ing games with the GP-based approach. The main difference
between this paper and Al-Dujaili et al. [2018] is the ac-
quisition function used by BO. Instead of minimizing the
game-theoretical regret like Al-Dujaili et al. [2018], Picheny
et al. [2019] proposed two acquisition functions. Specifi-
cally, one acquisition function is to maximize the probability
of achieving the equilibrium, while the other one is to re-
duce as quickly as possible an uncertainty measure related
to the equilibrium.

Marchesi et al. [2020] proposed a multi-arm bandit algo-
rithm on top of the Gaussian processes and offers theoretical
justification. Our work differentiates from two perspectives.
First, Marchesi et al. [2020] focused on two-player zero-sum
games, while our work allows multi-player normal-form
games. Second, the regret analysis in Marchesi et al. [2020]
relied on a suboptimal gap in the denominators of the regret
bound. As discussed by Lattimore and Szepesvári [2020],
the major problem with this dependency is that this gap, in
practice, could be arbitrarily small and downgrade the prac-
ticality of the resulting regret analysis. At the same time, our
theoretical results of the regret bound rely on the maximum
mutual information of GP instead and are gap-independent.

Recently, Aprem and Roberts [2021] studied a specific form
of games, termed potential games [Monderer and Shapley,
1996]. Specifically, they utilized the structure of potential
games and proposed to use a Gaussian process model for
the potential function directly instead of modeling the utility
functions like Picheny et al. [2019].

Compared to the previous work, the key contribution of our
work is that we have a novel GP objective for NE learning.
Furthermore, we present a no-regret learning algorithm that
guarantees convergence to NE, addressing a gap in the exist-
ing literature, which lacked theoretical convergence analysis
for similar approaches.

2.2 OTHER ONLINE LEARNING ALGORITHMS

Learning Nash Equilibria has been widely studied in the lit-
erature. Regret minimization serves as a closely related cat-
egory of learning rules. In essence, an agent incurs ex-post
regret if, during certain periods, they could have achieved a
higher average payoff by choosing a different strategy. Sev-
eral straightforward learning procedures exist that aim to
minimize ex-post regret [Foster and Vohra, 1999, Hart and
Mas-Colell, 2000, 2001, Sessa et al., 2019]. However, it is
important to note that relying on ex-post regret minimization
rules does not guarantee behaviors consistently converging
to the Nash equilibrium. What the evidence supports is that
these rules cause the empirical frequency distribution of play



to converge to the set of correlated equilibria, which, while
including Nash equilibria, is frequently much larger and not
necessarily more desirable in terms of strategic outcomes.

Another relevant learning rule is regret testing [Foster and
Young, 2006]. Here, an agent compares their average per-
period payoff over an extended sequence of plays with the
average obtained through occasional experiments with al-
ternative strategies. Foster and Young [2006] demonstrated
that, for all finite two-person games, this rule approximates
Nash equilibrium behavior most of the time. Moreover, Ger-
mano and Lugosi [2014] later established that a modification
of this procedure comes close to Nash equilibrium behavior
in any finite n-person game with generic payoffs.

Another, less closely related, set of learning rules is those
based on interactive learning by trials [Karandikar et al.,
1998, Young, 2009, Marden et al., 2009]. In this context, an
agent learns through trial and error by occasionally exper-
imenting with new strategies, and discarding choices that
fail to yield higher payoffs. They demonstrate the ability to
approach pure Nash equilibrium and play a high proportion
of the learning period, but typically they do not converge.

Recently, Gemp et al. [2024] proposed a novel loss func-
tion for Nash equilibrium learning in general games that is
amenable to Monte Carlo estimation and allows applying
SGD for efficient optimization. Though tackling a similar
problem from different perspectives, the combination of a
gradient-based optimizer with a Monte-Carlo estimator and
a GP-based bandit algorithm has drawn interest in BO lit-
erature [Balandat et al., 2020] and indicates an interesting
future direction.

Similar to the work by Aprem and Roberts [2021], Chapman
et al. [2013] also studied convergence to Nash equilibria
in potential games with rewards that are initially unknown.
Different from the Bayesian optimization approach, they
proposed a multi-agent version of Q-learning to estimate the
reward functions using novel forms of the ϵ–greedy learning
policy. Jordan [1991] studied Bayesian learning of equilib-
rium, assuming each agent knows their utility information
but not others. This work is also related to learning other
equilibrium concepts in game theory and Bayesian optimiza-
tion with multiple structured utility functions, we refer to
Appendix A for more detailed discussions and comparisons.

3 PRELIMINARIES AND PROBLEM
SETUP

We consider the optimization problem of finding the equilib-
rium x∗ ∈ X 1 of a game played by multiple agents, defined

1In this paper, multiple agents’ strategies are denoted by bold
lowercase letters, e.g., x or x−i. The ith agent’s strategy is denoted
in subscript xi (non-bold).

as follows

x∗
i ∈ arg max

xi∈Xi

ui(xi,x
∗
−i), ∀i ∈ [n] (1)

where [n] = {1, · · · , n} denotes the set of agents, Xi is the
action set of agent i (X = X1 × · · · × Xn), and ui(xi,x

∗
−i)

is agent i’s utility function where xi represents agent i’s
action and x∗

−i denotes all the other agents’ actions except
for i. Our paper specifically focuses on finite games, which
involve a finite number of players and a finite number of ac-
tions for each player. It is well-established, as demonstrated
by Nash [1950], that every finite game possesses at least one
Nash equilibrium, commonly known as the Nash existence
theorem.

The problem setup is a repeated game among N agents
or players. Each agent i has an action set Xi ⊆ Rdi and
a utility function ui : X = X1 × · · · Xn → [0, 1]. We
denote all agents’ action x = (x1, · · · , xn) as an action
profile. The Nash Equilibrium (NE) x∗ ∈ X is denoted in
Equation (1). Given any action profile x, we denote a loss
function f : X → R as follows.

f(x) =
∑
i∈[n]

max
x′
i∈Xi

ui(x
′
i,x−i)− ui(x) (2)

Note that f(x) ≥ 0 for all x ∈ X and the NE
x∗ = argminx∈X f(x) satisfies f(x∗) = 0. An approx-
imate Nash equilibrium x is denoted as ϵ-NE [Tijs, 1981,
Lipton et al., 2003], where each agent’s strategy, given
other agents’ strategies, has suboptimality at most ϵ, i.e.,
maxx′

i∈Xi
ui(x

′
i,x−i)− ui(x) ≤ ϵ,∀i ∈ [n].

Example 1. We consider a two-player game from Al-Dujaili
et al. [2018], Paruchuri et al. [2008] as a running example,
where the utility functions of the two players are defined as
u1(x1, x2) = (x2 − x∗

2)
2 − (x1 − x∗

1)
2 and u2(x1, x2) =

(x1−x∗
1)

2−(x2−x∗
2)

2. x∗ = (x∗
1, x

∗
2) = (0.5, 0.5) denotes

the NE. We illustrate the agent’s utility function and loss
function Equation (2) in Figure 1.

Our objective is to minimize the unknown function
(Equation (2)), given only the query access to the objec-
tive function. Specifically, at every time step t, we can query
an action profile xt and observe each agent’s corresponding
utility yt, where yti = ui(x

t) + ϵi and ϵi ∼ N (0, σ2).
We denote a sequence of function evaluations (FEs) as
D1:t = {(x1,y1); · · · ; (xt,yt)}. We define

f(xt)− f(x∗) = f(xt) (3)

as regret, since f(x∗) = 0 for NE. We want to achieve a
no-regret learning of NE:

lim
T→∞

1

T

T∑
t

f(xt)→ 0



(a) Agent 1’s utility in Example 1. The left
plot represents agent 1’s partial maximum
utility from Equation (2) given agent 2’s
strategy x2.
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(b) Heatmap showing the loss function
Equation (2) of Example 1. The optimal
loss of 0 is attained at the NE (0.5, 0.5).
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(c) LCB on Example 1’s loss function
posterior with 10 initialization points. Un-
masked area indicates ROI defined by
Equation (11).

Figure 1: Function visualizations of Example 1, where x-axis (i.e., x1) represents agent 1’s action and y-axis (i.e., x2)
represents agent 2’s action. Agent 2’s utility information is symmetric to Figure 1a and is therefore omitted from this plot.
Figure 1a shows that a rational agent’s utility maximization strategy (i.e., Utility Maxima) is highly different from the
minima of the loss function (i.e., NE (0.5, 0.5)), which highlights the novelty and difficulty of optimizing our loss function
(Equation (2)). Figure 1c highlights the efficiency of our optimization algorithm by reducing the search space.

The definition of no-regret learning of Nash equilibrium
generalizes the no-regret notion in games discussed by Ja-
fari et al. [2001], Daskalakis et al. [2021], and resembles the
common notion of no-regret in the Bayesian optimization
literature [Srinivas et al., 2009, Chowdhury and Gopalan,
2017]. For every agent i ∈ [n], we model their utility func-
tion ui : X → [0, 1] as a GP, which is a probability distribu-
tion over functions, i.e.

ui(x) ∼ GP
(
µui

(·), kui
(·, ·)

)
,

specified by its mean µui
(·) and covariance (or kernel)

kui
(·, ·), respectively. The corresponding hyper-parameters

are denoted by θui . We assume every agent has the same
GP prior GP(0, k(x,x′)) for their utility function. Given a
history of observationsD1:t, the posterior distribution under
a GP(0, k(x,x′)) prior is also Gaussian, with mean and
variance functions updated as follows.

µui,t(x) = kt
ui
(x)⊤(Kt

ui
+ σ2I)−1y1:t

i

σui,t(x)
2 = kui

(x,x)− kt
ui
(x)⊤(Kt

ui
+ σ2I)−1kt

ui
(x)

(4)

where kt
ui
(x) = [kui

(xj ,x)]j∈[t], y1:t
i = [y1i , · · · , yti ], and

Kt
ui

= [kui
(xi,xj)]i∈[t],j∈[t] is the kernel matrix.

4 ALGORITHMS

4.1 APPROXIMATION OF THE PARTIAL
MAXIMUM

Before discussing the proposed algorithm, we describe
the method used in [Al-Dujaili et al., 2018]. Recall that
computing the loss f(x) requires the values of ui(x) and

maxx′
i
ui(x

′
i,x−i) (i.e. maxx′

i
ui(x

′
i,x−i) + ui(x)) for ev-

ery agent i ∈ [n]. First of all, they proposed to approximate
ui(x) with the mean of the GP posterior, i.e. µui,t(x), as
denoted in Equation (4).

The more intriguing part is to approximate the partial max-
imum, i.e., vi(x−i) ≜ maxx′

i
ui(x

′
i,x−i). As a result, its

maximum can be recovered by its mean and standard devia-
tion, i.e.,

max
x′
i

ui(x
′
i,x−i) = µvi(xi) + τσvi(xi),

where µvi(xi), σvi(xi) denote the mean and standard devi-
ation of vi(x−i), τ is a hyper-parameter of the algorithm.
Formally, given the observation history D1:t, they can be
computed as follows.

µvi,t(xi) = Ex′
i

[
µvi,t(x

′
i)
]

σ2
vi,t(xi) = Ex′

i

[(
µvi,t(x

′
i)− µvi,t(xi)

)2] (5)

The function value can therefore be approximated as

f̂(x|D1:t) ≈ max
i

µvi,t(xi) + τσvi,t(xi)− µui,t(x). (6)

Al-Dujaili et al. [2018] used Equation (6) as the
acquisition function and searching the query point
xt+1 = argminx f̂(x|D1:t) for the next round t + 1.
However, the acquisition function in the BO should balance
between exploration and exploitation in general, while
maximizing Equation (6) is pure exploitation, i.e., sampling
from potentially optimal areas in X according to the
posterior of the GP model.



4.2 ADAPTIVE LEVEL-SET ESTIMATION FOR
GLOBAL OPTIMIZATION

We take inspiration from recent advancements in high-
dimensional Bayesian optimization (HDBO) by [Zhang
et al., 2023] and integrate the idea of [Al-Dujaili et al.,
2018] into its framework to achieve efficient optimization
of the objective defined in Equation (2) with a rigorous
theoretical guarantee on the convergence rate. First, We ap-
proximate the unknown vi(x−i) ≜ maxx′

i
ui(x

′
i,x−i) with

its corresponding upper confidence bound (UCB) and lower
confidence bound (LCB) derived from the marginalized
GPvi ≜ GPui|x−i

and

UCBvi,t(x−i,S) ≜

max
x′
i:(x

′
i,x−i)∈S

µui,t−1(x
′
i,x−i) + β1/2σui,t−1(x

′
i,x−i),

(7)

LCBvi,t(x−i,S) ≜

max
x′
i:(x

′
i,x−i)∈S

µui,t−1(x
′
i,x−i)− β1/2σui,t−1(x

′
i,x−i),

(8)

where β controls the confidence level and will be dis-
cussed in the later analysis. S denotes the domain where the
marginal maximum is taken. We will show that Equation (7)
and Equation (8) provide a high confidence bound of vi with
its width bounded after a certain amount of iterations.

Second, we modify the superlevel-set estimation and filter-
ing in Zhang et al. [2023] to achieve efficient search space
filtering for optimization.

The original HDBO algorithm proposed by [Zhang et al.,
2023], leverages the confidence interval of the global Gaus-
sian process GP to define the upper confidence bound
UCBt(x) ≜ µt−1(x) + β1/2σt−1(x) and lower confi-
dence bound LCBt(x) ≜ µt−1(x)− β1/2σt−1(x), where
σt−1(x) = kt−1(x,x)

1/2 and β acts as an scaling factor.
Then the maximum of the global lower confidence bound
LCBt,max ≜ maxx∈X LCBt(x) is used as the threshold for
filtering the candidates with low UCB. Therefore, it defines
the superlevel-set on the search space X that w.h.p. contains
the global optimum.

Here we use the confidence interval of the global Gaus-
sian process GPui and the marginalized UCB defined in
Equation (7) to define the upper confidence bound of the
objective defined in Equation (2) similarly.

For each utility function ui, at a certain time t we have the
corresponding upper and lower confidence bound:

UCBui,t(x) ≜ µui,t−1(x) + β1/2σui,t−1(x)

LCBui,t(x) ≜ µui,t−1(x)− β1/2σui,t−1(x).

Then we have the UCB and LCB for f :

UCBf,t(x,S) ≜
∑
i∈[n]

UCBvi,t(x−i,S)− LCBui,t(x) (9)

LCBf,t(x,S) ≜
∑
i∈[n]

LCBvi,t(x−i,S)− UCBui,t(x) (10)

Since f(x∗) = 0 means Nash Equilibrium is achieved at
x∗, the minimum of LCBf,t over a search space containing
the global optimum should be smaller than f(x∗) = 0 with
high probability. And as t approaches∞, LCBf,t → 0. Such
property will be reflected in Theorem 1 discussed below.
For briefness, we ignore the S on the inputs when we feed
X . Namely we denote UCBf,t(x,X ) with UCBf,t(x), and
denote LCBf,t(x,X ) with LCBf,t(x). Since we are mini-
mizing the loss function f , we define the filtering threshold
as UCBf,t,min ≜ minx∈X UCBf,t(x). Then, the following
sublevel-set

X̂ t ≜ {x ∈ X | LCBf,t(x) ≤ min(UCBf,t,min, 0)} (11)

serves as the region(s) of interest (ROI)2.

4.3 EFFICIENT HIGH-DIMENSIONAL
OPTIMIZATION THROUGH ROI REDUCTION

Through the optimization, reducing the ROI X̂ t alleviates
the difficulty of learning on the high-dimensional search
space. See Figure 1c for an illustration where 10 initializa-
tion points have reduced our search space for learning the
NE of Example 1. Combined with the following acquisi-
tion function, the proposed algorithm ARISE achieves an
adaptive trade-off between exploration and exploitation.

αf,t(x,S) = UCBf,t(x,S)− LCBf,t(x,S) (12)

This acquisition differentiates from the well-known variance
reduction acquisition function in active learning domain
[MacKay, 1992] in twofolds. First, the acquisition function
is defined on both confidence intervals of each utility func-
tion ui, and the confidence interval tailored to the marginal
maximum on vi as defined in Equation (7) and Equation (8),
which are differentiated from the naive definition of the
confidence interval on a global Gaussian process. Second,
as is shown in the following, we only optimize the acquisi-
tion function in a subset of the search space X̂ t instead of
the whole search space X . The reduction of X̂ t guarantees
the efficiency of the optimization by avoiding unnecessary
queries in the low utility region.

The ROI identification could be computationally expensive,
especially in high-dimensional search space, as it requires
point-wise comparison. Thus, its efficiency is highly depen-
dent on the size and distribution of the discretization of the
search space. The ROI identification and reduction along
the optimization could help mitigate the efficiency problem.

2In practice, since with high probability UCBf,t,min ≥ f∗,
and by assumption the search space consists the NE (f∗ = 0), it
holds that with high probability the ROI threshold is zero.



Algorithm 1 Adaptive Region of Interest Search for Nash Equilibrium (ARISE)

1: Input:Search space X , initial observation D0, horizon T ;
2: for t = 1 to T do
3: Fit the Gaussian processes GPui,t: θui,t ← argminθui

− logP
[
y1:t−1
i | x1:t−1, θui

]
4: Identify ROIs via sublevel-set estimation X̂ t ← {x ∈ X | LCBf,t(x) ≤ 0}
5: Optimize the sublevel-set acquisition function: xt ← argmax

x∈X̂ t

αf,t(x, X̂ t) as in Equation (12)

6: D1:t ← D1:t−1 ∪ {(xt,yt)}
7: end for
8: Output: argmin

x∈X̂T

LCBf,T (x)

In the following section, we offer a theoretical analysis in
Lemma 1 showing that the ROI identification in line 4 of
Algorithm 1 could be equivalent to

X̂ t = {x ∈ X̂ t−1 | LCBf,t(x) ≤ 0} (13)

when setting X̂ 0 = X . This means that the ROI identifica-
tion is actually a hierarchical filtering of the search space and
is accelerated by its continuing shrinkage. There is no guar-
antee of the ROI shrinkage rate, potentially making its per-
formance unstable in High-Dimensional BO (HDBO) tasks.
There are several potential solutions. There are chances to
incorporate existing orthogonal HDBO techniques, includ-
ing sparse GP [McIntire et al., 2016, Moss et al., 2023] and
dimension reduction for BO [Song et al., 2022, Wang et al.,
2016, Letham et al., 2020, Munteanu et al., 2019, Papen-
meier et al., 2022]. However, the methods require additional
structural assumptions that do not necessarily hold in NE
discovery and, therefore, require cautiousness depending on
the application.

Remark. The proposed algorithm ARISE targets games
with discretized strategy spaces for identifying the ROI, sim-
ilar to previous works by Picheny et al. [2019]. To tackle
continuous search space where no smoothness guarantee is
known to discretize the space to allow efficient ROI identifi-
cation. We propose an optional method in the Appendix C to
accelerate the candidate pick in the high-dimensional space
by formulating the ROI identification and the acquisition
function optimization in lines 4 and 5 of Algorithm 1 to-
gether as a conventional constrained optimization problem
and solve it efficiently with an over-the-shelf tool.

5 THEORETICAL RESULTS

We summarize the required assumptions below, followed by
the justification of each assumption.

Assumption 2. The utility functions ui are sampled from
corresponding mutually independent GP. That is, ∀t ≤
T,x ∈ X , i ∈ [n], ui(x) is a sample from global GPui,t.

This assumption is commonly found in the literature, as
demonstrated by references such as Srinivas et al. [2009],

Gotovos et al. [2013], Zhang et al. [2023]. While devis-
ing a well-specified prior for the unknown function could
be challenging in practice, there are recent advancements
focusing on analyzing BO’s behavior under prior misspec-
ification [Bogunovic and Krause, 2021], or proposing so-
lutions for unknown hyperparameters specifying the prior
[Berkenkamp et al., 2019, Hvarfner et al., 2024]. Though
this is a separate direction orthogonal to our work, we want
to highlight the aforementioned challenge and potential for
integrating existing solutions.

Assumption 3. Given the horizon T , with a proper choice
of constant β, the confidence intervals are well calibrated,
meaning a later posterior would agree with the previous pos-
teriors. Concretely, for all ui, i ∈ [n]. That is, ∀t1 ≤ t2 ≤
T,x ∈ X , i ∈ [n], we have UCBui,t1(x) ≥ UCBui,t2(x)
and LCBui,t1(x) ≤ LCBui,t2(x).

This is a mild assumption given recent work by Koepernik
and Pfaff [2021] showing that if the kernel is continuous
and the sequence of sampling points lies sufficiently dense,
the variance of the posterior GP converges to zero almost
surely monotonically if the function is in metric space, and
the posterior mean converges to the unknown function point-
wise in L2 if the unknown function lies in the RKHS of the
prior kernel.

If the assumption is violated, the technique of taking the
intersection of all historical confidence intervals intro-
duced by Gotovos et al. [2013] could similarly guaran-
tee a monotonically shrinking confidence interval. That
is, when ∃t1 ≤ t2 ≤ T,x ∈ X , i ∈ [n], if we
have UCBui,t1(x) < UCBui,t2(x) or LCBui,t1(x) >
LCBui,t2(x), we let UCBui,t2(x) = UCBui,t1(x) or
LCBui,t2(x) = LCBui,t1(x) to guarantee monotonocity.

A direct result of the assumed monotonously on the con-
fidence interval of ui is the similar monotonicity on the
confidence interval of vi and f , and then the monotonical
shrinking of ROI.

Lemma 1. With the Assumption 2 and Assumption 3,
∀t1 ≤ t2 ≤ T,x ∈ X , i ∈ [n], we have UCBvi,t1(x) ≥
UCBvi,t2(x) and LCBvi,t1(x) ≤ LCBvi,t2(x). ∀t1 ≤ t2 ≤



T,x ∈ X , we have UCBf,t1(x) ≥ UCBf,t2(x) and
LCBf,t1(x) ≤ LCBf,t2(x), and therefore X̂ t ⊆ X̂ t−1.

First, we justify the definition of the confidence intervals,
and therefore, the ROI identified does not lose the global
optimum with a certain probability.

Lemma 2. With the assumptions above, the region(s) of
interest {X̂ t}t∈[T ] defined in Equation (11) contains the
global optimum with high probability. That is, for all
δ ∈ (0, 1), ∀t ≥ 1, and any finite discretization S̃ of
X containing the optimum x∗ = argminx∈X f(x), with

β = 2 log(n|S̃|T/δ), we have P
[
x∗ ∈ X̂ t

]
≥ 1− δ.

Finally, we bound the simple regret of the proposed Algo-
rithm 1. For clarity, we denote S̃X̂ t = S̃ ∩ X̂ t, and

CIf∗,t = [ min
x∈S̃X̂t

LCBf,t(x), min
x∈S̃X̂t

UCBf,t(x)]

Let us define the maximum information gain about function
u after T rounds:

γui,T = max
A⊂S̃:|A|=T

I (yA;ui) and γ̂T =
∑
i∈[n]

γui,T (14)

Note that previous work by Srinivas et al. [2009] that bounds
the maximum information gain γ corresponding to popular
kernel to be sublinear.

Here, we justify that the proposed acquisition function re-
duces the width of the confidence interval of the global
optimum efficiently.

Theorem 1. The width of the resulting confidence interval
of the global optimum f∗ = f(x∗) has an upper bound.
That is, under the assumptions above, with a constant β =
2 log(n|S̃|T/δ), and xt = argmaxx∈X αf,t(x,X ), after

at most T ≥ βγ̂T Ĉ1

ϵ2 iterations, we have

P [|CIf∗,T | ≤ ϵ, f∗ ∈ CIf∗,T ] ≥ 1− δ

Here Ĉ1 = 8(n+ 1)2/ log(1 + σ−2).

The result above shows that when the proposed acquisition
function is maximized in the global search space, it achieves
efficient learning. However, to reach a balance of exploration
and exploitation so that the algorithm identifies the global
optimum along with the learning with high probability, we
need to restrict the search space to the ROI, which achieves
the exploitation by design.

The following results show that, when combining the results
above, since the Nash-Equilibrium exists, and the points of
ROI are sufficiently close to x∗, we have with probability at
least 1− δ that ARISE achieves ϵ-Nash Equilibrium.

Theorem 2. We assume the aforementioned assumptions
hold. We apply the same β and the acquisition func-
tion as illustrated in Algorithm 1. In addition, we as-
sume after T ≥ βγ̂T Ĉ1

ϵ2 iterations, when ∀x ∈ S̃X̂ t , it
holds that UCBui,t(x−i, S̃X̂ t) = UCBui,t(x−i, S̃) and
LCBui,t(x−i, S̃X̂ t) = LCBui,t(x−i, S̃), we have

P

f(xT ) ≤

√
βγ̂T Ĉ1

T
≤ ϵ

 ≥ 1− δ

Here Ĉ1 = 8(n+ 1)2/ log(1 + σ−2).

Remark. The additional assumption made above in The-
orem 2 is mild, as it is satisfied when the points in ROI
are sufficiently close to the global optimum. This allows
that they resemble the Nash Equilibria’s property, that is,
the partial maximum of the utility functions is identical
to x when f(x) = 0. More formally, when x ∈ S̃X̂ t

converges to x∗ where f(x∗) = 0, the partial maximum
argmaxx∈X vi(x−i) also converges to points in ROI.

Given that γ̂T and β are sublinear to T , Ĉ1 is a constant, the
result above shows that the proposed Algorithm 1 achieves
ϵ-Nash Equilibria with high probability efficiently.

One direct result of Theorem 2 is that if any point belongs
to S̃ that bears a suboptimal gap on the reward except for
the global optimum. Then, after sufficient query, the algo-
rithm will identify x∗ as the only point in the ROI. In that
case, ARISE will only query x∗ and achieve zero regret
afterward.

Corollary 1. We assume the aforementioned conditions
in Theorem 2 hold, and ∀x ∈ S̃, x ̸= x∗, it holds that
f(x) > ϵ. Then we have

P
[
f(xT ) = 0

]
≥ 1− δ

Similarly, if starting from t′ before T , the ROI only consists
of a group of suboptimal candidates that is sufficiently close
to x∗ and meets the condition assumed in Theorem 2, then
the algorithm achieves a sublinear cumulative regret after
identifying this near-optimal region, and is therefore no-
regret after t′.

Corollary 2. We assume the aforementioned conditions in
Theorem 2 hold, and ∃t′ < T such that t′ ≥ βγ̂′

tĈ1

ϵ2 . Then
we have

P

[
T∑

t=t′

f(xt) ≤
√
TβγT Ĉ1

]
≥ 1− δ

Remark. The result above shows that Algorithm 1 achieves
no regret after identifying the near-optimal region and the
cumulative regret is sublinear. Though the analysis assumes



a discretization that consists of the Nash Equilibria, the re-
sult is also applicable to the continuous version of the prob-
lem, as long as the discretization is sufficiently dense and
there is an additional smoothness guarantee on the utilities.
Then, the density combined with the assumed smoothness
could be translated into an approximation error due to the
discretization, and the result is still applicable.

6 EXPERIMENTAL RESULTS

We compare the proposed algorithm ARISE with the follow-
ing baselines. (1) ARISE-GLOBAL removes the ROI identi-
fication of ARISE and maximizes the proposed acquisition
function globally as discussed in Theorem 1. The compari-
son serves as an ablation study demonstrating that the intro-
duction of ROI allows ARISE the trade-off of exploration
and exploitation rather than pure exploration. (2) We em-
ploy PREDICTION and EPSILON GREEDY from Al-Dujaili
et al. [2018] with ϵ = 0.1. PREDICTION corresponds to their
method using approximated regret as the acquisition func-
tion, a pure exploitation subroutine of EPSILON GREEDY.
Meanwhile, EPSILON GREEDY achieves the trade-off of
exploration and exploitation. The hyper-parameter ϵ con-
trols the probability of exploration achieved by uncertainty
reduction. (3) We compare with SUR (Stepwise Uncertainty
Reduction) proposed by Picheny et al. [2019], which is es-
sentially global uncertainty reduction on multiple unknown
utility functions. For efficiency, we take advantage of re-
cent advancements in deep kernel learning [Wilson et al.,
2016, Zhang et al., 2022] and employ it in both the proposed
methods and the baseline.

We examine the performance of our proposed algorithm on
the following games.

Saddle. This corresponds to the running example we pre-
sented in Example 1 and is also discussed by Al-Dujaili
et al. [2018], Picheny et al. [2019].

Rock Paper Scissors
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (0, 0)

Table 1: Payoffs of the rock-paper-scissors game. Each util-
ity element (i, j) means the row agent receives i utility and
the column agent receives j.

Rock-Paper-Scissors (RPS). In this game, two agents’
strategies are denoted by x1, x2 ∈ ∆2 = {x ∈ R3 : xr +
xp + xs = 1}, and the utilities are defined as

u1(x1, x2) = (xp
1 − xs

1)x
r
2 + (xs

1 − xr
1)x

p
2 + (xr

1 − xp
1)x

s
2,

u2(x1, x2) = (xp
2 − xs

2)x
r
1 + (xs

2 − xr
2)x

p
1 + (xr

2 − xp
2)x

s
1.

(15)

The NE is attained at x1 = x2 = (1/3, 1/3, 1/3).

Hotelling’s Game. We explore another classical struc-
tured game with real-world applications [Brenner, 2005].
Imagine a market where two firms must choose their loca-
tions on a 2-d grid to attract customers. Each firm wants
to attract customers, and the utility depends on the number
of customers they draw. The firms have to balance being
close to customers while avoiding excessive competition.
Let us consider the total area as a unit square, and each
firm’s action is to choose location x = (xN , xW ) ∈ [0, 1]2.
We assume the customer population is uniformly distributed
over the total area, and two firms post the same price for the
products. Therefore, a customer prefers a firm that is close
by. Given the two firms’ actions (xN

1 , xW
1 ) and (xN

2 , xW
2 ),

their utility can be computed by the area of agents whose
distance is closer to themselves than the competitor. For ex-
ample, let S1 = {(xN , xW )|(xN −xN

1 )2+(xW −xW
1 )2 ≤

(xN − xN
2 )2 + (xW − xW

2 )2} and firm 1 utility is S1’s area.

Marketing Budget Allocation Game. Finally, we present
a real-world marketing problem, where advertisers seek
to maximize the number of customers by allocating given
budgets to each media channel effectively [Maehara et al.,
2015]. Let G = (S ∪ Z,E) be a bipartite graph, where
the left vertices S denote media channels, the right vertices
Z denote customers, and the edges E ⊆ S × Z denote
the relations between channels and customers. Each edge
(s, z) ∈ E has an activation probability p(s, z) ∈ [0, 1] such
that customer z ∈ Z is activated via channel s ∈ S with
probability p(s, z).

There are n advertisers, where each advertiser’s strategy
is xi ∈ N|S|

≥0 denotes a vector of allocated units for |S|
channels. The strategy space for each advertiser is

Xi = {xi ∈ N|S|
≥0 : xi(s) ≤ c(s) ∀s; ⟨w, xi⟩ ≤ B},

where c(s) denotes the capacity of every channel and w ∈
R|S|

+ denotes the cost of every unit for all channels. Let Σn

denote the set of all permutations of [n]. Finally, the utility
of every advertiser i ∈ [n] is denoted as

ui(x) =
1

n!

∑
z∈Z

∑
σ∈Σn

Pi(xi, z)
∏
j≺σi

(
1−Pj(xj , z)

)
(16)

where Pi(xi, z) = 1−
∏

s∈S(1− p(s, z))xi(s) denotes the
probability of customer z being activated by advertiser i
under the units allocation plan xi. In the experiment, we set
n = 2, |S| = 4 and |Z| = 12.

Discussion. As is shown in Figure 2, ARISE consis-
tently matches or outperforms the baselines. The compari-
son with ARISE-GLOBAL shows that the introduced ROI
identification significantly contributes to the general perfor-
mance. Though implemented differently, ARISE-GLOBAL
and SUR both lack exploitation. Their simple regrets plat-
form at high values in Figure 2 (b), (c), and (d) indicate
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Figure 2: Experimental results. In each plot, the x-axis denotes the number of function evaluations. The curves show the
f(xt) values averaged over at least ten independent trials. The shaded area denotes the standard error. The observation
perturbation is sampled from N (0, 0.01), while the simple regrets shown in the figures do not count the noise. We also
include additional results on multi-player settings in Appendix E.

the intrinsic complexity of the corresponding problems. EP-
SILON GREEDY outperforms PREDICTION in Figure 2(a),
(c), and (d), showing the importance of the trade-off of ex-
ploration and exploitation in the learning process. ARISE
outperform EPSILON GREEDY in Figure 2(c) and (d) show-
ing that in complex setting, ARISE achieves a principled
and more efficient trade-off.

7 CONCLUSIONS

We study the problem of learning Nash equilibrium of black-
box games with a Bayesian approach using Gaussian pro-
cesses as surrogates for the unknown utilities. We character-
ize the equilibrium computation problem as optimizing an
unknown objective function. As a result, finding the Nash
equilibrium of the game is equivalent to minimizing the
unknown objective function. We also proposed a no-regret
learning approach to minimize the unknown objective func-
tion with principled ROI identification and acquisition maxi-
mization. Our study shows the proposed algorithm improves
upon existing methods both with novel theoretical results
and strong empirical performance across various tasks.

Our results open the possibilities for many other interesting
questions. For example, our work and prior research pri-
marily address learning NE in normal-form games, where
agents act simultaneously. Another intriguing domain is
Stackelberg games, where agents move sequentially (cf.
Appendix A). Hence, exploring Stackelberg equilibrium
computation presents another interesting problem to investi-
gate. Furthermore, we assume the GPs of distinct agents are
independent. Investigating the correlation between agents’
utility functions and constructing multivariate GPs presents
an intriguing avenue for future exploration as well.
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A ADDITIONAL RELATED WORK

A.1 LEARNING STACKELBERG GAMES

More broadly, our research is also related to learning the equilibrium in the game theory. Besides the Nash equilibrium
studied in this paper, another well-studied game is the Stackelberg game [Von Stengel and Zamir, 2004, Gan et al., 2023].
Specifically, Stackelberg games model a two-step sequential decision-making process between two agents, a leader and
a follower. This canonical model for strategic leader-follower interactions has been adopted for many applications in the
real world, such as contract design, optimal pricing, security resource allocation, and optimal traffic routing [Bolton and
Dewatripont, 2004, Dawkins et al., 2021, Paruchuri et al., 2008, Roth et al., 2016, Roughgarden, 2001, Yang et al., 2014].
Learning the Stackelberg equilibrium has also been extensively studied in the literature [Letchford et al., 2009, Peng et al.,
2019, Dawkins et al., 2022, Han et al., 2024], it would be interesting to study the learning of Stackelberg game equilibria via
Gaussian Processes.

A.2 BO WITH MULTIPLE STRUCTURED UTILITY FUNCTIONS

Within the scope of Bayesian optimization tasks, it is common to tackle multiple unknowns, as in the learning of equilibria,
where the algorithm needs to deal with multiple unknown utility functions. The most related literature in the realm of BO
would be optimizing the function network, where the objective function to be optimized could be decomposed into multiple
unknown nodes in a known directed acyclic graph [Astudillo and Frazier, 2021, Buathong et al., 2023]. Similarly, Sussex
et al. [2022] proposes to optimize the intervention on the casual graph with the extension of UCB, a canonical acquisition in
BO, and offers a corresponding theoretical guarantee on the convergence. These works assume that each node on the DAG
graph representing the unknown function could be captured by a separate GP and assume independence between different
nodes. However, when transferring our objective into a DAG, we are dealing with highly related nodes as will be illustrated
in the following section. The reason is that part of the components of the ultimate objective is the partial maximization of
the other. Also, unlike in the graph-based BO works, we would not observe the partial maximization and, therefore, could
not update the GPs for all the nodes with corresponding observations. The gap in the assumption and process of evaluation
hinders the direct application of the graph-based BO methods.

*Equal Contribution, the author names are in alphabetical order.



B PROOFS

B.1 PROOF OF LEMMA 2

Proof. Similar to lemma 5.1 of Srinivas et al. [2009], given a constant β = 2 log(n|S̃|T/δ), with probability at least 1− δ,
∀x ∈ S̃,∀t ≥ 1,∀g ∈ {ui}i∈[n] ∪ {vi}i∈[n],

|g(x)− µg,t−1(x)| ≤ β1/2σg,t−1(x)

Note that we also take the union bound on g ∈ {ui}i∈[n] ∪ {vi}i∈[n].

Then, we have ∀t ≤ T,x ∈ S̃

P
[

UCBvi,t(x) = max
x′
i

UCBui,t(x
′
i,x−i) ≥ max

x′
i

ui(x
′
i,x−i) = vi(x−i)

]
≥ 1− δ

and at the same time

P
[

LCBvi,t(x) = max
x′
i

LCBui,t(x
′
i,x−i) ≤ max

x′
i

ui(x
′
i,x−i) = vi(x−i)

]
≥ 1− δ

This justifies the definition of Equation (7) and Equation (8).

As a result, we also have ∀t ≤ T,x ∈ S̃

P [UCBf,t(x) ≥ f(x) ≥ f(x∗) ≥ LCBf,t(x
∗)] ≥ 1− δ

By the definition of the threshold UCBf,t,min we have ∀t ≤ T ,

P [UCBf,t,min > LCBf,t(x
∗)] ≥ 1− δ

By the definition of the f(x), we have ∀x, f(x) ≥ 0.

Hence we have ∀t ≤ T, ∀i ∈ [n]

P
[
x∗ ∈ X̂ t

]
≥ 1− δ

B.2 PROOF OF THEOREM 1

Proof. The following proof shows that the width of the interval at t is bounded. For briefness, we denote αt ≜
maxx∈X αf,t(x,X )

With probability at least 1− δ, ∀T ≥ t ≥ 1, we first have

f(x∗) ∈ [LCBf,t,min, UCBf,t,min]

and then

UCBf,t,min − LCBf,t,min ≤ αt

By lemma 5.1, 5.2 and 5.4 of Srinivas et al. [2009], with β = 2 log(n|S̃|T/δ), ∀g ∈ {ui}i∈[n], we have



∑T
t=1(2β

1/2σg,t−1, (x
t))2 ≤ C1βγg,T . Then we have the following hold with probability at least 1− δ:

T∑
t=1

α2
t ≤

T∑
t=1

(UCBf,t(x
t)− LCBf,t(x

t))2

≤
T∑

t=1

((n+ 1)
∑

g∈{ui}i∈[n]

2β1/2σg,t−1(x
t))2

= (n+ 1)2
T∑

t=1

∑
g∈{ui}i∈[n]

(2β1/2σg,t−1(x
t))2

≤ (n+ 1)2
∑

g∈{ui}i∈[n]

C1βγg,T

= (n+ 1)2C1βγ̂T

Where C1 = 8/ log(1 + σ−2). The second line holds for two reasons. First, we have ∀g ∈ {ui}i∈[n],
UCBg,t(x

t) − LCBg,t(x
t) ≤ 2β1/2σg,t−1(x

t). Also, we have ∀g ∈ {vi}i∈[n], UCBg,t(x
t) − LCBg,t(x

t) ≤∑
i∈[n] UCBui,t(x

t)− LCBui,t(x
t) since xt maximize αf,t. The last line holds due to the definition in Equation (14). By

Cauchy-Schwarz, we have with probability at least 1− δ:

1

T
(

T∑
t=1

αt)
2 ≤ (n+ 1)2C1βγ̂T

By the monotonocity assumed in Assumption 3, ∀g ∈ [n], ∀1 ≤ t1 < t2 ≤ T , we have αt2 ≤ αt1 . Therefore with
probability at least 1− δ:

|CIf∗,T | ≤ = UCBf,T,min − LCBf,T,min

≤ αT

≤
√

(n+ 1)2βC1γ̂T
T

For briefness, we denote Ĉ1 = 8(n+1)2/ log(1+σ−2), then as long as T ≥ βγ̂T Ĉ1

ϵ2 , we have with probability at least 1− δ

|CIf∗,T | ≤ ϵ

B.3 PROOF OF THEOREM 2

The following results bound the simple regret of the proposed Algorithm 1 with additional mild assumptions.

Different from the proof of Theorem 1, we are optimizing the acquisition on the ROI rather than the global search space.
The key insight that

T∑
t=1

α2
t ≤

T∑
t=1

(UCBf,t(x
t)− LCBf,t(x

t))2

≤
T∑

t=1

((n+ 1)
∑

g∈{ui}i∈[n]

2β1/2σg,t−1(x
t))2



no longer holds. Instead, we can only bound for α̂t ≜ maxx∈S̃X̂t
αf,t(x, S̃X̂ t) similarly.

T∑
t=1

α̂2
t =

T∑
t=1

(UCBf,t(x
t, S̃X̂ t)− LCBf,t(x

t, S̃X̂ t))
2

≤
T∑

t=1

((n+ 1)
∑

g∈{ui}i∈[n]

2β1/2σg,t−1(x
t))2

Similarly, by Cauchy-Schwarz, we have∑
g∈{ui}i∈[n]

UCBg,t(x
t)− LCBg,t(x

t) ≤
√

βC1γ̂TT

Where C1 = 8/ log(1 + σ−2). And with the assumed monotonicity, we have with probability at least 1− δ:

α̂T ≜ max
x∈S̃X̂t

UCBf,t(x, S̃X̂ t)− LCBf,t(x, S̃X̂ t)

≤
√

(n+ 1)2βC1γ̂T
T

Since we are assuming that after T ≥ βγ̂T Ĉ1

ϵ2 iterations, ∀x ∈ S̃X̂ t , it holds that UCBui,t(x−i, S̃X̂ t) = UCBui,t(x−i, S̃)

and LCBui,t(x−i, S̃X̂ t) = LCBui,t(x−i, S̃), we have αT = α̂T ≤
√

(n+1)2βγ̂TC1

T =

√
βγ̂T Ĉ1

T ≤ ϵ.

In summary, we have with probability at least 1− δ:

f(xT ) ≤ UCBf,T,min ≤

√
βγ̂T Ĉ1

T
≤ ϵ

C EFFICIENT CONSTRAINED OPTIMIZATION

We propose to accelerate the candidate pick in the high-dimensional space by formulating the ROI identification and the
acquisition function optimization in lines 4 and 5 of Algorithm 1 together as a conventional constrained optimization
problem and solve it efficiently with an over-the-shelf tool.

We first solve the UCBf,t,min,

UCBf,t,min = min
x∈X

UCBf,t(x) s.t. LCBf,t−1(x) ≤ UCBf,t−1,min

then identify the candidate xt to be evaluated:

xt = argmax
x∈X

αf,t(x,X ) s.t. LCBf,t(x) ≤ 0

Since the above calculation of αf,t(x, X̂ t) requires a marginal maximum of UCBvi,t and LCBvi,t for each agent i ∈
[n], making the optimization a nested optimization problem, we propose the following approximation inspired by the
reparametrization trick by Sussex et al. [2022]:

UCBvi,t(x−i,X ) = ζi,t,UCB(x)max
x∈X

UCBui,t(x)

LCBvi,t(x−i,X ) = UCBvi,t(x−i,X )− ζi,t,LCB(x)2β
1/2 max

x∈X
σui,t−1(x)

where ζi,t,UCB(x) ∈ [0, 1] and ζi,t,LCB(x) ∈ [0, 1] are learned with regression models(e.g. a neural network) that allows
gradient-based optimization to optimize with respect to x. Here, maxx∈X σui,t−1(x) and maxx∈X UCBui,t are easy to
obtain by applying over-the-shelf optimizer on the posterior. The regression models could be trained on related scenarios
where the utility functions are known or cheap to evaluate so that the Gaussian process could be updated arbitrarily without
incurring significant costs for training models for ζi,t,UCB and ζi,t,LCB.



D CHOICE OF β

We follow the convention from Srinivas et al. [2009] that applies practical β values different from the theoretical results to
achieve better empirical performance. We choose β = 1 for Hotelling and β = 2 otherwise. We showcase the sensitivity
of the choice of β for ARISE in Figure 3. Note that though we choose β different from theoretical results in Theorem 1
where δ = 0.05, unlike typical hyper-parameters, each choice of value corresponds to a different confidence level of the
error bound.
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Figure 3: Experimental results on choices of β. The theoretical value is defined as in Theorem 1. In each plot, the x-axis
denotes the number of function evaluations. The curves show the f(xt) values averaged over at least ten independent trials.
The shaded area denotes the standard error. The observation perturbation is sampled from N (0, 0.01), while the simple
regrets shown in the figures do not count the noise.

E ADDITIONAL RESULTS ON 3-PLAYER GAMES

In the following, we incorporate additional experimental results for the Hotelling and Budget Allocation games, specifically
examining scenarios with three players.
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Figure 4: Experimental results on Hotelling and Budget Allocation games when there are 3 players involved, where the
x-axis denotes the number of function evaluations. The curves show the f(xt) values averaged over at least ten independent
trials, and the shaded area denotes the standard error. The observation perturbation is sampled from N (0, 0.01), while the
simple regrets shown in the figures do not count the noise. The theoretical value is defined as in Theorem 1.

Consistent with our previous results, Figure 4 shows that ARISE outperforms or at least matches the performance of the
best baseline method.
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