Proceedings of Machine Learning Research vol 120:1-11, 2020 2nd Annual Conference on Learning for Dynamics and Control

Actively Learning Gaussian Process Dynamics

Mona Buisson-Fenet'? BUISSONFENET @IS.MPG.DE
Friedrich Solowjow! SOLOWJOW @1S.MPG.DE
Sebastian Trimpe' TRIMPE @1S.MPG.DE

L Intelligent Control Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
2 Centre Automatique et Systemes, MINES ParisTech, PSL University, Paris, France

Editors: A. Bayen, A. Jadbabaie, G. J. Pappas, P. Parrilo, B. Recht, C. Tomlin, M. Zeilinger

Abstract

Despite the availability of ever more data enabled through modern sensor and computer technol-
ogy, it still remains an open problem to learn dynamical systems in a sample-efficient way. We
propose active learning strategies that leverage information-theoretical properties arising naturally
during Gaussian process regression while respecting constraints on the sampling process imposed
by the system dynamics. Sample points are selected in regions with high uncertainty, leading to ex-
ploratory behavior and data-efficient training of the model. All results are validated in an extensive
numerical benchmark.
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1. Introduction

Learning dynamical systems has received considerable attention over the last decades and is widely
recognized as an important and difficult problem (Schon et al., 2011). Indeed, in the case of phys-
ical systems, sampling data often requires practically involved and time-consuming experiments.
Further, sampling at informative locations of the state space is challenging, since the system is con-
strained by the underlying dynamics. This is one key difference to many machine learning tasks,
where data can be collected anywhere. Hence, it is essential to excite the system in such a way that
the generated data enables sample-efficient learning. In the case of linear time-invariant (LTT) sys-
tems, there exists a rich body of theoretical results for this problem (Ljung, 2001). Nonetheless, it
is still an active field of research, e.g., see (Simchowitz et al., 2018) and references therein. Conver-
gence results are usually tightly connected to the well-established theory of persistence of excitation
(Green and Moore, 1986), which ensures that control inputs are significant enough to sufficiently
excite the system. However, these control inputs are not necessarily optimal and targeted explo-
ration can accelerate learning (Umenberger et al., 2019). Learning nonlinear systems is even more
complex, although there have been many advances and progress over the years (see e.g., (Schon
et al., 2011; Schoukens and Ljung, 2019)). We consider Gaussian process (GP) regression, which
has been proven to be an efficient framework in many related applications, including model learn-
ing (Nguyen-Tuong and Peters, 2011) or reinforcement learning (Deisenroth and Rasmussen, 2011;
Doerr et al., 2017). These probabilistic models have many advantageous properties for learning
dynamical systems (Jain et al., 2018; Eleftheriadis et al., 2017; Doerr et al., 2018), such as taking
uncertainty into account, coping with small datasets and incorporating prior knowledge.

Active learning, i.e., sequentially choosing where to sample in order to build an informative
dataset, has been investigated in many domains (see (Aggarwal, 2014) for an overview). A critical
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difference that sets the active learning problem for dynamical systems apart is the fact that it is
not possible to arbitrarily sample the state-action space. Indeed, the system is constrained by the
dynamics, and has to be excited appropriately by control inputs. Existing approaches for actively
learning static maps thrive by incorporating information-theoretical criteria that guide the sampling
procedure. In particular, the combination with GPs yields powerful theoretical and practical results
(Krause et al., 2008; Krause and Guestrin, 2007). For dynamical systems, however, there is only
little related work. Recent attempts have been made, proposing a greedy exploration scheme (Jain
et al., 2018), focusing on exploration under safety constraints (Koller et al., 2018; Fisac et al.,
2019; Heim et al., 2019), or on active exploration for reinforcement learning using linear Bayesian
inference rather than GPs (Schultheis et al., 2019). Approaches relying on parametrization of the
trajectory have also been presented, including for learning time series with GPs (Binney et al., 2010;
Zimmer et al., 2018). The proposed algorithms are related to this work, however, the analysis differs
in several important points, which we will further discuss in Section 4.

Contributions We investigate the active learning problem for dynamical systems, which are mod-
eled by a GP. In particular, we take the learned dynamics explicitly into account to guide the explo-
ration.The following contributions are made:

* Proposal of a method that searches for informative points to visit, then separately drives the
system to reach them (separated search and control, short sep). While we can provide some
theoretical guarantees on the suboptimality of the sequence of locations to visit, we find the
method to have limitations in practice.

* Novel method for deriving input trajectories by maximizing an information criterion, while
taking the dynamics into account as constraints. We propose two variants, receding horizon
and plan and apply (short rec and p&a).

* Benchmark on a set of numerical experiments, including robotic systems from reinforcement
learning benchmarks, showing the superiority of approaches based on joint optimization for
actively exploring the state-action space.

2. Problem statement

We consider a system subject to the following discrete-time dynamics:

Tpp1 = f(op,u)  yp = Tp + €, (1)

where f is an unknown Lipschitz-continuous function, z; € X is the system state at time step
k € N, with X C R% the space of possible states, u; € U is the control input, with ¢/ C R% the
space of bounded control inputs, and ¢;, ~ N(0, 02) is i.i.d. Gaussian measurement noise. We as-
sume the system has sufficient controllability and stability properties in order to exclude notoriously
difficult learning problems, where systematic exploration would not be meaningful. For inputs Z =
(20, ,2n)", Where 2, = (z, ug ), we observe the noisy measurements Y = (y1, -+ , yn+1)'. We
are thus in the standard GP regression setting with noise-free input and noisy target. While there
are extensions to more realistic settings such as learning dynamics with noisy inputs (McHutchon
and Rasmussen, 2011) and latent states (Doerr et al., 2017, 2018), we do not consider them here
for simplicity, as they are orthogonal to the problem of excitation. The true system dynamics f are
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approximated by a GP denoted f (see (Rasmussen and Williams, 2006) for an overview). It is fully
characterized by its mean function p(-) and its covariance function k(-, -). The prediction f(z,) at
an unobserved point z, is normally distributed with posterior mean and variance

w(ze) = kLK +02D)7Y  0%(20) = kww — ki (K + 021) 7k, ()

where K = (k(zi,2j))z,2;ez is the covariance matrix of Z, k. = (k(zi, 24))ze2, and ku =
k(zx, z+). The prior mean is assumed to be zero without loss of generality. The differential entropy
of f at z,, which quantifies the uncertainty of the prediction (MacKay, 2003), is defined as H (z,) =
%10g(27r602(z*)). The kernel k usually depends on some hyperparameters, which are optimized
during learning, often by maximizing the data marginal log likelihood.

We address the following question: how should one excite (1) to generate samples (Z,Y") for
learning f in a sample-efficient way? We derive control inputs that optimize information criteria
such as differential entropy, while taking the autoregressive structure of (1) explicitly into account.
Ultimately, this reduces the prediction error given a fixed number of samples, by choosing informa-
tive control inputs that lead to exploratory system behavior.

3. From static to dynamic — a fundamentally different problem

Powerful active learning strategies have been developed for learning static maps (Krause et al.,
2008). Here, it is possible to immediately query any point in the input space. Thus, the problem is
amenable to a clean information-theoretical treatment, which is lost for dynamical systems. The in-
sights from the well-studied static problem are a natural starting point for this work, and we present
an extension to the dynamic setting herein. At the same time, we shall underline the fundamentally
different nature of the dynamical problem.

3.1. The static problem: sensor placement

A canonical example for actively learning static maps is the sensor placement problem (Krause
et al., 2008). The objective is to find the best locations of N sensors X = (z1,...,zx) out of a
finite subset of possible locations, in order to approximate a static map f with a GP f , using noisy
measurements y; = f(z;) + €;. A possible solution is to select X OPT = argmax y I(X, f), where
I(X,f) = H(Yx) — H(Yx|f) is the mutual information between the observations Y at X and
the underlying function f, and H is the differential entropy of the GP f . However, finding such an
optimal set of placements is NP-hard (Krause et al., 2008). Therefore, there is a need for tractable
approximations. In particular, the optimal sequence of placements can be approximated by the
greedy rule

x; = argmax [ (x U X;_1, f) = argmax H;_1(z) Vie{l,..,N}, 3)
x x

with H; the differential entropy of the GP at iteration ¢. Thanks to the submodularity and mono-
tonicity of the function (X, f) (see (Krause and Guestrin, 2005; Srinivas et al., 2012) for details)
and Proposition 4.3 in (Nemhauser et al., 1978), it can be shown that the sequence X of greedy
placements selected by (3) is close to the true optimal sequence X °FT:

I(XC, f) > (1—1/e)I(XOFT, ). 4)

In this paper, we focus on differential entropy since we are considering a continuous space, for
which the mutual information criterion proposed in (Krause et al., 2008) cannot easily be computed.
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3.2. Extension to dynamical systems

The dynamical problem is fundamentally different: we cannot sample at an arbitrary state =, we
need to steer the system to = through the unknown dynamics f with a sequence of bounded actions
u. Therefore, there is also an information gain along the trajectory, which is not considered in the
previously introduced static framework.

At first, we ignore this fact: we separate the search for informative states from obtaining the
control inputs that drive the system to these states. This method is denoted separated search and
control (sep). Starting from an initial point zo := (x, up), at each iteration the next location to
visit is determined by the greedy rule

25 = argmax [(zU Z;_1, f) = argmax H;_1(z) Vie{l,..,N}, N € N. (5)

(2
zeXxU zeX xU

After solving (5), we get a state-action pair (xf, uf) We steer the system to ;rZG using a control

trajectory (up, ..., up+ar—1) € UM, then apply uZ-G, and update the GP and its hyperparameters with
the data collected along the way. Here, M is the control horizon, and k is the time step since the
beginning of the experiment, while ¢ indexes the iterations of the greedy procedure. Due to the
controllability assumption, the existence of such control trajectories is ensured for sufficiently large
M and there exist methods to obtain them, e.g., iLQR (Tassa et al., 2014, 2012). However, there are
severe issues in the concrete implementation:

* In general, it is difficult to choose M a priori such that each ziG is attainable in M steps.
However, limiting the search space in (5) to the points attainable in M steps yields a time-
varying set from which to choose z. In this case, Proposition 4.3 in (Nemhauser et al., 1978)
is not applicable anymore. Hence, suboptimality guarantees of type (4) typically can only be
derived for (5) if z is chosen directly from X x U.

* With only the estimated dynamics f available for controller design, the location chosen by
(5) might not actually be reached and the intended data point not be obtained.

* The considered search space X x U is continuous, and not a finite set of possible locations
as for the sensor placement problem. This has implications on the property of submodularity,
which is originally defined for set functions.

* Solving (5), a non-convex problem in a continuous state-action space, is nontrivial, and might
not return the true optimum at each iteration.

One can obtain suboptimality guarantees of type (4) for (5) under restrictive assumptions,
namely: X x U is a finite set, zZG is the true optimum at iteration ¢, and is actually visited by
the control procedure. However, these do not hold in practice. Information gain along the trajectory
is also not included in this theoretical framework. Next, we show that more efficient strategies can
be designed by optimizing over the whole control trajectory.

4. Informative control generation

Separating search from control yields an insightful embedding into the sensor placement problem.
However, the crucial properties of this problem also become apparent, revealing that many aspects
of the current solutions are not transferrable to dynamical systems. The discussed insufficiencies
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inspired us to jointly optimize for control inputs and informative states with respect to the approxi-
mate dynamics as constraints. We propose the following approach: at time step k, we pick the most
informative control trajectory by solving
M-1
Uy = argmax Z Hi(Tgyi, Ugrs) 6)
(k- U4 M —1)EUM

St Eppirt = [o(Eppir Uk )s Uk €U, Vi€ {0,...,M — 1}

for a fixed time horizon M, & = xi, and 24,11 the mean of the GP prediction. This method is
highly versatile: the cost function can easily be extended and further regularized, e.g., by penalizing
a suitable norm of the control signals. Numerically, we use direct multiple shooting in CasADi
(Andersson et al., 2018) with Ipopt (Wichter and Biegler, 2005), as in (Koller et al., 2018; Jain
et al., 2018). Note that (6) is only an upper bound of the entropy accumulated over the trajectory.
This bound could be made sharper, for example by approximating the propagation of uncertainty
through moment matching, but this necessitates added approximations and computations.

Receding horizon or plan and apply For the above-described method, we propose two options.
In the default setting, we update the GP and optimize its hyperparameters at each time step. Then,
we solve (6) in a receding time fashion (variant denoted receding horizon, short rec). However, this
is very costly in terms of computations and may lead to a shortsighted behavior, since the exploration
strategy has a chance to “change its mind” every time step, which can lead to a greedy behavior if
the optimization landscape is too flat. Thus, we propose a computationally cheaper alternative: we
solve (6), roll out the whole control trajectory, batch update the GP with the measurements taken
along the way, optimize its hyperparameters, and iterate (variant denoted plan and apply, short
pé&a). In this case, M needs to be well-chosen: if it is too large, the GP will not be updated often
enough, but if it is too small, the procedure will be too shortsighted.

Related algorithms Recent works propose related algorithms, but with a different focus. For ex-
ample, in (Zimmer et al., 2018), exploration under safety constraints of dynamical systems modeled
by GPs is investigated. However, exploration is achieved by parametrizing and selecting an infor-
mative piecewise linear trajectory in state space, which simplifies the optimization problem. An
exploration scheme for learning GP dynamics is presented in (Jain et al., 2018), but it is greedy.
The model learned during exploration is then used for reference tracking under uncertainty by solv-
ing an MPC problem. In (Koller et al., 2018), an MPC scheme for safe exploration of dynamical
systems is proposed, where the constraint does not directly lie on the estimated dynamics, but on
the propagation of safe ellipsoids through these dynamics. Exploration for reinforcement learning
is considered in (Schultheis et al., 2019), where a sequence of discrete actions is optimized. The
proposed algorithm is related to (6), but using linear Bayesian inference as the learning framework.
In this paper, we focus on exploration for learning dynamical systems with GPs, with a novel view-
point extending solutions of the static problem. We also provide a comprehensive benchmark of
control systems, which follows next.

5. Numerical benchmark

We compare the proposed methods in a numerical benchmark. For each approach, we evaluate
the prediction error and quantify how much of the state space has been explored. The results are
summarized in Table 1 and Figure 2.
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Figure 1: Illustration of the benchmark systems.

Experimental settings We run the following methods': pseudorandom binary sequences (PRBS)
and chirps ((Nelles, 2001), Section 17.7) to compare to standard system identification signals, sep-
arated search and control (sep), and our method based on optimal control (6) with either receding
horizon (rec), plan and apply (p&a). We also compare with the greedy strategy (M = 1). Random
control inputs with a holding time of either M or 1 were also investigated, but they did not chal-
lenge the other standard signals and are not included in the final plots. We focus on the standard GP
setting: squared exponential kernel, independent GPs for each output dimension, hyperparameters
that maximize the marginal log likelihood. We evaluate on five nonlinear dynamical systems with
continuous state-action space and bounded controls, illustrated in Figure 1:

e Pendulum, with d, = 2, d,, = 1, 02 = 0.05, M = 15;
* Two-link planar robot (Siciliano et al., 2009), with d, = 4, d,, = 2, 062 = 0.05, M = 15;

* Double inverted pendulum on a cart (DIPC) from the MuJoCo environment (Todorov et al.,
2012) in Gym (Brockman et al., 2016), with d, = 8, d,, = 1, 062 = 0.05, M = 15, and added
damping;

* Unicycle (Udwadia and Kalaba, 2007), with d,, = 6, d,, = 2, ‘752 = 0.001, M = 15;
» Half-cheetah, also from MuJoCo in Gym, with d, = 18, d,, = 6, 0'62 = 0.001, M = 10.

Each method uses the same number of data points and the same planning horizon (except for
the greedy method which has a horizon of 1) and starts from the same stable equilibrium. We make
sure each system has enough damping to be sufficiently stable and controllable in the exploration
region, and choose the bounds on U/ such that exploring the state space is neither too easy (even
random signals can easily go everywhere) nor too hard (even active exploration methods cannot go
far). We run 10 trials of rec since it is computationally heavy, and 100 trials of all other methods.

Evaluation criteria We quantify the accuracy of the learned model by monitoring the root mean
square prediction error (RMSE) over a grid of uniformly randomly distributed states and inputs
in a predefined region of interest, and the quality of exploration by computing the percentage of
coverage of this region at the end of the experiment. The region of interest is chosen a priori in X for
each system, by heuristically picking bounds in each dimension in which most of our experiments
stay when started from the same stable equilibrium. The percentage of coverage is computed by
discretizing this region and computing the average number of cells visited during the experiment.

1. Code available at https://git—amd.tuebingen.mpg.de/mbuissonfenet/active_learning_
gp.git


https://git-amd.tuebingen.mpg.de/mbuissonfenet/active_learning_gp.git
https://git-amd.tuebingen.mpg.de/mbuissonfenet/active_learning_gp.git

ACTIVELY LEARNING GAUSSIAN PROCESS DYNAMICS

xxxxxxxxxxxxxxxxxx

8 10
6 Py 9
2 8 s
Z 4 x
| 7
b
2 ILIILIlLn: N 6
198200800480 90s St
o 5
o 100 200 300 400 o 100 200 300 400
Iterations Iterations
(a) Pendulum (b) Two-link robot
3.0 b ;
os 1.1 T 50 T 17377 T3 ][‘ IIV,I,AI , he
[ 45 et ] 114 ll ||V 1
M L
2.4 R S 1
&8 TTTT71 + & 35 ’ gl
Z 22 I i L ITTT7171 & :
o ?}“ 44 J} 3.0
. 2 J s T fl 1}7
8 T 2 SARHIR
. {11111111}{11 2o
" o 100 200 300 400 o 100 200 300 400
Iterations Iterations
(c) DIPC (d) Unicycle
6.0 EEAr L J T
_ A
5.5 AT il | —
b 4 chirp

P & b

§ & sep *
il§ tl Eml ¥ )
4.5 N e U
ey —&— rec P Lo
.
4.0 \M
—®— p&a ‘/./)\_,x
35
o 100 200 300 400 —&— greedy W
Iterations

(e) Half-cheetah

Figure 2: RMSE over time for all benchmark systems (mean = standard deviation).

In this paper, we are not as much interested in the absolute results but rather in the comparison
between the different methods, and in demonstrating that some explore the state space more than
others, yielding a more accurate model.

Results The results shown in Table 1 and Figure 2 confirm that our optimization-based explo-
ration methods (rec and p&a) yield the lowest prediction error and thus, the best models. Indeed,
they can push each nonlinear system to unknown regions of X x U, generating informative data
points in the whole state space, which yields an overall more consistent model. The sep method
performs reasonably well, but significantly worse than rec and p&a. The greedy method is not
able to explore as much of the state space as it is too shortsighted. The standard signals from sys-
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Table 1: Final RMSE and coverage of the state space (mean + standard deviation).

Pendulum Two-link DIPC Unicycle Half-cheetah

Final RMSE

PRBS 5.7+2.6 524+0.4 2.00+£0.15 33+1.0 51+£0.3
chirp 9.0+1.0 11.1+£0.7 1.89 £0.14 4.2+0.6 5.6 0.3
sep 5.8+24 6.9+14 2.03+0.19 31+1.1 5140.5
rec 1.4£0.5 52+0.4 1.79 £ 0.12 2.94+0.7 4.2+0.6
p&a 25+20 5.0+0.2 1.79 £+ 0.09 3.0+£0.7 4.8+0.6
greedy 9.9+0.2 11.3+0.1 1.924+0.13 4.2+0.7 544+0.4
Coverage of state space (in percent of the region of interest)

PRBS 22.1+£11.0 52.8+ 7.6 67.4+82 65.8 £ 7.3 50.7+£4.9
chirp 14.0+£2.6 20.0£6.3 72.44+9.0 41.94+13.8 54.44+9.0
sep 22.0+9.1 39.7+7.3 64.4+7.5 66.0 7.1 57.2+4.3
rec 46.4£6.6 53277 74.8 £6.5 65.6 £5.2 69.1 £ 3.1
p&a 37.1£9.0 51.6 £7.5 75.9+5.3 66.1 +5.9 65.3 + 3.8
greedy 10.5+ 1.0 164+ 1.1 68.2 + 4.6 51.9+5.3 67.1+£3.2

tem identification do not consider the current model and therefore, can perform arbitrarily badly.
Nonetheless, PRBS explored surprisingly well for systems that are close to linear, e.g., rigid-body
dynamics with torque control, where several states are linear in the input. However, this is not the
case for other types of systems (e.g., DIPC), and PRBS is often not a desirable system behavior.

6. Conclusion

When learning models of dynamical systems, efficient exploration is key as it determines how in-
formative the collected data is. In this paper, we propose and benchmark three main algorithms for
actively learning dynamical systems with GPs. The separated search and control method is inspired
by active learning for static GPs. However, its performance is suboptimal, and the theoretical guar-
antees of the static case are not directly applicable. More efficient exploration can be obtained by
computing optimal excitation signals with respect to an information criterion. The receding horizon
variant of this approach performs well but yields a high computational burden. Hence, we also pro-
pose a batch update that trades off computation against performance. This framework is efficient
but also versatile, as further modifications of the cost function are straightforward. We show on a
numerical benchmark of diverse dynamical systems that the proposed methods are capable of ex-
ploring the state-action space efficiently, yielding more informative data, and hence, a more accurate
model. In future work, we intend to study the effects of different cost functions and to generalize our
framework to more realistic GP models, for example with noisy inputs and latent states. Validation
on hardware experiments would also be relevant, however, the methods need to be computationally
optimized first.
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