
In-Context Learning and Bayesian Inference

Madhur Panwar∗
Microsoft Research India

t-mpanwar@microsoft.com

Kabir Ahuja∗
University of Washington

kahuja@cs.washington.edu

Navin Goyal
Microsoft Research India
navingo@microsoft.com

Abstract

In-context learning (ICL) is one of the surprising and useful features of large
language models and subject of intense research. Recently, stylized meta-learning-
like ICL setups have been devised that train transformers on sequences of input-
output pairs (x, f(x)) using the language modeling loss. The function f comes
from a function class and generalization is checked by evaluation on sequences
for unseen functions from the same class. One of the main discoveries in this line
of research has been that for several function classes, such as linear regression,
transformers successfully generalize to new functions in the class. However, it
is unclear if transformers trained on multiple function classes (a setup closer to
that of real-world LLMs) also exhibit this generalization. Moreover, the inductive
biases of these models resulting in this generalization are not clearly understood. A
model with unlimited training data and compute is a Bayesian predictor: it learns
the pretraining distribution. In this paper, we empirically examine how far this
Bayesian perspective can help us understand ICL. To this end, we generalize the
previous meta-ICL setup to hierarchical meta-ICL setup which involves unions of
multiple task families. We instantiate this setup on a diverse range of linear and
nonlinear function families and find that transformers can do ICL in this setting as
well. Where Bayesian inference is tractable, we find evidence that high-capacity
transformers mimic the Bayesian predictor. Via the example of learning Fourier
series, we also study the inductive bias for in-context learning. We find that in-
context learning may or may not have simplicity bias depending on the pretraining
data distribution. The Bayesian perspective provides insights into these inductive
biases and how transformers perform a particular task when trained on multiple
tasks.

1 Introduction

In-context learning (ICL) is one of the major ingredients behind the astounding performance of large
language models (LLMs) Brown et al. [2020], Touvron et al. [2023]. Unlike traditional supervised
learning, ICL is the ability to learn new functions f without weight updates from input-output
examples (x, f(x)) provided as input at the test time; in other words, learning happens in context.
For instance, given the prompt up -> down, low -> high, small ->, a pretrained LLM will
likely produce output big: it apparently infers that the function in the two examples is the antonym
of the input and applies it on the new input. This behavior often extends to more sophisticated and
novel functions unlikely to have been seen during training and has been the subject of intense study,
e.g., Min et al. [2022b], Webson and Pavlick [2022], Min et al. [2022a], Liu et al. [2023], Dong et al.
[2023]. More broadly than its applications in NLP, ICL can also be viewed as providing a method for
meta-learning Hospedales et al. [2022] where the model learns to learn a class of functions.

Theoretical understanding of ICL is an active area of research. Since the real-world datasets used
for LLM training are difficult to model theoretically and are very large, ICL has also been studied in

∗Equal contribution

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.



stylized setups, e.g., Xie et al. [2022], Chan et al. [2022b], Garg et al. [2022], Wang et al. [2023],
Hahn and Goyal [2023]. These setups study different facets of ICL. In this paper, we focus on
the meta-learning-like framework of Garg et al. [2022]. Unlike in NLP where training is done on
documents for the next-token prediction task, here the training and test data look similar in the
sense that the training data consists of input of the form ((x 1, f(x 1)), . . . , (xk, f(xk)),xk+1) and
output is f(xk+1), where x i ∈ Rd and are chosen i.i.d. from a distribution, and f : Rd → R is a
function from a class of functions, for example, linear functions or shallow neural networks. We call
this setup MICL. A striking discovery in Garg et al. [2022] was that for several function classes,
transformer-based language models during pretraining learn to implicitly implement well-known
algorithms for learning those functions in context. For example, when shown 20 examples of the form
(x ,wTx ), where x ,w ∈ R20, the model correctly outputs wT

testx test on test input x test. Apart
from linear regression, they show that for sparse linear regression and shallow neural networks the
trained model appears to implement well-known algorithms; and for decision trees, the trained model
does better than baselines. Two follow-up works Akyürek et al. [2022] and von Oswald et al. [2022]
largely focused on the case of linear regression. Among other things, they showed that transformers
with one attention layer learn to implement one step of gradient descent on the linear regression
objective with further characterization of the higher number of layers. In our work, we question: Can
language models be trained to learn a variety of function classes and their mixtures? Can we explain
the in-context behavior of language models and their inductive biases?

Bayesian predictor. An ideal language model (LM) with unlimited training data and compute would
learn the pretraining distribution as that results in the smallest loss. Such an LM produces the output
by simply sampling from the pretraining distribution conditioned on the input prompt. Such an ideal
model is often called Bayesian predictor. Many works make the assumption that trained LMs are
Bayesian predictors, e.g. Saunshi et al. [2021], Xie et al. [2022], Wang et al. [2023]. Most relevant to
the present paper, Akyürek et al. [2022] show that in the MICL setup for linear regression, in the
underdetermined setting, namely when the number of examples is smaller than the dimension of the
input, the model learns to output the least L2-norm solution which is the Bayes-optimal prediction.
In this paper we empirically examine how general this behavior is across choices of tasks.

Prior work has investigated related questions but we are not aware of any extensive empirical
verification. E.g., Xie et al. [2022] study a synthetic setup where the pretraining distribution is given
by a mixture of hidden Markov models and show that the prediction error of ICL approaches Bayes-
optimality as the number of in-context examples approach infinity. In contrast, we test the Bayesian
hypothesis for ICL over a wide class of function families and show evidence for equivalence with
Bayesian predictor at all prompt lengths. Also closely related, Müller et al. [2022], Hollmann et al.
[2023] train transformer models by sampling data from a prior distribution (Prior Fitted Networks),
so it could approximate the posterior predictive distribution at inference time. While these works
focus on training models to approximate posterior distributions for solving practical tasks (tabular
data), our objective is to understand how in-context learning works in transformers and to what extent
we can explain it as performing Bayesian Inference on the pre-training distribution.

Simplicity bias. Simplicity bias, the tendency of machine learning algorithms to prefer simpler
hypotheses among those consistent with the data, has been suggested as the basis of the success of
neural networks. There are many notions of simplicity [Mingard et al., 2023, Goldblum et al., 2023].
Does in-context learning also enjoy a simplicity bias like pretraining?

Our contributions. In brief, our contributions are

1. A setup for studying ICL for multiple function families: First, we extend the MICL setup from Garg
et al. [2022] to include multiple families of functions. For example, the prompts could be generated
from a mixture of tasks where the function f is chosen to be either a linear function or a decision tree
with equal probability. We call this extended setup HMICL. We experimentally study HMICL and
find that high-capacity transformer models can learn in context when given such task mixtures. (We
use the term “high-capacity” informally; more precisely, it means that for the task at hand there is a
sufficiently large model with the desired property.)

2. High-capacity transformers perform Bayesian inference during ICL: To understand how this ability
arises we investigate in depth whether high-capacity transformers simulate the Bayesian predictor.
This motivates us to choose a diverse set of linear and nonlinear function classes as well as prior
distributions in HMICL and MICL setups. Function classes we consider were chosen because either
they permit efficient and explicit Bayesian inference or have strong baselines. We provide direct and

2



indirect evidence that indeed high-capacity transformers often mimic the Bayesian predictor. The
ability to solve task mixtures arises naturally as a consequence of Bayesian prediction, in contrast to
the algorithm selection and execution view from prior work (e.g., Bai et al. [2023]).

3. Link between ICL inductive bias with the pretraining data distribution: We also investigate the
inductive bias in a simple setting for learning functions given by Fourier series. If ICL is biased
towards fitting functions of lower maximum frequency, this would suggest that it has a bias for
lower frequencies like the spectral bias for pretraining. We find that the model mimics the Bayesian
predictor; the ICL inductive bias of the model is determined by the pretraining data distribution:
if during pretraining all frequencies are equally represented, then during ICL the LM shows no
preference for any frequency. On the other hand, if lower frequencies are predominantly present in the
pretraining data distribution then during ICL the LM prefers lower frequencies. Chan et al. [2022a,b]
studies the inductive biases of transformers for ICL and the effect of pretraining data distribution
on them. However, the problem setting in these papers is very different from ours and they do not
consider simplicity bias.

2 Background
We first discuss the in-context learning setup for learning function classes as introduced in Garg et al.
[2022], which we call Meta-ICL or MICL. Let DX be a probability distribution on Rd. Let F be
a family of functions f : Rd → R and let DF be a distribution on F . For simplicity, we often use
f ∼ F to mean f ∼ DF . We overload the term function class to encompass both function definition
as well as priors on its parameters. Hence, linear regression with a standard gaussian prior and a
sparse prior will be considered different function classes based on our notation.

To construct a prompt P =
(
x 1, f(x i), · · · ,x p, f(x p),x p+1

)
of length p, we sample inputs x i ∼

DX i.i.d. for i ∈ {1, · · · p}. A transformer-based language model Mθ is trained to predict f(x p+1)

given P , using the objective: minθ Ef,x1:p

[
1

p+1

∑p
i=0 ℓ

(
Mθ(P

i), f(x i+1)
)]
, where P i denotes

the sub-prompt containing the first i input-output examples as well as the (i+ 1)-th input, i.e.(
x 1, f(x 1), · · · ,x i, f(x i),x i+1

)
and x 1:p = (x 1, . . . ,x p). While other choices of the loss function

ℓ
(
·, ·
)

are possible, since we study regression problems we use the squared-error loss (i.e., ℓ(y, y′) =
(y − y′)2) in accordance with Garg et al. [2022].

At test time, we present the model with few-shot prompts Ptest that were unseen during training
with high probability and compute the error when provided k in-context examples: loss@k =
Ef,Ptest

[
ℓ
(
Mθ(P

k), f(xk+1)
)]

, for k ∈ {1, · · · , p}.

PME. We mentioned that an ideal model would learn the pretraining distribution. This happens when
using the cross-entropy loss. Since we use the square loss in the objective definition, the predictions
of the model can be computed using the posterior mean estimator (PME) from Bayesian statistics.
For each prompt length i we can compute PME by taking the corresponding summand in objective
definition above, which will be given by Mθ(P

i) = Ef

[
f(x i+1) |P i

]
for all i ≤ p. This is the

optimal solution for prompt P , which we refer to as PME. Please refer to §A.1 for technical details.

2.1 Hierarchical Meta-ICL

We generalize the MICL setup, where instead of training transformers from functions sampled from
a single function class, we sample them from a mixture of function classes. Formally, we define
a mixture of function classes using a set of m function classes F = {F1, · · · ,Fm} and sampling
probabilities α = [α1, · · ·αm]T with

∑m
i=1 αi = 1. We use α to sample a function class for

constructing the training prompt P . We assume the input distribution DX to be same for each class
FTi . More concretely, the sampling process for P is defined as: i) Fi ∼ F s.t. P(F = Fi) = αi; ii)
f ∼ Fi; iii) x j ∼ DX ,∀j ∈ {1, · · · , p}; and finally, iv) P =

(
x 1, f(x 1), · · ·x p, f(x p),x p+1

)
.

We call this setup Hierarchical Meta-ICL or HMICL, as there is an additional first step for sampling
the function class in the sampling procedure. Note that the MICL setup can be viewed as a special
case of HMICL where m = 1. The HMICL setting presents a more advanced scenario to validate
the generality of in-context learning and whether it can be explained in transformers by Bayesian
inference. Further, our HMICL setup is also arguably closer to the in-context learning in practical
LLMs which can realize different classes of tasks (sentiment analysis, QA, summarization, etc.)
depending on the few-shot in-context examples.

3



0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

Transformer (GMM)

PME (T1)

PME (T2)

PME (GMM)

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

(wprobe, w)

(wprobe, PME (GMM))

(wprobe, PME (T1))

(wprobe, PME (T2))

Figure 1: Transformers simulate PME when trained on dense regression task-mixture with weights
having a mixture of Gaussian prior (GMM). (left): Comparing the performance of the Transformer
with PME of individual Gaussian components (PME (T1) and PME (T2)) and of the mixture PME
(GMM). (right): MSE between the probed weights of the Transformer and PMEs.

The PME for the hierarchical case is given by:

Mθ,F (P ) = β1Mθ,F1(P ) + . . .+ βmMθ,Fm(P ), (1)

where βi = αipi(P )/pF (P ) for i ≤ m. Probability density pi(·) is induced by the function class Fi

on the prompts in a natural way, and pF (P ) = αipi(P ) + · · ·+ αmpm(P ). Please refer to §A.1 in
the Appendix for the derivation. The models are trained with the squared error loss mentioned above
and at test time we evaluate loss@k for each task individually.

2.2 Model and training details
We use the decoder-only transformer architecture Vaswani et al. [2017] as used in the GPT models
Radford et al. [2019]. Unless specified otherwise, we use 12 layers, 8 heads, and a hidden size
(dh) of 256 in the architecture for all of our experiments. We use a batch size of 64 and train the
model for 500k steps. For encoding the inputs x i’s and f(x i)’s, we use the same scheme as Garg
et al. [2022] which uses a linear map E ∈ Rdh×d to embed the inputs x i’s as Ex i and f(x i)’s
as Efpad(x i), where fpad(x i) = [f(x i),0d−1]

T ∈ Rd. In all of our experiments except the ones
concerning the Fourier series, we choose DX as the standard normal distribution i.e. N (0, 1), unless
specified otherwise. To accelerate training, we also use curriculum learning like Garg et al. [2022]
for all our experiments where we start with simpler function distributions (lower values of d and p) at
the beginning of training and increase the complexity as we train the model. The role of curriculum
and other factors in models acquiring multi-task ICL is discussed in §C.4 in Appendix.

3 Transformers can in-context learn task mixtures
In this section, we provide evidence that transformers’ ability to solve mixture of tasks arises naturally
from the Bayesian perspective. We start with a Gaussian Mixture Models (GMMs) example where
the exact Bayesian solution is tractable and later discuss results for more complex mixtures.

3.1 Gaussian Mixture Models (GMMs)
We define a mixture of dense-linear regression classes FGMM = {FDR1

, · · · ,FDRm
}, where Fi ={

f : x 7→ wT
i x |w i ∈ Rd

}
and w i ∼ Nd(µi,Σi). In other words, each function class in the

mixture corresponds to dense regression with Gaussian prior on weights (but different means or
covariance matrices). We report experiments with m = 2 here. The mean vectors are given by
µ1 = (3, 0, .., 0) and µ2 = (−3, 0, ..., 0) for the two classes. The covariance matrices are equal
(Σ1 = Σ2 = Σ∗), where Σ∗ is the identity matrix Id with the top-left entry replaced by 0. Note that
we can equivalently view this setup by considering the prior on weights as a mixture of Gaussians i.e.
pM (w) = α1Nd(µ1,Σ1) + α2Nd(µ2,Σ2). We call the two function classes T1 and T2. We train
the transformer on a uniform mixture (α1 = α2 = 1

2 ), with d = 10 and the prompt length p = 10.

Recovering implied weights. To provide a stronger evidence for the Bayesian hypothesis, apart
from the loss curves, we also extract the weights implied by transformers for solving the regression
task in-context. Following Akyürek et al. [2022], we do this by generating model’s predictions {y′i}
on the test inputs {x ′

i}2di=1 ∼ DX and then solving the system of equations to recover wprobe. We
then compare the implied weights wprobe with the ground truth weights w as well as the weights
extracted from different baselines by computing the their MSE.

Results. In Figure 1 (left), we note that Transformer’s errors almost exactly align with those of
the PME of the mixture, PME (GMM), when prompts come from either T1 or T2. (For details
on computation of PME, please refer to §C.1 in Appendix). For each plot, let Tprompt and Tother

4



denote the component from which prompts are provided and the other component respectively. When
d = 10 examples from Tprompt have been provided, the Transformer, PME (Tprompt), and PME
(GMM) all converge to the same minimum error of 0. This shows that Transformer is simulating PME
(GMM), which converges to PME (Tprompt) at k = d. PME (Tother)’s errors keep increasing as more
examples are provided. These observations are in line with Eq. 3: As more examples from the prompt
are observed, the weights of individual PMEs used to compute the PME (GMM) (i.e., the β’s) evolve
such that the contribution of Tprompt increases in the mixture with k (Fig. 15 in the Appendix). In
Figure 1 (right), MSE between weights from different predictors are plotted. Transformer’s implied
weights are almost exactly identical to PME (GMM) for all k. Please refer to §C.1 for additional
details and results.

More complex mixtures. We test the generality of the phenomenon discussed above for more
complex mixtures, involving mixtures of two or three different linear inverse problems (e.g. dense
regression, sparse regression, sign vector regression) as well as some mixtures involving non-linear
function classes like neural networks and decision trees. In all of these cases we observe that
transformers trained on the mixtures are able to generalize on the new functions from the mixture of
function classes and match the the performance of single-function class transformer models depending
upon the distribution of input prompt. Please refer to §C.2 for details.

Implications. Our GMM experiments challenge the existing explanations for the multi-task case,
e.g. the models first recognizes the task and then solves it. When viewed through the Bayesian lens,
transformers do not need to recognize the task separately and recognition and solution are intertwined
as we show in Equation 1.

4 Simplicity bias in ICL?
In this section, we explore if transformers exhibhit simplicity bias in ICL. In other words, when given
a prompt containing input output examples, do they prefer to fit simpler functions among those that
fit the prompt? To study this behavior we consider the Fourier Series function class, where the output
is a linear function of sine and cosine functions of different frequencies. By training transformers on
this class, during ICL we can study if transformers prefer fitting lower-frequency functions to the
prompt over higher frequencies, which can help us study the presence of a simplicity bias.

More formally, we can define Fourier series by the following expansion: f(x) = a0 +∑N
n=1 an cos (nπx/L) +

∑N
n=1 bn sin (nπx/L) where, x ∈ [−L,L], and a0, an’s and bn’s are

known as Fourier coefficients and cosnπ/L and sinnπ/L define the frequency n components.

MICL Setup. In the MICL setup we train transformer on a single function class de-
fined as F fourier

ΦN
=

{
f(·; ΦN )|f(x ; Φ) = wTΦN (x ),w ∈ Rd

}
with standard gaussian prior

on weights w . Note that here ΦN as the Fourier feature map i.e. ΦN (x) =
[1, cos (πx/L), · · · , cos (Nπx/L), sin (πx/L), · · · , sin (Nπx/L)]T . For training transformers to
in-context-learn F fourier

ΦN
, we fix a value of N and sample functions f ∈ F fourier

ΦN
. We consider the

inputs to be scalars, i.e. xi ∈ [−L,L] and we sample them i.i.d. from the uniform distribution on the
domain: xi ∼ U(−L,L). In all of our experiments, we consider N = 10 and L = 5. At test time we
evaluate on F fourier

ΦM
for M ∈ [1, 10], i.e. during evaluation we also prompt the model with functions

with different maximum frequency as seen during training.

HMICL Setup. We also consider a mixture of Fourier series function classes with different maximum
frequencies, i.e. F fourier

Φ1:N
= {F fourier

Φ1
, · · · ,F fourier

ΦN
}. We consider N = 10 in our experiments and train

the models using a uniform mixture with normalization. During evaluation, we test individually on
each F fourier

ΦM
, where M ∈ [1, N ].

Measuring inductive biases. To study simplicity bias during ICL, we propose a method to re-
cover implied frequency from the transformer model. We start by sampling in-context examples
(x1, f(x1), · · ·xk, f(xk)), and given the context obtain the model’s predictions on a set of m test
inputs {x′i}mi=1, i.e. y′i =Mθ

((
x1, f(x1), · · ·xk, f(xk), x′i

))
. We can then perform Discrete Fourier

Transform (DFT) on {y′1, · · · , y′m} to obtain the Fourier coefficients of the function output by the
model, which we can analyze to understand the dominant frequencies.

Results. In both MICL and HMICL setups discussed above we observe that transformers are able
to in-context learn these function classes and match the performance of the Bayesian predictor or
strong baselines. Since, in this section we are primarily interested in studying the simplicity bias,
here we only report the plots for frequencies recovered from transformers at different prompt lengths

5



1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 21

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 21

Inductive Biases M = 4

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 21

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 21

Inductive Biases M = 4
Fourier Series MICL 

M = 4

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 20

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 10, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

a
2 n

+
b2 n

M = 10, k = 20
Transformer Inductive Biases

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 20

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 10, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

a
2 n

+
b2 n

M = 10, k = 20
Transformer Inductive Biases

Fourier Series HMICL 
M = 4

Figure 2: Measuring the frequencies of the simulated function during ICL by transformer.

in Figure 2 (more details in Figures 6 and 25 of Appendix). As can be seen in Figure 2 (left), in the
single function class case, transformers exhibit no bias towards any particular frequency. For small
prompt lengths (k = 2), all N frequencies receive similar absolute value of coefficients as implied
by the transformer. As more examples are provided (k = 21), transformer is able to recognize the
gold maximum frequency (M = 4) from the in-context examples, and hence coefficients are near
zero for n > M , but as such there is no bias towards any particular frequencies. However, when
we consider the mixture case in Figure 2 (right), the situation is different. We see a clear bias for
lower frequencies at small prompt lengths; however, when given sufficiently many examples they
are able to recover the gold frequencies. This simplicity bias can be traced to the training dataset
for the mixture since lower frequencies are present in most of the functions of the mixture while
higher frequencies will be more rare: Frequency 1 will be present in all the function classes whereas
frequency N will be present only in F fourier

ΦN
. We perform additional experiments biasing pre-training

distribution to high frequencies and observe complexity bias during ICL (Appendix §C.3.1).

Implications. These results suggest that the simplicity bias (or lack thereof) during ICL can be
attributed to the pre-training distribution which follows naturally from the Bayesian perspective i.e.
the biases in the prior are reflected in the posterior. Transformers do not add any extra inductive bias
of their own as they emulate the Bayesian predictor.

5 Summary of further results
In this section, we summarize further results for in-context learning and generality of Bayesian
hypothesis that are provided in the Appendix. We test the Bayesian hypothesis on a variety of linear
and non-linear inverse problems in both MICL and HMICL setups and find the transformers are able
to in-context learn and generalize to unseen functions from these function classes. Where possible, we
provide the Bayesian predictor for comparison and establish the agreement in behavior of transformer
and the Bayesian predictor (PME). The cases where PME is intractable, we report comparisons with
strong baselines that have been show to be near optimal in prior work. Among the class of linear
problems, we test on Dense, Sparse, Sign Vector, Low Rank and Skewed Covariance Regression.
For these problems, we show that the transformers match the Bayesian predictor (or the strong
baselines), i.e., their squared errors as well as the weights (of the implied linear function) agree. For
the non-linear case, we explore regression problems for Fourier Series, Degree-2 Monomials, Random
Fourier Features and Haar Wavelets. Further, we also note that in the HMICL setup, generalization to
functions from the mixture might depend on different factors. Normalizing the outputs from each
function class turns out to be an important factor for HMICL to work. We provide the complete
details for each of these function families and corresponding results in the Appendix §B and §C.

6 Conclusion
In this paper we provided empirical evidence that in-context learning in transformers works effectively
in the HMICL setup and Bayesian perspective could serve as a unifying explanation for ICL. In
particular, it can explain how the inductive bias of ICL comes from the pretraining distribution and
how transformers solve mixtures of tasks. There are many interesting directions for future work.
Much more remains to be done to determine how extensively transformers mimic the Bayesian
predictor. Relation between the pretraining distribution and ICL inductive bias needs to be further
fleshed out. What are the implications of this inductive bias to real-world LLMs? Can Bayesian
inference explain the remarkable ability of in-context learning in transformers on natural language
data? Finally, we treated transformers as black boxes: opening the box and uncovering the underlying
mechanisms transformers use to do Bayesian prediction would be very interesting.

6



References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning

algorithm is in-context learning? investigations with linear models. CoRR, abs/2211.15661, 2022.
doi: 10.48550/arXiv.2211.15661. URL https://doi.org/10.48550/arXiv.2211.15661.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

E.J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory,
51(12):4203–4215, 2005. doi: 10.1109/TIT.2005.858979.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 18878–18891. Curran
Associates, Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf.

Stephanie C. Y. Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K. Lampinen,
and Felix Hill. Transformers generalize differently from information stored in context vs in weights.
CoRR, abs/2210.05675, 2022b. doi: 10.48550/arXiv.2210.05675. URL https://doi.org/10.
48550/arXiv.2210.05675.

Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry
of linear inverse problems. Foundations of Computational Mathematics, 12(6):805–849, oct 2012.
doi: 10.1007/s10208-012-9135-7. URL https://doi.org/10.1007%2Fs10208-012-9135-7.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei
Li, and Zhifang Sui. A survey on in-context learning, 2023.

D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306,
2006. doi: 10.1109/TIT.2006.871582.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 30583–30598. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf.

Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning. CoRR,
abs/2304.05366, 2023. doi: 10.48550/arXiv.2304.05366. URL https://doi.org/10.48550/
arXiv.2304.05366.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. CoRR, abs/2303.07971, 2023. doi: 10.48550/arXiv.2303.07971. URL https://doi.
org/10.48550/arXiv.2303.07971.

7

https://doi.org/10.48550/arXiv.2211.15661
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2210.05675
https://doi.org/10.48550/arXiv.2210.05675
https://doi.org/10.1007%2Fs10208-012-9135-7
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2304.05366
https://doi.org/10.48550/arXiv.2303.07971
https://doi.org/10.48550/arXiv.2303.07971


Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. 2022.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
cp5PvcI6w8_.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(09):5149–5169, sep 2022.
ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3079209.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Comput. Surv., 55(9):195:1–195:35, 2023. doi: 10.1145/3560815. URL
https://doi.org/10.1145/3560815.

O.L. Mangasarian and Benjamin Recht. Probability of unique integer solution to a system of
linear equations. European Journal of Operational Research, 214(1):27–30, 2011. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2011.04.010. URL https://www.sciencedirect.
com/science/article/pii/S0377221711003511.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn in
context. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2791–2809, Seattle, United
States, July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
201. URL https://aclanthology.org/2022.naacl-main.201.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages
11048–11064, Abu Dhabi, United Arab Emirates, December 2022b. Association for Computational
Linguistics. URL https://aclanthology.org/2022.emnlp-main.759.

Chris Mingard, Henry Rees, Guillermo Valle Pérez, and Ard A. Louis. Do deep neural networks have
an inbuilt occam’s razor? CoRR, abs/2304.06670, 2023. doi: 10.48550/arXiv.2304.06670. URL
https://doi.org/10.48550/arXiv.2304.06670.

Aaron Mueller and Tal Linzen. How to plant trees in language models: Data and architectural effects
on the emergence of syntactic inductive biases. 2023.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KSugKcbNf9.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

8

https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3560815
https://www.sciencedirect.com/science/article/pii/S0377221711003511
https://www.sciencedirect.com/science/article/pii/S0377221711003511
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.emnlp-main.759
https://doi.org/10.48550/arXiv.2304.06670
https://openreview.net/forum?id=KSugKcbNf9
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf


Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. https: // d4mucfpksywv. cloudfront. net/
better-language-models/ language-models. pdf , 1(8):9, 2019.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper_
files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf.

Yasaman Razeghi, Robert L. Logan IV au2, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot reasoning. 2022.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why language
models help solve downstream tasks. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://
openreview.net/forum?id=vVjIW3sEc1s.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society: Series B (Methodological), 58(1):267–288, 1996. doi: https://doi.org/10.1111/
j.2517-6161.1996.tb02080.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.
1111/j.2517-6161.1996.tb02080.x.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
2022.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic mod-
els: Explaining and finding good demonstrations for in-context learning. CoRR, abs/2301.11916,
2023. doi: 10.48550/arXiv.2301.11916. URL https://doi.org/10.48550/arXiv.2301.
11916.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2300–2344, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
167. URL https://aclanthology.org/2022.naacl-main.167.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, pages 38–45, Online, October
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
https://aclanthology.org/2020.emnlp-demos.6.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=RdJVFCHjUMI.

9

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://openreview.net/forum?id=vVjIW3sEc1s
https://openreview.net/forum?id=vVjIW3sEc1s
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/arXiv.2301.11916
https://doi.org/10.48550/arXiv.2301.11916
https://aclanthology.org/2022.naacl-main.167
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=RdJVFCHjUMI


Contents

1 Introduction 1

2 Background 3

2.1 Hierarchical Meta-ICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Model and training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Transformers can in-context learn task mixtures 4

3.1 Gaussian Mixture Models (GMMs) . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Simplicity bias in ICL? 5

5 Summary of further results 6

6 Conclusion 6

A Technical Details 10

A.1 PME Theoretical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B Linear and Non-linear inverse problems 12

B.1 Linear inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B.1.1 Function classes and baselines . . . . . . . . . . . . . . . . . . . . . . . . 13

B.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 Non-linear problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B.2.1 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B.2.2 Random Fourier Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.2.3 Degree-2 Monomial Basis Regression . . . . . . . . . . . . . . . . . . . . 18

B.2.4 Haar Wavelet Basis Regression . . . . . . . . . . . . . . . . . . . . . . . 21

C Detailed Experiments for HMICL setup 22

C.1 Gaussian Mixture Models (GMMs) . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.2 More complex mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.3 Fourier series mixture detailed results . . . . . . . . . . . . . . . . . . . . . . . . 31

C.3.1 Complexity Biased Pre-training . . . . . . . . . . . . . . . . . . . . . . . 31

C.4 Conditions necessary for multi-task ICL . . . . . . . . . . . . . . . . . . . . . . . 31

A Technical Details

A.1 PME Theoretical Details

We mentioned earlier that an ideal LM would learn the pretraining distribution. This happens when
using the cross-entropy loss. Since we use the square loss in the ICL training objective, the predictions
of the model can be computed using the posterior mean estimator (PME) from Bayesian statistics.

10



For each prompt length i we can compute PME by taking the corresponding summand in the ICL
training objective

min
θ

Ef,x1:i
ℓ
(
Mθ(P

i), f(x i+1)
)
= min

θ
Ef,P i ℓ

(
Mθ(P

i), f(x i+1)
)

= min
θ

EP i Ef

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
= EP i min

θ
Ef

[
ℓ
(
Mθ(P

i), f(x i+1)
)
|P i

]
.

The inner minimization is seen to be achieved by Mθ(P
i) = Ef

[
f(x i+1) |P i

]
. This is the optimal

solution for prompt P i and what we refer to as PME.

PME for a task mixture. We describe the PME for a mixture of function classes. For simplicity we
confine ourselves to mixtures of two function classes; extension to more function classes is analogous.
Let F1 and F2 be two function classes specified by probability distributions DF1

and DF2
, resp.

As in the single function class case, the inputs x are chosen i.i.d. from a common distribution DX .
For α1, α2 ∈ [0, 1] with α1 + α2 = 1, an (α1, α2)-mixture F of F1 and F2 is the meta-task in
which the prompt P =

(
x 1, f(x i), · · · ,x p, f(x p),x p+1

)
is constructed by first picking task Fi

with probability αi for i ∈ {1, 2} and then picking f ∼ DFi
. Thus pF (f) = α1pF1

(f) + α2pF2
(f),

where pF (·) is the probability density under function class F which defines DF . For conciseness in
the following we use p1(·) for pF1

(·) etc. Now recall that PME for function class F is given by

Mθ,F (P ) = Ef∼DF [f(x p+1) |P ] =
∫
pF (f |P ) f(x) df. (2)

We would like to compute this in terms of PMEs for F1 and F2. To this end, we first compute

pF (f |P ) = pF (P |f)pF (f)

pF (P )
=
p(P |f)pF (f)

pF (P )
=
p(P |f)
pF (P )

[
α1p1(f) + α2p2(f)

]
=
α1p1(P )

pF (P )

p(P |f)p1(f)
p1(P )

+
α2p2(P )

pF (P )

p(P |f)p2(f)
p2(P )

=
α1p1(P )

pF (P )
p1(f |P ) +

α2p2(P )

pF (P )
p2(f |P )

= β1 p1(f |P ) + β2 p2(f |P ),
where β1 = α1p1(P )

pF (P ) and β2 = α2p2(P )
pF (P ) . Plugging this in equation 2 we get

Mθ,F (P ) = β1

∫
p1(f |P ) f(x) df + β2

∫
p2(f |P ) f(x) df = β1Mθ,F1

(P ) + β2Mθ,F2
(P ).

(3)

A.2 Experimental Setup

We use Adam optimizer Kingma and Ba [2015] to train our models. We train all of our models
with curriculum and observe that curriculum helps in faster convergence, i.e., the same optima can
also be achieved by training the model for more training steps as also noted by Garg et al. [2022].
Table 1 states the curriculum used for each experiment, where the syntax followed for each column
specifying curriculum is [start, end, increment, interval]. The value of the said attribute
goes from start to end, increasing by increment every interval train steps. Our experiments
were conducted on a system comprising 32 NVIDIA V100 16GB GPUs. The cumulative training
time of all models for this project was ∼ 30,000 GPU hours. While reporting the results, the error
is averaged over 1280 prompts and shaded regions denote a 90% confidence interval over 1000
bootstrap trials.

We adapt Garg et al. [2022] code-base for our experiments. We use PytorchPaszke et al. [2019] and
Huggingface TransformersWolf et al. [2020] libraries to implement the model architecture and training
procedure. For the baselines against which we compare transformers, we use scikit-learn’s 2

implementation of OLS, Ridge and Lasso, and for L∞ and L∗ norm minimization given the linear
constraints we use CVXPY3.

2https://scikit-learn.org/stable/index.html
3https://www.cvxpy.org/

11

https://www.cvxpy.org/


Table 1: The values of curriculum attributes used for each experiment. Cd, Cp and Cfreq denote the
curriculum on number of input dimensions (d), number of points (p) and maximum frequency N (for
Fourier Series).

Experiment Section Cd Cp Cfreq
Dense, Sparse and Sign-Vector Regression §B.1.1 [5, 20, 1, 2000] [10, 40, 2, 2000] n/a
Low-Rank Regression §B.1.1 Fixed (d = 100) Fixed (p = 114) n/a
Fourier Series §B.2.1 Fixed (d = 1) [7, 43, 4, 2000] [1, 10, 1, 2000]
Fourier Series Mixture §4 Fixed (d = 1) Fixed (p = 40) Fixed (N = 10)
GMM Regression (d = 10, p = 10) §3.1, §C.1 [5, 10, 1, 2000] [5, 10, 1, 2000] n/a
GMM Regression (d = 10, p = 20) §3.1, §C.1 [5, 10, 1, 2000] [10, 20, 2, 2000] n/a
Degree-2 Monomial Basis Regression §B.2.3 Fixed (d = 20) Fixed (p = 290) n/a
Haar Wavelet Basis Regression §B.2.4 Fixed (d = 1) Fixed (p = 32) n/a

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k Bound

Dense Regression ICL

Transformer

OLS

Ridge (0.01)

(a)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Dense Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wRidge)

(b)

Figure 3: Results on the Dense Regression tasks mentioned in section §B.1.1.

B Linear and Non-linear inverse problems

Here, we discuss the results mentioned in §5. Figure 3 shows the results on the Dense Regression
task and our experiments corroborate the findings of Akyürek et al. [2022], where transformers not
only obtain errors close to OLS and Ridge regression for the dense regression task (Figure 3a) but the
extracted weights also very closely align with weights obtained by the two algorithms (Figure 3b).
This does indicate that the model is able to simulate the PME behavior for the dense regression class.

For sparse and sign-vector regression, we also visualize the weights recovered from the transformer
for one of the functions for each family. As can be observed in Figure 4, for sparse regression at
sufficiently high prompt lengths (k > 10), the model is able to recognize the sparse structure of the
problem and detect the non-zero elements of the weight vector. Similarly, the recovered weights for
sign-vector regression beyond k > 10, start exhibiting the sign-vector nature of the weights (i.e. each
component either being +1 or -1).

We evaluate transformers on a family of linear and non-linear regression tasks. On the tasks where
it is possible to compute the Bayesian predictor, we study how close the solutions obtained by the
transformer and Bayesian predictor are. In this section, we focus only on the MICL setting, while the
mixture of tasks, i.e., HMICL, is discussed §C.

B.1 Linear inverse problems

In this section, the class of functions is fixed to the class of linear functions across all problems,
i.e. F =

{
f : x 7→ wTx |w ∈ Rd

}
; what varies across the problems is the distribution of w .

Problems in this section are instances of linear inverse problems. Linear inverse problems are classic
problems arising in diverse applications in engineering, science, and medicine. In these problems,
one wants to estimate model parameters from a few linear measurements. Often these measurements
are expensive and can be fewer in number than the number of parameters (p < d). Such seemingly

12



0 2 4 6 8 10 12 14 16 18
Dim

0
2

4
6

8
10

12
14

16
18

k
(#

in
-c

on
te

xt
ex

am
pl

es
)

wprobe

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a)

0 2 4 6 8 10 12 14 16 18
Dim

0
2

4
6

8
10

12
14

16
18

k
(#

in
-c

on
te

xt
ex

am
pl

es
)

wprobe

−1.0

−0.5

0.0

0.5

1.0

(b)

Figure 4: Visualizing recovered weights for sparse and sign vector regression for one of the examples
in the test set.

ill-posed problems can still be solved if there are structural constraints satisfied by the parameters.
These constraints can take many forms from being sparse to having a low-rank structure. The sparse
case was addressed by a famous convex programming approach Candes and Tao [2005], Donoho
[2006] also known as compressed sensing. This was greatly generalized in later work to apply to
many more types of inverse problems; see Chandrasekaran et al. [2012]. In this section, we will show
that transformers can solve many inverse problems in context—in fact all problems that we tried. The
problem-specific structural constraints are encoded in the prior for w .

B.1.1 Function classes and baselines

Dense Regression (FDR). This represents the simplest case of linear regression as studied in Garg
et al. [2022], Akyürek et al. [2022], von Oswald et al. [2022], where the prior on w is the standard
Gaussian i.e. w ∼ N (0d, I ). We are particularly interested in the underdetermined region i.e. k < d.
Gaussian prior enables explicit PME computation: both PME and maximum a posteriori (MAP)
solution agree and are equal to the minimum L2-norm solution of the equations forming the training
examples, i.e. minw ∥w∥2 s.t. wTx i = f(x i),∀i ≤ k. Standard Ordinary Least Squares (OLS)
solvers return the minimum L2-norm solution, and thus PME and MAP too, in the underdetermined
region, i.e. k < d.

Skewed-Covariance Regression (FSkew-DR). This setup is similar to dense-regression, except
that we assume the following prior on weight vector: w ∼ N (0,Σ), where Σ ∈ Rd×d is the
covariance matrix with eigenvalues proportional to 1/i2, where i ∈ [1, d]. For this prior on w , we
can use the same (but more general) argument for dense regression above to obtain the PME and
MAP which will be equal and can be obtained by minimizing wTΣ−1w w.r.t to the constraints
wTx i = f(x i). This setup was motivated by Garg et al. [2022], where it was used to sample x i

values for out-of-distribution (OOD) evaluation, but not as a prior on w .

Sparse Regression (FSR). In sparse regression, we assume w to be an s-sparse vector in Rd i.e. out
of its d components only s are non-zero. Following Garg et al. [2022], to sample w for constructing
prompts P , we first sample w ∼ N (0d, I ) and then randomly set its d− s components as 0. We
consider s = 3 throughout our experiments. While computing the PME appears to be intractable
here, the MAP solution can be estimated using Lasso by assuming a Laplacian prior on w Tibshirani
[1996].

Sign-Vector Regression (FSVR). Here, we assume w to be a sign vector in {−1,+1}d. For
constructing prompts P , we sample d independent Bernoulli random variables bj with a mean of
0.5 and obtain w = [2b1 − 1, · · · , 2bd − 1]T . While computing the exact PME remains intractable
in this case as well, the optimal solution for k > d/2 can be obtained by minimizing the L∞-norm
∥w∥∞ w.r.t. the constraints specified by the input-output examples (wTx i = f(x i)) Mangasarian
and Recht [2011].

13



0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k

Bound

Skewed-Covariance Regression ICL

Transformer

OLS

Minimize wTΣ−1w

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k

Bound

Sparse Regression ICL

Transformer

OLS

Lasso

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

l
o
s
s
@
k Bound

Sign-Vector Regression ICL

Transformer

OLS

Minimize L∞

(c)

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

l
o
s
s
@
k

Bound

Low-Rank Regression ICL

Transformer

OLS

Minimize ‖W‖∗

(d)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Skewed-Covariance Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wPME−Skew)

(e)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Sparse Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wLasso)

(f)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Sign-Vector Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wL∞)

(g)

0 20 40 60 80 100
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Low Rank Regression ICL

(wprobe, w)

(wprobe, wOLS)

(wprobe, wL∗)

(h)

Figure 5: Comparing ICL in transformers for different linear functions with the relevant baselines.
Top: loss@k values for transformers and baselines on skewed covariance, sparse, sign-vector, and
low-rank regression tasks. Bottom: Comparing the errors between the implicit weights recovered
from transformers wprobe with the ground truth weights w and weights computed by different base-
lines. wPME-Skew denotes the weights obtained by minimizing wTΣ−1w for the skewed covariance
regression task.

Low-Rank Regression (FLowRank-DR). In this case, w is assumed to be a flattened version of a
matrix W ∈ Rq×q (d = q2) with a rank r, where r ≪ q. A strong baseline, in this case, is to
minimize the nuclear norm L∗ of W , i.e. ∥W ∥∗ subject to constraints wTx i = f(x i). To sample
the rank-r matrix W , we sample A ∼ N (0, 1), s.t. A ∈ Rq×r and independently a matrix B of the
same shape and distribution, and set W = ABT .

Recovery bounds. For each function class above, there is a bound on the minimum number
of in-context examples needed for the exact recovery of the solution vector w . The bounds for
sparse, sign-vector and low-rank regression are 2s log(d/s)+ 5s/4, d/2, and 3r(2q− r) respectively
Chandrasekaran et al. [2012].

B.1.2 Results

We train transformer-based models on the five tasks following §2.2. Each model is trained with
d = 20 and p = 40, excluding Low-Rank Regression where we train with d = 100, p = 114, and
r = 1. Figures 5b-5d compare the loss@k values on these tasks with different baselines. Additionally,
we also extract the implied weights wprobe from the trained models when given a prompt P following
Akyürek et al. [2022] by generating model’s predictions {y′i} on the test inputs {x ′

i}2di=1 ∼ DX and
then solving the system of equations to recover wprobe. We then compare the implied weights wprobe

with the ground truth weights w as well as the weights extracted from different baselines to better
understand the inductive biases exhibited by these models during in-context learning (Figures 5f-5h).

Since results for dense regression have been already covered in Akyürek et al. [2022], we do not repeat
them here, but for completeness provide them in Figure 3. For skewed-covariance regression, we
observe that the transformer follows the PME solution very closely both in terms of the loss@k values
(Figure 5a) as well as the recovered weights for which the error between wprobe and wPME−Skew

(weights obtained by minimizing wTΣ−1w ) is close to zero at all prompt lengths (Figure 5e).
On all the remaining tasks as well, the models perform better than OLS and are able to solve the
problem with < d samples i.e. underdetermined region meaning that they are able to understand the
structure of the problem. The error curves of transformers for the tasks align closely with the errors of
Lasso (Figure 5b), L∞ minimization (Figure 5c), and L∗ minimization (Figure 5d) baselines for the
respective tasks. Interestingly for low-rank regression transformer actually performs better. Though,
due to the larger problem dimension, (d = 100) in this, it requires a bigger model: 24 layers, 16
heads, and 512 hidden size. In Figures 5f, 5g, and 5h, we observe that at small prompt lengths wprobe

and wOLS are close. We conjecture that this might be attributed to both wprobe and wOLS being close

14



to 0 for small prompt lengths (Figure 4). Prior distributions for all three tasks are centrally-symmetric,
hence, at small prompt lengths when the posterior is likely to be close to the prior, the PME is close
to the mean of the prior which is 0. At larger prompt lengths transformers start to agree with wLasso,
wL∞ , and wL∗ . This is consistent with the transformer following PME, assuming wLasso, wL∞ ,
and wL∗ are close to PME—we leave it to future work to determine whether this is true (note that for
sparse regression Lasso approximates the MAP estimate which should approach the PME solution as
more data is observed). The recovered weights wprobe also agree with wLasso, wL∞ , and wL∗ for
their respective tasks after sufficient in-context examples are provided.

B.2 Non-linear problems

Moving beyond linear functions, we now study how well transformers can in-context learn function
classes with more complex relationships between the input and output, and if their behavior resembles
the ideal learner i.e. the PME. Particularly, we consider the function classes of the form FΦ ={
f(·; Φ)|f(x ; Φ) = wTΦ(x ),w ∈ R∆

}
, where Φ : Rd → R∆ maps the input vector x to an

alternate feature representation. This corresponds to learning the mapping Φ(x ) and then performing
linear regression on top of it. Under the assumption of a standard Gaussian prior on w , the PME
for the dense regression can be easily extended for FΦ: minw ∥w∥2, s.t. wTΦ(x i) = f(x i) for
i ∈ {1, · · · , p}.

B.2.1 Fourier Series

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. One
can represent the Fourier series using the sine-cosine form given by:

f(x) = a0 +

N∑
n=1

an cos (nπx/L) +

N∑
n=1

bn sin (nπx/L)

where, x ∈ [−L,L], and a0, an’s and bn’s are known as Fourier coefficients and
cosnπ/L and sinnπ/L define the frequency n components. We can define the func-
tion class F fourier

ΦN
by considering Φ as the Fourier feature map i.e. ΦN (x) =

[1, cos (πx/L), · · · , cos (Nπx/L), sin (πx/L), · · · , sin (Nπx/L)]T , and w as Fourier coefficients:
w = [a0, a1, · · · , aN , b1, · · · , bN ]. Hence, ΦN (x) ∈ Rd and w ∈ Rd, where d = 2N + 1.

For training transformers to in-context-learn F fourier
ΦN

, we fix a value of N and sample functions f ∈
F fourier

ΦN
by sampling the Fourier coefficients from the standard normal distribution i.e. w ∼ N (0d, I ).

We consider the inputs to be scalars, i.e. xi ∈ [−L,L] and we sample them i.i.d. from the uniform
distribution on the domain: xi ∼ U(−L,L). In all of our experiments, we consider N = 10 and
L = 5. At test time we evaluate on F fourier

ΦM
for M ∈ [1, 10], i.e. during evaluation we also prompt the

model with functions with different maximum frequency as seen during training. As a baseline, we
use OLS on the Fourier features (denoted as OLS Fourier Basis) which will be equivalent to the PME.

Measuring inductive biases. Once we train a transformer-based model to in-context learn F fourier
ΦN

,
how can we investigate the inductive biases that the model learns to solve the problem? We would like
to answer questions such as, when prompted with k input-output examples what are the prominent
frequencies in the function simulated by the model, or, how do these exhibited frequencies change
as we change the value of k? We start by sampling in-context examples (x1, f(x1), · · ·xk, f(xk)),
and given the context obtain the model’s predictions on a set of m test inputs {x′i}mi=1, i.e. y′i =
Mθ

((
x1, f(x1), · · ·xk, f(xk), x′i

))
. We can then perform Discrete Fourier Transform (DFT) on

{y′1, · · · , y′m} to obtain the Fourier coefficients of the function output by M , which we can analyze
to understand the dominant frequencies.

Results. The results of our experiments concerning the Fourier series are provided in Figure 6.
Transformers obtain loss@k values close to the OLS Fourier Basis baseline (Figure 6a) indicating at
least for the smaller prompt lengths the model is able to simulate the behavior of the ideal predictor
(PME). These plots use 12-layer transformers to obtain results, but we also investigate if bigger
models help. Figure 7 plots bigger models with 18 and 21 layers where the agreement with PME is
much better. Since the inputs xi, in this case, are scalars, we can visualize the functions learned in
context by transformers. We show one such example for a randomly selected function f ∼ F fourier

ΦM

15



0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

l
o
s
s
@
k

Fourier ICL
M = 10

Transformer

OLS Fourier Basis

(a)

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 21

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

Function Predicted M = 10 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

(b)

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 21

1 2 3 4 5 6 7 8 9 101112

n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 21

Inductive Biases M = 4

(c)

Figure 6: Effectiveness of ICL in transformers for Fourier series family of functions. Top left:
loss@k values for transformer and OLS Fourier Basis baseline. Top Right: Visualizing the functions
simulated by the transformer and the OLS Fourier Basis. Bottom: Measuring the frequencies of the
simulated function by the transformer and the baseline.

for prompting the model in Figure 6b. As can be observed, the functions predicted by both the
transformer and baseline have a close alignment, and both approach the ground truth function f as
more examples are provided. Finally, we visualize the distribution of the frequencies for the predicted
functions in Figure 6c. For a value of M , we sample 10 different functions and provide k in-context
examples to the model to extract the frequencies of the predicted functions using the DFT method. As
can be observed, when provided with fewer in-context examples (k = 2) both Transformer and the
baseline predict functions with all the 10 frequencies (indicated by the values of a2n + b2n in a similar
range for n ∈ [1, 10]), but as more examples are provided they begin to recognize the gold maximum
frequency (i.e. M = 4). The function visualizations for the transformer and Fourier OLS baseline for
different combinations of M and k are provided in Figure 9. We have observations consistent with
Figure 6b, where the function outputs of the transformer and the baseline align closely. Similarly, in
Figure 8, we present the distribution of frequencies in the predicted functions for the two methods
and again observe consistent findings. This suggests that the transformers are following the Bayesian
predictor and are not biased towards smaller frequencies.

B.2.2 Random Fourier Features

Mapping input data to random low-dimensional features has been shown to be effective to approximate
large-scale kernels Rahimi and Recht [2007]. In this section, we are particularly interested in Random
Fourier Features (RFF) which can be shown to approximate the Radial Basis Function kernel and are
given as:

ΦD(x ) =

√
2

D
[cos (ωT

1 x + δ1), · · · , cos (ωT
Dx + δD)]T

where ωi ∈ Rd and δi ∈ R ∀i ∈ [1, D], such that ΦD : Rd → RD. Both ωi and δ are sampled
randomly, such that ωi ∈ N (0 , I d) and δi ∈ (0, 2π). We can then define the function family FRFF

ΦD

as linear functions over the random fourier features i.e. f = wTΦD(x ) such that f ∼ FRFF
ΦD

. While
training the transformer on this function class, we sample ωi’s and δi’s once and keep them fixed
throughout the training. As a baseline, we use OLS over (ΦD(x), y) pairs which will give the PME
for the problem (denote this as RFF-OLS).

16



0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

l
o
s
s
@
k

Fourier ICL
M = 10

TF (L = 12, E = 256; Figure 2a)

TF (L = 18, E = 384)

TF (L = 21, E = 512)

OLS Fourier Basis

Figure 7: Bigger models achieve better results on the Fourier Series task. Plotting the squared
error (averaged over 1280 prompts) for bigger transformer (TF) models trained for 500k steps on the
Fourier Series task. Training setup is the same as used for the model plotted in Figure 2a (Section
3.2.1), which is also plotted here for comparison. L andE denote the number of layers and embedding
size for TF models respectively.

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 1

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

0.15

0.20

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0
a

2 n
+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.5

1.0

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 3

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.00

0.25

0.50

0.75

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 4

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 5

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 6

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 7

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 8

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 9

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

0.15

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.05

0.10

a
2 n

+
b2 n

OLS Fourier Basis
k = 1.0

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

a
2 n

+
b2 n

OLS Fourier Basis
k = 2

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 10

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 18

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 26

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 34

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 40

1 2 3 4 5 6 7 8 9 1011
n

0.0

0.2

0.4

a
2 n

+
b2 n

OLS Fourier Basis
k = 40

M = 10

Figure 8: Measuring the frequencies of the simulated function by the transformer and the baseline for
different values of M (maximum frequency) and k (number of in-context examples)

17



−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 1.0

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 2

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 6

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 10

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 14

−5 0 5
x

0.0

0.2

0.4

0.6

f
(x

)

k = 18

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 22

−5 0 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 26

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 30

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 34

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 38

−5 0 5
x

0.1

0.2

0.3

0.4

0.5

0.6

f
(x

)

k = 40

M = 1 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 2 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 1.0

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 2

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 6

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 10

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 14

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 18

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 22

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 26

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 30

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 34

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 38

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

k = 40

M = 3 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 1.0

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 2

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 6

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 10

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 14

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 18

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 22

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 26

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 30

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 34

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 38

−5 0 5
x

−0.5

0.0

0.5

1.0

f
(x

)

k = 40

M = 4 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 5 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 1.0

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 2

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 6

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 10

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 14

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)
k = 18

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 22

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 26

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 6 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 1.0

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 2

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 6

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 10

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 14

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 18

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 22

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 26

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 30

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 34

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 38

−5 0 5
x

−0.5

0.0

0.5

f
(x

)

k = 40

M = 7 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 34

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 38

−5 0 5
x

−0.50

−0.25

0.00

0.25

0.50

0.75

f
(x

)

k = 40

M = 8 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)
k = 34

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 38

−5 0 5
x

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

M = 9 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 1.0

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 2

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 6

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 10

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 14

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 18

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 22

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 26

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 30

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 34

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 38

−5 0 5
x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

f
(x

)

k = 40

M = 10 Ground Truth

Transformer Prediction

OLS Fourier Prediction

Prompt

Figure 9: Visualizing the functions simulated by the transformer and the OLS Fourier Basis, for
different values of M (maximum frequency) and k (number of in-context examples)

Results. For this particular family, we observed mixed results for transformers, i.e. they fail to
generalize to functions of the family when the complexity of the problem is high. The complexity
of this function class is dictated by the length of the ωi vectors (and the inputs x ) i.e. d and the
number of random features D. We plot the loss@k values for transformer models trained on FRFF

ΦD

for different values of d and D in Figure 10. As can be observed, the complexity of the problem for
the transformers is primarily governed by d, where they are able to solve the tasks for even large
values of D, however, while they perform well for smaller values of d (d = 1 and d = 4), for d = 10,
they perform much worse compared to the RFF-OLS baseline and the loss@k doesn’t improve much
once ∼ 15 in-context examples are provided.

B.2.3 Degree-2 Monomial Basis Regression

Defined in §B.2.1, the Fourier Series function class can be viewed as linear regression over the
Fourier basis consisting of sinusoidal functions. Similarly, we define a function class Fmon(2)

ΦM
with

the basis formed by degree-2 monomials for any d-dimensional input vector x .

Using the notation introduced in B.1.1 the basis for Fmon(2)
ΦM

is defined as ΦM (x ) = {xixj | 1 ≤
i, j ≤ d}. Each function f ∈ Fmon(2)

ΦM
is a linear combination of basis and w i.e. f(x ) = wTΦM (x ),

where w is a |ΦM |-dimensional vector sampled from standard normal distribution.

18



0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

l
o
s
s
@
k Bound

d = 1; D = 10

Transformer

RFF-OLS

(a)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 4; D = 4

Transformer

RFF-OLS

(b)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 4; D = 10

Transformer

RFF-OLS

(c)

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 4; D = 100

Transformer

RFF-OLS

(d)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 10; D = 4

Transformer

RFF-OLS

(e)

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

d = 10; D = 10

Transformer

RFF-OLS

(f)

Figure 10: Comparing transformers performance on RFF function family (FRFF
ΦD

) with the RFF-OLS
baseline for different values of d and D.

For experimentation, we define a sub-family Fmon(2)
S under Fmon(2)

ΦM
by choosing a proper subset

S ⊂ ΦM and linearly combining the terms in S to form f . This is equivalent to explicitly setting
coefficients wi of terms in ΦM −S to 0. We experiment with d = 20, with the prompt length p = 290
and |S| = 20. We do not use curriculum (d, p, |S| are fixed for the entire duration of the training run).

Baselines. We use OLS fitted to the following bases as baselines: S basis (OLSS), all degree-
2 monomials i.e., ΦM basis (OLSΦM

), and to a basis of all polynomial features up to degree-2
(OLSpoly.(2)). We also compare Lasso (α = 0.01) fitted to all degree-2 monomials i.e., ΦM basis
(LassoΦM

) as a baseline.

0 50 100 150 200 250 300
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Transformer

OLSΦM

OLSS
OLSpoly.(2)

LassoΦM

Figure 11: In-Distribution evaluation results on Fmon(2)
S sub-family of degree-2 monomial basis

regression. Evaluation of transformer on prompts generated using the same S used during training.

Results. In Figure 11, we show the In-Distribution (ID) evaluation results for the Fmon(2)
S experiments.

Here, the test prompts contain functions formed by S (the same basis used during training). We
observe that Transformers closely follow OLSS . The increasing order of performance (decreasing
loss@k for k ≥ |S|) of different solvers is: OLSpoly.(2) ≤ OLSΦM

< LassoΦM
< Transformers <

19



0 50 100 150 200 250 300
k

(# in-context examples)

0

50

100

150

200

250

300

l
o
s
s
@
k

|S ′ − S| = 1

Transformer

OLSS
OLSS ′

(a)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 1

Transformer

OLSS
OLSS ′

(b)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 2

Transformer

OLSS
OLSS ′

(c)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 3

Transformer

OLSS
OLSS ′

(d)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 4

Transformer

OLSS
OLSS ′

(e)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

|S ′ − S| = 5

Transformer

OLSS
OLSS ′

(f)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

l
o
s
s
@
k

|S ′ − S| = 10

Transformer

OLSS
OLSS ′

(g)

0 50 100 150 200 250 300
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

l
o
s
s
@
k

|S ′ − S| = 15

Transformer

OLSS
OLSS ′

(h)

0 50 100 150 200 250 300
k

(# in-context examples)

0

1

2

3

4

l
o
s
s
@
k

|S ′ − S| = 20 = |S| = |S ′|
Transformer

OLSS
OLSS ′

(i)

Figure 12: Out-of-Distribution evaluation results on Fmon(2)
S sub-family of degree-2 monomial

basis regression. Evaluation of transformer trained on prompts generated using S ′, where S ′ contains
n degree-2 monomials not present in S that was used during training. We show results for different
values of n.

OLSS . Transformer’s squared error takes a little longer than OLSS to converge. LassoΦM
is able to

take the advantage of sparsity of the problem and is hence better than both OLSΦM
and OLSpoly.(2),

which respectively converge at k = 210 and k = 2314. We also conduct an Out-of-Distribution
(OOD) evaluation for Fmon(2)

S , whose results are shown in Figure 12. Here, we generate prompts from
a basis S ′ ⊂ ΦM of the same size as S but differing from S in n degree-2 terms, i.e. |S ′ − S| = n.
We show the results for different values of n. Figure 12a shows the OLSS undergoes a steep rise in
errors momentarily at k = |S| (double descent). Figure 12b zooms into the lower error region of
Figure 12a where we notice that Transformer mimics OLSS , while OLSS′ is the best-performing
baseline (since it fits to the S ′ basis used to construct the prompts). Transformer does not undergo
double descent (for n = 1) and is hence momentarily better than OLSS at k = |S|. Similar plots
are shown for n ∈ {2, 3, 4, 5, 10, 15, 20}. As n increases, the height of OLSS peak increases and
the Transformer also starts to have a rise in errors at k = |S|. For n = 20, S ′ and S have nothing
in common, and Transformer still follows OLSS (OLS fitted to the training basis S). As mentioned
under §B.2, when the prior on weights w is Gaussian, the PME is the minimum L2-norm solution.
For Fmon(2)

S , that solution is given by OLSS . Therefore, the results suggest that the transformer is
computing PME. In summary, transformers closely follow OLSS in this set-up, and more so on the
OOD data, where they even surpass OLSS ’s performance when it experiences double descent.

4210 and 231 are the sizes of the bases to which OLSΦM and OLSpoly.(2) are fitted. Hence, they converge
right when the problem becomes determined in their respective bases.

20



0 5 10 15 20 25 30
k

(# in-context examples)

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Transformer

OLSH

Figure 13: Evaluating Transformer trained on Haar Wavelet Basis Regression task (FHaar
ΦH

).

B.2.4 Haar Wavelet Basis Regression

Similar to Fourier Series and Degree-2 Monomial Basis Regression, we also define another non-linear
regression function family (FHaar

ΦH
) using a different basis, ΦH , called the Haar wavelet basis. ΦH is

defined on the interval [0, 1] and is given by:

ΦH(x) = {x ∈ [0, 1] 7→ ψn,k(x) : n ∈ N ∪ {0}, 0 ≤ k < 2n} ∪ {1},
ψn,k(x) = 2n/2ψ(2nx− k), x ∈ [0, 1],

ψ(x) =


1 0 ≤ x < 1

2 ,

−1 1
2 ≤ x < 1,

0 otherwise,

where 1 is the constant function which is 1 everywhere on [0, 1]. To define f , we sample w from
N (0, 1) and compute its dot product with the basis, i.e. wTΦH(·). We construct the prompt P by
evaluating f at different values of x ∼ U(0, 1). The Transformer model is then trained on these
prompts P .

We use d = 1 and p = 32, both of which are fixed throughout the training run, i.e. we do not use
curriculum. We only consider the basis terms corresponding to n ∈ {0, 1, 2, 3}. The baseline used
is OLS on Haar Wavelet Basis features (OLSH). Note that for the model used throughout the paper
(§2.2), at k = 32 the loss@k value is 0.18, while for a bigger model and OLSH it is 0.07. Therefore,
for this task we report the results for the bigger model which has 24 layers, 16 heads and 512 hidden
size.

Results. In Figure 13, we observe that Transformer very closely mimics the errors of OLSH (i.e. OLS
fitted to the Haar Wavelet Basis) and converged to OLSH at k = 32. Since the prior on the weights
w is Gaussian, OLSH is the PME. Hence, Transformer’s performance on this task also suggests that
it is simulating PME.

21



1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0.022 0.024 0.031 0.026 0.026 0.032 0.033 0.024 0.028 0.032

3 0.38 1.1 0.039 1.9 1.3 0.62 3 2.6 0.094

3 2.9 1.9 0.86 3 2.6 3 3 2.9 2.9

3 2.6 2.9 1.2 2.9 2.8 3 3 3 3.1

3 2.5 2.9 1.1 3 2.9 3 3 3.1 3.1

3 3 3 0.52 3 3.1 3.1 3 3.1 3.1

3.1 3.1 3 -0.23 3.1 3 3 3 3 3.1

3 3 3.1 3 3.1 3 3.1 3.1 3 3.1

3.1 3.1 3 3 3.1 3.1 3.1 3.1 3 3

3.1 3.1 3.1 3 3.1 3.1 3 3.2 3.2 3.1

3.1 3.2 3 3 3.1 3 3 3.1 3.1 3.1

1st dim. of wprobe - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0.019 0.018 0.011 0.047 0.023 0.027 0.035 0.035 0.046 0.044

-3 -0.34 2.1 0.025 -0.78 1.8 -2.6 -3 -2.4 0.08

-3 -2.6 1.6 -0.98 -3 2.8 -3 -2.9 -2.8 0.67

-3 -3 -3 -0.98 -3 -0.12 -3 -2.9 -3 -2.9

-3 -3 -2.9 -0.28 -3 -0.86 -3 -3 -3 -2.9

-3 -3 -3 -1.9 -3 -2.9 -2.9 -3 -3 -3.1

-3 -3 -3.1 -1.6 -3 -2.9 -2.9 -3 -3 -3

-3 -3 -3 -3 -3 -3 -2.9 -3 -2.8 -3

-3 -3 -3 -3 -3 -2.9 -2.9 -3 -3.1 -3

-3.1 -3 -3 -3.1 -3.1 -3 -3 -3 -3.1 -3.1

-3.1 -2.9 -3 -3 -3 -3 -2.9 -3 -3 -3.1

1st dim. of wprobe - On T2 prompts

−3

−2

−1

0

1

2

3

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0.025 0.029 0.025 0.025 0.036 0.031 0.035 0.002 0.019 0.034

-0.17 0.053 -0.017 0.14 -0.15 -0.12 0.064 0.035 0.17 0.22

0.17 0.25 -0.041 0.1 -0.19 -0.18 0.041 -0.032 0.047 0.053

0.16 0.33 -0.036 0.11 -0.18 0.026 0.14 0.14 0.074 -0.06

0.52 0.55 0.084 0.15 -0.037 -0.068 0.053 0.077 0.074 -0.099

0.28 0.64 0.075 0.14 -0.039 0.096 0.24 0.048 -0.14 0.013

0.34 0.67 0.17 0.12 -0.089 0.2 0.3 0.011 -0.13 0.46

-0.24 0.66 0.1 0.12 -0.22 -0.04 0.13 0.49 -0.21 0.48

-0.064 0.75 0.22 0.067 0.05 0.18 0.14 0.51 -0.076 0.77

-0.31 0.55 0.28 -0.19 -0.058 0.41 0.11 0.38 -0.17 0.56

-0.29 0.75 0.24 -0.32 -0.005 0.3 0.02 0.2 -0.17 0.46

1st dim. of wprobe - special prompt

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1st dim. of PME (GMM) - special prompt

−3

−2

−1

0

1

2

3

Figure 14: Transformers simulate PME when trained on dense regression task-mixture (d =
10, p = 10, α1 = α2 = 1

2 ) with weights having a mixture of Gaussian prior (GMM). (top): 1st

dimension of Transformer’s probed weights across the prompt length. (bottom): 1st dimension of
Transformer’s probed weights and PME (GMM) across the prompt length for a specially constructed
prompt.

C Detailed Experiments for HMICL setup

C.1 Gaussian Mixture Models (GMMs)

Here we discuss some details regarding §3.1 and more results on GMMs. We start with a description
of how we calculate PMEs for this setup.

Computation of PMEs. As mentioned in §A.1 and §B.2, we can compute the individual PMEs
for components T1 and T2 by minimizing the L2 distance between the hyperplane induced by the
prompt constraints and the mean of the Gaussian distribution. In particular, to compute PME for
each Gaussian component of the prior, we solve a system of linear equations defined by the prompt
constraints (wT

i xi = yi,∀i ∈ {1, 2, .., p}) in conjunction with an additional constraint for the first
coordinate, i.e. (w)1 = +3 (for Nd(µ1,Σ1) or w1 = −3 (for Nd(µ2,Σ2)). Given these individual
PMEs, we calculate the PME of the mixture using Eq. 3.

Now we discuss more results for GMMs. First, we see the evolution of β’s (from Eq. 3), PME
(GMM), and Transformer’s probed weights across the prompt length (Figures 15 and 16). Next, we
see the results for the Transformer models trained on the mixture with unequal weights, i.e. α1 ̸= α2

(Figure 17) and for the p = 20 model (Figure 18).

Agreement of weights between Transformer and PME(GMM). Figure 14 (top) shows the
evolution of the first dimension of the Transformer weights, i.e. (wprobe)1, with prompt length k. We

22



1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.56 0.7 0.5 0.81 0.67 0.53 1 0.9 0.47

1 0.97 0.82 0.63 1 0.91 1 1 0.96 0.97

1 0.94 1 0.69 1 0.96 1 1 1 1

1 0.92 1 0.68 1 0.96 1 1 1 1

1 1 1 0.66 1 1 1 1 1 1

1 1 1 0.52 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

β1 - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0 0.44 0.85 0.5 0.37 0.74 0.072 0.004 0.11 0.54

0 0.073 0.82 0.31 0 0.94 0 0.006 0.041 0.62

0 0 0.001 0.31 0 0.33 0 0.004 0 0

0 0 0.001 0.4 0 0.18 0 0 0 0

0 0 0 0.13 0 0.008 0 0 0 0

0 0 0 0.17 0 0.002 0 0 0 0

0 0 0 0.002 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

β1 - On T2 prompts

0.0

0.2

0.4

0.6

0.8

1.0

(a)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0 0.44 0.3 0.5 0.19 0.33 0.47 0 0.098 0.53

0 0.032 0.18 0.37 0 0.086 0 0 0.037 0.029

0 0.065 0.001 0.31 0 0.04 0 0 0.001 0

0 0.076 0 0.32 0 0.04 0 0 0.001 0

0.001 0 0 0.34 0 0 0 0 0 0

0 0 0 0.48 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

β2 - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.56 0.15 0.5 0.63 0.26 0.93 1 0.89 0.46

1 0.93 0.18 0.69 1 0.061 1 0.99 0.96 0.38

1 1 1 0.69 1 0.67 1 1 1 1

1 1 1 0.6 1 0.82 1 1 1 1

1 1 1 0.87 1 0.99 1 1 1 1

1 1 1 0.83 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

β2 - On T2 prompts

0.0

0.2

0.4

0.6

0.8

1.0

(b)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

0 0 0 0 0 0 0 0 0 0

3 0.34 1.2 0.002 1.8 1 0.21 3 2.4 -0.21

3 2.8 1.9 0.78 3 2.5 3 3 2.8 2.8

3 2.6 3 1.1 3 2.8 3 3 3 3

3 2.5 3 1.1 3 2.8 3 3 3 3

3 3 3 0.97 3 3 3 3 3 3

3 3 3 0.13 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

1st dim. of PME (GMM) - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

0 0 0 0 0 0 0 0 0 0

-3 -0.37 2.1 0.006 -0.8 1.4 -2.6 -3 -2.3 0.22

-3 -2.6 1.9 -1.2 -3 2.6 -3 -3 -2.8 0.73

-3 -3 -3 -1.1 -3 -1 -3 -3 -3 -3

-3 -3 -3 -0.58 -3 -1.9 -3 -3 -3 -3

-3 -3 -3 -2.2 -3 -3 -3 -3 -3 -3

-3 -3 -3 -2 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

1st dim. of PME (GMM) - On T2 prompts

−3

−2

−1

0

1

2

3

(c)

Figure 15: Evolution (as heatmaps) with prompt length (k) of β’s and PME (GMM) appearing in Eq.
3 for the model trained with d = 10, p = 10, α1 = α2 = 1

2 . We show 10 different samples of w for
each plot.

23



0 2 4 6 8 10
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

B
et

as

On T1 prompts

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

B
et

as

On T2 prompts

β1

β2

(a)

0 2 4 6 8 10
k

(# in-context examples)

−3

−2

−1

0

1

2

3

1st
di

m
.

of
w

ei
gh

t
ve

ct
or

s

On T1 prompts

0 2 4 6 8 10
k

(# in-context examples)

−3

−2

−1

0

1

2

3

1st
di

m
.

of
w

ei
gh

t
ve

ct
or

s

On T2 prompts

wprobe

PME (GMM)

(b)

Figure 16: Evolution (as line plots) with prompt length (k) of β’s, PME (GMM), and wprobe for the
model trained with d = 10, p = 10, α1 = α2 = 1

2 . We show the values averaged over 1280 samples.

see that Transformer is simulating PME (GMM), which approaches PME (Tprompt) with increasing
prompt length (k). Note that regardless of k, the first dimension of PME (Ti) is (µi)1, the first
dimension of the mean of the prior distribution Ti since the Gaussian has a fixed value in the first
dimension. Note that PME (GMM) approaches PME (Tprompt) with increasing k (Eq. 3). Also note
that in our setting, regardless of k the first dimension of PME (Ti) is (µi)1, the first dimension of the
mean of the prior distribution Ti, since Ti has a fixed value (i.e. zero variance) in the first dimension.
Hence, if Transformer is simulating PME (GMM), the first dimension of Transformer’s weights
(wprobe)1 must approach (µ1)1 (when Tprompt = T1) and (µ2)1 (when Tprompt = T2). This is
exactly what we observe as (wprobe)1 approaches +3 and −3 on T1 and T2 prompts respectively. At
prompt length 0, in the absence of any information about the prompt, (wprobe)1 ≈ 0. This agrees
with Eq. 3 since 0 = (µ1)1.β1 + (µ2)1.β2, where (µ1)1 = +3, (µ2)1 = −3, β1 = α1 = 0.5
and β2 = α2 = 0.5 when prompt P is empty. The figure shows that with the increasing evidence
from the prompt, the transformer shifts its weights to Tprompt’s weights as evidenced by the first
coordinate changing from 0 to +3 or −3 based on the prompt. In Figure 14 (bottom), we check the
behavior of Transformer and PME (GMM) on specially constructed prompts P where (x i)1 = 0
and (x i)2:d ∼ N (0, 1),∀i ∈ {1, · · · , p}. For our setup, choosing such x i’s guarantees that no
information about the distribution of w becomes known by observing P (since the only distinguishing
dimension between T1 and T2 is the 1st dimension and that does not influence the prompt in this
case as (x i)1 = 0). We note that Transformer’s weights are all ≈ 0 regardless of the prompt length,
agreeing with the PME (GMM). Observing more examples from the prompt does not reveal any

24



0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6
l
o
s
s
@
k

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

Transformer (GMM)

PME (T1)

PME (T2)

PME (GMM)

(a)

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 2 4 6 8 10
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

(wprobe, w)

(wprobe, PME (GMM))

(wprobe, PME (T1))

(wprobe, PME (T2))

(b)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

1 1 0.97 1 1 0.98 1 0.99 1 0.96

2.9 1.2 1.9 0.96 2.5 1.8 1 2.9 2.6 0.93

2.9 2.9 2.4 1.5 3 2.7 3 3 2.8 2.9

2.9 2.7 3.1 2.1 3 2.8 2.9 2.9 3 3

3 2.6 3.1 2.1 2.9 2.8 3 2.9 2.9 3

2.9 3 3 1.9 2.9 3 3 3 3 3

3 3 2.9 1.2 2.9 3 3 2.9 3 3

2.9 2.9 2.9 3 3 3 3 3 3 3

3 3 3 3.1 2.9 3 3 2.9 2.9 3.1

3.1 2.9 3 3.1 3 3 3 3 3.1 3.1

3.1 2.9 3 3.1 3.1 3 3 2.9 3 3

1st dim. of wprobe - On T1 prompts

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

1 1 0.97 1 0.98 0.98 0.98 1 1 0.97

-2.8 0.55 2.5 0.95 -0.081 2.2 -2.3 -2.8 -1.9 1.1

-2.9 -2.4 2.4 -0.24 -2.9 2.7 -2.9 -2.9 -2.6 1.5

-3 -3 -2.9 -0.17 -3 -1.1 -3 -2.9 -3 -2.9

-2.9 -2.9 -2.9 0.75 -2.9 -1.5 -2.9 -3 -3 -2.8

-3 -3 -2.9 -1.3 -2.7 -2.7 -2.9 -2.9 -3 -3

-3 -3 -2.9 -1.2 -2.9 -2.8 -3 -3 -2.9 -2.9

-2.9 -3 -3.2 -2.8 -2.9 -2.8 -3 -3 -3 -3

-3 -3 -3 -2.9 -3 -2.9 -2.9 -3 -3 -2.9

-3 -3.1 -3.2 -2.9 -2.9 -3 -3 -3 -3 -3

-3 -3.1 -3 -2.9 -2.9 -2.9 -3.2 -3 -3.1 -2.9

1st dim. of wprobe - On T2 prompts

−3

−2

−1

0

1

2

3

(c)

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10
k

(#
in

-c
on

te
xt

ex
am

pl
es

)

1 0.98 0.99 0.98 1 0.97 1 0.98 1 0.99

1.1 0.94 0.9 0.97 1 0.94 0.96 0.89 1.2 1

0.58 0.88 1.1 1.3 0.89 0.99 0.93 0.84 1.2 1.2

0.71 0.89 1.2 1.7 0.89 1 1 0.87 1.1 1.2

0.54 0.85 1 1.5 0.98 1.2 0.89 0.89 0.94 1.1

0.63 0.68 1 1.5 1.3 1 0.98 0.91 1 0.61

0.83 0.64 1.1 1.9 1.1 1.1 0.72 1.3 0.95 0.53

0.52 0.5 1 1.7 1.1 1.1 1.4 1.1 0.95 0.74

0.19 1.4 1.4 2 1.1 0.94 1.5 0.86 0.79 0.42

0.093 1.5 1.4 2.2 1.8 0.95 1.5 0.68 1.4 -0.039

0.15 1.5 1.3 2 1.8 1.2 1.1 0.68 1.7 0.2

1st dim. of wprobe - special prompt

1 2 3 4 5 6 7 8 9 10
Samples of w

0
1

2
3

4
5

6
7

8
9

10

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1st dim. of PME (GMM) - special prompt

−3

−2

−1

0

1

2

3

(d)

Figure 17: Transformers simulate PME when trained on dense regression task-mixture (d =
10, p = 10, α1 = 2

3 , α2 = 1
3 ) with weights having a mixture of Gaussian prior (GMM). (a):

Comparing the performance of the Transformer with Posterior Mean Estimator (PME) of individual
Gaussian components (PME (T1) and PME (T2)) and of the mixture PME (GMM). (b): MSE between
the probed weights of the Transformer and PMEs. (c): 1st dimension of Transformer’s probed weights
across the prompt length. (d): 1st dimension of Transformer’s probed weights and PME (GMM)
across the prompt length for a specially constructed prompt.

0 5 10 15 20
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 5 10 15 20
k

(# in-context examples)

0

1

2

3

4

5

6

l
o
s
s
@
k

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

Transformer (GMM)

PME (T1)

PME (T2)

PME (GMM)

(a)

0 5 10 15 20
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T1 prompts (w ∼ Nd(µ1,Σ1))

0 5 10 15 20
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

Evaluation on T2 prompts (w ∼ Nd(µ2,Σ2))

(wprobe, w)

(wprobe, PME (GMM))

(wprobe, PME (T1))

(wprobe, PME (T2))

(b)

Figure 18: Transformers simulate PME when trained on dense regression task-mixture (d =
10, p = 20, α1 = α2 = 1

2 ) with weights having a mixture of Gaussian prior (GMM). Left:
Comparing the performance of the Transformer with Posterior Mean Estimator (PME) of individual
Gaussian components (PME (T1) and PME (T2)) and of the mixture PME (GMM). Right: MSE
between the probed weights of the Transformer and PMEs.

25



information about the underlying distribution of w in this case. All of this evidence strongly supports
our hypothesis that Transformer behaves like the ideal learner and computes the Posterior Mean
Estimate (PME).

Evolution of β’s, PME (GMM), and wprobe. Figure 15 plots the evolution of β’s and 1st dimension
of PME (GMM) for 10 different w ’s. The β’s (Figures 15a and 15b) are 0.5 (equal to α’s) at k = 0
(when no information is observed from the prompt). Gradually, as more examples are observed from
the prompt, βTprompt approaches 1, while βTother

approaches 0. This is responsible for PME (GMM)
converging to PME (Tprompt) as seen in §3.1. The 1st dimension of PME (GMM) (Figure 15c) starts
at 0 and converges to +3 or −3 depending on whether Tprompt is T1 or T2. Figure 16 shows the same
evolution in the form of line plots where we see the average across 1280 samples of w . In Figure
16a, βTprompt

approaches 1, while βTother
approaches 0 as noted earlier. Consequently, in Figure 16b,

1st dimension of PME (GMM) approaches +3 or −3 based on the prompt. The 1st dimension of
Transformer’s probed weights, i.e. (wprobe)1 almost exactly mimics PME (GMM).

Unequal weight mixture with α1 = 2
3 & α2 = 1

3 . Figure 17 shows the results for another model
where α′s are unequal (d = 10, p = 10, α1 = 2

3 , α2 = 1
3 ). The observations made for Figure 1 in §3.1

still hold true, with some notable aspects: (1) The difference between prediction errors, i.e. loss@k
(17a), of PME (GMM) and PME (T1) is smaller than that of the uniform mixture (α1 = α2 = 1

2 ) case,
while the difference between prediction errors and weights of PME (GMM) and PME (T2) is larger.
This is because, at prompt length = 0, PME (GMM) is a weighted combination of component PMEs
with α’s as coefficients (Eq. 3). Since α1 > α2, PME (GMM) starts out as being closer to T1 than T2.
Also, since the Transformer follows PME (GMM) throughout, its prediction errors also have similar
differences (as PME (GMM)’s) with PMEs of both components T1 and T2. (2) Transformer’s probed
weights (wprobe), which used to have the same MSE with PME (T1) and PME (T2) at k = 0, now
give smaller MSE with PME (T1) than PME (T2) on prompts from both T1 and T2 (Figure 17b). This
is a consequence of PME (GMM) starting out as being closer to T1 than T2 due to unequal mixture
weights as discussed above. Since Transformer is simulating PME (GMM), wprobe is also closer
to PME (T1) than PME (T2) at k = 0 regardless of which component (T1 or T2) the prompts come
from. Due to wprobe mimicking T1 more than T2 we also observe in Figure 17b that wprobe gives
smaller MSE with w (ground truth) when Tprompt = T1 compared to when Tprompt = T2. (3) The 1st

dimension of Transformer’s weights ((wprobe)1) and PME (GMM) is 1 instead of 0 when the prompt
is either empty (17c) or lacks information regarding the distribution of w (17d). It happens because
(wprobe)1 ≈ 1st dimension of PME (GMM) = (µ1)1.β1 + (µ2)1.β2 = (+3)( 23 ) + (−3)( 13 ) = 1.
Note that β1 = α1 = 2

3 and β2 = α2 = 1
3 when prompt P is empty at k = 0 (Eq. 3). When P is

inconclusive of w , β1 = α1 and β2 = α2 ∀k ∈ {1, 2, · · · , p}.

Transformer model trained with longer prompt length (p = 20). Figure 18 depicts similar
evidence as Figure 1 of Transformer simulating PME (GMM) for a model trained with d = 10, p =
20, α1 = α2 = 1

2 . We see that all the observations discussed in §3.1 also hold true for this model.
Transformer converges to PME (GMM) and PME (Tprompt) w.r.t. both loss@k (Figure 18a) and
weights (Figure 18b) at k = 10 and keeps following them for larger k as well.

In summary, all the evidence strongly suggests that Transformer performs Bayesian Inference and
computes PME corresponding to the task at hand. If the task is a mixture, Transformer simulates the
PME of the task mixture as given by 3.

C.2 More complex mixtures

We start by training transformer models on the mixture of dense linear regression (FDR) and sparse
linear regression (FSR) function classes. The function definition remains the same for both these
classes i.e. f : x 7→ wT

i x , but for FDR we consider a standard gaussian prior on w and a sparse prior
for FSR. We use the sparse prior from Garg et al. [2022], where we first sample w ∼ N (0d, I ) and
then randomly set its d− s components as 0. We consider s = 3 throughout our experiments. Unless
specified we consider the mixtures to be uniform i.e. αi = 0.5 and use these values to sample batches
during training.

During the evaluation, we test the mixture model (denoted as Transformer F{DR, SR}) on the prompts
sampled from each of the function classes in the mixture. We consider the model to have in-context
learned the mixture of tasks if it obtains similar performance as the single-task models specific to
these function classes. For example, a transformer model trained on the dense and sparse regression

26



0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

1.25

Bound

Evaluation on Sparse Regression Prompts

k (# in-context examples)

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

Figure 19: Comparing the performance of a Transformer model trained on dense and sparse regression
mixture F{DR, SR} with baselines, as well as single task models, trained on FDR and FSR individually.

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SR}, w

probe
DR )

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sparse Regression Prompts

(wprobe
{DR,SR}, w

probe
SR )

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SR}, w

probe
DR )

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sparse Regression Prompts

(wprobe
{DR,SR}, w

probe
SR )

(wprobe
{DR,SR}, w

OLS)

(wprobe
{DR,SR}, w

lasso)

(b)

Figure 20: Comparing the errors between the weights recovered from the mixture model trained on
F{DR, SR} mixture and different single task models and baselines while evaluating on FDR and FSR
prompts

mixture (Transformer F{DR, SR}) should obtain performance similar to the single-task model trained
on dense regression function class (Transformer FDR), when prompted with a function f ∼ FDR and
vice-versa.

Results. The results for the binary mixtures of linear functions are given in Figure 19. As can be
observed, the transformer model trained on F{DR, SR} obtains performance close to the OLS baseline
as well as the transformer model specifically trained on the dense regression function class FDR when
evaluated with dense regression prompts. On the other hand, when evaluated with sparse regression
prompts the same model follows Lasso and single-task sparse regression model (Transformer (FSR))
closely. As a check, note that the single-task models when prompted with functions from a family
different from what they were trained on, observe much higher errors, confirming that the transformers
learn to solve individual tasks based on the in-context examples provided. Similar to GMMs in §3.1,
here also we compare the implied weights from multi-task models under prompts for both FDR and
FSR and show that here again they agree with the weights recovered from single-task models as well
as the strong baselines in this case (OLS and Lasso). We provide the plots for the weight agreement
in this case in Figure 20.

Next, we describe the results for other homogeneous mixtures F{DR, SVR}, F{DR, Skew-DR} and
F{DR, SR, SVR}, as well as heterogeneous mixtures F{DR, DT} and F{DT, NN}. As can be seen in Figure
21, the transformer model trained on F{DR, SVR} mixture, behaves close to OLS when prompted with
f ∈ FDR and close to the L∞ minimization baseline when provided sign-vector regression prompts
(f ∈ FSVR). We also have similar observations for the F{DR, Skew-DR} mixture case in Figure 22,
where the multi-task ICL model follows the PME of both tasks when sufficient examples are provided
from the respective task. Similarly, for the model trained on the tertiary mixture F{DR, SR, SVR} (as
can be seen in Figure 23), the multi-task model can simulate the behavior of the three single-task
models depending on the distribution of in-context examples. On FSR and FSVR prompts the multi-
task model performs slightly worse compared to the single-task models trained on FSR and FSVR
respectively, however once sufficient examples are provided (still < 20), they do obtain close errors.

27



0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Transformer (F{DR,SVR})

Transformer (FDR)

Transformer (FSVR)

OLS

Minimize `∞

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,SVR}, w

probe
DR )

(wprobe
{DR,SVR}, w

OLS)

(wprobe
{DR,SVR}, w

L∞)

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Sign Vector Regression Prompts

(wprobe
{DR,SVR}, w

probe
SVR )

(wprobe
{DR,SVR}, w

OLS)

(wprobe
{DR,SVR}, w

L∞)

(c)

Figure 21: Comparing the performance of a Transformer model trained on dense and sign-vector
regression mixture F{DR, SVR} with baselines, as well as single task models, trained on FDR and FSVR
individually. Top: Comparing loss@k values of the mixture model with single-task models with
different prompt distributions. Bottom: Comparing the errors between the weights recovered from
the mixture model and different single task models and baselines while evaluating on FDR and FSVR
prompts.

This observation is consistent with the PME hypothesis i.e. once more evidence is observed the β
values PME of the mixture should converge to the PME of the task from which prompt P is sampled.
The results on heterogeneous mixtures we discuss in detail below:

Heterogeneous Mixtures: Up until now, our experiments for the multi-task case have been focused
on task mixtures where all function families have the same parameterized form i.e wTx for linear
mixtures and wTΦ(x) for Fourier mixtures. We now move to more complex mixtures where this no
longer holds true. In particular, we consider dense regression and decision tree mixture F{DR, DT}
and decision tree and neural network mixture F{DT, NN}.

We follow Garg et al. [2022]’s setup for decision trees and neural networks. We consider decision
trees of depth 4 and 20-dimensional input vectors x . A decision tree is sampled by choosing the
split node randomly from the features at each depth, and the output of the function is given by
the values stored in the leaf nodes which are sampled from N (0, 1). For neural networks, we
consider 2-layer (1 hidden + 1 output) multi-layer perceptrons (MLP) with ReLU non-linearity i.e.
f(x) =

∑r
i=1 αiReLU(wT

i x ), where α ∈ R and w i ∈ Rd. The network parameters ais and w is are
sampled from N (0, 2/r) and N (0, 1) respectively. The input vectors x is are sampled from N (0, 1)
for both tasks. We consider greedy tree learning and stochastic gradient descent 5 over a 2-layer MLP
as our baselines for decision trees and neural networks respectively. The values of hyperparameters
for baselines such as the number of gradient descent steps, initial learning rate for Adam, etc. are the
same as Garg et al. [2022].

5In practice, we use Adam just like Garg et al. [2022]

28



0 10 20 30 40
k

(# in-context examples)

0.0

0.5

1.0

1.5

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Skewed-Covariance Regression Prompts

Transformer (F{DR,Skew−DR})

Transformer (FDR)

Transformer (FSkew−DR)

OLS

Minimize wTΣ−1w

(a)

0 5 10 15 20 25 30 35 40
k

(# in-context examples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Dense Regression Prompts

(wprobe
{DR,Skew−DR}, w

probe
DR )

(wprobe
{DR,Skew−DR}, w

OLS)

(wprobe
{DR,Skew−DR}, w

PME−Skew)

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.02

0.04

0.06

0.08

0.10

m
ea

n
sq

ua
re

d
er

ro
r

Bound

Evaluation on Skewed-Covariance Regression Prompts

(wprobe
{DR,Skew−DR}, w

probe
Skew−DR)

(wprobe
{DR,Skew−DR}, w

OLS)

(wprobe
{DR,Skew−DR}, w

PME−Skew)

(c)

Figure 22: Comparing the performance of a Transformer model trained on dense and skewed-
covariance regression mixture F{DR, Skew-DR} with baselines, as well as single task models, trained
on FDR and FSkew-DR individually. Top: Comparing loss@k values of the mixture model with
single-task models with different prompt distributions. Red (OLS) and orange (Transformer (FDR))
curves overlap very closely, so are a bit hard to distinguish in the plots. Similarly in the top right plot,
purple (Minimize wTΣ−1w ) and green (Transformer FSkew-DR) curves overlap. Bottom: Comparing
the errors between the weights recovered from the mixture model and different single task models
and baselines while evaluating on FDR and FSkew-DR prompts.

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Transformer (F{DR,SR,SVR})

Transformer (FDR)

Transformer (FSR)

Transformer (FSVR)

Figure 23: Comparing the performance of transformer model trained to in-context learn F{DR, SR, SVR}
mixture family with the corresponding single task models.

29



0 10 20 30 40
k

(# in-context examples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l
o
s
s
@
k

Evaluation on Dense Regression Prompts

Transformer (F{DR,DT})

Transformer (FDR)

OLS

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

Evaluation on Decision Tree Prompts

Transformer (F{DR,DT})

Transformer (FDT)

Greedy Tree Learning

(a)

0 20 40 60 80 100
k

(# in-context examples)

0.0

0.5

1.0

1.5

2.0

l
o
s
s
@
k

Evaluation on Decision Tree Prompts

Transformer (F{DT,NN})

Transformer (FDT)

Greedy Tree Learning

0 20 40 60 80 100
k

(# in-context examples)

0.2

0.4

0.6

0.8

1.0

l
o
s
s
@
k

Evaluation on Neural Network Prompts

Transformer (F{DT,NN})

Transformer (FNN)

2-layer NN, GD

(b)

Figure 24: Multi-task in-context learning for heterogeneous mixtures: Results for (a) F{DR, DT}, and
(b) F{DT, NN}.

30



The results for the two mixtures are provided in Figure 24. The mixture model Transformer
(F{DR, DT}) follows the single task model Transformer (FDR) when provided in-context examples
from f ∼ FDR and agrees with Transformer (FDT) when prompted with f ∼ FDT (Figure 24a.
Similarly, we have consistent findings for F{DT, NN} mixture as well, where the model learns to solve
both tasks depending upon the input prompt (Figure 24b).

C.3 Fourier series mixture detailed results

We consider a mixture of Fourier series function classes with different maximum frequencies, i.e.
F fourier

Φ1:N
= {F fourier

Φ1
, · · · ,F fourier

ΦN
}. We consider N = 10 in our experiments and train the models

using a uniform mixture with normalization. During evaluation, we test individually on each F fourier
ΦM

,
where M ∈ [1, N ]. We compare against consider two baselines: i) OLS Fourier Basis F fourier

ΦM
i.e.

performing OLS on the basis corresponding to the number of frequencies M in the ground truth
function, and ii) F fourier

ΦN
which performs OLS on the basis corresponding to the maximum number of

frequencies in the mixture i.e. N .

Figure 25a plots the loss@k metric aggregated over all the M ∈ [1, N ] for the model and the
baselines. The performance of the transformer lies somewhere in between the gold-frequency
baseline (OLS Fourier Basis F fourier

ΦM
) and the maximum frequency baseline (F fourier

ΦN
), with the model

performing much better compared to the latter for short prompt lengths (k < 20) while the former
baseline performs better. We also measure the frequencies exhibited by the functions predicted by the
transformer in Figure 25b. We observe that transformers have a bias towards lower frequencies when
prompted with a few examples; however, when given sufficiently many examples they are able to
recover the gold frequencies. This simplicity bias can be traced to the training dataset for the mixture
since lower frequencies are present in most of the functions of the mixture while higher frequencies
will be more rare: Frequency 1 will be present in all the function classes whereas frequency N will be
present only in F fourier

ΦN
. Our results indicate that the simplicity bias in these models during in-context

learning arises from the training data distribution. We confirm the above observations by detailing
results for different combinations of M and k in Figure 26.

C.3.1 Complexity Biased Pre-training

To further verify this observation, we also consider the case where the training data is biased towards
high frequencies and check if transformers trained with such data exhibit bias towards high frequencies
(complexity bias). To motivate such a mixture, we first define an alternate fourier basis: Φn0,N (x) =
[cos (n0π/L), sin (n0π/L), cos ((n0 + 1)π/L), sin ((n0 + 1)π/L), · · · , cos (Nπ/L), sin (Nπ/L)],
where n0 ≥ 0 is the minimum frequency in the basis. Φn0,N defines the function family F fourier

Φn0,N
and

equivalently we can define the mixture of such function classes as FΦfourier
1:N,N

= {F fourier
Φ1,N

, · · · ,F fourier
ΦN,N

}.
One can see such a mixture will be biased towards high frequency; frequency N is present in each
function class of the mixture, while frequency 1 is only present in F fourier

Φ1,N
. We train a transformer

model on such a mixture forN = 5 and at test time, we evaluate the model on functions f ∼ F fourier
Φm0,M

Figure 25c shows the inductive biases measure from this trained model and we can clearly observe a
case of complexity bias, where at small prompt lengths, the model exhibited a strong bias towards the
higher end of the frequencies that it was trained on i.e. close to 5.

We also trained models for higher values of the maximum frequency i.e. N = 10 for the high-
frequency bias case, but interestingly observed the model failed to learn this task mixture. Even for
N = 5, we noticed that the convergence was much slower compared to training on the simplicity
bias mixture F fourier

Φ1:N
. This indicates, while in this case, the origin of simplicity bias comes from the

training data, it is harder for the model to learn to capture more complex training distributions, and
simplicity bias in the pre-training data distribution might lead to more efficient training Mueller and
Linzen [2023].

C.4 Conditions necessary for multi-task ICL

We observed that the training setup can also influence the ability of transformers to simulate the
Bayesian predictor during ICL. Particularly, in our initial experiments with F{DR, SR} mixture (§C.2),
transformers failed to learn to solve the individual tasks of the mixture and were following OLS
for both FDR and FSR prompts. To probe this, we first noted that the variance of the function

31



0 10 20 30 40
k

(# in-context examples)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

l
o
s
s
@
k

Fourier Mixture ICL

Transformer

OLS Fourier Basis ΦM

OLS Fourier Basis ΦN

(a)

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 4, k = 20

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

M = 10, k = 2

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

a
2 n

+
b2 n

M = 10, k = 20
Transformer Inductive Biases

(b)

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.1

0.2

0.3

a
2 n

+
b2 n

m0 = 1, M = 2, k = 1

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

m0 = 1, M = 2, k = 11

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

m0 = 1, M = 5, k = 1

1 2 3 4 5 6 7 8 9 10 11 12
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

m0 = 1, M = 5, k = 11

Training on data biased towards high frequencies (n0 = 1, N = 5)

(c)

Figure 25: In-context learning on the Fourier series mixture class. Top Left: Comparing transformers
with the baselines. Errors are computed on batches of 128 for M ∈ [1, 10] and aggregated in the plot.
Top Right: Visualizing the frequencies of the simulated function by transformers. Bottom: Training
transformer on high-frequency biased Fourier mixture FΦfourier

1:N,N
and visualizing the simulated

frequencies of the trained model.

outputs varied greatly for the two tasks, where for dense regression it equals d and equals the sparsity
parameter s for sparse regression. We hypothesized that the model learning to solve just dense
regression might be attributed to the disproportionately high signal from dense regression compared
to sparse. To resolve this, we experimented with increasing the sampling rate for the FSR task family
during training. Particularly on training the model with αSR = 0.87, we observed that the resulting
model did learn to solve both tasks. Alternatively, normalizing the outputs of the two tasks such that
they have the same variance and using a uniform mixture (αSR = 0.5) also resulted in multi-task
in-context learning capabilities (also the setting of our experiments in Figure 19). Hence, the training
distribution can have a significant role to play in the model acquiring abilities to solve different tasks
as has been also observed in other works on in-context learning in LLMs Razeghi et al. [2022], Chan
et al. [2022a].

We also studied if the curriculum had any role to play in the models acquiring multi-task in-context
learning capabilities. In our initial experiments without normalization and non-uniform mixtures, we
observed that the model only learned to solve both tasks when the curriculum was enabled. However,
training the model without curriculum for a longer duration (≈ more training data), we did observe it
to eventually learn to solve both of the tasks indicated by a sharp dip in the evaluation loss for the
sparse regression task during training. This is also in line with recent works Hoffmann et al. [2022],
Touvron et al. [2023], which show that the capabilities of LLMs can be drastically improved by
scaling up the number of tokens the models are trained on. Detailed results concerning these findings
are in Figure 27.

Figure 27 compares transformer models trained on F{DR, SR} mixture with different setups i.e. training
without task-normalization and uniform mixture weights αi’s (Figure 27a), training without task-
normalization and non-uniform mixture weights (Figure 27b), and training with task normalization
and uniform mixture weights (Figure 27c). As described above, we perform task normalization by
ensuring that the outputs f(x) for all the tasks have the same variance, which results in all the tasks
providing a similar training signal to the model. To perform normalization, we simply divide the
weights w sampled for the tasks by a normalization constant, which is decided according to the nature
of the task. With this, we make sure that the output y = wTx has a unit variance. The normalization
constants for different tasks are provided in Table 2.

All the experiments discussed above (like most others in the main paper) were performed using
curriculum learning. As discussed above, we investigated if the curriculum has any effect on multi-
task ICL capabilities. The results for the same are provided in Figure 28.

We also explore the effect of normalization on multi-task ICL in Figure 29 for F{DR, SVR} task.
As can be seen in Figure 29a, for this particular mixture even while training the model without

32



1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 20

M = 1

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 20

M = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

1.0

a
2 n

+
b2 n

Transformer
k = 20

M = 3

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 20

M = 4

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 20

M = 5

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 20

M = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 20

M = 7

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 20

M = 8

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

0.8

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 20

M = 9

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

0.6

a
2 n

+
b2 n

Transformer
k = 1.0

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.2

0.4

a
2 n

+
b2 n

Transformer
k = 2

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

a
2 n

+
b2 n

Transformer
k = 6

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 10

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 14

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 18

1 2 3 4 5 6 7 8 9 10 11
n

0.0

0.1

0.2

0.3

0.4

0.5

a
2 n

+
b2 n

Transformer
k = 20

M = 10

Figure 26: In-context learning of Fourier series mixture class. Measuring the frequencies of the
simulated function by the transformer for different values of M (maximum frequency) and k (number
of in-context examples). Showcases the simplicity bias behavior exhibited by the model at low
frequencies.

33



0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25
l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.5, αSR = 0.5

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.13, αSR = 0.87

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Normalized Mixture
αDR = 0.5, αSR = 0.5

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(c)

Figure 27: Conditions affecting multi-task ICL in transformers. Top: Evaluating loss@k for
transformer model trained on F{DR, SR} task family without normalization and considering uniform
mixtures (i.e. αDR = αSR = 0.5), and comparing with single-task models and baselines. While the
blue curve (Transformer F{DR, SR}) is hard to see here, it is because it overlaps almost perfectly with
the red curve corresponding to OLS in both cases.Center: Similar plots as above but for the model
trained on the mixture F{DR, SR} with non-uniform weights i.e. αDR = 0.13, αSR = 0.87. Bottom:
Training the model with the normalized (and uniform) mixture such that outputs for the two tasks
have the same variance. All the models are trained with the curriculum. The discussion continues
in Figure 28 for the models trained without curriculum.

34



0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25
l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.13, αSR = 0.87

Training Step: 500k

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

l
o
s
s
@
k

Bound

Evaluation on Sparse Regression Prompts

Unnormalized Mixture
αDR = 0.13, αSR = 0.87

Training Step: 800k

Transformer (F{DR,SR})

Transformer (FDR)

Transformer (FSR)

OLS

Lasso

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps ×106

0.5

1.0

1.5

2.0

2.5

3.0

3.5

l
o
s
s
@

10

Only solves DR

Solves both DR and SR

T
ra

ns
it

io
n

Training Dynamics
loss@10 for SR prompts

(c)

Figure 28: Evaluating transformer model trained without curriculum on F{DR, SR} task family
without normalization and non-uniform weights i.e. αDR = 0.13, αSR = 0.87 (similar to Figure
27b). Top: Evaluating the checkpoint corresponding to the 500k training step of the aforementioned
model. Again, the blue curve (Transformer F{DR, SR}) is hard to see here, but it is because it overlaps
almost perfectly with the red curve corresponding to OLS in both cases.Center: Evaluating the same
model but a much later checkpoint i.e. at 800k training step. Bottom: Evolution of loss@10 on FSR
prompts while training the above model.

35



Table 2: Normalization constants used for different tasks to define normalized mixtures for multi-task
ICL experiments. Here d denotes the size of the weight vectors used in linear-inverse problems as
well as the last layer of the neural network. s refers to the sparsity of sparse regression problems, r is
the hidden size of the neural network and N refers to the maximum frequency for Fourier series.

Function Family Normalization Constant
Dense Regression

√
d

Sparse Regression
√
s

Sign-Vector Regression
√
d

Fourier-Series N

Degree-2 Monomial Basis Regression
√
|S|

Decision Trees 1

Neural Networks
√

dr
2

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Unnormalized Mixture (αDR = αSVR = 0.5)
Evaluation on Unnormalized Prompts

Transformer

OLS

Minimize L∞

(a)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Unnormalized Mixture (αDR = αSVR = 0.5)
Evaluation on Normalized Prompts

Transformer

OLS

Minimize L∞

(b)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Normalized Mixture (αDR = αSVR = 0.5)
Evaluation on Unnormalized Prompts

Transformer

OLS

Minimize L∞

(c)

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Dense Regression Prompts

0 10 20 30 40
k

(# in-context examples)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l
o
s
s
@
k

Bound

Evaluation on Sign-Vector Regression Prompts

Normalized Mixture (αDR = αSVR = 0.5)
Evaluation on Normalized Prompts

Transformer

OLS

Minimize L∞

(d)

Figure 29: Effect of output normalization on multi-task ICL in transformers. Top Left (a): A
transformer model is trained on a uniform mixture of F{DR, SVR} task family (i.e. αDR = αSVR = 0.5)
without normalization. Evaluating loss@k for this model on unnormalized prompts (where outputs
f(x) are not normalized to have unit variance i.e. same as training). Note that for the F{DR, SVR} task
family even without normalization the outputs f(x) have the same mean and variance (µ = 0, σ2 =
20) for both the tasks. Bottom Left (b): Evaluating loss@k for the model in (a) on normalized
prompts (where outputs f(x) for both tasks are normalized to have unit variance). Top Right (c): A
transformer model is trained on a uniform mixture of F{DR, SVR} task family (i.e. αDR = αSVR = 0.5)
with normalization. Evaluating loss@k for this model on unnormalized prompts. Bottom Right (d)
Evaluating loss@k for the model in (c) on normalized prompts. All the models are trained with the
curriculum.

normalization, the model exhibited multi-task ICL, which can be explained by both tasks having
the same output variance (i.e. d). Interestingly, when we evaluate this model (i.e. the one trained
on unnormalized mixture) on in-context examples which have the outputs f(xi)’s normalized, the
model fails to solve FSVR and follows OLS baseline for both the tasks. We hypothesize that since
this situation represents Out of Distribution (OOD) evaluation and the model might not be robust
towards performing multi-task ICL on prompts that come from a different distribution than those
seen during training. Exploring OOD generalization in the multi-task case is a compelling direction
that we leave for future work.

36


	Introduction
	Background
	Hierarchical Meta-ICL
	Model and training details

	Transformers can in-context learn task mixtures
	Gaussian Mixture Models (GMMs)

	Simplicity bias in ICL?
	Summary of further results
	Conclusion
	Technical Details
	PME Theoretical Details
	Experimental Setup

	Linear and Non-linear inverse problems
	Linear inverse problems
	Function classes and baselines
	Results

	Non-linear problems
	Fourier Series
	Random Fourier Features
	Degree-2 Monomial Basis Regression
	Haar Wavelet Basis Regression


	Detailed Experiments for HMICL setup
	Gaussian Mixture Models (GMMs)
	More complex mixtures
	Fourier series mixture detailed results
	Complexity Biased Pre-training

	Conditions necessary for multi-task ICL


