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Abstract

We study the multiple-policy evaluation problem where we are given a set of K
policies and the goal is to evaluate their performance (expected total reward over
a fixed horizon) to an accuracy ϵ with probability at least 1 − δ. We propose an
algorithm named CAESAR for this problem. Our approach is based on computing
an approximate optimal offline sampling distribution and using the data sampled
from it to perform the simultaneous estimation of the policy values. CAESAR has
two phases. In the first we produce coarse estimates of the visitation distributions
of the target policies at a low order sample complexity rate that scales with Õ( 1ϵ ).
In the second phase, we approximate the optimal offline sampling distribution
and compute the importance weighting ratios for all target policies by minimiz-
ing a step-wise quadratic loss function inspired by the DualDICE [21] objective.
Up to low order and logarithmic terms CAESAR achieves a sample complexity

Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
, where dπ is the visitation distribution

of policy π, µ∗ is the optimal sampling distribution, and H is the horizon.

1 Introduction

It is rumored that sometime before the fateful day of March 15, 44 BC, a soothsayer warned Caesar of
the impending dangers awaiting him at the Senate house. "Beware the Ides of March," the soothsayer
is said to have uttered—a warning that Caesar famously ignored. Immortalized in Shakespeare’s play
"Julius Caesar," this cautionary tale reminds us of the dangers of misjudgment and the unforeseen
consequences of strategic decisions. In Reinforcement Learning (RL), the stakes, while not mortal,
are still significant as agents navigate complex environments to optimize their actions.

This paper delves into the problem of policy evaluation, a fundamental problem in RL [23] of which
the goal is to estimate the expected total rewards of a given policy. This process serves as an integral
component in various RL methodologies, such as policy iteration and policy gradient approaches [24],
wherein the current policy undergoes evaluation followed by potential updates. Policy evaluation
is also paramount in scenarios where prior to deploying a trained policy, thorough evaluation is
imperative to ensure its safety and efficacy.

Broadly speaking there exist two scenarios where the problem of policy evaluation has been consid-
ered, known as online and offline data regimes. In online scenarios, a learner is interacting sequentially
with the environment and is tasked with using its online deployments to collect helpful data for policy
evaluation. The simplest method for online policy evaluation is Monte-Carlo estimation [11]. One
can collect multiple trajectories by following the target policy, and use the empirical mean of the
rewards as the estimator. These on-policy methods typically require executing the policy we want to
estimate which may be unpractical or dangerous in many cases. For example, in a medical treatment
scenario, implementing an untrustworthy policy can cause unfortunate consequences [25]. In these

∗Joint senior-authorship

Preprint. Under review.



cases, offline policy evaluation may be preferable. In the offline case, the learner has access to a batch
of data and is tasked with using it in the best way possible to estimate the value of a target policy.
Many works focus on this problem leveraging various techniques, such as importance-sampling,
model-based estimation, and doubly-robust estimators [16, 18, 27, 29, 30].

Motivated by applications where one has multiple policies to evaluate, e.g., multiple policies trained
using different hyperparameters, Dann et al. [5] considered multiple-policy evaluation which aims
to estimate the performance of a set of K target policies instead of a single one. At first glance,
multiple-policy evaluation does not pose challenges beyond single-policy evaluation since one can
always use K instances of single-policy evaluation to evaluate the K policies. However, since
the sample complexity of this procedure scales linearly as a function of K this can be extremely
sample-inefficient as it neglects potential similarities among the K target policies.

Dann et al. [5] proposed an on-policy algorithm that leverages the similarity among target policies
based on an idea related to trajectory synthesis [26]. The basic technique is that if more than one
policy take the same action at a certain state, then only one sample is needed at that state which can
be reused to synthesize trajectories for these policies. Their algorithm achieves an instance-dependent
sample complexity which gives much better results when target policies have many overlaps.

In the context of single off-policy evaluation, the theoretical guarantees depend on the overlap
between the offline data distribution and the visitations of the evaluated policy [8, 27, 29]. These
coverage conditions, which ensure that the data logging distribution [28] adequately covers the state
space, are typically captured by the ratio between the densities corresponding to the offline data
distribution and the policy to evaluate, also known as importance ratios.

A single offline dataset can be used to evaluate multiple policies simultaneously. The policy evaluation
guarantees will be different for each of the policies in the set, depending on how much overlap the
offline distribution has with the policy visitation distributions. These observations inform an approach
to the multiple policy evaluation problem different from [5] that can also leverage the policy visitation
overlap in a meaningful way. Our algorithm is based on the idea of designing a behavior distribution
with enough coverage of the target policy set. Once this distribution is computed, i.i.d. samples from
the behavior distribution can be used to estimate the value of the target policies using ideas inspired
in the offline policy optimization literature. Our algorithms consist of two phases:

1. Build coarse estimators of the policy visitation distributions and use them to compute a
mixture policy that achieves a low visitation ratio with respect to all K policies to evaluate.

2. Sample from this approximately optimal mixture policy and use these to construct mean
reward estimators for all K policies.

Coarse estimation of the visitation distributions up to constant multiplicative accuracy can be achieved
at a cost that scales linearly, instead of quadratically with the inverse of the accuracy parameter (see
Section 4.1) and polynomially in parameters such as the size of the state and action spaces, and the
logarithm of the cardinality of the policy evaluation set. We propose the MARCH or Multi-policy
Approximation via Ratio-based Coarse Handling algorithm (see Algorithm 3) for coarse estimation of
the visitation distributions. Estimating the policy visitation distributions up to multiplicative accuracy
is enough to find an approximately optimal behavior distribution that minimizes the maximum
visitation ratio among all policies to estimate (see Section 4.2). The samples generated from this
behavior distribution are used to estimate the target policy values via importance weighting. Since the
importance weights are not known to sufficient accuracy, we propose the IDES or Importance Density
EStimation algorithm (see Algorithm 1) for estimating these distribution ratios by minimizing a series
of loss functions inspired by the DualDICE [21] method (see Section 4.3). Combining these steps
we arrive at our main algorithm (CAESAR ) or Coarse and Adaptive EStimation with Approximate
Reweighing algorithm (see Algorithm 2) that achieves a high probability finite sample complexity for
the problem of multi-policy evaluation.

2 Related Work

There is a rich family of off-policy estimators for policy evaluation [4, 10, 15, 16, 19]. But none of
them is effective in our setting. Importance-sampling is a simple and popular method for off-policy
evaluation but suffers exponential variance in the horizon [19]. Marginalized importance-sampling
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has been proposed to get rid of the exponential variance. However, existing works all focus on
function approximations which only produce approximately correct estimators [4] or are designed for
the infinite-horizon case [10]. The doubly robust estimator [9, 13, 16] also solves the exponential
variance problem, but no finite sample result is available. Our algorithm is based on marginalized
importance-sampling and addresses the above limitations in the sense that it provides non-asymptotic
sample complexity results and works for finite-horizon Markov Decision Processes (MDPs).

Another popular estimator is called model-based estimator, which evaluates the policy by estimating
the transition function of the environment [6, 31]. Yin and Wang [29] provide a similar sample
complexity to our results. However, there are some significant differences between their result and
ours. First, our sampling distribution; calculated based on the coarse distribution estimator, is optimal.
Second, our sample complexity is non-asymptotic while their result is asymptotic. Third, the true
distributions appearing in our sample complexity can be replaced by known distribution estimators
without inducing additional costs, that is, we can provide a known sample complexity while their
result is always unknown since we do not know the true visitation distributions of target policies.

The work that most aligns with ours is [5], which proposed an on-policy algorithm based on the idea
of trajectory synthesis. The authors propose the first instance-dependent sample complexity analysis
of the multiple-policy evaluation problem. Different from their work, our algorithm uses off-policy
evaluation based on importance-weighting and achieves a better sample complexity with simpler
techniques and analysis.

In concurrent work, Amortila et al. [2] propose an exploration objective for downstream reward
maximization, similar to our goal of computing an optimal sampling distribution. However, our
approximate objective, based on coarse estimation is easier to solve, which is a significant contribution
while they need layer-by-layer induction. They also introduced a loss function to estimate ratios,
similar to how we estimate the importance densities. However, our ratios are defined differently from
theirs which require distinct techniques.

Our algorithm also uses some techniques modified from other works which we summarize here.
DualDICE is a technique for estimating distribution ratios by minimizing some loss functions
proposed by [21]. We build on this idea and make some modifications to meet the need in our
setting. Besides, we utilize stochastic gradient descent algorithms and their convergence rate for
strongly-convex and smooth functions from the optimization literature [14]. Finally, we adopt the
Median of Means estimator [20] to convert in-expectation results to high-probability results.

3 Preliminaries

Notations We denote the set {1, 2, . . . , N} by [N ]. {Xn}Nn=1 represents the set {X1, X2, . . . , XN}.
Eπ denotes the expectation over the trajectories induced by policy π. Õ hides constants, logarithmic
and lower-order terms. We use V[X] to represent the variance of random variable X . Πdet is the set
of all deterministic policies and conv(X ) represents the convex hull of the set X .

Reinforcement learning framework We consider episodic tabular Markov Decision Processes
(MDPs) defined by a tuple {S,A, H, {Ph}Hh=1, {rh}Hh=1, ν}, where S and A represent the state
and action spaces, respectively, with S and A denoting the respective cardinality of these sets. H
is the horizon which defines the number of steps the agent can take before the end of an episode.
Ph(·|s, a) ∈ ∆S is the transition function which represents the probability of transitioning to the
next state if the agent takes action a at state s. And rh(s, a) is the reward function, accounting for the
reward the agent can collect by taking action a at state s. In this work, we assume that the reward is
deterministic and bounded rh(s, a) ∈ [0, 1], which is consistent with prior work [5]. We denote the
initial state distribution by ν ∈ ∆S.

A policy π = {πh}Hh=1 is a mapping from the state space to the probability distribution space over
the action space. πh(a|s) denotes the probability of taking action a at state s and step h. The value
function V π

h (s) of a policy π is the expected total reward the agent can receive by starting from step
h, state s, and following the policy π, i.e., V π

h (s) = Eπ[
∑H

l=h rl|s]. The performance J(π) of a
policy π is defined as the expected total reward the agent can obtain. By the definition of the value
function, we have J(π) = V π

1 (s|s ∼ ν). For simplicity, in the following context, we use V π
1 to

denote V π
1 (s|s ∼ ν).
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The state visitation distribution dπh(s) of a policy π represents the probability of reaching state s
at step h if the agent starts from a state sampled from the initial state distribution ν at step l = 1
and follows policy π subsequently, i.e., dπh(s) = P[sh = s|s1 ∼ ν, π]. Similarly, the state-action
visitation distribution dπh(s, a) is defined as dπh(s, a) = dπh(s)π(a|s). Based on the definition of
the visitation distribution, the performance of policy π can also be expressed as J(π) = V π

1 =∑H
h=1

∑
s,a d

π
h(s, a)rh(s, a).

Multiple-policy evaluation problem setup In multiple-policy evaluation, we are given a set of
known policies {πk}Kk=1 and a pair of factors {ϵ, δ}. The objective is to evaluate the performance of
these given policies such that with probability at least 1− δ, ∀π ∈ {πk}Kk=1, |V̂ π

1 − V π
1 | ≤ ϵ, where

V̂ π
1 is the performance estimator.

Dann et al. [5] proposed an algorithm based on the idea of trajectory stitching and achieved an
instance-dependent sample complexity,

Õ

H2

ϵ2
E

 ∑
(s,a)∈K1:H

1

dmax(s)

+
SH2K

ϵ

 , (1)

where dmax(s) = maxk∈[K] d
πk

(s) and Kh ⊆ S ×A keeps track of which state-action pairs at step
h are visited by target policies in their trajectories.

Another way to reuse samples for evaluating different policies is to estimate the model. Based on
the model-based estimator proposed by Yin and Wang [29], an asymptotic convergence rate can be
derived, √

H

n
·

√√√√ H∑
h=1

Eπk

[
dπk(sh, ah)

µ(sh, ah)

]
+ o

(
1√
n

)
, (2)

where µ is the distribution of the offline dataset and n is the number of trajectories in this dataset.
Though, it looks similar to our results, we have claimed in the Section 2 that there are significant
differences.

3.1 Contributions

Our main contribution is to propose an algorithm named CAESAR for multiple-policy evalua-
tion using two phases. In the first phase, we coarsely estimate the visitation distributions of
all deterministic policies at the cost of a lower-order sample complexity. In the second phase,
with the coarse distribution estimators, we can solve a convex optimization problem to build an
approximately optimal sampling distribution µ̃∗ with which we estimate the performance of tar-
get policies using marginal importance weighting. Using CAESAR , a number of trajectories

n = Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
, and probability at least 1− δ, we can evaluate the

performance of all target policies up to an ϵ error. CAESAR is consistently better than the naive
uniform sampling strategy over target policies as described in (2). CAESAR also improves upon the
result (1) by Dann et al. [5] in some cases where their results have a dependency on K while ours do
not (see Section 5).

In addition to our main contribution, we propose two sub-algorithms that are of independent interest.
First, we propose MARCH which achieves coarse estimation of all deterministic policies with sample
complexity Õ(poly(H,S,A)

ϵ ), even though the number of all deterministic policies is exponential.
Second, we propose IDES to accurately estimate the marginal importance ratio by minimizing a
carefully designed step-wise loss function using stochastic gradient descent, which is modified from
the idea of DualDICE [21]. Besides, we also utilize a Median-of-Means estimator [20] to convert the
in-expectation result to a high-probability result.

4 Main Results and Algorithm

In this section, we introduce CAESAR which is sketched out in Algorithm 2 and present the main
results. Different from on-policy evaluation, we build a single sampling distribution with which we
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can estimate the performance of all target policies using importance weighting. To that end, we first
coarsely estimate the visitation distributions of all deterministic policies at the cost of a lower-order
sample complexity. Based on these coarse distribution estimators, we can build an optimal sampling
distribution by solving a convex optimization problem. Finally, we utilize the idea of DualDICE [21]
with some modifications to estimate the importance-weighting ratio. In the following sections, we
explain the steps of CAESAR in detail.

4.1 Coarse estimation of visitation distributions

We first introduce a proposition that shows how we can coarsely estimate the visitation distributions
of target policies with lower-order sample complexity Õ( 1ϵ ). Although this estimator is coarse
and cannot be used to directly evaluate the performance of policies, which is our ultimate goal, it
possesses nice properties that enable us to construct the optimal sampling distribution and estimate
the importance weighting ratio in the following sections.

The idea behind the feasibility of computing these estimators is based on the following lemma which
shows that estimating the mean value of a Bernoulli random variable up to constant multiplicative
accuracy only requires Õ( 1ϵ ) samples.

Lemma 4.1. Let Zℓ be i.i.d. samples Zℓ
i.i.d.∼ Ber(p). Setting t ≥ C log(C/ϵδ)

ϵ , for some known
constant C > 0, it follows that with probability at least 1 − δ, the empirical mean estimator
p̂t =

1
t

∑t
ℓ=1 Zℓ satisfies, |p̂t − p| ≤ max{ϵ, p

4}.

Lemma 4.1 can be used to derive coarse estimators d̂π
k

= {d̂πk

h }Hh=1 with constant multiplicative
accuracy with respect to the true visitation probabilities dπ

k

= {dπk

h }Hh=1.

Proposition 4.2. With number of trajectories n ≥ CK log(CK/ϵδ)
ϵ = Õ( 1ϵ ), we can estimate d̂π

k

=

{d̂πk

h }Hh=1 such that with probability at least 1−δ, |d̂πk

h (s, a)−dπ
k

h (s, a)| ≤ max{ϵ, dπk

h (s,a)
4 }, ∀s ∈

S, a ∈ A, h ∈ [H], k ∈ [K].

Proposition 4.2 works by running each policy independently and applying Lemma 4.1. However, this
would induce an exponential dependency on S,A, if for example we aim to coarsely estimate all de-
terministic policies. To fix this we propose an algorithm named MARCH (see Appendix B) that lever-
ages the overlapping visitations of the policy set. Through a novel analysis, we show that MARCH

achieves coarse estimation of all deterministic policies with sample complexity Õ(poly(H,S,A)
ϵ ).

We next show that based on these coarse visitation estimators, we can ignore those states and actions
with low estimated visitation probability without inducing significant errors.

Lemma 4.3. Suppose we have an estimator d̂(s, a) of d(s, a) such that |d̂(s, a) − d(s, a)| ≤
max{ϵ′, d(s,a)

4 }. If d̂(s, a) ≥ 5ϵ′, then max{ϵ′, d(s,a)
4 } = d(s,a)

4 , and if d̂(s, a) ≤ 5ϵ′, then
d(s, a) ≤ 7ϵ′.

Based on Lemma 4.3, we can ignore the state-action pairs satisfying d̂(s, a) ≤ 5ϵ′. Since if we
replace ϵ′ by ϵ

14SA , the error of performance estimation induced by ignoring these state-action pair is
at most ϵ

2 . For simplicity of presentation, we can set d̂π(s, a) = dπ(s, a) = 0 if d̂π(s, a) < 5ϵ
14SA .

Hence, we have that,

|d̂π
k

h (s, a)− dπ
k

h (s, a)| ≤ dπ
k

h (s, a)

4
, ∀s ∈ S, a ∈ A, h ∈ [H], k ∈ [K]. (3)

4.2 Optimal sampling distribution

We evaluate the expected total rewards of target policies by importance weighting, using sam-
ples {si1, ai1, si2, ai2, . . . , siH , aiH}ni=1 drawn from a sampling distribution {µh}Hh=1. Specifically,

V̂ πk

1 = 1
n

∑n
i=1

∑H
h=1

dπk

h (sih,a
i
h)

µh(sih,a
i
h)

rh(s
i
h, a

i
h), k ∈ [K]. To minimize the variance of our estimator

(see Appendix A.2), we find the optimal sampling distribution by solving the following convex
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Algorithm 1 Importance Density Estimation (IDES )

Input: Horizon H , accuracy ϵ, target policy π, coarse estimator {d̂πh}Hh=1 , {µ̂h}Hh=1 and feasible
sets {Dh}Hh=1 where Dh(s, a) = [0, 2d̂πh(s, a)].
Initialize w0

h = 0, h = 1, . . . ,H , and set µ0(s0, a0) = 1, P0(s|s0, a0) = ν(s), ŵ0 = µ̂0 = 1.
for h = 1 to H do

Set the iteration number of optimization, nh = Ch

(
H4

ϵ2

∑
s,a

(d̂π
h(s,a))

2

µ̂h(s,a)
+

(d̂π
h−1(s,a))

2

µ̂h−1(s,a)

)
, where

Ch is a known constant.
for i = 1 to nh do

Sample {sih, aih} from µh and {sih−1, a
i
h−1, s

i′

h} from µh−1.
Calculate gradient g(wi−1

h ),

g(wi−1
h )(s, a) =

wi−1
h (s, a)

µ̂h(s, a)
I(sih = s, aih = a)−

ŵh−1(s
i
h−1, a

i
h−1)

µ̂h−1(sih−1, a
i
h−1)

π(a|s)I(si
′

h = s).

Update wi
h = Projw∈Dh

{wi−1
h − ηihg(w

i−1
h )}.

end for
Output the estimator ŵh = 1∑nh

i=1 i

∑nh

i=1 w
i
h.

end for

optimization problem,

µ∗
h = argmin

µ
max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ(s, a)
, h ∈ [H]. (4)

However, in some cases, the optimal µ∗ may not be realized by any policy (see Appendix A.3).
Therefore, to facilitate the construction of the sampling distribution µ∗, we constrain µh to lie within
the convex hull of D = {dπh : π ∈ Πdet} which formulates the constrained optimization problem,

µ∗
h = argmin

µ∈conv(D)

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ(s, a)
, h ∈ [H]. (5)

We denote the optimal solution to (5) as µ∗
h =

∑
π∈Πdet

α∗
πd

π
h. Since dπ

k

h is unknown, we can only
solve the approximate optimization problem,

µ̂∗
h = argmin

µ∈conv(D̂)

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ(s, a)
, h ∈ [H], (6)

where D̂ = {d̂πh : π ∈ Πdet}. We denote the optimal solution to (6) by µ̂∗
h =

∑
π∈Πdet

α̂∗
πd̂

π
h.

Correspondingly, our real sampling distribution would be µ̃∗
h =

∑
π∈Πdet

α̂∗
πd

π
h.

The next lemma tells us that the optimal sampling distribution also has the same property as the
coarse distribution estimators.

Lemma 4.4. If property (3) holds: |d̂πk

h (s, a)−dπ
k

h (s, a)| ≤ dπk

h (s,a)
4 , ∀s ∈ S, a ∈ A, h ∈ [H], k ∈

[K], then |µ̃∗
h(s, a)− µ̂∗

h(s, a)| ≤
µ̃∗
h(s,a)
4 .

4.3 Estimation of the importance density

In this section, we introduce the IDES algorithm for estimating the importance weighting ratios
which is sketched out in Algorithm 1. IDES is based on the idea of DualDICE [21]. In DualDICE,
they propose the following loss function

ℓπ(w) =
1

2
Es,a∼µ

[
w2(s, a)

]
− Es,a∼dπ [w(s, a)] . (7)

The minimum of ℓπ(·) is achieved at wπ,∗(s, a) = dπ(s,a)
µ(s,a) , the importance weighting ratio. In [21]

they tackle the on-policy limitation of the second term in (7) by transforming the variable based on
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Bellman’s equation. However, their method only works for infinite horizon MDPs and it becomes
unclear how to optimize the loss function after the variable change. We propose a new step-wise loss
function which works for finite horizon MDPs. More importantly, the loss function is strongly-convex
and smooth, enabling optimization through stochastic gradient descent and yielding non-asymptotic
sample complexity results.

More precisely, we define the step-wise loss function of policy π at each step h as,

ℓπh(w) =
1

2
Es,a∼µ̃h

[
w2(s, a)

µ̂h(s, a)

]
− Es′,a′∼µ̃h−1,s∼Ph−1(·|s′,a′)

[∑
a

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)
w(s, a)π(a|s)

]
where µ̃h =

∑
π∈Πdet

α̂∗
πd

π
h is the sampling distribution, and µ̂h =

∑
π∈Πdet

α̂∗
πd̂

π
h is the optimal

solution to the approximate optimization problem (6), and we set µ̃0(s0, a0) = 1, P0(s|s0, a0) =
ν(s), ŵ0 = µ̂0 = 1 for notational simplicity.

This loss function possesses two nice properties. First, it is γ-strongly convex and ξ-smooth where
γ = mins,a

µ̃h(s,a)
µ̂h(s,a)

, ξ = maxs,a
µ̃h(s,a)
µ̂h(s,a)

. Based on the property of our coarse distribution estimator,

i.e., 4
5 ≤ µ̃h(s,a)

µ̂h(s,a)
≤ 4

3 , which is a trivial corollary from Lemma 4.4, γ and ξ are bounded as well as

their ratio, i.e. ξ
γ ≤ 5

3 . This property actually plays an important role in deriving the final sample
complexity, which we discuss in Appendix A.5.

In the following lemma, we show that our step-wise loss function has friendly step-to-step error
propagation properties.
Lemma 4.5. Suppose we have an estimator ŵh−1 at step h− 1 such that,∑

s,a

∣∣∣∣µ̃h−1(s, a)
ŵh−1(s, a)

µ̂h−1(s, a)
− dπh−1(s, a)

∣∣∣∣ ≤ ϵ,

then by minimizing the loss function ℓπh(w) at step h to ∥∇ℓπh(ŵh(s, a))∥1 ≤ ϵ, we have,∑
s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣ ≤ 2ϵ.

Lemma 4.5 indicates that using the distribution ratio estimator from the previous step allows us to
estimate the ratio at the current step, introducing only an additive error. Consequently, by optimizing
step-by-step, we can achieve an accurate estimation of the distribution ratios at all steps, as formalized
in the following lemma.

Lemma 4.6. Implementing Algorithm 1, we have the importance density estimator ŵh(s,a)
µ̂h(s,a)

such that,

E

[∑
s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπ

k

h (s, a)

∣∣∣∣
]
≤ ϵ

4H
, h ∈ [H]. (8)

4.4 Main results

We are now ready to present our main sample complexity result for multiple-policy evaluation,
building on the results from previous sections. First, we introduce a Median-of-Means (MoM)
estimator [20], formalized in the following lemma, and a data splitting technique that together can be
used to convert (8) into a high-probability result (see Appendix A.7).
Lemma 4.7. Let µ ∈ R and suppose we have a stochastic estimator µ̂ such that E[|µ̂ − µ|] ≤ ϵ

4 .
Then, if we generate N = O (log(1/δ)) i.i.d. estimators {µ̂1, µ̂2, . . . , µ̂N} and choose µ̂MoM =
Median(µ̂1, µ̂2, . . . , µ̂N ), we have with probability at least 1− δ,

|µ̂MoM − µ| ≤ ϵ.

With the importance density estimator ŵh(s,a)
µ̂h(s,a)

, we can estimate the performance of policy πk,

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

ŵπk

h (sih, a
i
h)

µ̂h(sih, a
i
h)

rh(s
i
h, a

i
h). (9)
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Algorithm 2 Coarse and Adaptive EStimation with Approximate Reweighing for Multi-Policy
Evaluation (CAESAR )

Input: Accuracy ϵ, confidence δ, target policies {πk}Kk=1.
Coarsely estimate visitation distributions of all deterministic policies and get {d̂π : π ∈ Πdet}.
Solve the approximate optimization problem (6) and obtain {α̂∗

π : π ∈ Πdet}.
Implement Algorithm 1 with data splitting and obtain MoM estimators {ŵπk}Kk=1.
Build the final performance estimator {V̂ πk

1 }Kk=1 by (9).
Output: {V̂ πk

1 }Kk=1.

where {sih, aih}ni=1 is sampled from µ̃h.

We present our main result in the following theorem and leave its detailed derivation to Appendix A.7.

Theorem 4.8. Implement Algorithm 2. Then, with probability at least 1− δ, for all target policies,
we have that |V̂ πk

1 − V πk

1 | ≤ ϵ. And the total number of trajectories sampled is,

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
. (10)

Besides, the unknown true visitation distributions can be replaced by the coarse estimator to provide
a concrete sample complexity.

5 Discussion

In this section, we analyze our sample complexity, comparing it with existing results and offering
several noteworthy findings.

5.1 Lower bound and some special cases

For off-policy evaluation, the CR-lower bound proposed by [16] (Theorem 3) demonstrates that
there exists an MDP such that the variance of any unbiased estimator is lower bounded by∑H

h=1 Eµ

[(
dπ
h(sh,ah)

µh(sh,ah)

)2
V[V π

h (sh)]

]
, where π is the policy to evaluate and µ is the sampling dis-

tribution. Applying this result to multiple-policy evaluation problem gives us the lower bound

minµ maxk∈[K]

∑H
h=1 Eµ

[(
dπk

h (sh,ah)
µh(sh,ah)

)2

V[V πk

h (sh)]

]
. From the variance-unaware perspective,

where the variance of the value function is simply bounded by H2, our sample complexity matches
this lower bound since our sampling distribution is optimal (up to the dependency on H). We believe
that a more refined variance-dependent result is achievable and leave it to future works.

Next, we analyse our sample complexity based on some special cases which offers us some interesting
results. First, in the scenario where all target policies are identical, i.e. dπ

1

= dπ
2

= · · · = dπ
K

= d.
The optimal sampling distribution is µ∗ = d, hence, our sample complexity becomes Õ(H

5

ϵ2 ) which
has no dependency on S or A.

We can derive an instance-independent sample complexity based on our results. Let the sampling
distribution µ′

h be 1
SA

∑
s,a d

πs,a

h , where πs,a = argmaxk∈[K] d
πk

h (s, a). Since µ∗
h is the optimal

solution and µ′
h is a feasible solution, we have our sample complexity (10) is bounded by Õ

(
H5SA

ϵ2

)
.

5.2 Comparison with existing results

First, compared to the naive uniform sampling strategy over target policies as described in (2), our
method has a clear advantage. Our sampling distribution is optimal among all possible combinations
of the target policies, including the naive uniform strategy.
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Next, we compare our result with the one achieved by Dann et al. [5] as described in (1). A significant
issue with the result by Dann et al. [5] is the presence of the unfavorable 1

dmax(s) , which can induce
an undesirable dependency on K.

To illustrate this, consider an example of an MDP with two layers: a single initial state s1,1 in the first
layer and two terminal states in the second layer s2,1, s2,2. The transition function is the same for all
actions, i.e., P (s2,1|s1,1, a) = p and p is sufficiently small. Agents only receive rewards at state s2,1,
regardless of the actions they take. Hence, to evaluate the performance of a policy under this MDP, it
is sufficient to consider only the second layer. Now, suppose we have K target policies to evaluate,
where each policy takes different actions at state s1,1 but the same action at any state in the second
layer. Since the transition function at state s1,1 is the same for any action, the visitation distribution
at state s2,1 of all target policies is identical. Given that p is sufficiently small, the probability of
reaching s2,1 is P[s2,1 ∈ K2] = 1− (1− p)K ≈ pK. According to the result (1) by Dann et al. [5],
the sample complexity in this scenario depends on K. In contrast, our result demonstrates sample
complexity without dependency on K. However, it remains unclear whether our result is universally
better in all cases (omit the dependency on H).

5.3 Near-optimal policy identification

Besides policy evaluation, CAESAR can also be applied to identify a near-optimal policy. Fixing the
high-probability factor, we denote the sample complexity of CAESAR by Õ(Θ(Π)

γ2 ), where Π is the
set of policies to be evaluated and γ is the estimation error. We provide a simple algorithm based on
CAESAR in Appendix D that achieves an instance-dependent sample complexity Õ(maxγ≥ϵ

Θ(Πγ)
γ2 )

to identify a ϵ−optimal policy, where Πγ = {π : V ∗
1 − V π

1 ≤ 8γ}. This result is interesting as
it offers a different perspective beyond the existing gap-dependent results [7, 22]. Furthermore,
this result can be easily extended to the multi-reward setting. We leave the detailed discussion to
Appendix D.

6 Conclusion and Future Work

In this work, we consider the problem of multi-policy evaluation. We propose an algorithm, CAESAR
, based on computing an approximate optimal offline sampling distribution and using the data
sampled from it to perform the simultaneous estimation of the policy values. CAESAR uses

n = Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
trajectories and with probability at least 1 − δ

we can evaluate the performance of all target policies up to an ϵ error. The algorithm consists of
three techniques. First, we obtain a coarse distribution estimator at the cost of lower-order sample
complexity. Second, based on the coarse distribution estimator, we show an achievable optimal
sampling distribution by solving a convex optimization problem. Last, we propose a novel step-wise
loss function for finite-horizon MDPs. By minimizing the loss function step to step, we are able to
get the importance weighting ratio and a non-asymptotic sample complexity is available due to the
smoothness and strong-convexity of the loss function.

Beyond the results of this work, there are still some open questions of interest. First, our sample
complexity has a dependency on H4 which is induced by the error propagation in the estimation of
the importance weighting ratios. Specifically, the error of minimizing the loss function at early steps,
e.g., h = 1 will propagate to later steps e.g., h = H . We conjecture a dependency on H2 is possible
by considering a comprehensive loss function which includes the entire horizon instead of step-wise
loss functions which require step by step optimization. Second, as discussed before, we believe that a
variance-aware sample complexity is possible through a more careful analysis. Besides, considering
a reward-dependent sample complexity is also an interesting direction. For example, in an MDP
with sparse rewards where only one state-action has non-zero reward; a better sample complexity
than CAESAR ’s may be possible by focusing on state-action pairs with non-zero rewards. Finally,
we are interested to see what other uses the research community may find for coarse distribution
estimation. In our work, the coarse distribution estimator plays an important role throughout the
algorithm. We believe this type of estimator can be of independent interest.
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A Proof of theorems and lemmas in Section 4

A.1 Proof of Lemma 4.1

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s
inequality [12], as stated in e.g., [1, 3].
Lemma A.1 (Simplified Freedman’s inequality). Let X1, ..., XT be a bounded martingale difference
sequence with |Xℓ| ≤ R. For any δ′ ∈ (0, 1), and η ∈ (0, 1/R), with probability at least 1− δ′,

T∑
ℓ=1

Xℓ ≤ η

T∑
ℓ=1

Eℓ[X
2
ℓ ] +

log(1/δ′)

η
. (11)

where Eℓ[·] is the conditional expectation2 induced by conditioning on X1, · · · , Xℓ−1.
Lemma A.2 (Anytime Freedman). Let {Xt}∞t=1 be a bounded martingale difference sequence with
|Xt| ≤ R for all t ∈ N. For any δ′ ∈ (0, 1), and η ∈ (0, 1/R), there exists a universal constant
C > 0 such that for all t ∈ N simultaneously with probability at least 1− δ′,

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ[X
2
ℓ ] +

C log(t/δ′)

η
. (12)

where Eℓ[·] is the conditional expectation induced by conditioning on X1, · · · , Xℓ−1.

Proof. This result follows from Lemma A.1. Fix a time-index t and define δt =
δ′

12t2 . Lemma A.1
implies that with probability at least 1− δt,

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

log(1/δt)

η
.

A union bound implies that with probability at least 1−
∑t

ℓ=1 δt ≥ 1− δ′,
t∑

ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

log(12t2/δ′)

η

(i)

≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

C log(t/δ′)

η
.

holds for all t ∈ N. Inequality (i) holds because log(12t2/δ′) = O (log(tδ′)).

Proposition A.3. Let δ′ ∈ (0, 1), β ∈ (0, 1] and Z1, · · · , ZT be an adapted sequence satisfying
0 ≤ Zℓ ≤ B̃ for all ℓ ∈ N. There is a universal constant C ′ > 0 such that,

(1− β)

T∑
t=1

Et[Zt]−
2B̃C ′ log(T/δ′)

β
≤

T∑
ℓ=1

Zℓ ≤ (1 + β)

T∑
t=1

Et[Zt] +
2B̃C ′ log(T/δ′)

β

with probability at least 1− 2δ′ simultaneously for all T ∈ N.

Proof. Consider the martingale difference sequence Xt = Zt −Et[Zt]. Notice that |Xt| ≤ B̃. Using
the inequality of Lemma A.2 we obtain that for all η ∈ (0, 1/B2)

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ[X
2
ℓ ] +

C log(t/δ′)

η

(i)

≤ 2ηB2
t∑

ℓ=1

Eℓ[Zℓ] +
C log(t/δ′)

η
,

2We will use this notation to denote conditional expectations throughout this work.
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for all t ∈ N with probability at least 1− δ′. Inequality (i) holds because Et[X
2
t ] ≤ B2E[|Xt|] ≤

2B2Et[Zt] for all t ∈ N. Setting η = β
2B2 and substituting

∑t
ℓ=1 Xℓ =

∑t
ℓ=1 Zℓ − Eℓ[Zℓ],

t∑
ℓ=1

Zℓ ≤ (1 + β)

t∑
ℓ=1

Eℓ[Zℓ] +
2B2C log(t/δ′)

β
(13)

with probability at least 1− δ′. Now consider the martingale difference sequence X ′
t = E[Zt]− Zt

and notice that |X ′
t| ≤ B2. Using the inequality of Lemma A.2 we obtain for all η ∈ (0, 1/B2),

t∑
ℓ=1

X ′
ℓ ≤ η

t∑
ℓ=1

Eℓ[(X
′
ℓ)

2] +
C log(t/δ′)

η

≤ 2ηB2
t∑

ℓ=1

Eℓ[Zℓ] +
C log(t/δ′)

η
.

Setting η = β
2B2 and substituting

∑t
ℓ=1 X

′
ℓ =

∑t
ℓ=1 E[Zℓ]− Zℓ we have,

(1− β)

t∑
ℓ=1

E[Zℓ] ≤
t∑

ℓ=1

Zℓ +
2B2C log(t/δ′)

β
(14)

with probability at least 1− δ′. Combining Equations 13 and 14 and using a union bound yields the
desired result.

Let the Zℓ be i.i.d. samples Zℓ
i.i.d.∼ Ber(p). The empirical mean estimator, p̂t = 1

t

∑t
ℓ=1 Zℓ satisfies,

(1− β)p− 2C ′ log(t/δ′)

βt
≤ p̂t ≤ (1 + β)p+

2C ′ log(t/δ′)

βt

with probability at least 1− 2δ′ for all t ∈ N where C ′ > 0 is a (known) universal constant. Given
ϵ > 0 set t ≥ 8C′ log(t/δ′)

βϵ (notice the dependence of t on the RHS - this can be achieved by setting

t ≥ C log(C/βϵδ′)
βϵ for some (known) universal constant C > 0).

In this case observe that,

(1− β)p− ϵ/8 ≤ p̂t ≤ (1 + β)p+ ϵ/8.

Setting β = 1/8,
7p/8− ϵ/8 ≤ p̂t ≤ 9p/8 + ϵ/8,

so that,
p− p̂t ≤ p/8 + ϵ/8,

and
p̂t − p ≤ p/8 + ϵ/8,

which implies |p̂t − p| ≤ p/8 + ϵ/8 ≤ 2max(p/8, ϵ/8) = max(p/4, ϵ/4).

A.2 Derivation of the optimal sampling distribution (4)

Our performance estimator is,

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

dπ
k

h (sih, a
i
h)

µh(sih, a
i
h)

r(sih, a
i
h), k ∈ [K].
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Denote
∑H

h=1
dπk

h (sih,a
i
h)

µh(sih,a
i
h)

rh(s
i
h, a

i
h) by Xi. And for simplicity, denote E(s1,a1)∼µ1,...,(sH ,aH)∼µH

by
Eµ, the variance of our estimator is bounded by,

Eµ[X
2
i ] = Eµ

( H∑
h=1

dπ
k

h (sih, a
i
h)

µh(sih, a
i
h)

rh(s
i
h, a

i
h)

)2


≤ Eµ

H ·
H∑

h=1

(
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

rh(s
i
h, a

i
h)

)2


≤ Eµ

H ·
H∑

h=1

(
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

)2


= H ·
H∑

h=1

E
dπk

h

[
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

]
.

The first inequality holds by Cauchy − Schwarz inequality. The second inequality holds due to the
assumption rh(s, a) ∈ [0, 1].

Denote
∑H

h=1 Edπk

h

[
dπk

h (sih,a
i
h)

µh(sih,a
i
h)

]
by ρµ,k. Applying Bernstein’s inequality, we have that with

probability at least 1− δ and n samples, it holds,

|V̂ πk

1 − V πk

1 | ≤
√

2Hρµ,k log(1/δ)

n
+

2Mk log(1/δ)

3n
,

where Mk = maxs1,a1,...,sH ,aH

∑H
h=1

dπk

h (sh,ah)
µh(sh,ah)

rh(sh, ah).

To achieve an ϵ accuracy of evaluation, we need samples,

nµ,k ≤ 8Hρµ,k log(1/δ)

ϵ2
+

4Mk log(1/δ)

3ϵ
.

Take the union bound over all target policies,

nµ ≤
8Hmaxk∈[K] ρµ,k log(K/δ)

ϵ2
+

4M log(K/δ)

3ϵ
,

where M = maxk∈[K] Mk.

We define the optimal sampling distribution µ∗ as the one minimizing the higher order sample
complexity,

µ∗
h = argmin

µh

max
k∈[K]

E
dπk

h (s,a)

[
dπ

k

h (s, a)

µh(s, a)

]

= argmin
µh

max
k∈[K]

∑
s,a

(
dπ

k

h (s, a)
)2

µh(s, a)
, h = 1, . . . ,H.

A.3 An example of unrealizable optimal sampling distribution

Here, we give an example to illustrate the assertation that in some cases, the optimal sampling
distribution cannot be realized by any policy.

Consider such a MDP with two layers, in the first layer, there is a single initial state s1,1, in the second
layer, there are two states s2,1, s2,2. The transition function at state s1,1 is identical for any action,
P(s2,1|s1,1, a) = P(s2,2|s1,1, a) = 1

2 . Hence, for any policy, the only realizable state visitation
distribution at the second layer is d2(s2,1) = d2(s2,2) =

1
2 .

Suppose the target policies take K ≥ 2 different actions at state s2,1 while take the same action at
state s2,2.

14



By solving the optimization problem (4), we have the optimal sampling distribution at the second
layer,

µ∗
2(s2,1) =

K2

1 +K2
, µ∗

2(s2,2) =
1

1 +K2
,

which is clearly not realizable by any policy.

A.4 Proof of Lemma 4.5

Proof. The gradient of ℓπh(w) is,

∇w(s,a)ℓ
π
h(w) =

µ̃h(s, a)

µ̂h(s, a)
w(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)
.

Suppose by some SGD algorithm, we can converge to a point ŵh such that the gradient of the loss
function is less than ϵ,

∥∇ℓπh(ŵh)∥1 =
∑
s,a

∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣ ≤ ϵ.

By decomposing,∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)− dπh(s, a) + dπh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
≥
∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)− dπh(s, a)

∣∣∣∣−
∣∣∣∣∣∣dπh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
=

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣
−

∣∣∣∣∣∣
∑
s′,a′

P (s|s′, a′)π(a|s)
(
dπh−1(s

′, a′)− µ̃h−1(s
′, a′)

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)

)∣∣∣∣∣∣ .
Hence, we have,∑

s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣
≤ ϵ+

∑
s,a

∣∣∣∣∣∣
∑
s′,a′

P (s|s′, a′)π(a|s)
(
dπh−1(s

′, a′)− µ̃h−1(s
′, a′)

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)

)∣∣∣∣∣∣
≤ ϵ+

∑
s′,a′

∣∣∣∣dπh−1(s
′, a′)− µ̃h−1(s

′, a′)
ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣
≤ 2ϵ.

A.5 Proof of Lemma 4.6

Proof. The minimum w∗
h of the loss function ℓπh(w) is w∗

h(s, a) =
dπ
h(s,a)

µ̃h(s,a)
µ̂h(s, a) if ŵh−1 achieves

optimum. By the property of the coarse distribution estimator, we have,

w∗
h(s, a) =

dπh(s, a)

µ̃h(s, a)
µ̂h(s, a) ≤

4
3 d̂

π
h(s, a)

4
5 µ̂h(s, a)

µ̂h(s, a) =
5

3
d̂πh(s, a).
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We can define a feasible set for the optimization problem, i.e. wh(s, a) ∈ [0, Dh(s, a)], Dh(s, a) =

2d̂πh(s, a).

Next, we analyse the variance of the stochastic gradient. We denote the stochastic gradient as gh(w),
{si1, ai1, . . . , siH , aiH} a trajectory sampled from µ̃h and {sj1, a

j
1, . . . , s

j
H , ajH} a trajectory sampled

from µ̃h−1.

gh(w)(s, a) =
w(s, a)

µ̂h(s, a)
I(sih = s, aih = a)−

ŵh−1(s
j
h−1, a

j
h−1)

µ̂h−1(s
j
h−1, a

j
h−1)

π(a|s)I(sjh = s).

The variance bound becomes

V[gh(w)] ≤ E[∥gh(w)∥2] ≤
∑
s,a

µ̃h(s, a)

(
w(s, a)

µ̂h(s, a)

)2

+ µ̃h−1(s, a)

(
ŵh−1(s, a)

µ̂h−1(s, a)

)2

≤ O

(∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)
+

(d̂πh−1(s, a))
2

µ̂h−1(s, a)

)
, (15)

where the last inequality is due to the bounded feasible set for w and the property of coarse distribution
estimator µ̃h(s, a) ≤ 4

3 µ̂h(s, a).

Based on the error propagation lemma 4.5, if we can achieve ∥∇ℓπh(ŵh)∥1 ≤ ϵ
4H2 from step h = 1

to step h = H , then we have,∑
s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣ ≤ ϵ

4H
,∀h = 1, 2, . . . ,H,

which can enable us to build the final estimator of the performance of policy π with at most error ϵ.

By the property of smoothness, to achieve ∥∇ℓπh(ŵh)∥1 ≤ ϵ
4H2 , we need to achieve ℓπh(ŵh) −

ℓπh(w
∗
h) ≤ ϵ2

32ξH4 where ξ is the smoothness factor, because,

∥∇ℓπh(ŵh)∥21 ≤ 2ξ(ℓπh(ŵh)− ℓπh(w
∗
h)) ≤

ϵ2

16H4
.

Lemma A.4. For a λ−strongly convex loss function L(w) satisfying ∥w∗∥ ≤ D for some known D,
there exists a stochastic gradient descent algorithm that can output ŵ after T iterations such that,

E[L(ŵ)− L(w∗)] ≤ 2G2

λ(T + 1)
,

where G2 is the variance bound of the stochastic gradient.

Invoke the convergence rate for strongly-convex and smooth loss functions, i.e. Lemma A.4, we have
that the number of samples needed to achieve ℓπh(ŵh)− ℓπh(w

∗
h) ≤ ϵ2

32ξH4 is,

n = O

(
ξ

γ

H4G2

ϵ2

)
.

We have shown in Section 4.3 that ξ
γ ≤ 5

3 , this nice property helps us to get rid of the undesired

ratio of the smoothness factor and the strongly-convexity factor, i.e. maxs,a µ(s,a)
mins,a µ(s,a) of the original loss

function (7) which can be extremely bad. Replacing G2 by our variance bound (15), we have,

nπ
h = O

(
H4

ϵ2

(∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)
+

(d̂πh−1(s, a))
2

µ̂h−1(s, a)

))
.

For each step h, we need the above number of trajectories, sum over h, we have the total sample
complexity,

nπ = O

(
H4

ϵ2

H∑
h=1

∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)

)
.
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To evaluate K policies, we need trajectories,

n = O

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂h(s, a)

)
.

A.6 Proof of Lemma 4.7

Proof. By Markov’s inequality, we have,

P(|µ̂− µ| ≥ ϵ) ≤ E[|µ̂− µ|]
ϵ

≤ 1

4
.

The event that |µ̂MoM − µ| > ϵ belongs to the event where more than half estimators µ̂i are outside
of the desired range |µ̂i − µ| > ϵ, hence, we have,

P(|µ̂MoM − µ| > ϵ) ≤ P(
N∑
i=1

I(|µ̂i − µ| > ϵ) ≥ N

2
).

Denote I(|µ̂i − µ| > ϵ) by Zi and E[Zi] = p,

P(|µ̂MoM − µ| > ϵ) = P(
N∑
i=1

Zi ≥
N

2
)

= P(
1

N

N∑
i=1

(Zi − p) ≥ 1

2
− p)

≤ e−2N( 1
2−p)2

≤ e−
N
8 ,

where the first inequality holds by Hoeffding’s inequality and the second inequality holds due to
p ≤ 1

4 . Set δ = e−
N
8 , we have, with N = O(log(1/δ)), with probability at least 1 − δ, it holds

|µ̂MoM − µ| ≤ ϵ.

A.7 Proof of Theorem 4.8

Here, we explain how Theorem 4.8 is derived. We first show how the Median-of-Means (MoM)
estimator and data splitting technique can conveniently convert Lemma 4.6 to a version holds with
high probability.

For step h, Algorithm 1 can output a solution ŵh such that E[ℓπh(ŵh)− ℓπh(w
∗
h)] ≤ ϵ2

32ξH4 . We can
apply Lemma 4.7 on our algorithm which means that we can run the algorithm for N = O (log(1/δ))
times. Hence, we will get N solutions {ŵh,1, ŵh,2, . . . , ŵh,N}. Set ŵh,MoM as the solution such
that ℓπh(ŵh,MoM ) = Median(ℓπh(ŵh,1), ℓ

π
h(ŵh,2), . . . , ℓ

π
h(ŵh,N )). Based on Lemma 4.7, we have

that with probability at least 1− δ, it holds ℓπh(ŵh,MoM )− ℓπh(w
∗
h) ≤ ϵ2

32ξH4 . With a little abuse of
notation, we just denote ŵh,MoM by ŵh in the following content.

Now we are ready to estimate the total expected rewards of target policies, With the importance
weighting ratio estimator ŵh(s,a)

µ̂h(s,a)
from Algorithm 1, we can estimate the performance of policy πk,

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

ŵπk

h (sih, a
i
h)

µ̂h(sih, a
i
h)

rh(s
i
h, a

i
h), (16)

where {sih, aih}ni=1 is sampled from µ̃h.

Lemma A.5. With samples n = Õ

(
H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
, we have with proba-

bility at least 1− δ, |V̂ πk

1 − V πk

1 | ≤ ϵ
2 , k ∈ [K].

17



Proof. First, we can decompose the error |V̂ πk

1 − V πk

1 | = |V̂ πk

1 − E[V̂ πk

1 ] + E[V̂ πk

1 ] − V πk

1 | ≤
|V̂ πk

1 − E[V̂ πk

1 ]| + |E[V̂ πk

1 ] − V πk

1 |. Then, by Bernstein’s inequality, with samples n =

Õ

(
H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
, we have, |V̂ πk

1 − E[V̂ πk

1 ]| ≤ ϵ
4 . Based Lemma 4.6,

we have, |E[V̂ πk

1 ]− V πk

1 | ≤ ϵ
4 .

Remember that in Section 4.1, we ignore those states and actions with low estimated visitation
distribution for each target policy which induce at most ϵ

2 error. Combined with Lemma A.5, our
estimator V̂ πk

1 finally achieves that with probability at least 1− δ, |V̂ πk

1 − V πk

1 | ≤ ϵ, k ∈ [K].

And for sample complexity, in our algorithm, we need to sample data in three pro-
cedures. First, for the coarse estimation of the visitation distribution, we need
Õ( 1ϵ ) samples. Second, to estimate the importance-weighting ratio, we need samples

Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
. Last, to build the final performance estimator (9), we

need samples Õ
(

H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
. Therefore, the total trajectories needed,

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
.

Moreover, notice that,

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂h(s, a)
≤ max

k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ∗
h(s, a)

≤ 25

16

∑
s,a

(dπh(s, a))
2

µ∗
h(s, a)

, (17)

where µ∗
h is the optimal solution of the optimization problem (5), the first inequality holds due to µ̂h

is the minimum of the approximate optimization problem (6) and the second inequality holds due
to d̂πh(s, a) ≤ 5

4d
π
h(s, a). Based on (17), we can substitute the coarse distribution estimator in the

sample complexity bound by the exact one,

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
.
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B Lower order coarse estimation

Algorithm 3 Multi-policy Approximation via Ratio-based Coarse Handling (MARCH)
Input: Horizon H , accuracy ϵ, policy π.
Coarsely estimate d1 such that distβ(d̂1, d1) ≤ ϵ, where β = 1

H .
for h = 1 to H − 1 do

1. Coarsely estimate µh such that |µ̂h(s, a) − µh(s, a)| ≤ max{ϵ′, c · µh(s, a)}, where ϵ′ =
ϵ

2H2S2A2 and c = β
2 .

2. Sample {sih, aih, sih+1}ni=1 from µh.
3. Estimate dh+1(s, a) by d̂h+1(s, a) =

1
n

∑n
i=1 I(sih+1 = s)ŵh(s

i
h, a

i
h).

end for
Output: {d̂h}Hh=1.

In this section, we first provide our algorithm MARCH for coarse estimation of all the deterministic
policies and then conduct an analysis on its sample complexity.

MARCH is based on the algorithm EULER proposed by Zanette and Brunskill [31].

Lemma B.1 (Theorem 3.3 in Jin et al. [17]). Based on EULER, with sample complexity
Õ(poly(H,S,A)

ϵ ), we can construct a policy cover which generates a dataset with the distribution µ
such that, with probability 1− δ, if dmax

h (s) ≥ ϵ
SA , then,

µh(s, a) ≥
dmax
h (s, a)

2HSA
, (18)

where dmax
h (s) = maxπ d

π
h(s), d

max
h (s, a) = maxπ d

π
h(s, a).

With this dataset, we estimate the visitation distribution of deterministic policies by step-to-step
importance weighting,

d̂h+1(s, a) =
1

n

n∑
i=1

I(sih+1 = s)ŵh(s
i
h, a

i
h),

where {sih, aih, sih+1}ni=1 are sampled from µ and ŵh(s, a) =
d̂h(s,a)
µ̂h(s,a)

.

We state that MARCH can coarsely estimate the visitation distributions of all the deterministic
policies by just paying a lower-order sample complexity which is formalized in the following
theorem.

Theorem B.2. Implement Algorithm 3 with the number of trajectories n = Õ(poly(H,S,A)
ϵ ), with

probability at least 1− δ, it holds that for any deterministic policy π,

|d̂πh(s, a), dπh(s, a)| ≤ max{ϵ, d
π
h(s, a)

4
}, ∀s ∈ S, a ∈ A, h ∈ [H],

where d̂π is the distribution estimator.

Proof. Our analysis is based a notion of distance defined in the following.

Definition B.1 (β−distance). For x, y ≥ 0, we define the β−distance as,

distβ(x, y) = min
α∈[ 1β ,β]

|αx− y|.

Correspondingly, for x, y ∈ Rn,

distβ(x, y) =

n∑
i=1

distβ(xi, yi).

Based on its definition, we show in the following lemma that β−distance has some properties.
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Lemma B.3. The β−distance possesses the following properties for (x, y, z, γ ≥ 0):

1. distβ(γx, γy) = γdistβ(x, y); (19)

2. distβ(x1 + x2, y1 + y2) ≤ distβ(x1, y1) + distβ(x2, y2); (20)

3. distβ1·β2(x, z) ≤ distβ1(x, y) · β2 + distβ2(y, z). (21)

Proof. See Appendix C.1.

The following lemma shows that if we can control the β−distance between x̂, x, then we can show x̂
achieves the coarse estimation of x.

Lemma B.4. Suppose dist1+β(x, y) ≤ ϵ, then it holds that,

|x− y| ≤ βy + (1 +
β

1 + β
)ϵ ≤ 2max{(1 + β

1 + β
)ϵ, βy}.

Proof. See Appendix C.2.

The logic of the analysis is to show the β−distance between d̂h and dh can be bounded at each layer
by induction. Then by Lemma B.4, we show {d̂h}Hh=1 achieves coarse estimation.

Suppose at layer h, we have d̂h such that dist(1+β)h(d̂h, dh) < ϵh where β = 1
H . For notation

simplicity, we omit the superscript π. The analysis holds for any policy.

We use importance weighting to estimate d̂h+1,

d̂h+1(s, a) =
1

n

n∑
i=1

I(sih+1 = s)π(a|s)ŵh(s
i
h, a

i
h),

where ŵh(s, a) =
d̂h(s,a)
µ̂h(s,a)

.

We also denote,

dh+1(s, a) = E(sh,ah,sh+1)∼µh
[I(sh+1 = s)ŵh(sh, ah)].

By (21) in Lemma B.3, we have,

dist(1+β)h+2

(d̂h+1, dh+1) ≤ dist(1+β)(d̂h+1, dh+1)(1 + β)h+1︸ ︷︷ ︸
A

+ dist(1+β)h+1

(dh+1, dh+1)︸ ︷︷ ︸
B

.

(22)

Next, we show how we can bound these two terms (A) and (B). Note that for (s, h) where
dmax
h (s) < ϵ

SA , the induced β−distance error is at most ϵ. Therefore, we can just discuss state-action
pairs which satisfy Lemma B.1.

Bound of (A) We first show the following lemma tells us that the importance weighting is upper-
bounded.

Lemma B.5. Based on the definition of µ, the importance weighting is upper bounded,

wh(s, a) =
dh(s, a)

µh(s, a)
≤ 2HSA

dh(s, a)

dmax
h (s, a)

≤ 2HSA.

Hence, we can clip ŵh(s, a) at 2HSA such that ŵh(s, a) ≤ 2HSA.

Let’s define the random variable Zh+1(s, a) = I(sh+1 = s)ŵh(sh, ah), then d̂h+1(s, a) =
1
n

∑n
i=1 Z

i
h+1(s, a). Since ŵh(sh, ah) is bounded by Lemma B.5, we have,

V[Zh+1(s, a)] ≤ E[Zh+1(s, a)
2] ≤ 2HSAE[Zh+1(s, a)].
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By Berstein′s inequality, we have with probability at least 1− δ,

|d̂h+1(s, a)− E[d̂h+1(s, a)]| ≤
√

2V[Zh+1(s, a)] log(1/δ)

n
+

2HSA log(1/δ)

3n

≤

√
4HSAE[d̂h+1(s, a)] log(1/δ)

n
+

2HSA log(1/δ)

3n
,

to achieve the estimation accuracy |d̂h+1(s, a) − E[d̂h+1(s, a)]| ≤ max{ϵ, c · E[d̂h+1(s, a)]}, we
need samples n = Õ

(
HSA
c·ϵ
)
.

Based on the above analysis, we can achieve,

|d̂h+1(s, a), dh+1(s, a)| ≤ max{ϵ′, β
2
dh+1(s, a)}

at the cost of samples Õ
(

HSA
βϵ′

)
.

We now show dist1+β(d̂h+1, dh+1) ≤ SAϵ′. We discuss it in two cases,

1. |d̂h+1(s, a), dh+1(s, a)| ≤ ϵ′ (23)

2. |d̂h+1(s, a), dh+1(s, a)| ≤
β

2
dh+1(s, a). (24)

For those (s, a) which satisfies (24), since [1 − β
2 , 1 + β

2 ] ∈ [ 1
1+β , 1 + β], by the definition of

β−distance, we have,

dist1+β(d̂h+1(s, a), dh+1(s, a)) = 0. (25)

For other (s, a) which satisfies (23), we have,

dist1+β(d̂h+1(s, a), dh+1(s, a)) ≤ |d̂h+1(s, a), dh+1(s, a)| ≤ ϵ′.

Since there are at most SA state-action pairs, the error in the second case is at most SAϵ′. Combine
these two cases, we have,

dist1+β(d̂h+1, dh+1) ≤ SAϵ′.

By setting ϵ = ϵ′

SA , we have,

(A) = dist1+β(d̂h+1, dh+1)(1 + β)h+1 ≤ (1 + β)h+1ϵ, (26)

and the sample complexity is Õ
(

(HSA)2

ϵ

)
.

Bound of (B) Next we show how to bound term (B). Denote µh(s, a)
d̂h(s,a)
µ̂h(s,a)

by d̃h(s, a), we
have,

(B) = dist(1+β)h+1

(dh+1, dh+1)

=
∑
s,a

dist(1+β)h+1

(dh+1(s, a), dh+1(s, a))

=
∑
s,a

dist(1+β)h+1

(
∑
s′,a′

Pπ
h (s, a|s′, a′)d̃h(s′, a′),

∑
s′,a′

Pπ
h (s, a|s′, a′)dh(s′, a′))

≤
∑
s,a

∑
s′,a′

dist(1+β)h+1

(Pπ
h (s, a|s′, a′)d̃h(s′, a′), Pπ

h (s, a|s′, a′)dh(s′, a′))

=
∑
s,a

∑
s′,a′

Pπ
h (s, a|s′, a′)dist(1+β)h+1

(d̃h(s
′, a′), dh(s

′, a′))

= dist(1+β)h+1

(d̃h, dh),
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where the first two equality holds by definition, the inequality holds by (20) in Lemma B.3, the third
equality holds by (19) in Lemma B.3 and the last one holds by

∑
s,a P

π
h (s, a|s′, a′) = 1.

Now we analyse dist(1+β)h+1

(d̃h, dh).

dist(1+β)h+1

(d̃h, dh) =
∑
s,a

µh(s, a)dist
(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
).

By coarse estimation, we have |µ̂h(s, a)− µh(s, a)| ≤ max{ϵ′, c · µh(s, a)}. Similarly, we discuss
it in two cases,

1. |µ̂h(s, a), µh(s, a)| ≤ ϵ′, (27)
2. |µ̂h(s, a), µh(s, a)| ≤ c · µh(s, a). (28)

For those (s, a) which satisfies (27), by Lemma B.5, we have,

dist(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
) ≤ | d̂h(s, a)

µ̂h(s, a)
− dh(s, a)

µh(s, a)
| ≤ 2HSA.

Hence, we have,

dist(1+β)h+1

(d̃h(s, a), dh(s, a)) = µh(s, a)dist
(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
)

≤ 2HSAµh(s, a) ≤
2HSAϵ′

c
,

where the last inequality holds by c · µh(s, a) ≤ ϵ′.

Next, For those (s, a) which satisfies (28), we have,

(1− c)
1

µ̂h(s, a)
≤ 1

µh(s, a)
≤ (1 + c)

1

µ̂h(s, a)
.

Set c = β
2 , since [1− β

2 , 1 +
β
2 ] ∈ [ 1

1+β , 1 + β], by definition of β−distance, we have,

dist(1+β)(
1

µ̂h(s, a)
,

1

µh(s, a)
) = 0. (29)

And we assume by induction that dist(1+β)h(d̂h(s, a), dh(s, a)) ≤ ϵh, together with (29) we have,

dist(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
) ≤ ϵh. (30)

Combine the results of two cases together, we have,

(B) = dist(1+β)h+1

(d̃h, dh) ≤ ϵh + 4H2S2A2ϵ′

Set ϵ′ = ϵ
4H2S2A2 , we have,

(B) ≤ ϵh + ϵ (31)

at the cost of samples Õ(H
3S2A2

ϵ ).

Now we are ready to show the bound of β−distance at layer h+ 1. Plug (26)(31) into (22), we have,

dist(1+β)h+2

(d̂h+1, dh+1) ≤ dist(1+β)(d̂h+1, dh+1)(1 + β)h+1 + dist(1+β)h+1

(dh+1, dh+1)

≤ (1 + β)h+1ϵ+ ϵ+ ϵh.

Start from dist(1+β)(d̂1, d1) ≤ ϵ, we have,

dist(1+β)2h−1

(d̂h, dh) ≤ hϵ+ ϵ

h−1∑
l=1

(1 + β)2h. (32)

Remember that β = 1
H and due to (1 + 1

H )h ≤ e (h ≤ H), we have,

diste
2

(d̂h, dh) ≤ H(1 + e2)ϵ. (33)
Recall Lemma B.4, and based on (33), we have,

|d̂h(s, a)− dh(s, a)| ≤ 2max{H(1 + e2)ϵ, (e2 − 1)dh(s, a)}.
By just paying multiplicative constant, we can adjust the constant above to meet our needs, i.e. in
Theorem B.2.
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C Proof of lemmas in Section B

C.1 Proof of Lemma B.3

Proof. 1. The first property is trivial.

distβ(γx, γy) = min
α∈[ 1β ,β]

|αγx− γy|

= min
α∈[ 1β ,β]

γ|αx− y|

= γdistβ(x, y).

2. Let αi be such that,

dist1+β(xi, yi) = |αixi − yi|, i = 1, 2.

Notice that α3 = α1 · x1

x1+x2
+ α2 · x2

x1+x2
satisfies α3 ∈ [α1, α2] ∈ [ 1β , β] and α3(x1 + x2) =

α1x1 + α2x2, therefore,

distβ(x1 + x2, y1 + y2) = min
α∈[ 1β ,β]

|α(x1 + x2)− y1 − y2|

≤ |α3(x1 + x2)− y1 − y2|
= |α1x1 + α2x2 − y1 − y2|
≤ |α1x1 − y1|+ |α2x2 − y2|
= distβ(x1, y1) + distβ(x2, y2).

The first inequality holds due to the definition of β−distance. The second inequality is the triangle
inequality.

3. We prove the third property through a case-by-case discussion.

(1). x
β1β2

≤ z ≤ β1β2x. In this case, the result is trivial, since distβ1β2(x, z) = 0 and β−distance is
always non-negative.

(2). β1β2x < z. If y ≤ x, then,

distβ1β2(x, z) ≤ distβ2(x, z) ≤ distβ2(y, z).

We are done.

If x < y ≤ β1x, then distβ1 (x, y) = 0, and z > β1β2x ≥ β2y, hence,

distβ2(y, z) = z − β2y ≥ z − β1β2x = distβ1β2(x, z).

We are done.

If y > β1x, z ∈ [ y
β2
, β2y], then,

distβ1(x, y)β2 + distβ2(y, z) = β2(y − β1x)

≥ z − β1β2x

= distβ1β2(x, z).

We are done.

If y > β1x, z /∈ [ y
β2
, β2y], then,

distβ1(x, y)β2 + distβ2(y, z) ≥ β2(y − β1x)

≥ z − β1β2x

= distβ1β2(x, z).

We are done.

(3). z < x
β1β2

. A symmetric analysis can be done by replacing β1, β2 by 1
β1
, 1
β2

which gives the
result,

distβ1β2(x, z) ≤ distβ1(x, y)
1

β2
+ distβ2(y, z)
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Since β2 ≥ 1 and distβ1(x, y) ≥ 0, we have distβ1(x, y) 1
β2

≤ distβ1(x, y)β2, hence,

distβ1β2(x, z) ≤ distβ1(x, y)β2 + distβ2(y, z),

which concludes the proof.

C.2 Proof of Lemma B.4

Proof. We prove the lemma through a case-by-case study.

(1). x ≤ y. If dist1+β(x, y) = 0, then x(1 + β) ≥ y ≥ x, therefore,

|x− y| = y − x ≤ βx ≤ βy.

If dist1+β(x, y) > 0, then dist1+β(x, y) = y − (1 + β)x, therefore,

|x− y| = y − x = dist1+β(x, y) + βx ≤ ϵ+ βx ≤ ϵ+ βy.

(2). y < x. If dist1+β(x, y) = 0, then x
1+β ≤ y < x, therefore,

|x− y| = x− y ≤ x− x

1 + β
≤ y(1 + β)(1− 1

1 + β
) = βy.

If dist1+β(x, y) > 0, then y < x
1+β ≤ x and dist1+β(x, y) = x

1+β − y. Moreover, since
dist1+β(x, y) ≤ ϵ, we have x

1+β ≤ ϵ+ y. Therefore,

|x− y| = x− y

= dist1+β(x, y) + (1− 1

1 + β
)x

= dist1+β(x, y) + β
x

1 + β

≤ ϵ+
β

1 + β
ϵ+ βy

= (1 +
β

1 + β
)ϵ+ βy.

Combine the results above together, we have,

|x− y| ≤ βy + (1 +
β

1 + β
)ϵ ≤ 2max{(1 + β

1 + β
)ϵ, βy}.
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D Discussion on policy identification

In this section, we discuss on the application of CAESAR to policy identification problem, its
instance-dependent sample complexity and some intuitions related to the existing gap-dependent
results.

We first provide a simple algorithm that utilizes CAESAR to identify an ϵ−optimal policy. The
core idea behind the algorithm is we can use CAESAR to evaluate all candidate policies up to an
accuracy, then we can eliminate those policies with low estimated performance. By decreasing the
evaluation error gradually, we can finally identify a near-optimal policy with high probability.

For notation simplicity, fixing the high-probability factor, we denote the sample complexity of
CAESAR by Θ(Π)

γ2 , where Π is the set of policies to be evaluated and γ is the estimation error.

Algorithm 4 Policy Identification based on CAESAR

Input: Alg CAESAR , optimal factor ϵ, candidate policy set Π.
for i = 1 to ⌈log2(4/ϵ)⌉ do

1. Run CAESAR to evaluate the performance of policies in Π up to accuracy γ = 1
2i .

2. Eliminate πi if ∃πj ∈ Π, V̂ πj

1 − V̂ πi

1 > 2γ, update Π.
end for
Output: Randomly pick πo from Π.

Theorem D.1. Implement Algorithm 4, we have that, with probability at least 1− δ, πo is ϵ−optimal,
i.e.,

V ∗
1 − V πo

1 ≤ ϵ.

And the instance-dependent sample complexity is Õ(maxγ≥ϵ
Θ(Πγ)

γ2 ), where Πγ = {π : V ∗
1 − V π

1 ≤
8γ}.

Proof. On the one hand, based on the elimination rule in the algorithm, by running CAESAR with
the evaluation error γ, the optimal policy π∗ will not be eliminated with probability at least 1− δ.
Since maxπ∈Π V̂ π

1 − V̂ π∗

1 ≤ V ∗
1 + γ − (V π∗

1 − γ) ≤ 2γ.

On the other hand, if V ∗
1 − V πi

1 > 4γ, then πi will be eliminated with probability at least 1 − δ.
Since maxπ∈Π V̂ π

1 − V̂ πi

1 > V ∗
1 − γ − (V πi

1 + γ) > 2γ.

Therefore, by running Algorithm 4, the final policy set is not empty and for any policy π in this set, it
holds, V ∗

1 − V π
1 ≤ ϵ with probability at least 1− δ.

Next, we analyse the sample complexity of Algorithm 4. Based on above analysis, within every
iteration of the algorithm, we have a policy set containing 8γ−optimal policies, and we use CAESAR
to evaluate the performance of these policies up to γ accuracy. By Theorem 4.8, the sample complexity
is Θ(Πγ)

γ2 . Therefore, the overall sample complexity is,∑
γ

Θ(Πγ)

γ2
≤ Õ(max

γ≥ϵ

Θ(Πγ)

γ2
).

This result is quite interesting since it provides another perspective beyond the existing gap-dependent
results for policy identification. And these two results have some intuitive relations that may be of
interest.

Roughly speaking, to identify an ϵ−optimal policy for an MDP, the gap-dependent regret is described
as,

O(
∑
h,s,a

H logK

gaph(s, a)
),
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where gaph(s, a) = V ∗
h (s)−Q∗

h(s, a).

The value gap gaph(s, a) quantifies how sub-optimal the action a is at state s. If the gap is small, it
is difficult to distinguish and eliminate the sub-optimal action. At the same time, smaller gaps mean
that there are more policies with similar performance to the optimal policy, i.e. the policy set Πγ is
larger. Both our result and gap-dependent result can capture this intuition. We conjecture there exists
a quantitative relationship between these two perspectives.

An interesting proposition of Theorem D.1 is to apply the same algorithm to the multi-reward

setting. A similar instance-dependent sample complexity can be achieved Õ(maxγ≥ϵ
Θ(ΠR

γ )

γ2 ) with
the difference that ΠR

γ contains policies which is 8γ−optimal for at least one reward function. This
sample complexity captures the intrinsic difficulty of the problem by how similar the near-optimal
policies under different rewards are which is consistent with the intuition.
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