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Abstract

We study the multiple-policy evaluation problem where we are given a set of K1

policies and the goal is to evaluate their performance (expected total reward over2

a fixed horizon) to an accuracy ϵ with probability at least 1 − δ. We propose an3

algorithm named CAESAR for this problem. Our approach is based on computing4

an approximate optimal offline sampling distribution and using the data sampled5

from it to perform the simultaneous estimation of the policy values. CAESAR has6

two phases. In the first we produce coarse estimates of the visitation distributions7

of the target policies at a low order sample complexity rate that scales with Õ( 1ϵ ).8

In the second phase, we approximate the optimal offline sampling distribution9

and compute the importance weighting ratios for all target policies by minimiz-10

ing a step-wise quadratic loss function inspired by the DualDICE [21] objective.11

Up to low order and logarithmic terms CAESAR achieves a sample complexity12

Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
, where dπ is the visitation distribution13

of policy π, µ∗ is the optimal sampling distribution, and H is the horizon.14

1 Introduction15

Policy evaluation is a fundamental problem in Reinforcement Learning (RL) [23] of which the goal is16

to estimate the expected total rewards of a given policy. This process serves as an integral component17

in various RL methodologies, such as policy iteration and policy gradient approaches [24], wherein18

the current policy undergoes evaluation followed by potential updates. Policy evaluation is also19

paramount in scenarios where prior to deploying a trained policy, thorough evaluation is imperative20

to ensure its safety and efficacy.21

Broadly speaking there exist two scenarios where the problem of policy evaluation has been consid-22

ered, known as online and offline data regimes. In online scenarios a learner is interacting sequentially23

with the environment and is tasked with using its online deployments to collect helpful data for policy24

evaluation. The simplest method for online policy evaluation is Monte-Carlo estimation [11]. One25

can collect multiple trajectories by following the target policy, and use the empirical mean of the26

rewards as the estimator. These on-policy methods typically require executing the policy we want to27

estimate which may be unpractical or dangerous in many cases. For example, in the medical treatment28

scenario, implementing an untrustworthy policy can cause unfortunate consequences [25]. In these29

cases, offline policy evaluation may be preferable. In the offline case, the learner has access to a30

batch of data and is tasked to use this in the best way possible to estimate the value of a target policy.31

There are many works focus on this field based on different techniques such as importance-sampling,32

model-based estimation and doubly-robust estimators [16, 18, 27, 29, 30].33

Motivated by the applications where people often have multiple policies that they would like to34

evaluate, e.g. multiple policies trained using different hyperparameters, Dann et al. [5] considered35

multiple-policy evaluation which aims to estimate the performance of a set of K target policies36
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instead of a single policy. From the simplest perspective, multiple-policy evaluation does not pose37

challenges beyond single-policy evaluation since one can always use single-policy evaluation methods38

by K times to solve the multiple-policy evaluation problem. However, this can be extremely sample-39

inefficient as it neglects potential similarities among the K target policies. Consequently, its sample40

complexity invariably escalates linearly as a function of K.41

Dann et al. [5] proposed an on-policy algorithm that leverages the similarity among target policies42

based on an idea related to trajectory synthesis [26]. The basic technique is that if more than one43

policy take the same action at a certain state, then only one sample is needed at that state which can44

be reused to synthesize trajectories for these policies. Their algorithm achieves an instance-dependent45

sample complexity which gives much better results when target policies have many overlaps.46

In the context of single policy off-policy evaluation, the theoretical guarantees depend on the overlap47

between the offline data distribution and the visitations of the evaluated policy [8, 27, 29]. These48

coverage conditions which ensure that the data logging distribution [28] adequately covers the state49

space are typically captured by the ratio between the densities corresponding to the offline data50

distribution and the policy to evaluate, also known as importance ratios.51

A single offline dataset can be used to evaluate multiple policies simultaneously. The policy evaluation52

guarantees will be different for each of the policies in the set depending on how much overlap the53

offline distribution has with the policy visitation distributions. These observations inform an approach54

to the multiple policy evaluation problem different from [5] that can also leverage the policy visitation55

overlap in a meaningful way. Our algorithm is based on the idea of designing a behavior distribution56

with enough coverage of the target policy set. Once this distribution is computed, i.i.d. samples from57

the behavior distribution can be used to estimate the value of the target policies using ideas inspired58

in the offline policy optimization literature. Our algorithms consist of two phases:59

1. Build coarse estimators of the policy visitation distributions and use them to compute a60

mixture policy that achieves a low visitation ratio with respect to all K policies to evaluate.61

2. Sample from this approximately optimal mixture policy and use these to construct mean62

reward estimators for all K policies.63

Coarse estimation of the visitation distributions up to constant multiplicative accuracy can be achieved64

at a cost that scales linearly, instead of quadratically with the inverse of the accuracy parameter (see65

Section 4.1) and polynomially in parameters such as the size of the state and action spaces, and the66

logarithm of the policy evaluation set. We propose the MARCH or Multi-policy Approximation via67

Ratio-based Coarse Handling Algorithm (see Algorithm 3) for coarse estimation of the visitation68

distributions. Estimating the policy visitation distributions up to multiplicative accuracy is enough69

to find an approximately optimal behavior distribution that minimizes the maximum visitation ratio70

among all policies to estimate (see Section 4.2). The samples generated from this behavior distribution71

are used to estimate the target policy values via importance weighting. Since the importance weights72

are not known to sufficient accuracy, we propose the IDES or Importance Density Estimation73

Algorithm (see Algorithm 2) for estimating these distribution ratios by minimizing a series of loss74

functions inspired by the DualDICE [21] method (see Section 4.3). Combining these steps we75

arrive at our main algorithm (CAESAR ) or Coarse and Adaptive Estimation with Approximate76

Reweighing for Multi-Policy Evaluation (see Algorithm 1) that achieves a high probability finite77

sample complexity for the problem of multi-policy evaluation.78

2 Related Work79

There is a rich family of off-policy estimators for policy evaluation [4, 10, 15, 16, 19]. But none of80

them is effective in our setting. Importance-sampling is a simple and popular method for off-policy81

evaluation but suffers exponential variance in horizon [19]. Marginalized importance-sampling82

has been proposed to get rid of the exponential variance. However, existing works all focus on83

function approximations which only produce approximately correct estimators [4] or are designed84

for the infinite-horizon case [10]. Doubly robust estimator [9, 13, 16] also solves the exponential85

variance problem, but no finite sample result is available. Our algorithm is based on marginalized86

importance-sampling and addresses the above limitations in the sense that our algorithm provides87

non-asymptotic sample complexity results and works for finite-horizon Markov Decision Processes.88
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Another popular estimator is called model-based estimator which evaluates the policy by estimating89

the transition function of the environment [6, 31]. Yin and Wang [29] provides a similar sample90

complexity to our results. However, there are some significant differences between their result and91

ours. First, our sampling distribution; calculated based on the coarse distribution estimator, is optimal.92

Second, our sample complexity is non-asymptotic while their result is asymptotic. Third, the true93

distributions appearing in our sample complexity can be replaced by known distribution estimators94

without inducing additional costs which means we can provide a known sample complexity while95

their result is always unknown since we do not know the true visitation distributions of target policies.96

The work that most aligns with ours is [5] which proposed an on-policy algorithm based on the idea97

of trajectory synthesis. The authors propose the first instance-dependent sample complexity analysis98

of the multiple-policy evaluation problem. Different from their work, our algorithm uses off-policy99

evaluation based on importance-weighting and achieves a better sample complexity with simpler100

techniques and analysis.101

In concurrent work, Amortila et al. [2] propose an exploration objective for downstream reward102

maximization, similar to our goal of computing an optimal sampling distribution. However, our103

approximate objective, based on coarse estimation is easier to solve, which is a significant contribution104

while they need layer-by-layer induction. They also introduced a loss function to estimate ratios,105

similar to how we estimate the importance densities. However, our ratios are defined differently from106

theirs which require distinct techniques.107

Our algorithm also uses some techniques modified from other works which we summarize here.108

DualDICE is a technique for estimating distribution ratios by minimizing some loss functions109

proposed by [21]. We build on this idea and make some modifications to meet the need in our110

setting. Besides, we utilize stochastic gradient descent algorithms and their convergence rate for111

strongly-convex and smooth functions in the optimization literature [14]. Finally, we adopt the112

Median of Means estimator [20] to convert in-expectation results to high-probability results.113

3 Preliminaries114

Notations We denote the set {1, 2, . . . , N} by [N ]. {Xn}Nn=1 represents the set {X1, X2, . . . , XN}.115

Eπ denotes the expectation over the trajectories produced by following policy π. Õ hides constants,116

logarithmic and lower-order terms. And we use V[X] to represent the variance of random variable X .117

Πdet is the set of all deterministic policies. And conv(X ) represents the convex hull of set X .118

Reinforcement learning framework We consider episodic tabular Markov Decision Processes119

(MDPs) defined by a tuple {S,A, H, {Ph}Hh=1, {rh}Hh=1, ν} where S and A represents the state and120

action space respectively with S the cardinality of the state space S and A the cardinality of the action121

space A. H is the horizon which defines the number of steps the agent can take before the end of an122

episode. Ph(·|s, a) ∈ ∆S is the transition function which represents the probability of transitioning123

to the next state if the agent takes action a at state s. And rh(s, a) is the reward function denotes the124

reward the agent can get if the agent takes action a at state s. In this work, we assume that the reward125

is deterministic and bounded rh(s, a) ∈ [0, 1] which is consistent with prior work [5]. We denote the126

initial state distribution by ν ∈ ∆S.127

A policy π = {πh}Hh=1 is a mapping from the state space to the probability distribution space over128

the action space. πh(a|s) denotes the probability of taking action a at state s and step h. The value129

function V π
h (s) of a policy π is the expected total rewards the agent can receive by starting from130

step h, state s and following the policy π, i.e., V π
h (s) = Eπ[

∑H
l=h rl|s]. The performance J(π) of131

a policy π is defined as the expected total rewards the agent can get. By the definition of the value132

function, there is the relationship J(π) = V π
1 (s|s ∼ ν). For simplicity, in the following context, we133

use V π
1 to denote V π

1 (s|s ∼ ν).134

The state visitation distribution dπh(s) of a policy π represents the probability of reaching state s135

at step h if the agent starts from a state sampled from the initial state distribution ν at step l = 1136

and following policy π subsequently, i.e. dπh(s) = P[sh = s|s1 ∼ ν, π]. Similarly, the state-action137

visitation distribution dπh(s, a) is defined as dπh(s, a) = dπh(s)π(a|s). Based on the definition of138

the visitation distribution, the performance of policy π can also be expressed as J(π) = V π
1 =139 ∑H

h=1

∑
s,a d

π
h(s, a)rh(s, a).140
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Multiple-policy evaluation problem setup In multiple-policy evaluation, we are given a set of141

known policies {πk}Kk=1 and a pair of factors {ϵ, δ}. The objective is to evaluate the performance of142

these given policies such that with probability at least 1− δ, ∀π ∈ {πk}Kk=1, |V̂ π
1 − V π

1 | ≤ ϵ where143

V̂ π
1 is the performance estimator.144

Dann et al. [5] proposed an algorithm based on the idea of trajectory stitching and achieved an145

instance-dependent sample complexity,146

Õ

H2

ϵ2
E

 ∑
(s,a)∈K1:H

1

dmax(s)

+
SH2K

ϵ

 (1)

where dmax(s) = maxk∈[K] d
πk

(s) and Kh ⊆ S ×A keeps track of which state-action pairs at step147

h are visited by target policies in their trajectories.148

Another way to reuse samples for evaluating different policies is to estimate the model. Based on149

the model-based estimator proposed by Yin and Wang [29], an asymptotic convergence rate can be150

derived,151 √
H

n
·

√√√√ H∑
h=1

Eπk

[
dπk(sh, ah)

µ(sh, ah)

]
+ o(

1√
n
) (2)

where µ is the distribution of the offline dataset and n is the number of trajectories in this dataset.152

Though, it looks similar to our results, we have claimed in the Section 2 that there are significant153

differences.154

3.1 Contributions155

Our main contribution is that we proposed an algorithm named CAESAR for multiple-policy156

evaluation with two phases. In the first phase, we coarsely estimate the visitation distributions157

of all deterministic policies at the cost of a lower-order sample complexity. In the second phase,158

with the coarse distribution estimators, we can solve a convex optimization problem to build an159

approximately optimal sampling distribution µ̃∗ with which we estimate the performance of target160

policies using marginal importance weighting. CAESAR finally achieves that with number of161

trajectories n = Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
and probability at least 1− δ, we can162

evaluate the performance of all target policies up to ϵ error. CAESAR is consistently better than the163

naive uniform sampling strategy over target policies as described in (2). CAESAR also improves164

upon the result (1) by Dann et al. [5] in some cases where their results have a dependency on K while165

ours do not (see Section 5).166

In addition to our main contribution, we proposed two sub-algorithms that may spark interest beyond167

the specific multi-policy evaluation problem we addressed in this work. First, we proposed MARCH168

which achieves coarse estimation of all deterministic policies with sample complexity Õ(poly(H,S,A)
ϵ )169

even though the number of all deterministic policies is exponential. Second, we proposed IDES170

to accurately estimate the marginal importance ratio by minimizing a carefully designed step-wise171

loss function using stochastic gradient descent which is modified from the idea of DualDICE [21].172

Besides, we also utilize a Median-of-Means estimator [20] to convert the in-expectation result to the173

high-probability result which can be of interest.174

4 Main Results and Algorithm175

In this section, we introduce CAESAR which is sketched out in Algorithm 1 and present the main176

results. Different from on-policy evaluation, we try to build a single sampling distribution with which177

we can estimate the performance of all target policies using importance weighting. We achieve it by178

the following procedures. We first coarsely estimate the visitation distributions of all deterministic179

policies at the cost of a lower-order sample complexity. Based on these coarse distribution estimators,180

we can build an optimal sampling distribution by solving a convex optimization problem. Finally,181

we utilize the idea of DualDICE [21] with some modifications to estimate the importance-weighting182

ratio. In the following sections, we explain the steps of CAESAR in detail.183
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4.1 Coarse estimation of visitation distributions184

We first introduce a proposition that shows how we can coarsely estimate the visitation distributions185

of target policies with lower-order sample complexity Õ( 1ϵ ). Although this estimator is coarse186

and cannot be used to directly evaluate the performance of policies which is our ultimate goal, it187

possesses nice properties that enable us to construct the optimal sampling distribution and estimate188

the importance weighting ratio in the following sections.189

The idea behind this estimator is based on the following lemma that shows estimating the mean value190

of a Bernoulli random variable up to constant multiplicative accuracy only requires Õ( 1ϵ ) samples.191

Lemma 4.1. Let Zℓ be i.i.d. samples Zℓ
i.i.d.∼ Ber(p), for some known constant C > 0, setting192

t ≥ C log(C/ϵδ)
ϵ , we have that with probability at least 1 − δ, the empirical mean estimator p̂t =193

1
t

∑t
ℓ=1 Zℓ satisfies, |p̂t − p| ≤ max{ϵ, p

4}.194

Lemma 4.1 can be used to derive coarse estimators d̂π
k

= {d̂πk

h }Hh=1 with constant multiplicative195

accuracy with respect to the true visitation probabilities dπ
k

= {dπk

h }Hh=1.196

Proposition 4.2. With number of trajectories n ≥ CK log(CK/ϵδ)
ϵ = Õ( 1ϵ ), we can estimate d̂π

k

=197

{d̂πk

h }Hh=1 such that with probability at least 1−δ, |d̂πk

h (s, a)−dπ
k

h (s, a)| ≤ max{ϵ, dπk

h (s,a)
4 }, ∀s ∈198

S, a ∈ A, h ∈ [H], k ∈ [K].199

Proposition 4.2 is achieved by running each policy independently and applying Lemma 4.1. However,200

this would induce an exponential dependency on S,A if we aim to coarsely estimate all deterministic201

policies. We propose an algorithm named MARCH (see Appendix C). Through a novel analysis, we202

show that MARCH achieves coarse estimation of all deterministic policies with sample complexity203

Õ(poly(H,S,A)
ϵ ).204

We next show that based on these coarse visitation estimators, we can ignore those states and actions205

with low estimated visitation probability without inducing significant errors.206

Lemma 4.3. Suppose we have an estimator d̂(s, a) of d(s, a) such that |d̂(s, a) − d(s, a)| ≤207

max{ϵ′, d(s,a)
4 }. If d̂(s, a) ≥ 5ϵ′, then max{ϵ′, d(s,a)

4 } = d(s,a)
4 , and if d̂(s, a) ≤ 5ϵ′, then208

d(s, a) ≤ 7ϵ′.209

Based on Lemma 4.3, we can ignore the state-action pairs satisfying d̂(s, a) ≤ 5ϵ′. Since if we210

replace ϵ′ by ϵ
14SA , the error of performance estimation induced by ignoring these state-action pair is211

at most ϵ
2 . For simplicity of presentation, we can set d̂π(s, a) = dπ(s, a) = 0 if d̂π(s, a) < 5ϵ

14SA .212

Hence, we have that,213

|d̂π
k

h (s, a)− dπ
k

h (s, a)| ≤ dπ
k

h (s, a)

4
, ∀s ∈ S, a ∈ A, h ∈ [H], k ∈ [K]. (3)

4.2 Optimal sampling distribution214

We evaluate the expected total rewards of target policies by importance weighting, using sam-215

ples {si1, ai1, si2, ai2, . . . , siH , aiH}ni=1 drawn from a sampling distribution {µh}Hh=1. Specifically,216

V̂ πk

1 = 1
n

∑n
i=1

∑H
h=1

dπk

h (sih,a
i
h)

µh(sih,a
i
h)

rh(s
i
h, a

i
h), k ∈ [K]. To minimize the variance of our estimator217

(see Appendix B.2), we find the optimal sampling distribution by solving the following convex218

optimization problem,219

µ∗
h = argmin

µ
max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ(s, a)
, h ∈ [H]. (4)

However, in some cases, the optimal µ∗ may not be realized by any policy (see Appendix B.3).220

Therefore, to facilitate the construction of the sampling distribution µ∗, we constrain µh to lie within221

the convex hull of D = {dπh : π ∈ Πdet} which formulates the constrained optimization problem,222

µ∗
h = argmin

µ∈conv(D)

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ(s, a)
, h ∈ [H]. (5)
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We denote the optimal solution to (5) as µ∗
h =

∑
π∈Πdet

α∗
πd

π
h. Since dπ

k

h is unknown, we can only223

solve the approximate optimization problem,224

µ̂∗
h = argmin

µ∈conv(D̂)

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ(s, a)
, h ∈ [H], (6)

where D̂ = {d̂πh : π ∈ Πdet}. We denote the optimal solution to (6) by µ̂∗
h =

∑
π∈Πdet

α̂∗
πd̂

π
h.225

Correspondingly, our real sampling distribution would be µ̃∗
h =

∑
π∈Πdet

α̂∗
πd

π
h.226

The next lemma tells us that the optimal sampling distribution also has the same property as the227

coarse distribution estimators.228

Lemma 4.4. If property (3) holds: |d̂πk

h (s, a)−dπ
k

h (s, a)| ≤ dπk

h (s,a)
4 , ∀s ∈ S, a ∈ A, h ∈ [H], k ∈229

[K], then |µ̃∗
h(s, a)− µ̂∗

h(s, a)| ≤
µ̃∗
h(s,a)
4 .230

4.3 Estimation of the importance density231

In this section, we introduce our algorithm named IDES for estimating the importance weighting232

ratios which is sketched out in Algorithm 2. IDES is based on the idea of DualDICE [21]. In233

DualDICE, they propose the following loss function234

ℓπ(w) =
1

2
Es,a∼µ

[
w2(s, a)

]
− Es,a∼dπ [w(s, a)] , (7)

the optimal minimum is achieved at wπ,∗(s, a) = dπ(s,a)
µ(s,a) which is the distribution ratio. They tackle235

the on-policy limitation of the second term in (7) by transforming the variable based on Bellman’s236

equation. However, their method only works for infinite horizon MDPs and it becomes unclear how237

to optimize the loss function after the variable change. We propose a new step-wise loss function238

which works for finite horizon MDPs. More importantly, the loss function is strongly-convex and239

smooth, enabling optimization through stochastic gradient descent and yielding non-asymptotic240

sample complexity results.241

Specifically, we define the step-wise loss function of policy π at each step h as,242

ℓπh(w) =
1

2
Es,a∼µ̃h

[
w2(s, a)

µ̂h(s, a)

]
− Es′,a′∼µ̃h−1,s∼Ph−1(·|s′,a′)

[∑
a

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)
w(s, a)π(a|s)

]

where µ̃h =
∑

π∈Πdet
α̂∗
πd

π
h is the sampling distribution, and µ̂h =

∑
π∈Πdet

α̂∗
πd̂

π
h is the optimal243

solution to the approximate optimization problem (6), and we set µ̃0(s0, a0) = 1, P0(s|s0, a0) =244

ν(s), ŵ0 = µ̂0 = 1 for notational simplicity.245

This loss function possesses two nice properties. First, it is γ-strongly convex and ξ-smooth where246

γ = mins,a
µ̃h(s,a)
µ̂h(s,a)

, ξ = maxs,a
µ̃h(s,a)
µ̂h(s,a)

. Based on the property of our coarse distribution estimator,247

i.e. 4
5 ≤ µ̃h(s,a)

µ̂h(s,a)
≤ 4

3 which is a trivial corollary from Lemma 4.4, γ and ξ are bounded as well as248

their ratio, i.e. ξ
γ ≤ 5

3 . This property actually plays an important role in deriving the final sample249

complexity which we will discuss in Appendix due to space constraints.250

In the following lemma, we show that our step-wise loss function has another nice property on251

step-to-step error propagation.252

Lemma 4.5. Suppose we have an estimator ŵh−1 at step h − 1 such that,253 ∑
s,a

∣∣∣µ̃h−1(s, a)
ŵh−1(s,a)
µ̂h−1(s,a)

− dπh−1(s, a)
∣∣∣ ≤ ϵ, then by minimizing the loss function ℓπh(w)254

at step h to ∥∇ℓπh(ŵh(s, a))∥1 ≤ ϵ, we have
∑

s,a

∣∣∣µ̃h(s, a)
ŵh(s,a)
µ̂h(s,a)

− dπh(s, a)
∣∣∣ ≤ 2ϵ.255

Lemma 4.5 indicates that using the distribution ratio estimator from the previous step allows us to256

estimate the ratio at the current step, introducing only an additive error. Consequently, by optimizing257

step-by-step, we can achieve an accurate estimation of the distribution ratios at all steps, as formalized258

in the following lemma.259
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Lemma 4.6. Implement Algorithm 2, we have the importance density estimator ŵh(s,a)
µ̂h(s,a)

such that,260

E

[∑
s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπ

k

h (s, a)

∣∣∣∣
]
≤ ϵ

4H
, h ∈ [H]. (8)

4.4 Main results261

We are now ready to present our main sample complexity result for multiple-policy evaluation,262

building on the results from previous sections. First, we introduce a Median-of-Means (MoM)263

estimator [20], formalized in the following lemma, and a data splitting technique that together convert264

(8) into a high-probability result (see Appendix B.7).265

Lemma 4.7. For a one-dimension value µ, suppose we have a stochastic estimator µ̂ such that266

E[|µ̂−µ|] ≤ ϵ
4 , then if we generate N = O (log(1/δ)) i.i.d. estimators {µ̂1, µ̂2, . . . , µ̂N} and choose267

µ̂MoM = Median(µ̂1, µ̂2, . . . , µ̂N ), we have with probability at least 1− δ, |µ̂MoM − µ| ≤ ϵ.268

With the importance density estimator ŵh(s,a)
µ̂h(s,a)

, we can estimate the performance of policy πk,269

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

ŵπk

h (sih, a
i
h)

µ̂h(sih, a
i
h)

rh(s
i
h, a

i
h) (9)

where {sih, aih}ni=1 is sampled from µ̃h.270

We present our main result in the following theorem and leave the detailed derivation to Appendix B.7.271

Theorem 4.8. Implement Algorithm 1 , then with probability at least 1− δ, for all target policies, we272

have that |V̂ πk

1 − V πk

1 | ≤ ϵ. And the total number of trajectories sampled is,273

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
. (10)

Besides, the unknown true visitation distributions can be replaced by the coarse estimator to provide274

a concrete sample complexity.275

5 Discussion276

In this section, we analyze our sample complexity, comparing it with existing results and offering277

several noteworthy findings.278

5.1 Lower bound and some special cases279

For off-policy evaluation, the CR-lower bound proposed by [16] (Theorem 3) demonstrates that280

there exists an MDP such that the variance of any unbiased estimator is lower bounded by281 ∑H
h=1 Eµ

[(
dπ
h(sh,ah)

µh(sh,ah)

)2
V[V π

h (sh)]

]
, where π is the policy to evaluate and µ is the sampling dis-282

tribution. Applying this result to multiple-policy evaluation problem gives us the lower bound283

minµ maxk∈[K]

∑H
h=1 Eµ

[(
dπk

h (sh,ah)
µh(sh,ah)

)2

V[V πk

h (sh)]

]
. From the variance-unaware perspective284

where the variance of the value function is simply bounded by H2, our sample complexity matches285

this lower bound since our sampling distribution is optimal (up to the dependency on H). We believe286

that a more refined variance-dependent result is achievable and leave it to future works.287

Next, we analyse our sample complexity based on some special cases which offers us some interesting288

results. First, in the scenario where all target policies are identical, i.e. dπ
1

= dπ
2

= · · · = dπ
K

= d.289

The optimal sampling distribution is µ∗ = d, hence, our sample complexity becomes Õ(H
5

ϵ2 ) which290

has no dependency on S or A.291

We can derive an instance-independent sample complexity based on our results. Let the sampling292

distribution µ′
h be 1

SA

∑
s,a d

πs,a

h , where πs,a = argmaxk∈[K] d
πk

h (s, a). Since µ∗
h is the optimal293

solution and µ′
h is a feasible solution, we have our sample complexity (10) is bounded by Õ

(
H5SA

ϵ2

)
.294
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5.2 Comparison with existing results295

First, compared to the naive uniform sampling strategy over target policies as described in (2), our296

method has a clear advantage. Our sampling distribution is optimal among all possible combinations297

of the target policies, including the naive uniform strategy.298

Next, we compare our result with the one achieved by Dann et al. [5] as described in (1). A significant299

issue with the result by Dann et al. [5] is the presence of the unfavorable 1
dmax(s) , which can induce300

an undesirable dependency on K in some cases while our results do not (see Appendix E.1 for an301

illustrating example). However, it remains unclear whether our result is universally better in all cases302

(omit the dependency on H).303

5.3 Policy identification304

Besides policy evaluation, CAESAR can also be applied to identify a near-optimal policy. Fixing305

the high-probability factor, we denote the sample complexity of CAESAR by Õ(Θ(Π)
γ2 ), where306

Π is the set of policies to be evaluated and γ is the estimation error. We provide a simple algo-307

rithm based on CAESAR in Appendix E.2 that achieves an instance-dependent sample complexity308

Õ(maxγ≥ϵ
Θ(Πγ)

γ2 ) to identify a ϵ−optimal policy, where Πγ = {π : V ∗
1 − V π

1 ≤ 8γ}. This result309

is interesting as it offers a different perspective beyond the existing gap-dependent results [7, 22].310

Furthermore, this result can be easily extended to the multi-reward setting. Due to space constraints,311

we leave the detailed discussion to Appendix E.2.312

6 Conclusion and Future Work313

In this work, we consider the problem of multi-policy evaluation. And we propose an algorithm314

CAESAR based on computing an approximate optimal offline sampling distribution and using the315

data sampled from it to perform the simultaneous estimation of the policy values. CAESAR achieves316

that with number of trajectories n = Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
and probability at317

least 1− δ, we can evaluate the performance of all target policies up to ϵ error. The algorithm consists318

of three techniques. First, we obtain a coarse distribution estimator at the cost of lower-order sample319

complexity. Second, based on the coarse distribution estimator, we show an achievable optimal320

sampling distribution by solving an convex optimization problem. Last, we propose a novel step-wise321

loss function for finite-horizon MDPs. By minimizing the loss function step to step, we are able to322

get the importance weighting ratio and a non-asymptotic sample complexity is available due to the323

smoothness and strongly-convexity of the loss function.324

Beyond the results of this work, there are still some open questions of interest. First, our sample325

complexity has a dependency on H4 which is induced by the error propagation in the estimation of326

the importance weighting ratios. Specifically, the error of minimizing the loss function at early steps,327

e.g h = 1 will propagate to later steps e.g h = H . We conjecture a dependency on H2 is possible328

by considering a comprehensive loss function includes the whole horizon instead of step-wise loss329

functions which require step by step optimization. Second, as discussed before, we believe that a330

variance-aware sample complexity is possible through a more careful analysis. Besides, considering331

a reward-dependent sample complexity is also an interesting direction. For example, consider a332

MDP with sparse rewards where only one state-action has non-zero reward, then a better sample333

complexity may be possible by just focusing on state-action pairs with non-zero rewards. Another334

future direction is to apply the coarse distribution estimator on more scenarios. In our work, the335

coarse distribution estimator plays an important role throughout the algorithm. And we believe this336

type of estimator has potentiality in other different settings and tasks.337
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A Algorithms425

In this section, we provide the scheme of three algorithms we proposed in this work.1426

1. CAESAR : Main algorithm for multiple-policy evaluation.427

2. IDES : Algorithm for estimating the importance ratio.428

3. MARCH : Algorithm for coarse estimation of all deterministic policies.429

Algorithm 1 Coarse and Adaptive Estimation with Approximate Reweighing for Multi-Policy
Evaluation (CAESAR )

Input: Accuracy ϵ, confidence δ, target policies {πk}Kk=1

Coarsely estimate visitation distributions of all deterministic policies and get {d̂π : π ∈ Πdet}.
Solve the approximate optimization problem (6) and get {α̂∗

π : π ∈ Πdet}.
Implement Algorithm 2 with data splitting and get MoM estimators {ŵπk}Kk=1.
Build the final performance estimator {V̂ πk

1 }Kk=1 by (9).
Output: {V̂ πk

1 }Kk=1.

Algorithm 2 Importance Density Estimation (IDES )

Input: Horizon H , accuracy ϵ, target policy π, coarse estimator {d̂πh}Hh=1 , {µ̂h}Hh=1 and feasible
sets {Dh}Hh=1 where Dh(s, a) = [0, 2d̂πh(s, a)].
Initialize w0

h = 0, h = 1, . . . ,H and assume µ0 = Empty for simple presentation.
for h = 1 to H do

Set the iteration number of optimization, nh = Ch

(
H4

ϵ2

∑
s,a

(d̂π
h(s,a))

2

µ̂h(s,a)
+

(d̂π
h−1(s,a))

2

µ̂h−1(s,a)

)
, where

Ch is a known constant.
for i = 1 to nh do

Sample {sih, aih} from µh and {sih−1, a
i
h−1, s

i′

h} from µh−1.
Calculate gradient g(wi−1

h ),

g(wi−1
h )(s, a) =

wi−1
h (s, a)

µ̂h(s, a)
I(sih = s, aih = a)−

ŵh−1(s
i
h−1, a

i
h−1)

µ̂h−1(sih−1, a
i
h−1)

π(a|s)I(si
′

h = s)

Update wi
h = Projw∈Dh

{wi−1
h − ηihg(w

i−1
h )}.

end for
Output the estimator ŵh = 1∑nh

i=1 i

∑nh

i=1 w
i
h.

end for

Algorithm 3 Multi-policy Approximation via Ratio-based Coarse Handling (MARCH)
Input: Horizon H , accuracy ϵ, policy π.
Coarsely estimate d1 such that distβ(d̂1, d1) ≤ ϵ, where β = 1

H .
for h = 1 to H − 1 do

1. Coarsely estimate µh such that |µ̂h(s, a) − µh(s, a)| ≤ max{ϵ′, c · µh(s, a)}, where ϵ′ =
ϵ

2H2S2A2 and c = β
2 .

2. Sample {sih, aih, sih+1}ni=1 from µh.
3. Estimate dh+1(s, a) by d̂h+1(s, a) =

1
n

∑n
i=1 I(sih+1 = s)ŵh(s

i
h, a

i
h).

end for
Output: {d̂h}Hh=1.

1A fun fact of the names of our three algorithms: Caesar was assassinated in the Ides of March.
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B Proof of theorems and lemmas in Section 4430

B.1 Proof of Lemma 4.1431

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s432

inequality [12], as stated in e.g., [1, 3].433

Lemma B.1 (Simplified Freedman’s inequality). Let X1, ..., XT be a bounded martingale difference434

sequence with |Xℓ| ≤ R. For any δ′ ∈ (0, 1), and η ∈ (0, 1/R), with probability at least 1− δ′,435

T∑
ℓ=1

Xℓ ≤ η

T∑
ℓ=1

Eℓ[X
2
ℓ ] +

log(1/δ′)

η
. (11)

where Eℓ[·] is the conditional expectation2 induced by conditioning on X1, · · · , Xℓ−1.436

Lemma B.2 (Anytime Freedman). Let {Xt}∞t=1 be a bounded martingale difference sequence with437

|Xt| ≤ R for all t ∈ N. For any δ′ ∈ (0, 1), and η ∈ (0, 1/R), there exists a universal constant438

C > 0 such that for all t ∈ N simultaneously with probability at least 1− δ′,439

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ[X
2
ℓ ] +

C log(t/δ′)

η
. (12)

where Eℓ[·] is the conditional expectation induced by conditioning on X1, · · · , Xℓ−1.440

Proof. This result follows from Lemma B.1. Fix a time-index t and define δt =
δ′

12t2 . Lemma B.1441

implies that with probability at least 1− δt,442

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

log(1/δt)

η
.

A union bound implies that with probability at least 1−
∑t

ℓ=1 δt ≥ 1− δ′,443

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

log(12t2/δ′)

η

(i)

≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

C log(t/δ′)

η
.

holds for all t ∈ N. Inequality (i) holds because log(12t2/δ′) = O (log(tδ′)).444

445

Proposition B.3. Let δ′ ∈ (0, 1), β ∈ (0, 1] and Z1, · · · , ZT be an adapted sequence satisfying446

0 ≤ Zℓ ≤ B̃ for all ℓ ∈ N. There is a universal constant C ′ > 0 such that,447

(1− β)

T∑
t=1

Et[Zt]−
2B̃C ′ log(T/δ′)

β
≤

T∑
ℓ=1

Zℓ ≤ (1 + β)

T∑
t=1

Et[Zt] +
2B̃C ′ log(T/δ′)

β

with probability at least 1− 2δ′ simultaneously for all T ∈ N.448

Proof. Consider the martingale difference sequence Xt = Zt −Et[Zt]. Notice that |Xt| ≤ B̃. Using449

the inequality of Lemma B.2 we obtain for all η ∈ (0, 1/B2).450

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ[X
2
ℓ ] +

C log(t/δ′)

η

(i)

≤ 2ηB2
t∑

ℓ=1

Eℓ[Zℓ] +
C log(t/δ′)

η

2We will use this notation to denote conditional expectations throughout this work.
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for all t ∈ N with probability at least 1− δ′. Inequality (i) holds because Et[X
2
t ] ≤ B2E[|Xt|] ≤451

2B2Et[Zt] for all t ∈ N. Setting η = β
2B2 and substituting

∑t
ℓ=1 Xℓ =

∑t
ℓ=1 Zℓ − Eℓ[Zℓ],452

t∑
ℓ=1

Zℓ ≤ (1 + β)

t∑
ℓ=1

Eℓ[Zℓ] +
2B2C log(t/δ′)

β
(13)

with probability at least 1− δ′. Now consider the martingale difference sequence X ′
t = E[Zt]− Zt453

and notice that |X ′
t| ≤ B2. Using the inequality of Lemma B.2 we obtain for all η ∈ (0, 1/B2),454

t∑
ℓ=1

X ′
ℓ ≤ η

t∑
ℓ=1

Eℓ[(X
′
ℓ)

2] +
C log(t/δ′)

η

≤ 2ηB2
t∑

ℓ=1

Eℓ[Zℓ] +
C log(t/δ′)

η

Settingη = β
2B2 and substituting

∑t
ℓ=1 X

′
ℓ =

∑t
ℓ=1 E[Zℓ]− Zℓ we have,455

(1− β)

t∑
ℓ=1

E[Zℓ] ≤
t∑

ℓ=1

Zℓ +
2B2C log(t/δ′)

β
(14)

with probability at least 1− δ′. Combining Equations 13 and 14 and using a union bound yields the456

desired result.457

458

Proposition B.3 can be used to show,459

Let the Zℓ be i.i.d. samples Zℓ
i.i.d.∼ Ber(p). The empirical mean estimator, p̂t = 1

t

∑t
ℓ=1 Zℓ satisfies,460

(1− β)p− 2C ′ log(t/δ′)

βt
≤ p̂t ≤ (1 + β)p+

2C ′ log(t/δ′)

βt

with probability at least 1− 2δ′ for all t ∈ N where C ′ > 0 is a (known) universal constant. Given461

ϵ > 0 set t ≥ 8C′ log(t/δ′)
βϵ (notice the dependence of t on the RHS - this can be achieved by setting462

t ≥ C log(C/βϵδ′)
βϵ for some (known) universal constant C > 0).463

In this case observe that,464

(1− β)p− ϵ/8 ≤ p̂t ≤ (1 + β)p+ ϵ/8

Setting β = 1/8,465

7p/8− ϵ/8 ≤ p̂t ≤ 9p/8 + ϵ/8

so that,466

p− p̂t ≤ p/8 + ϵ/8.

and467

p̂t − p ≤ p/8 + ϵ/8.

and therefore |p̂t − p| ≤ p/8 + ϵ/8 ≤ 2max(p/8, ϵ/8) = max(p/4, ϵ/4).468

B.2 Derivation of the optimal sampling distribution (4)469

Our performance estimator is,470

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

dπ
k

h (sih, a
i
h)

µh(sih, a
i
h)

r(sih, a
i
h), k ∈ [K].
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Denote
∑H

h=1
dπk

h (sih,a
i
h)

µh(sih,a
i
h)

rh(s
i
h, a

i
h) by Xi. And for simplicity, denote E(s1,a1)∼µ1,...,(sH ,aH)∼µH

by471

Eµ, the variance of our estimator is bounded by,472

Eµ[X
2
i ] = Eµ

( H∑
h=1

dπ
k

h (sih, a
i
h)

µh(sih, a
i
h)

rh(s
i
h, a

i
h)

)2


≤ Eµ

H ·
H∑

h=1

(
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

rh(s
i
h, a

i
h)

)2


≤ Eµ

H ·
H∑

h=1

(
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

)2


= H ·
H∑

h=1

E
dπk

h

[
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

]
.

The first inequality holds by Cauchy − Schwarz inequality. The second inequality holds due to the473

assumption rh(s, a) ∈ [0, 1].474

Denote
∑H

h=1 Edπk

h

[
dπk

h (sih,a
i
h)

µh(sih,a
i
h)

]
by ρµ,k. Applying Bernstein’s inequality, we have that with475

probability at least 1− δ and n samples, it holds,476

|V̂ πk

1 − V πk

1 | ≤
√

2Hρµ,k log(1/δ)

n
+

2Mk log(1/δ)

3n

where Mk = maxs1,a1,...,sH ,aH

∑H
h=1

dπk

h (sh,ah)
µh(sh,ah)

rh(sh, ah).477

To achieve an ϵ accuracy of evaluation, we need samples,478

nµ,k ≤ 8Hρµ,k log(1/δ)

ϵ2
+

4Mk log(1/δ)

3ϵ

Take the union bound over all target policies,479

nµ ≤
8Hmaxk∈[K] ρµ,k log(K/δ)

ϵ2
+

4M log(K/δ)

3ϵ

where M = maxk∈[K] Mk.480

We define the optimal sampling distribution µ∗ as the one minimizing the higher order sample481

complexity,482

µ∗
h = argmin

µh

max
k∈[K]

E
dπk

h (s,a)

[
dπ

k

h (s, a)

µh(s, a)

]

= argmin
µh

max
k∈[K]

∑
s,a

(
dπ

k

h (s, a)
)2

µh(s, a)
, h = 1, . . . ,H.

B.3 An example of unrealizable optimal sampling distribution483

Here, we give an example to illustrate the assertation that in some cases, the optimal sampling484

distribution cannot be realized by any policy.485

Consider such a MDP with two layers, in the first layer, there is a single initial state s1,1, in the second486

layer, there are two states s2,1, s2,2. The transition function at state s1,1 is identical for any action,487

P(s2,1|s1,1, a) = P(s2,2|s1,1, a) = 1
2 . Hence, for any policy, the only realizable state visitation488

distribution at the second layer is d2(s2,1) = d2(s2,2) =
1
2 .489

Suppose the target policies take K ≥ 2 different actions at state s2,1 while take the same action at490

state s2,2.491
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By solving the optimization problem (4), we have the optimal sampling distribution at the second492

layer,493

µ∗
2(s2,1) =

K2

1 +K2
, µ∗

2(s2,2) =
1

1 +K2
,

which is clearly not realizable by any policy.494

B.4 Proof of Lemma 4.5495

Proof. The gradient of ℓπh(w) is,496

∇w(s,a)ℓ
π
h(w) =

µ̃h(s, a)

µ̂h(s, a)
w(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)
.

Suppose by some SGD algorithm, we can converge to a point ŵh such that the gradient of the loss497

function is less than ϵ,498

∥∇ℓπh(ŵh)∥1 =
∑
s,a

∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣ ≤ ϵ.

By decomposing,499 ∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)− dπh(s, a) + dπh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
≥
∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)− dπh(s, a)

∣∣∣∣−
∣∣∣∣∣∣dπh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
=

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣
−

∣∣∣∣∣∣
∑
s′,a′

P (s|s′, a′)π(a|s)
(
dπh−1(s

′, a′)− µ̃h−1(s
′, a′)

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)

)∣∣∣∣∣∣
Hence, we have,500 ∑

s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣
≤ ϵ+

∑
s,a

∣∣∣∣∣∣
∑
s′,a′

P (s|s′, a′)π(a|s)
(
dπh−1(s

′, a′)− µ̃h−1(s
′, a′)

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)

)∣∣∣∣∣∣
≤ ϵ+

∑
s′,a′

∣∣∣∣dπh−1(s
′, a′)− µ̃h−1(s

′, a′)
ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣
≤ 2ϵ

501

B.5 Proof of Lemma 4.6502

Proof. The minimum w∗
h of the loss function ℓπh(w) is w∗

h(s, a) =
dπ
h(s,a)

µ̃h(s,a)
µ̂h(s, a) if ŵh−1 achieves503

optimum. By the property of the coarse distribution estimator, we have,504

w∗
h(s, a) =

dπh(s, a)

µ̃h(s, a)
µ̂h(s, a) ≤

4
3 d̂

π
h(s, a)

4
5 µ̂h(s, a)

µ̂h(s, a) =
5

3
d̂πh(s, a)
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We can define a feasible set for the optimization problem, i.e. wh(s, a) ∈ [0, Dh(s, a)], Dh(s, a) =505

2d̂πh(s, a).506

Next, we analyse the variance of the stochastic gradient. We denote the stochastic gradient as gh(w),507

{si1, ai1, . . . , siH , aiH} a trajectory sampled from µ̃h and {sj1, a
j
1, . . . , s

j
H , ajH} a trajectory sampled508

from µ̃h−1.509

gh(w)(s, a) =
w(s, a)

µ̂h(s, a)
I(sih = s, aih = a)−

ŵh−1(s
j
h−1, a

j
h−1)

µ̂h−1(s
j
h−1, a

j
h−1)

π(a|s)I(sjh = s)

the variance bound is,510

V[gh(w)] ≤ E[∥gh(w)∥2] ≤
∑
s,a

µ̃h(s, a)

(
w(s, a)

µ̂h(s, a)

)2

+ µ̃h−1(s, a)

(
ŵh−1(s, a)

µ̂h−1(s, a)

)2

≤ O

(∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)
+

(d̂πh−1(s, a))
2

µ̂h−1(s, a)

)
(15)

the last inequality is due to the bounded feasible set for w and the property of coarse distribution511

estimator µ̃h(s, a) ≤ 4
3 µ̂h(s, a).512

Based on the error propagation lemma 4.5, if we can achieve ∥∇ℓπh(ŵh)∥1 ≤ ϵ
4H2 from step h = 1513

to step h = H , then we have,514 ∑
s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣ ≤ ϵ

4H
,∀h = 1, 2, . . . ,H

which can enable us to build the final estimator of the performance of policy π with at most error ϵ.515

By the property of smoothness, to achieve ∥∇ℓπh(ŵh)∥1 ≤ ϵ
4H2 , we need to achieve ℓπh(ŵh) −516

ℓπh(w
∗
h) ≤ ϵ2

32ξH4 where ξ is the smoothness factor, because,517

∥∇ℓπh(ŵh)∥21 ≤ 2ξ(ℓπh(ŵh)− ℓπh(w
∗
h)) ≤

ϵ2

16H4
.

Lemma B.4. For a λ−strongly convex loss function L(w) satisfying ∥w∗∥ ≤ D for some known D,518

there exists a stochastic gradient descent algorithm that can output ŵ after T iterations such that,519

E[L(ŵ)− L(w∗)] ≤ 2G2

λ(T + 1)
,

where G2 is the variance bound of the stochastic gradient.520

Invoke the convergence rate for strongly-convex and smooth loss functions, i.e. Lemma B.4, we have521

that the number of samples needed to achieve ℓπh(ŵh)− ℓπh(w
∗
h) ≤ ϵ2

32ξH4 is,522

n = O

(
ξ

γ

H4G2

ϵ2

)
We have shown in Section 4.3 that ξ

γ ≤ 5
3 , this nice property helps us to get rid of the undesired523

ratio of the smoothness factor and the strongly-convexity factor, i.e. maxs,a µ(s,a)
mins,a µ(s,a) of the original loss524

function (7) which can be extremely bad. Replacing G2 by our variance bound (15), we have,525

nπ
h = O

(
H4

ϵ2

(∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)
+

(d̂πh−1(s, a))
2

µ̂h−1(s, a)

))
For each step h, we need the above number of trajectories, sum over h, we have the total sample526

complexity,527

nπ = O

(
H4

ϵ2

H∑
h=1

∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)

)
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To evaluate K policies, we need trajectories,528

n = O

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂h(s, a)

)
.

529

B.6 Proof of Lemma 4.7530

Proof. By Markov’s inequality, we have,531

P(|µ̂− µ| ≥ ϵ) ≤ E[|µ̂− µ|]
ϵ

≤ 1

4
.

The event that |µ̂MoM − µ| > ϵ belongs to the event where more than half estimators µ̂i are outside532

of the desired range |µ̂i − µ| > ϵ, hence, we have,533

P(|µ̂MoM − µ| > ϵ) ≤ P(
N∑
i=1

I(|µ̂i − µ| > ϵ) ≥ N

2
)

Denote I(|µ̂i − µ| > ϵ) by Zi and E[Zi] = p,534

P(|µ̂MoM − µ| > ϵ) = P(
N∑
i=1

Zi ≥
N

2
)

= P(
1

N

N∑
i=1

(Zi − p) ≥ 1

2
− p)

≤ e−2N( 1
2−p)2

≤ e−
N
8

the first inequality holds by Hoeffding’s inequality and the second inequality holds due to p ≤ 1
4 . Set535

δ = e−
N
8 , we have, with N = O(log(1/δ)), with probability at least 1− δ, it holds |µ̂MoM − µ| ≤536

ϵ.537

B.7 Proof of Theorem 4.8538

Here, we explain how Theorem 4.8 is derived. We first show how the Median-of-Means (MoM)539

estimator and data splitting technique can conveniently convert Lemma 4.6 to a version holds with540

high probability.541

For step h, Algorithm 2 can output a solution ŵh such that E[ℓπh(ŵh)− ℓπh(w
∗
h)] ≤ ϵ2

32ξH4 . We can542

apply Lemma 4.7 on our algorithm which means that we can run the algorithm for N = O (log(1/δ))543

times. Hence, we will get N solutions {ŵh,1, ŵh,2, . . . , ŵh,N}. Set ŵh,MoM as the solution such544

that ℓπh(ŵh,MoM ) = Median(ℓπh(ŵh,1), ℓ
π
h(ŵh,2), . . . , ℓ

π
h(ŵh,N )). Based on Lemma 4.7, we have545

that with probability at least 1− δ, it holds ℓπh(ŵh,MoM )− ℓπh(w
∗
h) ≤ ϵ2

32ξH4 . With a little abuse of546

notation, we just denote ŵh,MoM by ŵh in the following content.547

Now we are ready to estimate the total expected rewards of target policies, With the importance548

weighting ratio estimator ŵh(s,a)
µ̂h(s,a)

from Algorithm 2, we can estimate the performance of policy πk,549

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

ŵπk

h (sih, a
i
h)

µ̂h(sih, a
i
h)

rh(s
i
h, a

i
h) (16)

where {sih, aih}ni=1 is sampled from µ̃h.550

Lemma B.5. With samples n = Õ

(
H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
, we have with proba-551

bility at least 1− δ, |V̂ πk

1 − V πk

1 | ≤ ϵ
2 , k ∈ [K].552
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Proof. First, we can decompose the error |V̂ πk

1 − V πk

1 | = |V̂ πk

1 − E[V̂ πk

1 ] + E[V̂ πk

1 ] − V πk

1 | ≤553

|V̂ πk

1 − E[V̂ πk

1 ]| + |E[V̂ πk

1 ] − V πk

1 |. Then, by Bernstein’s inequality, with samples n =554

Õ

(
H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
, we have, |V̂ πk

1 − E[V̂ πk

1 ]| ≤ ϵ
4 . Based Lemma 4.6,555

we have, |E[V̂ πk

1 ]− V πk

1 | ≤ ϵ
4 .556

Remember that in Section 4.1, we ignore those states and actions with low estimated visitation557

distribution for each target policy which induce at most ϵ
2 error. Combined with Lemma B.5, our558

estimator V̂ πk

1 finally achieves that with probability at least 1− δ, |V̂ πk

1 − V πk

1 | ≤ ϵ, k ∈ [K].559

And for sample complexity, in our algorithm, we need to sample data in three pro-560

cedures. First, for the coarse estimation of the visitation distribution, we need561

Õ( 1ϵ ) samples. Second, to estimate the importance-weighting ratio, we need samples562

Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
. Last, to build the final performance estimator (9), we563

need samples Õ
(

H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
. Therefore, the total trajectories needed,564

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
.

Moreover, notice that,565

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂h(s, a)
≤ max

k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ∗
h(s, a)

≤ 25

16

∑
s,a

(dπh(s, a))
2

µ∗
h(s, a)

(17)

where µ∗
h is the optimal solution of the optimization problem (5), the first inequality holds due to µ̂h566

is the minimum of the approximate optimization problem (6) and the second inequality holds due567

to d̂πh(s, a) ≤ 5
4d

π
h(s, a). Based on (17), we can substitute the coarse distribution estimator in the568

sample complexity bound by the exact one,569

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
.
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C Lower order coarse estimation570

In this section, we first provide our algorithm MARCH (see Algorithm 3) for coarse estimation of all571

the deterministic policies and then conduct an analysis on its sample complexity.572

MARCH is based on the algorithm EULER proposed by Zanette and Brunskill [31].573

Lemma C.1 (Theorem 3.3 in Jin et al. [17]). Based on EULER, with sample complexity574

Õ(poly(H,S,A)
ϵ ), we can construct a policy cover which generates a dataset with the distribution µ575

such that, with probability 1− δ, if dmax
h (s) ≥ ϵ

SA , then,576

µh(s, a) ≥
dmax
h (s, a)

2HSA
(18)

where dmax
h (s) = maxπ d

π
h(s), d

max
h (s, a) = maxπ d

π
h(s, a).577

With this dataset, we estimate the visitation distribution of deterministic policies by step-to-step578

importance weighting,579

d̂h+1(s, a) =
1

n

n∑
i=1

I(sih+1 = s)ŵh(s
i
h, a

i
h)

where {sih, aih, sih+1}ni=1 are sampled from µ and ŵh(s, a) =
d̂h(s,a)
µ̂h(s,a)

.580

We state that MARCH can coarsely estimate the visitation distributions of all the deterministic581

policies by just paying a lower-order sample complexity which is formalized in the following582

theorem.583

Theorem C.2. Implement Algorithm 3 with the number of trajectories n = Õ(poly(H,S,A)
ϵ ), with584

probability at least 1− δ, it holds that for any deterministic policy π,585

|d̂πh(s, a), dπh(s, a)| ≤ max{ϵ, d
π
h(s, a)

4
}, ∀s ∈ S, a ∈ A, h ∈ [H]

where d̂π is the distribution estimator.586

Proof. Our analysis is based a notion of distance defined in the following.587

Definition C.1 (β−distance). For x, y ≥ 0, we define the β−distance as,588

distβ(x, y) = min
α∈[ 1β ,β]

|αx− y|.

Correspondingly, for x, y ∈ Rn,589

distβ(x, y) =

n∑
i=1

distβ(xi, yi).

Based on its definition, we show in the following lemma that β−distance has some properties.590

Lemma C.3. The β−distance possesses the following properties, (x, y, z, γ ≥ 0)591

1. distβ(γx, γy) = γdistβ(x, y) (19)

2. distβ(x1 + x2, y1 + y2) ≤ distβ(x1, y1) + distβ(x2, y2) (20)

3. distβ1·β2(x, z) ≤ distβ1(x, y) · β2 + distβ2(y, z) (21)

Proof. See Appendix D.1.592

The following lemma shows that if we can control the β−distance between x̂, x, then we can show x̂593

achieves the coarse estimation of x.594

Lemma C.4. Suppose dist1+β(x, y) ≤ ϵ, then it holds that,595

|x− y| ≤ βy + (1 +
β

1 + β
)ϵ ≤ 2max{(1 + β

1 + β
)ϵ, βy}

19



Proof. See Appendix D.2.596

The logic of the analysis is to show the β−distance between d̂h and dh can be bounded at each layer597

by induction. Then by Lemma C.4, we show {d̂h}Hh=1 achieves coarse estimation.598

Suppose at layer h, we have d̂h such that dist(1+β)h(d̂h, dh) < ϵh where β = 1
H . For notation599

simplicity, we omit the superscript π. The analysis holds for any policy.600

We use importance weighting to estimate d̂h+1,601

d̂h+1(s, a) =
1

n

n∑
i=1

I(sih+1 = s)π(a|s)ŵh(s
i
h, a

i
h)

where ŵh(s, a) =
d̂h(s,a)
µ̂h(s,a)

.602

We also denote,603

dh+1(s, a) = E(sh,ah,sh+1)∼µh
[I(sh+1 = s)ŵh(sh, ah)]

By (21) in Lemma C.3, we have,604

dist(1+β)h+2

(d̂h+1, dh+1) ≤ dist(1+β)(d̂h+1, dh+1)(1 + β)h+1︸ ︷︷ ︸
A

+ dist(1+β)h+1

(dh+1, dh+1)︸ ︷︷ ︸
B

(22)

Next, we show how we can bound these two terms (A) and (B). Note that for (s, h) where605

dmax
h (s) < ϵ

SA , the induced β−distance error is at most ϵ. Therefore, we can just discuss state-action606

pairs which satisfy Lemma C.1.607

Bound of (A) We first show the following lemma tells us that the importance weighting is upper-608

bounded.609

Lemma C.5. Based on the definition of µ, the importance weighting is upper bounded,610

wh(s, a) =
dh(s, a)

µh(s, a)
≤ 2HSA

dh(s, a)

dmax
h (s, a)

≤ 2HSA.

Hence, we can clip ŵh(s, a) at 2HSA such that ŵh(s, a) ≤ 2HSA.611

Let’s define the random variable Zh+1(s, a) = I(sh+1 = s)ŵh(sh, ah), then d̂h+1(s, a) =612
1
n

∑n
i=1 Z

i
h+1(s, a). Since ŵh(sh, ah) is bounded by Lemma C.5, we have,613

V[Zh+1(s, a)] ≤ E[Zh+1(s, a)
2] ≤ 2HSAE[Zh+1(s, a)]

By Berstein′s inequality, we have with probability at least 1− δ,614

|d̂h+1(s, a)− E[d̂h+1(s, a)]| ≤
√

2V[Zh+1(s, a)] log(1/δ)

n
+

2HSA log(1/δ)

3n

≤

√
4HSAE[d̂h+1(s, a)] log(1/δ)

n
+

2HSA log(1/δ)

3n

to achieve the estimation accuracy |d̂h+1(s, a) − E[d̂h+1(s, a)]| ≤ max{ϵ, c · E[d̂h+1(s, a)]}, we615

need samples n = Õ
(
HSA
c·ϵ
)
.616

Based on the above analysis, we can achieve,617

|d̂h+1(s, a), dh+1(s, a)| ≤ max{ϵ′, β
2
dh+1(s, a)}

at the cost of samples Õ
(

HSA
βϵ′

)
.618
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We now show dist1+β(d̂h+1, dh+1) ≤ SAϵ′. We discuss it in two cases,619

1. |d̂h+1(s, a), dh+1(s, a)| ≤ ϵ′ (23)

2. |d̂h+1(s, a), dh+1(s, a)| ≤
β

2
dh+1(s, a) (24)

For those (s, a) which satisfies (24), since [1 − β
2 , 1 + β

2 ] ∈ [ 1
1+β , 1 + β], by the definition of620

β−distance, we have,621

dist1+β(d̂h+1(s, a), dh+1(s, a)) = 0 (25)

For other (s, a) which satisfies (23), we have,622

dist1+β(d̂h+1(s, a), dh+1(s, a)) ≤ |d̂h+1(s, a), dh+1(s, a)| ≤ ϵ′

Since there are at most SA state-action pairs, the error in the second case is at most SAϵ′. Combine623

these two cases, we have,624

dist1+β(d̂h+1, dh+1) ≤ SAϵ′.

By setting ϵ = ϵ′

SA , we have,625

(A) = dist1+β(d̂h+1, dh+1)(1 + β)h+1 ≤ (1 + β)h+1ϵ, (26)

and the sample complexity is Õ
(

(HSA)2

ϵ

)
.626

Bound of (B) Next we show how to bound term (B). Denote µh(s, a)
d̂h(s,a)
µ̂h(s,a)

by d̃h(s, a), we627

have,628

(B) = dist(1+β)h+1

(dh+1, dh+1)

=
∑
s,a

dist(1+β)h+1

(dh+1(s, a), dh+1(s, a))

=
∑
s,a

dist(1+β)h+1

(
∑
s′,a′

Pπ
h (s, a|s′, a′)d̃h(s′, a′),

∑
s′,a′

Pπ
h (s, a|s′, a′)dh(s′, a′))

≤
∑
s,a

∑
s′,a′

dist(1+β)h+1

(Pπ
h (s, a|s′, a′)d̃h(s′, a′), Pπ

h (s, a|s′, a′)dh(s′, a′))

=
∑
s,a

∑
s′,a′

Pπ
h (s, a|s′, a′)dist(1+β)h+1

(d̃h(s
′, a′), dh(s

′, a′))

= dist(1+β)h+1

(d̃h, dh)

where the first two equality holds by definition, the inequality holds by (20) in Lemma C.3, the third629

equality holds by (19) in Lemma C.3 and the last one holds by
∑

s,a P
π
h (s, a|s′, a′) = 1.630

Now we analyse dist(1+β)h+1

(d̃h, dh).631

dist(1+β)h+1

(d̃h, dh) =
∑
s,a

µh(s, a)dist
(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
).

By coarse estimation, we have |µ̂h(s, a)− µh(s, a)| ≤ max{ϵ′, c · µh(s, a)}. Similarly, we discuss632

it in two cases,633

1. |µ̂h(s, a), µh(s, a)| ≤ ϵ′ (27)
2. |µ̂h(s, a), µh(s, a)| ≤ c · µh(s, a) (28)

For those (s, a) which satisfies (27), by Lemma C.5, we have,634

dist(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
) ≤ | d̂h(s, a)

µ̂h(s, a)
− dh(s, a)

µh(s, a)
| ≤ 2HSA.
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Hence, we have,635

dist(1+β)h+1

(d̃h(s, a), dh(s, a)) = µh(s, a)dist
(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
)

≤ 2HSAµh(s, a) ≤
2HSAϵ′

c

where the last inequality holds by c · µh(s, a) ≤ ϵ′.636

Next, For those (s, a) which satisfies (28), we have,637

(1− c)
1

µ̂h(s, a)
≤ 1

µh(s, a)
≤ (1 + c)

1

µ̂h(s, a)
.

Set c = β
2 , since [1− β

2 , 1 +
β
2 ] ∈ [ 1

1+β , 1 + β], by definition of β−distance, we have,638

dist(1+β)(
1

µ̂h(s, a)
,

1

µh(s, a)
) = 0. (29)

And we assume by induction that dist(1+β)h(d̂h(s, a), dh(s, a)) ≤ ϵh, together with (29) we have,639

dist(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
) ≤ ϵh. (30)

Combine the results of two cases together, we have,640

(B) = dist(1+β)h+1

(d̃h, dh) ≤ ϵh + 4H2S2A2ϵ′

Set ϵ′ = ϵ
4H2S2A2 , we have,641

(B) ≤ ϵh + ϵ (31)

at the cost of samples Õ(H
3S2A2

ϵ ).642

Now we are ready to show the bound of β−distance at layer h+ 1. Plug (26)(31) into (22), we have,643

dist(1+β)h+2

(d̂h+1, dh+1) ≤ dist(1+β)(d̂h+1, dh+1)(1 + β)h+1 + dist(1+β)h+1

(dh+1, dh+1)

≤ (1 + β)h+1ϵ+ ϵ+ ϵh

Start from dist(1+β)(d̂1, d1) ≤ ϵ, we have,644

dist(1+β)2h−1

(d̂h, dh) ≤ hϵ+ ϵ

h−1∑
l=1

(1 + β)2h (32)

Remember that β = 1
H and due to (1 + 1

H )h ≤ e (h ≤ H), we have,645

diste
2

(d̂h, dh) ≤ H(1 + e2)ϵ (33)

Recall Lemma C.4, and based on (33), we have,646

|d̂h(s, a)− dh(s, a)| ≤ 2max{H(1 + e2)ϵ, (e2 − 1)dh(s, a)}.

By just paying multiplicative constant, we can adjust the constant above to meet our needs, i.e. in647

Theorem C.2.648
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D Proof of lemmas in Section C649

D.1 Proof of Lemma C.3650

Proof. 1. The first property is trivial.651

distβ(γx, γy) = min
α∈[ 1β ,β]

|αγx− γy|

= min
α∈[ 1β ,β]

γ|αx− y|

= γdistβ(x, y)

2. Let αi be such that,652

dist1+β(xi, yi) = |αixi − yi|, i = 1, 2.

Notice that α3 = α1 · x1

x1+x2
+ α2 · x2

x1+x2
satisfies α3 ∈ [α1, α2] ∈ [ 1β , β] and α3(x1 + x2) =653

α1x1 + α2x2, therefore,654

distβ(x1 + x2, y1 + y2) = min
α∈[ 1β ,β]

|α(x1 + x2)− y1 − y2|

≤ |α3(x1 + x2)− y1 − y2|
= |α1x1 + α2x2 − y1 − y2|
≤ |α1x1 − y1|+ |α2x2 − y2|
= distβ(x1, y1) + distβ(x2, y2)

The first inequality holds due to the definition of β−distance. The second inequality is the triangle655

inequality.656

3. We prove the third property through a case-by-case discussion.657

(1). x
β1β2

≤ z ≤ β1β2x. In this case, the result is trivial, since distβ1β2(x, z) = 0 and β−distance is658

always non-negative.659

(2). β1β2x < z. If y ≤ x, then,660

distβ1β2(x, z) ≤ distβ2(x, z) ≤ distβ2(y, z).

We are done.661

If x < y ≤ β1x, then distβ1 (x, y) = 0, and z > β1β2x ≥ β2y, hence,662

distβ2(y, z) = z − β2y ≥ z − β1β2x = distβ1β2(x, z).

We are done.663

If y > β1x, z ∈ [ y
β2
, β2y], then,664

distβ1(x, y)β2 + distβ2(y, z) = β2(y − β1x)

≥ z − β1β2x

= distβ1β2(x, z).

We are done.665

If y > β1x, z /∈ [ y
β2
, β2y], then,666

distβ1(x, y)β2 + distβ2(y, z) ≥ β2(y − β1x)

≥ z − β1β2x

= distβ1β2(x, z).

We are done.667

(3). z < x
β1β2

. A symmetric analysis can be done by replacing β1, β2 by 1
β1
, 1
β2

which gives the668

result,669

distβ1β2(x, z) ≤ distβ1(x, y)
1

β2
+ distβ2(y, z)
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Since β2 ≥ 1 and distβ1(x, y) ≥ 0, we have distβ1(x, y) 1
β2

≤ distβ1(x, y)β2, hence,670

distβ1β2(x, z) ≤ distβ1(x, y)β2 + distβ2(y, z),

which concludes the proof.671

D.2 Proof of Lemma C.4672

Proof. We prove the lemma through a case-by-case study.673

(1). x ≤ y. If dist1+β(x, y) = 0, then x(1 + β) ≥ y ≥ x, therefore,674

|x− y| = y − x ≤ βx ≤ βy.

If dist1+β(x, y) > 0, then dist1+β(x, y) = y − (1 + β)x, therefore,675

|x− y| = y − x = dist1+β(x, y) + βx ≤ ϵ+ βx ≤ ϵ+ βy

(2). y < x. If dist1+β(x, y) = 0, then x
1+β ≤ y < x, therefore,676

|x− y| = x− y ≤ x− x

1 + β
≤ y(1 + β)(1− 1

1 + β
) = βy.

If dist1+β(x, y) > 0, then y < x
1+β ≤ x and dist1+β(x, y) = x

1+β − y. Moreover, since677

dist1+β(x, y) ≤ ϵ, we have x
1+β ≤ ϵ+ y. Therefore,678

|x− y| = x− y

= dist1+β(x, y) + (1− 1

1 + β
)x

= dist1+β(x, y) + β
x

1 + β

≤ ϵ+
β

1 + β
ϵ+ βy

= (1 +
β

1 + β
)ϵ+ βy.

Combine the results above together, we have,679

|x− y| ≤ βy + (1 +
β

1 + β
)ϵ ≤ 2max{(1 + β

1 + β
)ϵ, βy}.

680
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E Discussions681

E.1 Comparison with existing results682

Compare our result with the one achieved by Dann et al. [5] as described in (1). A significant issue683

with the result by Dann et al. [5] is the presence of the unfavorable 1
dmax(s) , which can induce an684

undesirable dependency on K.685

To illustrate this, consider an example of an MDP with two layers: a single initial state s1,1 in the686

first layer and two terminal states in the second layer s2,1, s2,2. The transition function is same for all687

actions, i.e. P (s2,1|s1,1, a) = p and p is sufficiently small. Agents only receive rewards at state s2,1,688

regardless of the actions they take. Hence, to evaluate the performance of a policy under this MDP, it689

is sufficient to consider only the second layer. Now, suppose we have K target policies to evaluate,690

where each policy takes different actions at state s1,1 but the same action at any state in the second691

layer. Since the transition function at state s1,1 is same for any action, the visitation distribution692

at state s2,1 of all target policies is identical. Given that p is sufficiently small, the probability of693

reaching s2,1 is P[s2,1 ∈ K2] = 1− (1− p)K ≈ pK. According to the result (1) by Dann et al. [5],694

the sample complexity in this scenario depends on K. In contrast, our result demonstrates sample695

complexity without dependency on K.696

E.2 Policy identification697

In this section, we discuss on the application of CAESAR to policy identification problem, its698

instance-dependent sample complexity and some intuitions related to the existing gap-dependent699

results.700

We first provide a simple algorithm that utilizes CAESAR to identify an ϵ−optimal policy. The701

core idea behind the algorithm is we can use CAESAR to evaluate all candidate policies up to an702

accuracy, then we can eliminate those policies with low estimated performance. By decreasing the703

evaluation error gradually, we can finally identify a near-optimal policy with high probability.704

For notation simplicity, fixing the high-probability factor, we denote the sample complexity of705

CAESAR by Θ(Π)
γ2 , where Π is the set of policies to be evaluated and γ is the estimation error.706

Algorithm 4 Policy Identification based on CAESAR

Input: Alg CAESAR , optimal factor ϵ, candidate policy set Π.
for i = 1 to ⌈log2(4/ϵ)⌉ do

1. Run CAESAR to evaluate the performance of policies in Π up to accuracy γ = 1
2i .

2. Eliminate πi if ∃πj ∈ Π, V̂ πj

1 − V̂ πi

1 > 2γ, update Π.
end for
Output: Randomly pick πo from Π.

Theorem E.1. Implement Algorithm 4, we have that, with probability at least 1− δ, πo is ϵ−optimal,707

i.e.,708

V ∗
1 − V πo

1 ≤ ϵ.

And the instance-dependent sample complexity is Õ(maxγ≥ϵ
Θ(Πγ)

γ2 ), where Πγ = {π : V ∗
1 − V π

1 ≤709

8γ}.710

Proof. On the one hand, based on the elimination rule in the algorithm, by running CAESAR with711

the evaluation error γ, the optimal policy π∗ will not be eliminated with probability at least 1− δ.712

Since maxπ∈Π V̂ π
1 − V̂ π∗

1 ≤ V ∗
1 + γ − (V π∗

1 − γ) ≤ 2γ.713

On the other hand, if V ∗
1 − V πi

1 > 4γ, then πi will be eliminated with probability at least 1 − δ.714

Since maxπ∈Π V̂ π
1 − V̂ πi

1 > V ∗
1 − γ − (V πi

1 + γ) > 2γ.715

Therefore, by running Algorithm 4, the final policy set is not empty and for any policy π in this set, it716

holds, V ∗
1 − V π

1 ≤ ϵ with probability at least 1− δ.717
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Next, we analyse the sample complexity of Algorithm 4. Based on above analysis, within every718

iteration of the algorithm, we have a policy set containing 8γ−optimal policies, and we use CAESAR719

to evaluate the performance of these policies up to γ accuracy. By Theorem 4.8, the sample complexity720

is Θ(Πγ)
γ2 . Therefore, the overall sample complexity is,721 ∑

γ

Θ(Πγ)

γ2
≤ Õ(max

γ≥ϵ

Θ(Πγ)

γ2
).

722

This result is quite interesting since it provides another perspective beyond the existing gap-dependent723

results for policy identification. And these two results have some intuitive relations that may be of724

interest.725

Roughly speaking, to identify an ϵ−optimal policy for an MDP, the gap-dependent regret is described726

as,727

O(
∑
h,s,a

H logK

gaph(s, a)
)

where gaph(s, a) = V ∗
h (s)−Q∗

h(s, a).728

The value gap gaph(s, a) quantifies how sub-optimal the action a is at state s. If the gap is small, it729

is difficult to distinguish and eliminate the sub-optimal action. At the same time, smaller gaps mean730

that there are more policies with similar performance to the optimal policy, i.e. the policy set Πγ is731

larger. Both our result and gap-dependent result can capture this intuition. We conjecture there exists732

a quantitative relationship between these two perspectives.733

An interesting proposition of Theorem E.1 is to apply the same algorithm to the multi-reward734

setting. A similar instance-dependent sample complexity can be achieved Õ(maxγ≥ϵ
Θ(ΠR

γ )

γ2 ) with735

the difference that ΠR
γ contains policies which is 8γ−optimal for at least one reward function. This736

sample complexity captures the intrinsic difficulty of the problem by how similar the near-optimal737

policies under different rewards are which is consistent with the intuition.738
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