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Abstract—Multi-object rearrangement is a crucial skill for
service robots, and commonsense reasoning is frequently needed
in this process. However, achieving commonsense arrangements
requires knowledge about objects, which is hard to transfer to
robots. Large language models (LL.Ms) are one potential source of
this knowledge, but they do not naively capture information about
plausible physical arrangements of the world. We propose LLM-
GROP, which uses prompting to extract commonsense knowledge
about semantically valid object configurations from an LLM
and instantiates them with a task and meotion planner in order
to generalize to varying scene geometry. LLM-GROP allows
us to go from natural-language commands to human-aligned
object rearrangement in varied environments. Based on human
evaluations, our approach achieves the highest rating while
outperforming competitive baselines in terms of success rate
while maintaining comparable cumulative action costs. Finally,
we demonstrate a practical implementation of LLM-GROP on
a mobile manipulator in real-world scenarios. Supplementary
materials are available at: https://sites.google.com/view/llm-grop

I. INTRODUCTION

Multi-object rearrangement is a critical skill for service
robots to complete everyday tasks, such as setting tables, orga-
nizing bookshelves, and loading dishwashers [34, 137]]. These
tasks demand robots exhibit both manipulation and navigation
capabilities. For example, a robot tasked with setting a dinner
table might need to retrieve tableware objects like a fork
or a knife from different locations and place them onto a
table surrounded by chairs, as shown in Fig. [T} To complete
the task, the robot needs to correctly position the tableware
objects in semantically meaningful configurations (e.g., a fork
is typically on the left of a knife) and efficiently navigate
indoors while avoiding obstacles like chairs or humans whose
locations are unknown in advance.

A variety of mobile manipulation systems have been devel-
oped for object rearrangement tasks [[13} 128l |36l [15) [14} 22] |6}
35]]. Most of those systems require explicit instructions, such
as arranging similar colored items in a line or placing them in
a specific shape on a table [13| [15| (14} |6, [35) 23]]. However,
user requests in the real world tend to be underspecified:
there can be many different ways to set a table that are
not equally preferred. How does a robot figure out a fork
should be placed on the left of a plate and a knife on
the right? Considerable commonsense knowledge is needed.
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Fig. 1: A mobile manipulator is assigned the task of setting a table in a
dining domain. The manipulator needs to arrange several tableware objects,
including a knife, a fork, a plate, a cup mat, and a mug. These objects are
available on the other tables, and there are also randomly generated obstacles
(i.e., the red chair) that are not included in the pre-built map beforehand. The
robot needs to compute feasible and efficient plans for rearranging the objects
on the target table using both navigation and manipulation behaviors.
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Recent results have shown large language models (LLMs)
like GPT3 [4] and ChatGPT [30] capture a great deal of
this common sense knowledge [25]. In the past, researchers
have equipped mobile manipulators with semantic information
using machine learning methods [28} 127, 36]. Those methods
require collecting training data, which limits their applicability
to robots working on complex service tasks.

To equip robot planning methods with common sense for
object rearrangement, we introduce LLM-GROP, standing
for Large Language Model for Grounded RObot Task and
Motion Planning, our approach that leverages commonsense
knowledge for planning to complete object rearrangement
tasks. LLM-GROP first uses an LLM to generate symbolic
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spatial relationships between objects, e.g., a fork and a knife
are placed on the left and right respectively. The spatial
relationships then can be grounded to different geometric
spatial relationships whose feasibility levels are evaluated by a
motion planning system, e.g., placing objects in some areas of
a table can be easier than the others. Finally, the feasibility and
efficiency of different task-motion plans are optimized towards
maximizing long-term utility, i.e., seeking the best trade-off
between motion feasibility and task-completion efficiency.

We have applied LLM-GROP to a dining room, where a
mobile manipulator must set a table according to a user’s
instructions. A set of tableware objects are provided to the
robot, where the robot’s task is to compute a tabletop con-
figuration of those objects that comply with common sense,
and compute a task-motion plan to realize the configuration.
To evaluate the performance of our approach, we had users
rate different place settings to get a subjective evaluation. We
observed improvements in user satisfaction from LLM-GROP
compared with existing object rearrangement methods, while
maintaining similar or lower cumulative action costs. Finally,
LLM-GROP was demonstrated on a real robot.

II. RELATED WORK

We first introduce the object rearrangement domain, then
discuss methods for tabletop object arrangement that mostly
rely on supervised learning methods, and finally summarize
research on using large language models for planning.

A. Object Rearrangement

Rearranging objects is a critical task for service robots,
and much research has focused on moving objects from one
location to another and placing them in a new position.
Examples include the Habitat Rearrangement Challenge [34]]
and the AI2-THOR Rearrangement Challenge [37]]. There is
rich literature on object rearrangement in robotics [[13} [15} [14}
6, 35, 23} 39]. A common assumption in those methods is
that a goal arrangement is part of the input, and the robot
knows the exact desired positions of objects. ALFRED [32]
proposed a language-based multi-step object rearrangement
task, for which a number of solutions have been proposed that
combine high-level skills [2} 29]], and which have recently been
extended to use LLMs as input [18]. However, these operate
at a very coarse, discrete level, instead of making motion-
level and placement decisions, and thus can’t make granular
decisions about common-sense object arrangements.

By contrast, our work accepts underspecified instructions
from humans, such as setting a dinner table with a few pro-
vided tableware objects. LLM-GROP has the capability to do
common sense object rearrangement by extracting knowledge
from LLMs, and operates both on a high level and on making
motion-level placement decisions.

B. Predicting Complex Object Arrangements

Object arrangement is a task that involves arranging items
on a tabletop to achieve a specific functional, semantically

valid goal configuration. This task requires not only the calcu-
lation of object positions but also adherence to common sense,
such as placing forks to the left and knives to the right when
setting a table. Previous studies in this area, such as [28| 21,
27, 36], focused on predicting complex object arrangements
based on vague instructions. For instance, StructFormer [26]
is a transformer-based neural network for arranging objects
into semantically meaningful structures based on natural-
language instructions. By comparison, our approach LLM-
GROP utilizes an LLM for commonsense acquisition to avoid
the need of demonstration data for computing object positions.
Additionally, we optimize the feasibility and efficiency of
plans for placing tableware objects.

There is recent research for predicting complex object
arrangement using web-scale diffusion models [21]. Their
approach, called DALL-E-Bot, enables a robot to generate
images based on a text description using DALL-E [31], and
accordingly arrange objects in a tabletop scenario. Similar
to DALL-E-Bot, LLM-GROP achieves zero-shot performance
using pre-trained models, but it is not restricted to a single top-
down view of a table. In addition, we consider the uncertainty
in manipulation and navigation, and optimize efficiency and
feasibility in planning.

C. Robot Planning with Large Language Models

Many LLMs have been developed in recent years, such
as BERT [8|], GPT-3 [4], ChatGPT [30], CodeX [5]], and
OPT [38]]. These LLMs can encode a large amount of
common sense [25] and have been applied to robot task
planning [20, [16} [1} 17} 33} [9} [24]]. For instance, the work of
Huang et. al. showed that LLMs can be used for task planning
in household domains by iteratively augmenting prompts [16].
SayCan is another approach that enabled robot planning with
affordance functions to account for action feasibility, where the
service requests are specified in natural language (e.g., “make
breakfast”) [1]. Compared with those methods, LLM-GROP
optimizes both feasibility and efficiency while computing
semantically valid geometric configurations.

III. THE LLM-GROP APPROACH

The objective of this task is to rearrange multiple tableware
objects, which are initially scattered at different locations,
into a tabletop configuration that is semantically valid and
aligns with common sense. The robot is provided with prior
knowledge about table shapes and locations, and equipped
with skills of loading and unloading tableware objects. There
are dynamic obstacles, e.g., chairs around tables, that can
only be sensed at planning time. We consider uncertainty in
navigation and manipulation behaviors. For instance, the robot
can fail in navigation (at planning or execution time) when
its goal is too close to tables or chairs, and it can fail in
manipulation when it is not close enough to the target position.

In this paper, we develop LLM-GROP that leverages LLMs
to facilitate a mobile manipulator completing object rearrange-
ment tasks. LLM-GROP consists of two key components,
LLM for generating symbolic spatial relationships (Sec.
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Fig. 2: LLM-GROP takes service requests from humans for setting tables
and produces a task-motion plan that the robot can execute. LLM-GROP is
comprised of two key components: the LLM and the Task and Motion Planner.
The LLM is responsible for creating both symbolic and geometric spatial
relationships between the tableware objects. This provides the necessary
context for the robot to understand how the objects should be arranged on the
table. The Task and Motion Planner generates the optimal plan for the robot
to execute based on the information provided by the LLM.

and geometric spatial relationships (Sec. [lII-B)) between ob-
jects, and TAMP for computing optimal task-motion plan

(Sec. [II-C)), as shown in Fig. [2|
A. Generating Symbolic Spatial Relationships

LLMs are used to extract common sense knowledge re-
garding symbolic spatial relationships among objects placed
on a table. This is accomplished through the utilization of a
template-based prompt:

Template 1: The goal is to set a dining table with
objects. The symbolic spatial relationship between
objects includes [spatial relationships]. [examples].
What is a typical way of positioning [objects] on a
table? [notes].
where [spatial relationships] includes a few spatial relation-
ships, such as to the left of and on top of. In presence
of [examples], the prompting becomes few-shot; when no
examples are provided, it is simplified to zero-shot prompting.
In practice, few-shot prompts can ensure that the LLM’s
response follows a predefined format, though more prompt
engineering efforts are needed. [objects] refers to the objects
to be placed on the table, such as a plate, a fork, and knife. To
control the LLM’s output, [notes] can be added, such as the
example “Each action should be on a separate line starting
with ‘Place’. The answer cannot include other objects”. Please
refer to Sec. [VI]in Appendix for more technical details.

B. Generating Geometric Spatial Relationships

After determining the symbolic spatial relationships be-
tween objects in Sec. we move on to generate their
geometric configurations, where we use the following LLM
template.

Template 2: [object A] is placed [spatial relation-

ship] [object B]. How many centimeters [spatial re-
lationship] [object B] should [object A] be placed?

For instance, when we use Template 2 to generate prompt
“A dinner plate is placed to the left of a knife. How many
centimeters to the left of the water cup should the bread plate
be placed?”, GPT-3 produces the output “Generally, the dinner
knife should be placed about 5-7 centimeters to the right of
the dinner plate.”

To determine the positions of objects, we first choose a co-
ordinate origin. This origin could be an object that has a clear
spatial relationship to the tabletop and is located centrally. A
dinner plate is a good example of such an object. We then
use the recommended distances and the spatial relationships
between the objects to determine the coordinates of the other
objects. Specifically, we can calculate the coordinates of an
object by adding or subtracting the recommended distances
in the horizontal and vertical directions, respectively, from the
coordinates of the coordinate origin. The LLM-guided position
for the ith object is denoted as (z°,y"), where i € N. Please
refer to Sec. in Appendix for more technical details.

C. Computing Task-Motion Plans

After identifying feasible object configurations on the
tabletop in Steps 1 and 2, the next step is to place the objects
on the tabletop based on one of object configuration sequences.
At the task level, the robot must decide the sequence of object
placement and how to approach the table. For example, if
a bread is on top of a plate, the robot must first place the
plate and then the bread. The robot must also determine how
to approach the table, such as from which side of the table.
Once the task plan is determined, the robot must compute
2D navigation goals (denoted as loc) at the motion level
that connect the task and motion levels. Subsequently, the
robot plans motion trajectories for navigation and manipulation
behaviors.

In the presence of dynamic obstacles, not all navigation
goals (loc) are equally preferred. For instance, it might be
preferable for the robot to position itself close to an object
for placement rather than standing at a distance and extending
its reach. A recent approach called GROP [39] was developed
for computing the optimal navigation goal [oc, which enabled
the task-motion plan with the maximal utility for placing each
object in terms of feasibility and efficiency given an object
configuration (:v;,yj), where 0 < j < M. Therefore, for
different groups of object configurations, we use GROP to
compute the maximal utility value of task-motion plans and
select the best one for execution. Fig. 3] shows one task-
motion plan generated using LLM-GROP for a four-object
rearrangement task.

IV. EXPERIMENTS

In this section, we evaluate the performance of LLM-GROP
using the task of rearranging tableware objects. The robot
needs to compute semantically valid tabletop arrangements,
plan to efficiently rearrange the objects, and realize the plan via
navigation and manipulation behaviors. Please see Sec. [VIII
in Appendix for the experiment setup.



1. Goto(fork),
E Task: Set the table using ‘ Pickup(fork)

bread plate, fork, knife, bread

mEEYY
_E e

‘ o

5. Goto(bread_plate),
Pickup(bread_plate)

[ |—= ] |H. ‘ |_= ‘
HT w g .
- | ® wm L9 ? -
T =" et e
2. Goto(table), 3. Goto(knife), 4. Goto(table),
Place(fork, table) Pickup(knife) Place(knife, table)

8. Goto(table),
Place(bread,
bread_plate)

6. Goto(table),
Place(bread_plate,
table)

7. Goto(bread),
Pickup(bread)

Fig. 3: An illustrative example of LLM-GROP showing the robot navigation trajectories (dashed lines) as applied to the task of “set the table with a bread
plate, a fork, a knife, and a bread.” LLM-GROP is able to adapt to complex environments, using commonsense extracted from GPT-3 to generate efficient
(i.e., minimize the overall navigation cost) and feasible (i.e., select an available side of the table to unload) pick-and-place motion plans for the robot.

Baselines: LLM-GROP is evaluated by comparing its per-
formance to three baselines, where the first baseline is the
weakest.

o Task Planning with Random Arrangement (TPRA): This
baseline uses a task planner to sequence navigation and
manipulation behaviors, while it randomly selects stand-
ing positions next to the target table and randomly places
objects in no-collision positions on the table.

o LLM-based Arrangement and Task Planning (LATP): It
can predict object arrangements using LLMs and perform
task planning. It uniformly samples standing positions
around the table for manipulating objects.

e GROP [39]: It considers plan efficiency and feasibility
for task-motion planning, and lacks the capability of
computing semantically valid arrangements.

LLM-GROP vs. Baselines: Fig. ] shows the key findings of
our experiments, which compares the performance of LLM-
GROP to the three other baseline approaches. The x-axis
indicates the time each method takes to complete a single task,
while the y-axis indicates the corresponding user rating (see
Sec. [[X] in Appendix for the rating guidelines). The results
demonstrate that our LLM-GROP achieves the highest user
rating and the shortest execution time compared to the other
approaches. While GROP proves to be as efficient as our
approach, it receives a significantly lower rating score. By
contrast, TPRA and LATP both receive lower user ratings
than our LLM-GROP. They also display poor efficiency. This
is because they lack the navigation capabilities to efficiently
navigate through complex environments. For instance, when
their navigation goals are located within an obstacle area,
they struggle to adjust their trajectory, leading to longer task
completion times. More quantitative results are presented in
Sec. [X]in Appendix.

In addition, we fully implemented and tested LLM-GROP
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Fig. 4: Overall performance of LLM-GROP as compared to three baselines
based on mean values and standard errors of user ratings and robot execution
time for all tableware object arrangement tasks.

on real robot hardware (Sec. [XI] in Appendix).

V. CONCLUSION AND FUTURE WORK

To summarize, we propose LLM-GROP, which demon-
strates how we can extract semantic information from LLMs
and use it as a way to make commonsense, semantically valid
decisions about object placements as a part of a task and
motion planner - letting us execute multi-step tasks in complex
environments in response to natural-language commands. In
the future, we may take more information from methods like
MOM [7]], in order to perform grasping and manipulation of
fully unknown objects in unknown scenes, and expand to a
wider set of placement problems.
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APPENDIX

VI. HANDLING LOGICAL ERRORS FOR SYMBOLIC
SPATIAL RELATIONSHIPS GENERATION

LLMs are generally reliable in demonstrating common
sense, but there may be times when they produce contradictory
results. To prevent logical errors, a logical reasoning-based
approach has been developed to evaluate the consistency of
generated candidates with explicit symbolic constraints. This
approach is implemented on answer set programming (ASP),
which is a declarative programming language that expresses
a problem as a set of logical rules and constraints [11]. ASP
enables recursive reasoning, where rules and constraints can
be defined in terms of other rules and constraints, providing a
modular approach to problem-solving [19]. ASP is particularly
useful for determining whether sets of rules and constraints are
true or false in a given context.

The approach involves defining spatial relationships, their
transitions, and rules for detecting conflicts. These rules
are created by human experts and serve to ensure that the
generated context is logical and feasible. One such rule is
:— below(X,Y),right (X,Y), which states that object
X cannot be both “below” and “to the right of”” object Y at the
same time. This rule ensures that the resulting arrangement
of objects is physically possible. An instance of identifying a
logical error is provided. For example, an LLM may generate
instructions for arranging objects as follows:

1) Place fruit bowl in the center of table.

2) Place butter knife above and to the right of fruit bowl.
3) Place dinner fork to the left of butter knife.

4) Place dinner knife to the right of butter knife.

5) Place fruit bowl to the right of dinner fork.

6) Place water cup below and to the left of dinner knife.

There are logical inconsistencies in the italic lines: Steps
2 and 3 suggest placing the fruit bowl below the dinner fork,
while Step 5 suggests placing the fruit bowl to the right of the
dinner fork. This contradicts the established rule and results
in no feasible solutions.

VII. ADAPTIVE SAMPLING FOR GEOMETRIC SPATIAL
RELATIONSHIPS GENERATION

Solely relying on the response of the LLMs is not practical
as they do not account for object attributes such as shape and
size, including tables constraints. To address this limitation,
we have designed an adaptive sampling-based method that
incorporates object attributes after obtaining the recommended
object positions. Specifically, our approach involves sequenc-
ing the sampling of each object’s position using a 2D Gaussian
sampling technique [3]], with (2% y%) as the mean vector,
and the covariance matrix describing the probability density
function’s shape.

The resulting distribution is an ellipse centered at (z%,y*)
with the major and minor axes determined by the covariance
matrix. However, we do not blindly accept all of the sampling
results; instead, we apply multiple rules to determine their
acceptability, inspired by rejection sampling [12]. These rules

TABLE I: Objects that are involved in our object rearrangement tasks for
evaluation, where tasks 1-5 include three objects, tasks 6 and 7 include four
objects, and task 8 includes five objects.

Task #ID  Objects
1 Dinner Plate, Dinner Fork, Dinner Knife
2 Bread Plate, Water Cup, Bread
3 Mug, Bread Plate, Mug Mat
4 Fruit Bowl, Mug, Strawberry
5 Mug, Dinner plate, Mug Lid
6 Dinner Plate, Dinner Fork, Mug, Mug Lid
7 Dinner Plate, Dinner Fork, Dinner Knife, Strawberry
8 Dinner Plate, Dinner Fork, Dinner Knife, Mug, Mug Lid

TABLE II: Hypermeters of OpenAl’'s GPT-3 engines in Our Experiment

Parameter | Value || Parameter | Value
Model | text-davinci-003 || Temperature | 00
Top p ‘ 1.0 ‘ ‘ Maximum length ‘ 512

Frequency penalty ‘ 0.0 H Presence penalty ‘ 0.0

include verifying that the sampled geometric positions adhere
to symbolic relationships at a high level, avoiding object
overlap, and ensuring that objects remain within the table
boundary. For example, if the bounding box of an object
position falls outside the detected table bounds, we reject
that sample. The bounding box of objects and the table are
computed based on their respective properties, such as size or
shape. After multiple rounds of sampling, we can obtain M
object configuration sequences.

VIII. EXPERIMENTAL SETUP

A mobile manipulator is assigned the task of setting a
dinner table using a specific set of objects. In a simulated
environmenﬂ the robot needs to retrieve multiple objects
from various locations and place them on the central table.
Additionally, an obstacle (i.e., a chair) will be randomly placed
around the table. There are eight tasks that involve handling
different objects, as detailed in TABLE[I] We execute each task
20 times using the LLM-GROP system, and after each task
was completed, we capture an image of the table, the chair,
and the objects on the tabletop for later human evaluation. To
carry out our experiments, we used OpenAl’s GPT-3 engines.
Please refer to TABLE [[I] for the specific hyperparameters we
adopted.

We have chosen not to use ChatGPT, a well-known language
LLM, for large-scale experiments due to the unavailability of
its APIs.

IX. RATING CRITERIA

We recruited five graduate students with engineering back-
grounds, three females and two males between the ages of
22 and 30. We designed a five-point rating rule, which is
outlined in Table and tasked the volunteers with scoring

Hmplemented in the Gazebo simulator



TABLE III: Rating guidelines for human raters in the experiments. 1 point
indicates the poorest tableware object arrangement as it suggests that some
objects are missing. Conversely, 5 points represent the best arrangement.

Points  Rating Guidelines

1 Missing critical items compared with the objects listed at the top of
the interface (e.g., dinner plate, dinner fork, dinner knife), making it
hardly possible to complete a meal.

2 All items are present, but the arrangement is poor and major
adjustments are needed to improve the quality to a satisfactory level.

3 All items are present and arranged fairly well, but still there is
significant room to improve its quality.

4 All items are present and arranged neatly, though an experienced
human waiter might want to make minor adjustments to improve.

5 All items are present and arranged very neatly, meeting the aesthetic

standards of an experienced human waiter.
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Fig. 5: Examples of tableware objects rearranged by our LLM-GROP agent
in eight tasks, where the objects used in these tasks can be found in Table m
Our LLM-GROP enables the arrangement of tableware objects to be both
semantically valid.

tableware object rearrangements in images they were shown.
We generated 640 images from the four methods (three
baselines and LMM-GROP) for eight tasks and each image
required evaluation from all volunteers, resulting in a total
sample size of 3200 images. The volunteers were shown one
image at a time on a websiteﬂ that we provided, and they
scored each image from 1 to 5 based on the rating rules. We
ensured that the rating was rigorous by using a website to
collect rating results, thereby minimizing any potential biases
that could arise from further interaction with the volunteers
once they entered the website.

X. INDIVIDUAL TASKS

Fig. ] provides several examples of various tasks that
are rearranged by our agent. Fig. [6] presents the individual
comparison results of each method for individual tasks. The
z-axis corresponds to Task #ID in Table [l while the y-axis
represents the average user rating for each method. Our LLM-
GROP demonstrates superior performance over the baselines
for each task. Specifically, tasks 1 to 5 receive slightly higher
scores than tasks 6 and 8. This is reasonable because the latter

2The link for the questionnaire-based experiment results evaluation is http:
/1150.158.148.22/

two tasks require the robot to manipulate more objects, posing
additional challenges for the robot.

XI. REAL ROBOT DEMONSTRATION

We tested our LLM-GROP approach on a real mobile robot
platform to demonstrate its effectiveness in rearranging a set
of tableware objects, as shown in Fig. [7]] The set included a
dinner plate, a dinner fork, a dinner knife, a water cup, and
a strawberry. The robot started on the left table and is tasked
with rearranging the objects on the right table in the left image.
After successfully completing the task, the robot successfully
rearranged the objects as shown in the right image. The
final object placements were semantically valid, such as the
fork being on the left of the dinner plate and the strawberry
being on the plate. These outcomes effectively demonstrate the
effectiveness of our approach in performing real-world tasks
using a robotic platform. We have generated a demo video that
has been uploaded as part of the supplementary materials.


http://150.158.148.22/
http://150.158.148.22/
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Fig. 6: User ratings of individual object rearrangement tasks, with the x-axis representing the task and the y-axis representing the user rating score. It can be
observed that LLM-GROP consistently performs the best compared to baselines. Tasks 1-5 involve three objects, tasks 6 and 7 involve four objects, and task
8 involves five objects. The numerical value displayed on each bar indicates the mean rating for the corresponding task.
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Fig. 7: We demonstrate LLM-GROP on real robot hardware. The task is to serve a human with a knife, a fork, a cup, a plate, and a strawberry. The robot
computes a plan that successfully avoids chairs and the human around the table, while being able to place the target objects in plausible physical positions.
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