

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DCFOLD: EFFICIENT PROTEIN STRUCTURE GENERATION WITH SINGLE FORWARD PASS

Anonymous authors

Paper under double-blind review

ABSTRACT

AlphaFold3 introduces a diffusion-based architecture that elevates protein structure prediction to all-atom resolution with improved accuracy. This state-of-the-art performance has established AlphaFold3 as a foundation model for diverse generation and design tasks. However, its iterative design substantially increases inference time, limiting practical deployment in downstream settings such as virtual screening and protein design. We propose DCFold, a single-step generative model that attains AlphaFold3-level accuracy. Our Dual Consistency training framework, which incorporates a novel Temporal Geodesic Matching (TGM) scheduler, enables DCFold to achieve a **15x** acceleration in inference while maintaining predictive fidelity. We validate its effectiveness across both structure prediction and binder design benchmarks.

1 INTRODUCTION

Proteins realize their biological functions through intricate three-dimensional conformations, and predicting such structures has long been a central challenge in computational biology. AlphaFold2 marked a breakthrough by combining multiple sequence alignments with geometric constraints in an end-to-end framework, achieving near-experimental accuracy (Jumper et al., 2021). Building on this foundation, AlphaFold3 reformulates the architecture into an all-atom framework and introduces a diffusion-based structure module, thereby enabling the generative modeling of not only proteins but also a wide spectrum of biomolecular complexes (Abramson et al., 2024). Consequently, this series of models are widely adopted as foundation models for downstream applications such as virtual screening and protein design (Alhumaid & Tawfik, 2024; Baselious et al., 2024; Jendrusch et al., 2025; Frank et al., 2024; Bennett et al., 2023). However, AlphaFold3’s architecture, which relies on iterative Pairformer recycling and multi-step diffusion (Ho et al., 2020), requires substantially greater computational overhead than AlphaFold2, restricting its accessibility in downstream workflows.

More specifically, we observe that on long sequences, the execution time of AlphaFold3 is measured in minutes, which severely limits its usability in downstream tasks that demand high throughput. For instance, small-scale laboratory screening often requires predictions for thousands of candidates (Li et al., 2023), and when extended to large public databases, this number grows to an infeasible scale; protein design tasks typically involve comparable computational demand. Previous work such as BindCraft has attempted to mitigate this by manually reducing the number of recycling iterations on simpler structures, thus trading accuracy for efficiency (Pacesa et al., 2024). However, such compromises inevitably degrade predictive performance. Moreover, in hallucination-based approaches, the multistep iterative refinement process hinders feasible gradient backpropagation,

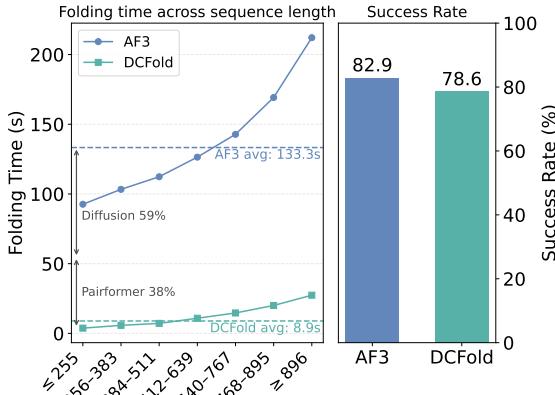


Figure 1: The acceleration ratio and generative quality of DCFold on Posebusters V2.

054 ultimately preventing the broader community from adopting AlphaFold3 as a foundation model for
 055 diverse applications.

056 To accelerate the diffusion process, recent advances in generative modeling have explored the use of
 057 high-order solvers and consistency models. While high-order solvers improve efficiency, they rarely
 058 reduce the number of sampling steps below 10 (Lu et al., 2022; Zhao et al., 2023). Consistency models,
 059 on the other hand, have achieved remarkable success in image generation and benefited from
 060 refined training schedules (Song et al., 2023; Song & Dhariwal, 2023; Lu & Song, 2024). However,
 061 directly applying them to AlphaFold3 faces two major challenges: (i) standard schedules assume
 062 fixed-dimensional data and pair steps by a constant Euclidean distance, which fails to accommodate
 063 variable protein sequence lengths and leads to unstable training dynamics (details in Section 4.4);
 064 and (ii) AlphaFold3’s architecture also relies on iterative Pairformer recycles, introducing an additional
 065 bottleneck that conventional diffusion consistency methods cannot address.

066 To address these challenges, we propose DCFold, a single-step folding model trained under Dual
 067 Consistency framework that attains AlphaFold3-level accuracy. We mitigate the inference bottle-
 068 neck by jointly enforcing Pairformer Consistency and Diffusion Consistency, thereby eliminating
 069 both sources of iterative overhead. Crucially, we address the fundamental challenge of diffusion
 070 acceleration through rigorous theoretical derivations, and subsequently introduce a novel Temporal
 071 Geodesic Matching (TGM) scheduler, which adaptively pairs timesteps in the intrinsic geometric
 072 space of proteins. Together, these innovations preserve the predictive accuracy of AlphaFold3 while
 073 drastically reducing inference costs, enabling one-step predictions that are both efficient and reliable.

074 We extensively validate the effectiveness of DCFold on structure prediction benchmarks, which
 075 provide a rigorous and fair evaluation protocol. Beyond this standard setting, we further assess DC-
 076 Fold in the more practical binder design tasks, where both inference speed and structural accuracy
 077 are critical to this setting.

078 In short, we summarize our contributions as follows:

- 079 • We propose DCFold, an inference-efficient structure prediction model that achieves perfor-
 080 mance and flexibility comparable to state-of-the-art applications. By leveraging the Dual
 081 Consistency framework, DCFold eliminates the iterative overhead inherent in AlphaFold3’s
 082 architecture.
- 083 • We identify the key limitations of conventional consistency model (CM) methods when
 084 applied to variable-length protein sequences, and introduce Temporal Geodesic Matching
 085 (TGM) for a novel consistency schedule that both stabilizes training and yields improved
 086 performance.
- 087 • We evaluate the performance of DCFold across a diverse set of benchmarks and set-
 088 tings. On both Posebusters V2 and Recent PDB, it reaches AlphaFold3-level accuracy
 089 while achieving a notable $15\times$ speedup. Implemented in the binder design pipeline, DC-
 090 Fold demonstrates strong foundational capabilities while employing a lightweight archi-
 091 tecture that ensures feasible gradient propagation. This design significantly improves the
 092 success rate of in silico screening by enabling faster and more reliable candidate evalua-
 093 tion.

094 2 PRELIMINARY

095 Diffusion models have emerged as a powerful class of generative models, achieving state-of-the-
 096 art performance across image, audio, and molecular generation tasks (Ho et al., 2020; Rombach
 097 et al., 2022; Trippe et al., 2022). A key limitation of standard diffusion samplers is their reliance
 098 on dozens to hundreds of function evaluations, which renders inference prohibitively expensive
 099 in high-dimensional settings such as protein folding. To address this bottleneck, recent work has
 100 focused on diffusion acceleration, aiming to distill or redesign the sampling process into far fewer
 101 steps. Among these approaches, *Consistency Models* (CMs) (Song et al., 2023) provide a principled
 102 framework built upon the probability flow ODE (PF-ODE), which establishes a bijective mapping
 103 between the clean data distribution and the noise distribution. CMs introduce a consistency function
 104 $f_\theta(x_t, t)$ that directly maps a noisy sample x_t at time t back to the clean signal x_0 , subject to the
 105 boundary condition $f_\theta(x_0, 0) = x_0$. Training then proceeds by discretizing the PF-ODE into a
 106 curriculum of time intervals t_i , and minimizing a loss that enforces functional consistency across
 107 adjacent timesteps,

$$\mathcal{L}_{\text{CM}} = \mathbb{E} [w(t_i) d(f_\theta(x_{t_{i+1}}, t_{i+1}), f_{\theta-}(\tilde{x}_{t_i}, t_i))], \quad (1)$$

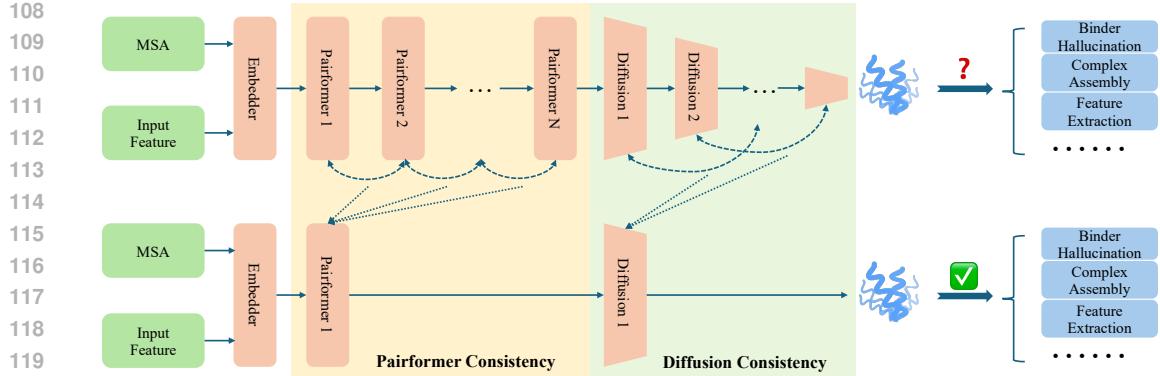


Figure 2: Overview of Dual Consistency framework (top: AlphaFold3; bottom: DCFold).

where $w : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^+$ denotes a positive weighting function, $d(\cdot, \cdot)$ is a metric function, θ^- is an EMA copy of the network, and \hat{x}_{t_i} is obtained by one-step PF-ODE integration. This objective ensures that the model predictions are invariant to the choice of sampling timestep, thereby collapsing multi-step trajectory into a single-step or few-step generator. Building on this foundation, subsequent refinements such as iCT (Song & Dhariwal, 2023), sCM (Lu & Song, 2024), and ECM (Geng et al., 2024), have optimized the weighting functions, discretization schedules, and training methodologies, resulting in substantial improvements in both efficiency and sample quality.

3 METHOD

3.1 OVERVIEW

We introduce DCFold, a high-accuracy single-step predictor. In Section 3.2, we describe the components of the Dual Consistency framework, which enforces consistency across the two major bottlenecks of AlphaFold3. In Section 3.3, we zoom in on the diffusion acceleration challenge and identify the key issue with prior consistency-based methods when training on variable-length sequences within diffusions. To tackle this challenge for complex structure prediction, we propose Temporal Geodesic Matching (TGM), which stabilizes training on the protein sequence modality.

3.2 DUAL CONSISTENCY

We identify the major factors impeding AlphaFold3’s inference efficiency as the iterative diffusion process and Pairformer recycling, as illustrated in Figure 1. To address the first challenge, we investigate the behavior of AlphaFold3 under few-step sampling and find that its failure primarily arises from the sampling procedure itself. The default strategy of injecting extra stochastic noise and enlarging the ODE step size turns out to be detrimental in this regime: the enlarged step size significantly amplifies the bias in ODE predictions. To stabilize performance, we modify the sampler by disabling noise injection (setting the noise factor $\gamma_0 = 0$), fixing the rescaling factor $\lambda = 1$, and normalizing the step size with $\eta = 1$, thereby enabling stable one-step sampling.

The first challenge concerns computational efficiency. After enabling one-step sampling, the Pairformer becomes the critical bottleneck. To tackle this, we introduce **Dual Consistency**, which applies consistency learning to both the diffusion module and the Pairformer.

Stage	Module	$\mathcal{L}_{\text{confidence}}$	$\mathcal{L}_{\text{diffusion}}$	$\mathcal{L}_{\text{pairformer}}$
(i)	Diffusion	10^{-4}	1	\times
(ii)	Pairformer	10^{-4}	\times	1

Table 1: Training stages and the weights of each term.

Diffusion Consistency Although we already have a functional one-step sampler, we aim to maximize its utility. Specifically, we apply consistency distillation to the diffusion module, aligning its single-step performance with that of the multi-step counterpart, which also provides a natural warm-up for the subsequent Pairformer consistency stage. The training objective minimizes the MSE between the outputs of the diffusion module at timestep t and a reference timestep r . Formally, the

162 **Algorithm 1** Temporal Geodesic Matching (TGM)
163 **Require:** Dataset \mathcal{D} , pretrained diffusion model θ , noise distribution $p(t)$, weighting function $w(t)$,
164 training progress $u = \frac{\text{steps}}{\text{max_steps}} \in [0, 1]$
165 1: **while** θ not converged **do**
166 2: Sample $x_0 \sim \mathcal{D}$, $\epsilon \sim \mathcal{N}(0, I)$, $t \sim p(t)$
167 3: $r' \leftarrow \max(r(t, u), 0)$
168 4: $x_t \leftarrow x_0 + t\epsilon$; $x_{r'} \leftarrow x_0 + r'\epsilon$
169 5: $\mathcal{L} \leftarrow w(t) \|f_\theta(x_t, t) - f_{\text{sg}(\theta)}(x_{r'}, r')\|_2^2$ ▷ using the same random seed
170 6: $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}$
171 7: **end while**

173 diffusion consistency loss is
174

$$\mathcal{L}_{\text{diffusion}} = \mathbb{E}_{x, t, r, \epsilon} [w(t) \text{MSE}(f_\theta(x_t, t) - f_{\text{sg}(\theta)}(x_r, r))], \quad (2)$$

175 where f_θ denotes diffusion module parameterized by θ , and $\text{sg}(\theta)$ denotes “stop-gradient” operator.
176 We find $w(t)$ to have negligible effect in experiments and therefore set $w(t) = 1$.
177

178 **Pairformer Consistency** For the most critical bottleneck in AlphaFold3, Pairformer, we observe
179 that the architecture updates internal protein representations iteratively across multiple cycles. While
180 increasing the number of cycles generally improves prediction accuracy, it also scales inference time
181 linearly. Importantly, because each Pairformer cycle depends on the output of the previous one, a
182 single forward pass through the network inherently provides representations corresponding to differ-
183 ent cycle depths. This allows us to assess the model’s progressive refinement of structural accuracy
184 without the need for explicit time sampling as required in diffusion-based denoising processes.
185

186 To exploit this property, we introduce a **cycle consistency loss**. Suppose pairformer runs for N cy-
187 cles (with $N = 4$ in our experiments). After the n -th cycle, the model produces a pair representation
188 z_n and a single representation s_n . We directly adopt the *total transmission error* as the loss function:

$$\mathcal{L}_{\text{pairformer}} = \sum_{i=1}^{N-1} (\text{MSE}(z_i, z_{i+1}) + \text{MSE}(s_i, s_{i+1})). \quad (3)$$

189 Notably, we adopt the weighting strategy from AlphaFold’s supervised MSE loss. In particular,
190 positions corresponding to nucleic acids and small molecules are assigned higher weights than amino
191 acids. This ensures that structurally sensitive residues contribute proportionally to the loss. Let the
192 column vector α denote the per-token weighting coefficient used in AlphaFold3. For the single
193 representations in both Diffusion Consistency and Pairformer Consistency, we directly apply α
194 as the weight. In contrast, for the pair representations in Pairformer, we adopt a multiplicative
195 composition, using $\sqrt{\alpha} \sqrt{\alpha}^\top$ as the weighting matrix, where the square root is applied element-
196 wise.
197

198 We further find that incorporating the confidence loss $\mathcal{L}_{\text{confidence}}$ from AlphaFold3’s confidence head
199 improves training stability, where $\mathcal{L}_{\text{confidence}}$ is defined as:
200

$$\mathcal{L}_{\text{confidence}} = \mathcal{L}_{\text{plddt}} + \mathcal{L}_{\text{pde}} + \mathcal{L}_{\text{resolved}} + \alpha_{\text{pae}} \cdot \mathcal{L}_{\text{pae}},$$

201 where $\alpha_{\text{pae}} = 1$, and the definitions of all loss terms follow AlphaFold3. Consequently, our training
202 procedure can be summarized in two stages: (i) train a one-step sampler, where only the diffusion
203 module is updated, with the training objective given by $\mathcal{L}_{\text{confidence}}$ and $\mathcal{L}_{\text{diffusion}}$; (ii) apply pair-
204 former consistency, where only a 16-block Pairformer is updated, with the training objective given
205 by $\mathcal{L}_{\text{confidence}}$ and $\mathcal{L}_{\text{pairformer}}$. We summarize the weights of them in Table 1.
206

207 3.3 TEMPORAL GEODESIC MATCHING

208 While consistency-based methods have shown promise, directly applying them to complex architec-
209 tures like AlphaFold often results in weight collapse, high training cost, or reliance on task-specific
210 mappings. The core issue lies in scheduling for variable-size outputs such as protein structures.
211 Conventional schedulers pair timesteps (t, r) at fixed Euclidean intervals, producing an ill-posed
212 curriculum: on long sequences, even small Δt triggers drastic distribution shifts that demand unre-
213 alistic predictive leaps, whereas on short sequences the same interval provides only weak signals.
214

216 This mismatch overlooks the non-uniform accumulation of information with data dimensionality,
 217 leading to instability and collapse.

218 To address these limitations, we introduce Temporal Geodesic Matching (TGM), a general and scal-
 219 able distillation framework. TGM explicitly selects training pairs (t, r) such that their geodesic dis-
 220 tance on the temporal information manifold is preserved, thereby offering a principled mechanism
 221 to stabilize training and extend consistency learning to large-scale protein modeling tasks. Unlike
 222 Euclidean-based heuristics, TGM aligns the distillation dynamics with the intrinsic statistical geo-
 223 metry of the diffusion trajectory. By doing so, it ensures stability and fidelity even in high-dimensional
 224 structured output spaces such as protein backbones.

225 We begin by formalizing the diffusion trajectory as a geometric object. Let $p_t(x)_{t \in [0, T]}$ denote the
 226 family of intermediate distributions induced by the forward diffusion process. We interpret it as
 227 a coordinate charting a one-dimensional **temporal information manifold** \mathcal{M}_t , where each point
 228 corresponds to a distribution $p_t(x)$.

229 **Definition 1** We define the temporal metric via the Fisher information with respect to the diffusion
 230 time t , which we refer to as the **temporal Fisher information**, and use it as the Riemannian metric
 231 tensor of \mathcal{M}_t :

$$232 \quad g(t) := \mathcal{I}(t) = \mathbb{E}_{p_t(x)} \left[\left(\frac{\partial}{\partial t} \log p_t(x) \right)^2 \right]. \quad (4)$$

235 **Definition 2** On the manifold where the temporal Fisher information serves as the Riemannian
 236 metric tensor, the **geodesic distance** between two time points t and r is defined as the corresponding
 237 geodesic length:

$$238 \quad d_g(t, r) = \int_r^t \sqrt{\mathcal{I}(\tau)} d\tau. \quad (5)$$

240 Our central thesis is that a stable and efficient distillation process must be grounded in the Kullback-
 241 Leibler (KL) divergence, as this is the canonical metric underlying the variational objective of diffu-
 242 sion models. We motivate the introduction of the Fisher information through the following theorem:

243 **Proposition 1 (Local Metric-KL Equivalence)** For a small step $\Delta t = t - r \geq 0$, the geodesic
 244 distance between neighboring distributions is given by:

$$246 \quad d_g(t, r) = \sqrt{2} D_{\text{KL}}(p_r(x) \| p_t(x))^{1/2} + \mathcal{O}((\Delta t)^3). \quad (6)$$

247 The proof of Proposition 1 is provided in the Appendix A.1. The metric d_g provides a principled
 248 measure of distributional discrepancy along the temporal axis. Building on this, TGM stabilizes
 249 training by enforcing a consistent alignment rule: for a given training progress $u = \frac{\text{steps}}{\text{max.steps}} \in [0, 1]$,
 250 each timestep t is paired with a reference point r at a fixed temporal distance, i.e., $d_g(t, r) = C(u)$,
 251 where $C(u)$ is a monotonically decreasing function. In our experiments, we specify $C(0) = C_0$ as a hyperparameter,
 252 $C(1) = 0$, $C(u) = C_0(1 - u)^\beta$, $\beta > 0$, and approximate $r(t, u) = t - \frac{C_0}{\sqrt{\mathcal{I}(t)}}(1 - u)^\beta$ via one-step Euler method. While it is also feasible to employ higher-order
 253 numerical solvers, we did not observe significant performance gains from doing so. Furthermore,
 254 we provide the analytical form of $\mathcal{I}(t)$:

257 **Proposition 2** For any diffusion model that satisfies the classical setting of $p_t(x|x_0) = \mathcal{N}(x; \mu =$
 258 $\alpha(t)x_0, \sigma^2(t)I)$:

$$259 \quad \mathcal{I}(t) = \mathbb{E}_{x_0 \sim p_{\text{data}}} \left[\frac{\dot{\sigma}(t)}{\sigma(t)} \cdot 2D + \frac{\dot{\alpha}(t)}{\sigma(t)} \|x_0\|^2 \right], \quad (7)$$

261 where D denotes the dimensionality of the vector.

262 This analytical form underscores the universality of TGM. In most generative tasks, data can natu-
 263 rally be represented as fixed-length vectors. Furthermore, when normalized (as in image generation)
 264 or invariant to random rotations (as in protein folding), the $\|x_0\|^2$ term admits a simplification to
 265 $\text{Var}(x_0)$ under the assumption $\mathbb{E}[x_0] = 0$. In our experiments, due to AlphaFold’s adoption of the
 266 EDM framework (Karras et al., 2022), we present here the specific form of $\mathcal{I}(t)$ that is used:

$$268 \quad \mathcal{I}(t) = \frac{2D \cdot p \left(s_{\max}^{1/p} - s_{\min}^{1/p} \right)}{s_{\max}^{1/p} + (1 - t) \left(s_{\min}^{1/p} - s_{\max}^{1/p} \right)}, \quad (8)$$

270
271 Table 2: Posebusters V2 RMSD benchmark results. We report the percentage of predictions with
272 RMSD below different thresholds.

Method	Best (%)				Worst (%)			
	< 1	< 2	< 3	< 5	< 1	< 2	< 3	< 5
AlphaFold3	67.14	82.86	87.14	93.81	45.71	70.00	79.05	87.62
AF3 ODE	51.43	74.77	83.81	92.38	37.62	66.19	75.71	87.62
DCFold (Ours)	58.10	78.57	86.67	94.29	46.67	71.43	80.00	90.48

273
274
275
276
277
278 Table 3: TM-score and Success Rate (SR) on different protein categories in the Homology Recent
279 PDB dataset. Values in parentheses denote the absolute improvement relative to AF3 ODE.

Method	PL-complex		Monomer		PP-complex	
	TM-score	SR (%)	TM-score	SR (%)	TM-score	SR (%)
AF3 ODE	0.815	92.3	0.830	92.9	0.763	87.0
AlphaFold3	0.810 (-0.6)	93.9 (+1.6pp)	0.839 (+1.0)	94.5 (+1.6pp)	0.788 (+3.2)	91.1 (+4.0pp)
DCFold (Ours)	0.824 (+1.2)	94.9 (+2.6pp)	0.850 (+2.3)	95.7 (+2.9pp)	0.800 (+4.8)	92.2 (+5.2pp)

280
281
282
283
284
285
286
287 where the definition of s_{\min} and s_{\max} follow EDM, which are used in AlphaFold3’s diffusion pro-
288 cess to control the noise strength. Here we incorporate the data dimensionality D into the training
289 schedule to balance the differences in learning difficulty across amino acid sequences of varying
290 lengths. Importantly, as the dimensionality increases, the KL divergence between distributions
291 accumulates linearly, causing classical consistency training to exaggerate information disparities for
292 long sequences. And we provide in Algorithm 1 the procedure for applying TGM to the diffusion
293 module.

294 3.4 DOWNSTREAM TASK

295 After ensuring the consistency of AlphaFold3, we find that our method now holds substantial pot-
296 tential for downstream applications. As a representative example, we validate the effectiveness of
297 DCFold in the task of binder design. This task typically requires models to perform large-scale sam-
298 pling, followed by stringent multi-stage filtering to eliminate implausible sequences, leaving only
299 a small subset of viable candidates. Moreover, in binder hallucination-based design frameworks,
300 the network must be fully differentiable and amenable to gradient-based optimization (Paclesa et al.,
301 2024). These properties make DCFold particularly well-suited for this setting, allowing it to fully
302 demonstrate its performance advantages. The experimental details are presented in Section 4.3.

303 4 EXPERIMENT

304 We design our experiments to evaluate both the accuracy and practical utility of DCFold. In Sec-
305 tion 4.1, we evaluate the structural prediction capability of DCFold, showing that DCFold matches
306 or surpasses AlphaFold3 while reducing cost. In Section 4.3, we assess binder hallucination, demon-
307 strating that the reshaped output distribution improves downstream design success. Section 4.4 iso-
308 lates the effect of TGM and shows its advantage over prior consistency schedules. Together, these
309 results highlight the efficiency, stability, and applicability of DCFold across protein modeling tasks.

310 4.1 STRUCTURE PREDICTION

311 In this section, we demonstrate that DCFold retains strong capability for one-step prediction.

312 **Baselines** We compare these AlphaFold3 variants: (i) **AlphaFold3** (Abramson et al., 2024) –
313 The original configuration of AlphaFold3 employs the full set of recycling cycles and diffusion
314 steps, serving as a strong baseline as well as the reference target that DCFold aims to approximate.
315 (ii) **AF3 ODE** – AlphaFold3 configured with a single sampling step and a single recycling cycle,
316 serving as a reference baseline without retraining. (iii) **AF3 TGM** – a partially distilled AlphaFold3
317 variant, which builds upon AF3 ODE by applying only our TGM diffusion consistency distillation
318 without pairformer distillation. This isolates the contribution of TGM to performance under one-
319 step sampling. (iv) **DCFold** – our fully distilled model after applying dual consistency training,

324 which uses only 1 recycle and 1 diffusion denoising step. Both the baseline and the initialization of
 325 DCFold are derived from Protenix, an open-source reimplementation of AlphaFold3. **(v) Protenix-
 326 Mini** – We also include a lightweight variant of Protenix, which reduces the parameter count from
 327 368M to 135M and uses 2-step ODE sampling to lower computational cost.

328 **Data** For training, we use PDB entries released after September 30, 2021, organized following
 329 the Protenix scheme with identical filtering protocols. Evaluation is performed on two benchmarks:
 330 (i) **PoseBusters V2** (Buttenschoen et al., 2024), a curated benchmark of recent high-quality
 331 protein-ligand crystal complexes with drug-like molecules, restricted to post-2021 releases; and (ii) the
 332 **Low Homology Recent PDB dataset** (Jumper et al., 2021; Team et al., 2025), containing numerous
 333 protein and nucleic acid interfaces. Introduced in AlphaFold3, we employ the Protenix open-source
 334 implementation. All entries predating the training cutoff are excluded from evaluation.

335 **Metrics** On Posebusters V2, we evaluate predictions using the RMSD between predicted and ex-
 336 perimental ligand coordinates. For each complex, we report the proportions of generated poses
 337 whose best and worst RMSDs (with respect to the ground-truth structure) fall below the thresholds
 338 of 1, 2, 3, and 5 Å. Ground truth is not used for any filtering, so this does not introduce data leak-
 339 age. These metrics quantify how Dual Consistency reshapes AlphaFold3’s output distribution. On
 340 RecentPDB, we measure backbone accuracy using the TM-score (Biasini et al., 2013), where val-
 341 ues above 0.5 indicate correct folds; the success rate is defined as the proportion of structures with
 342 RMSD < 2 Å; and local accuracy is assessed using IDDT (Mariani et al., 2013), which ranges from
 343 0–100 and reflects residue-level geometric precision.

344 Overall, DCFold achieves accuracy comparable to AlphaFold3 while using only a single recycle
 345 and diffusion step, demonstrating both efficiency and robustness. The results in Table 2, Table 3 and
 346 Figure 3 highlight these key observations:

347 **AlphaFold3 admits single-step generation.** With a proper choice of ODE parameters, the AF3
 348 ODE solver is capable of generating approximately correct protein structures.

349 **DCFold enhances generative performance.** Training with Dual Consistency substantially im-
 350 proves the performance of the AF3 ODE model: across several RMSD thresholds, DCFold ap-
 351 proaches or even matches AlphaFold3, demonstrating that the distilled model effectively recovers
 352 accuracy despite relying on only a single recycle and diffusion step.

353 **DCFold reshapes the distribution of generated structures.** Dual Consistency reshapes the output
 354 distribution of AlphaFold3 by effectively tightening it. This effect is reflected in the improved *worst-*
 355 *case* RMSD, indicating more stable and reliable predictions, while the *best-case* RMSD remains
 356 largely unchanged. Such a redistribution reduces extreme errors and enhances the consistency of
 357 single-step predictions, which is particularly valuable for accelerating downstream scientific work-
 358 flows where both efficiency and reliability are critical.

359 The improvement is especially evident in Success Rate, where DCFold achieves substantially larger
 360 gains than in average TM-score. This observation further supports our claim that DCFold reshapes
 361 the distribution of generated structures. In particular, DCFold demonstrates a stronger ability than
 362 AlphaFold3 to avoid generating implausible biological complexes.

363 **Both components of Dual Consistency are beneficial.** In the IDDT experiments shown in Figure 3,
 364 DCFold delivers accuracy on par with AlphaFold3. We further conduct ablation studies disentan-
 365 gling the effects of Diffusion Consistency and Pairformer Consistency, and find that both compo-
 366 nents contribute complementary gains. Together, these results highlight that Dual Consistency is the
 367 key driver behind the observed improvements.

368 4.2 DIVERSITY AND CONFIDENCE

369 To more comprehensively characterize the performance of DCFold, we conducted an extended
 370 analysis of its structural diversity and predictive confidence on the Posebusters V2 benchmark.

371
 372 **Metrics.** For each test sequence, we sampled five structures and computed all pairwise TM-scores
 373 among these predictions. We report the dataset-level average of these pairwise values as the *Diver-
 374 sity* metric (lower is better). We further compute the mean pLDDT across all sampled structures as
 375 the *Confidence* metric (higher is better).

376 **DCFold maintains strong sample diversity and confidence.** As shown in Table 4, after Dual
 377 Consistency training, DCFold exhibits no substantial deviation from AlphaFold3 in either metric.

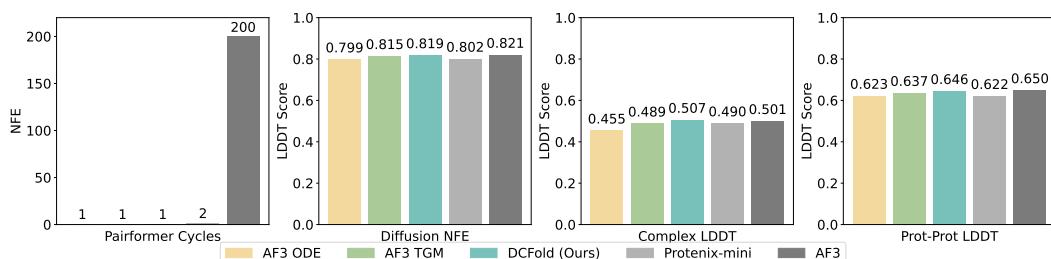


Figure 3: IDDT performance on the Recent PDB dataset.

Table 4: Diversity and confidence metrics on the Posebusters V2 benchmark.

Method	Diversity (↓)	Confidence (↑)
AF3 (5 samples)	0.9646 ± 0.0410	93.97 ± 2.92
AF3 (15 samples)	0.9642 ± 0.0415	93.95 ± 2.93
AF3 (5 seeds \times 1 sample)	0.9697 ± 0.0421	93.90 ± 3.01
DCFold (5 samples)	0.9701 ± 0.0565	94.14 ± 2.97
DCFold (15 samples)	0.9708 ± 0.0567	94.13 ± 2.96
DCFold (5 seeds \times 1 sample)	0.9712 ± 0.0570	94.15 ± 2.97

Diversity shows a slight decrease, whereas confidence displays a slight increase. These trends suggest that enforcing Dual Consistency mildly concentrates the structural distribution while preserving high prediction quality.

To assess the robustness of these observations under increased sampling, we additionally evaluated: (i) 15 samples drawn under a fixed seed, and (ii) 5 random seeds with 1 sample each. Under both settings, neither AlphaFold3 nor DCFold exhibited meaningful improvements in diversity. This behavior aligns with the well-known strong conditionality of AlphaFold-series models, which tends to limit diversity gains from additional sampling alone.

Importantly, DCFold remains compatible with a broad set of diversity-enhancing strategies proposed in prior work, including sampling MSAs, clustering or masking MSA columns, and tuning dropout rates (Wayment-Steele et al., 2024; Wallner, 2023; Kalakoti & Wallner, 2025). Our acceleration approach is orthogonal to these methods, and all such techniques can be directly applied to DCFold with expected diversity improvements comparable to those previously reported for AlphaFold3.

4.3 BINDER HALLUCINATION

After maintaining the consistency between Pairformer and Diffusion, DCFold achieves efficient inference and stable gradient backpropagation with modest computational cost. We focus on the binder hallucination task, which serves as a representative benchmark due to its stringent requirements: it demands a fully differentiable folding model, while the filtering stage eliminates a large fraction of implausible candidates. As a result, success in this setting critically depends on achieving efficient inference. Following the same hallucination strategy and filtering pipeline as BindCraft (details provided in Appendix B.2) (Pacesa et al., 2024), we leverage confidence scores and additional loss terms from DCFold as feedback signals for sequence evaluation. To ensure a fair comparison, folding constraints are consistently computed using the outputs of AlphaFold2, thereby avoiding potential numerical discrepancies in confidence calibration between DCFold and AlphaFold2.

Data We adopt the six representative entries from Cao et al. (2022) as the design targets, namely IL2-R α , TrkA, H3, VirB8, ALK, and LTK. They span multiple functional categories, including receptors, enzymes, transcription factors, and bacterial proteins. They have been widely adopted in prior studies as common benchmarks for design and docking tasks. For each case, we restrict binder length to 55–65 residues and perform a continuous 48-hour hallucination run.

432
 433 Table 5: In silico success rates across six targets for binder design (values shown as physics-based
 434 constraints / model-based constraints).

	IL-2R α	TrkA	H3	VirB8	ALK	LTK	Average
BindCraft	.38/.84	.29/.88	.16/.52	.15/.72	.14/.48	.43/.70	.26/.69
DCFold (Ours)	.37/.79	.31/.84	.23/.71	.21/.85	.12/.54	.47/.93	.29/.78

435
 436
 437
 438
 439
 440 **Metrics** We compute the Success Rate using the same two filters as BindCraft. The model-based
 441 constraint is derived from AlphaFold2’s confidence score, whereas the physics-based constraint re-
 442 lies on physical metrics obtained from Rosetta. Additional details are provided in Appendix B.2.

443 DCFold achieves higher in silico success rates than the AF2-based BindCraft baseline across the
 444 majority of targets. With the incorporation of DCFold, AlphaFold3 can readily support binder hal-
 445 lucination strategies that were previously only feasible within the AlphaFold2 framework. Notably,
 446 DCFold achieves much higher success rates on several targets (e.g., H3, VirB8, and LTK), indi-
 447 cating that our reshaping of AlphaFold3’s output distribution translates into tangible improvements
 448 in downstream design tasks. These findings highlight that DCFold bridges the methodological gap
 449 between AlphaFold2- and AlphaFold3-based pipelines, and unlocks additional performance gains.
 450 [We have added more details about the experimental results in Appendix C.2. Figure 7 visualizes](#)
 451 [representative binder-target complexes, illustrating the interactions between the generated binders](#)
 452 [and their targets.](#)

453 4.4 EMPIRICAL VALIDATION OF TGM

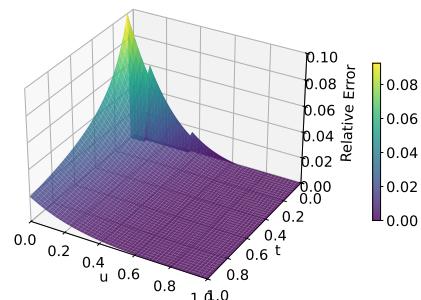
454 We conduct experiments on feasible generic
 455 consistency-model baselines, including CD
 456 (Song et al., 2023), sCM (Lu & Song, 2024),
 457 ECM (Geng et al., 2024), and TGM. Results
 458 on Posebusters V2 are summarized in Table 6.¹
 459 We observe that among all runnable baselines,
 460 a naive implementation of CD leads to training
 461 collapse and severely degrades performance.
 462 Only ECM and TGM are able to enhance
 463 the performance of the diffusion module, with
 464 TGM yielding the largest performance gains. Therefore, in the following experiments, we take ECM
 465 as the representative of prior general consistency models and investigate how TGM exhibits distinct
 466 behavior on protein folding tasks. Detailed hyperparameter settings for each method are provided in
 467 Appendix B.3.

468 We conduct an in-depth analysis of the sources of im-
 469 provement introduced by TGM and present the gra-
 470 dient norm and loss curve throughout training in Figure 5.
 471 We observe that the training dynamics of ECM exhibits
 472 poor smoothness, characterized by distinct staircase-like
 473 patterns, and is accompanied by a large gradient var-
 474 iance. This corroborates our hypothesis in Section 3.3 that
 475 classical consistency algorithms degrade under variable-
 476 length sequences. In contrast, TGM consistently main-
 477 tains balanced gradients, indicating that the learning dif-
 478 ficulty of the network remains at a fixed distance from
 479 its current capacity, effectively counteracting the adverse
 480 effects introduced by variable-length sequences.

481 In addition, we further assess whether the Euler method
 482 employed in TGM introduces excessive numerical error
 483 in Figure 4. We observe that the error is relatively large
 484 during the early stages of training but decreases as train-
 485 ing progresses, leading to more accurate estimates in later stages. Moreover, the error remains con-

486 Table 6: Success Rates of Different Consistency
 487 Models on Posebusters V2.

Method	Time (s/step)	Success rate (%)
CD	18.5	25.6 \downarrow
sCM	38.1	-
ECM	11.6	75.7 \uparrow
TGM	11.6	77.5\uparrow



486 Figure 4: The relative error of the Euler
 487 solver for $r(t, u)$.

488 ¹Due to the substantial computational overhead of sCM, processing long sequences often results in out-of-
 489 memory (OOM) errors, preventing it from participating in a fair comparison.

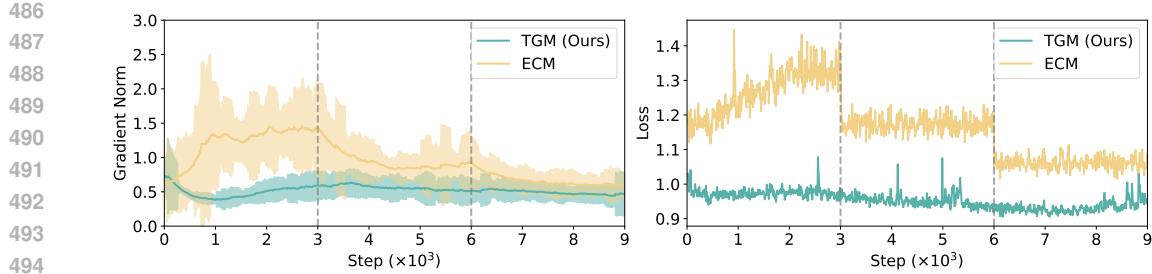


Figure 5: Gradient norm and loss curve during training for ECM and TGM.

sistently low throughout the entire training process, indicating that our approximation is sufficiently reliable. This also explains why employing higher-order algorithms does not yield substantially greater benefits.

5 RELATED WORK

Protein Structure Prediction Protein structure prediction has rapidly advanced with deep learning. Classical methods such as Rosetta (Rohl et al., 2004) and co-evolutionary analysis (Marks et al., 2011; Ovchinnikov et al., 2017) provided key insights but were limited in accuracy and scalability. The advent of deep neural networks enabled models like RaptorX (Xu, 2019) and trRosetta (Yang et al., 2020) to exploit large multiple sequence alignments (MSAs), setting the stage for a decisive breakthrough. AlphaFold2 (Jumper et al., 2021) combined evolutionary information with a novel attention architecture, achieving near-experimental resolution.

Efforts to reduce reliance on MSAs led to models such as ESMFold (Lin et al., 2022), OmegaFold (Wu et al., 2022), and HelixFold-Single (Fang et al., 2022), which leverage protein language models for fast single-sequence prediction, albeit at lower accuracy. Extensions like AlphaFold-Multimer (Evans et al., 2021) generalized AF2 to protein–protein interactions, establishing it as a foundation model. Building on this, AlphaFold3 (Abramson et al., 2024) introduced a diffusion-based structure module and unified biomolecular representation, enabling prediction of protein–ligand, nucleic acid, and heterogeneous complexes. Despite setting new standards in accuracy and scope, AF3’s computational overhead remains a key barrier, driving research into acceleration, distillation, and approximation (Cheng et al., 2022).

Diffusion Acceleration Recent advances in diffusion acceleration fall into three categories: training-free solvers, training-based distillation, and flow-based reformulations. Training-free solvers leverage higher-order integration, predictor–corrector schemes, and adaptive noise schedules to achieve high-quality generation in a few dozen steps, though performance often degrades in the extreme few-step regime (Song et al., 2020; Lu et al., 2022; Zhao et al., 2023). Training-based distillation compresses long diffusion chains into compact generators: progressive distillation iteratively reduces step counts, adversarial variants integrate GAN-style objectives, and Consistency Models (CMs) enforce self-consistency across time to enable single- or few-step generation with strong fidelity (Salimans & Ho, 2022; Sauer et al., 2024; Song et al., 2023). In parallel, flow-based methods reformulate diffusion as velocity fields with straightened trajectories, allowing efficient integration with simple solvers (Liu et al., 2022; Lipman et al., 2022).

6 CONCLUSION

We present DCFold, a dual-consistency distillation framework that compresses AlphaFold3 into a high-fidelity single-step sampler. By jointly enforcing diffusion and Pairformer consistency and introducing the Temporal Geodesic Matching schedule, DCFold achieves stable training on variable-length protein sequences while reducing inference cost by up to **15x**. Experiments on structure prediction and binder design show that DCFold matches or surpasses AlphaFold3 in accuracy and substantially improves downstream usability, bridging AlphaFold2’s efficiency with AlphaFold3’s accuracy to enable scalable, differentiable protein design.

540
541
ETHICS STATEMENT

542 This work focuses on methodological contributions to protein structure prediction and design. All
 543 experiments are conducted on publicly available datasets such as the Protein Data Bank (PDB)
 544 and established benchmarks, without involving human subjects, sensitive personal data, or animal
 545 studies. The proposed methods are intended solely for advancing computational biology research.
 546 Therefore, we do not identify any specific ethical concerns associated with this work.

547
548
REPRODUCIBILITY STATEMENT

549 We disclose all training details in Section 3.2 and Section 3.3, enabling full reproducibility of our
 550 experimental results. Moreover, we will release both the pretrained weights and the source code to
 551 ensure transparency and facilitate future research.

552
553
REFERENCES

554 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
 555 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
 556 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

557 Nada K Alhumaid and Essam A Tawfik. Reliability of alphafold2 models in virtual drug screening:
 558 a focus on selected class a gpcrs. *International Journal of Molecular Sciences*, 25(18):10139,
 559 2024.

560 Fady Baselious, Sebastian Hilscher, Dina Robaa, Cyril Barinka, Mike Schutkowski, and Wolfgang
 561 Sippl. Comparative structure-based virtual screening utilizing optimized alphafold model identi-
 562 fies selective hdac11 inhibitor. *International Journal of Molecular Sciences*, 25(2):1358, 2024.

563 Nathaniel R Bennett, Brian Coventry, Inna Goreshnik, Buwei Huang, Aza Allen, Dionne Vafeados,
 564 Ying Po Peng, Justas Dauparas, Minkyung Baek, Lance Stewart, et al. Improving de novo protein
 565 binder design with deep learning. *Nature Communications*, 14(1):2625, 2023.

566 Marco Biasini, Tobias Schmidt, Stefan Bienert, Valerio Mariani, Gabriel Studer, Jürgen Haas,
 567 Niklaus Johner, Andreas Daniel Schenk, Ansgar Philippse, and Torsten Schwede. Openstructure:
 568 an integrated software framework for computational structural biology. *Biological crystallogra-
 569 phy*, 69(5):701–709, 2013.

570 Martin Buttenschoen, Garrett M Morris, and Charlotte M Deane. Posebusters: Ai-based docking
 571 methods fail to generate physically valid poses or generalise to novel sequences. *Chemical Sci-
 572 ence*, 15(9):3130–3139, 2024.

573 Longxing Cao, Brian Coventry, Inna Goreshnik, Buwei Huang, William Sheffler, Joon Sung Park,
 574 Kevin M Jude, Iva Marković, Rameshwar U Kadam, Koen HG Verschueren, et al. Design of
 575 protein-binding proteins from the target structure alone. *Nature*, 605(7910):551–560, 2022.

576 Shengan Cheng, Xuanlei Zhao, Guangyang Lu, Jiarui Fang, Zhongming Yu, Tian Zheng, Ruidong
 577 Wu, Xiwen Zhang, Jian Peng, and Yang You. Fastfold: Reducing alphafold training time from 11
 578 days to 67 hours. *arXiv preprint arXiv:2203.00854*, 2022.

579 Richard Evans, Michael O'Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green,
 580 Augustin Žídek, Russ Bates, Sam Blackwell, Jason Yim, et al. Protein complex prediction with
 581 alphafold-multimer. *biorxiv*, pp. 2021–10, 2021.

582 Xiaomin Fang, Fan Wang, Lihang Liu, Jingzhou He, Dayong Lin, Yingfei Xiang, Xiaonan Zhang,
 583 Hua Wu, Hui Li, and Le Song. Helixfold-single: Msa-free protein structure prediction by using
 584 protein language model as an alternative. *arXiv preprint arXiv:2207.13921*, 2022.

585 Christopher Frank, Ali Khoshouei, Lara Fu β , Dominik Schiwietz, Dominik Putz, Lara Weber, Zhix-
 586 uan Zhao, Motoyuki Hattori, Shihao Feng, Yosta de Stigter, et al. Scalable protein design using
 587 optimization in a relaxed sequence space. *Science*, 386(6720):439–445, 2024.

588 Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
 589 made easy. *arXiv preprint arXiv:2406.14548*, 2024.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 595 *neural information processing systems*, 33:6840–6851, 2020.

596

597 Michael A Jendrusch, Alessio LJ Yang, Elisabetta Cacace, Jacob Bobonis, Carlos GP Voogdt, Sarah
 598 Kaspar, Kristian Schweimer, Cecilia Perez-Borrajero, Karine Lapouge, Jacob Scheurich, et al. Al-
 599 phadesign: A de novo protein design framework based on alphafold. *Molecular Systems Biology*,
 600 pp. 1–24, 2025.

601 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 602 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 603 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

604

605 Yogesh Kalakoti and Björn Wallner. Afsample2 predicts multiple conformations and ensembles
 606 with alphafold2. *Communications Biology*, 8(1):373, 2025.

607

608 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 609 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 2022.

610

611 Lin Li, Esther Gupta, John Spaeth, Leslie Shing, Rafael Jaimes, Emily Engelhart, Randolph Lopez,
 612 Rajmonda S Caceres, Tristan Bepler, and Matthew E Walsh. Machine learning optimization
 613 of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries. *Nature
 614 communications*, 14(1):3454, 2023.

615

616 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos San-
 617 tos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein
 618 sequences at the scale of evolution enable accurate structure prediction. *BioRxiv*, 2022:500902,
 2022.

619

620 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 621 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

622

623 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 624 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

625

626 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 627 *arXiv preprint arXiv:2410.11081*, 2024.

628

629 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 630 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural
 631 information processing systems*, 35:5775–5787, 2022.

632

633 Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. lddt: a local
 634 superposition-free score for comparing protein structures and models using distance difference
 635 tests. *Bioinformatics*, 29(21):2722–2728, 2013.

636

637 Debora S Marks, Lucy J Colwell, Robert Sheridan, Thomas A Hopf, Andrea Pagnani, Riccardo
 638 Zecchina, and Chris Sander. Protein 3d structure computed from evolutionary sequence variation.
 639 *PloS one*, 6(12):e28766, 2011.

640

641 Sergey Ovchinnikov, Hahnbeom Park, Neha Varghese, Po-Ssu Huang, Georgios A Pavlopoulos,
 642 David E Kim, Hetunandan Kamisetty, Nikos C Kyriides, and David Baker. Protein structure
 643 determination using metagenome sequence data. *Science*, 355(6322):294–298, 2017.

644

645 Martin Pacesa, Lennart Nickel, Christian Schellhaas, Joseph Schmidt, Ekaterina Pyatova, Lucas
 646 Kissling, Patrick Barendse, Jagrity Choudhury, Srajan Kapoor, Ana Alcaraz-Serna, et al. Bind-
 647 craft: one-shot design of functional protein binders. *bioRxiv*, pp. 2024–09, 2024.

648

649 Carol A Rohl, Charlie EM Strauss, Kira MS Misura, and David Baker. Protein structure prediction
 650 using rosetta. In *Methods in enzymology*, volume 383, pp. 66–93. Elsevier, 2004.

651

652 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 653 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 654 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

648 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
 649 *preprint arXiv:2202.00512*, 2022.
 650

651 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
 652 tillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024.

653 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 654 *preprint arXiv:2010.02502*, 2020.
 655

656 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv*
 657 *preprint arXiv:2310.14189*, 2023.
 658

659 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint*
 660 *arXiv:2303.01469*, 2023.
 661

662 ByteDance AML AI4Science Team, Xinshi Chen, Yuxuan Zhang, Chan Lu, Wenzhi Ma, Jiaqi Guan,
 663 Chengyue Gong, Jincai Yang, Hanyu Zhang, Ke Zhang, Shenghao Wu, Kuangqi Zhou, Yanping
 664 Yang, Zhenyu Liu, Lan Wang, Bo Shi, Shaochen Shi, and Wenzhi Xiao. Proteinix - advancing
 665 structure prediction through a comprehensive alphafold3 reproduction. *bioRxiv*, 2025. doi: 10.
 666 1101/2025.01.08.631967. URL <https://www.biorxiv.org/content/early/2025/01/11/2025.01.08.631967>.
 667

668 Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
 669 Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
 670 scaffolding problem. *arXiv preprint arXiv:2206.04119*, 2022.
 671

672 Björn Wallner. Afsample: improving multimer prediction with alphafold using massive sampling.
 673 *Bioinformatics*, 39(9):btad573, 2023.
 674

675 Hannah K Wayment-Steele, Adedolapo Ojoawo, Renee Otten, Julia M Apitz, Warintra Pitsawong,
 676 Marc Hömberger, Sergey Ovchinnikov, Lucy Colwell, and Dorothee Kern. Predicting multiple
 677 conformations via sequence clustering and alphafold2. *Nature*, 625(7996):832–839, 2024.
 678

679 Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
 680 Wu, Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary
 681 sequence. *BioRxiv*, pp. 2022–07, 2022.
 682

683 Jinbo Xu. Distance-based protein folding powered by deep learning. *Proceedings of the National
 684 Academy of Sciences*, 116(34):16856–16865, 2019.
 685

686 Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and David
 687 Baker. Improved protein structure prediction using predicted interresidue orientations. *Proceed-
 688 ings of the National Academy of Sciences*, 117(3):1496–1503, 2020.
 689

690 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
 691 corrector framework for fast sampling of diffusion models. *Advances in Neural Information
 692 Processing Systems*, 36:49842–49869, 2023.
 693

694

695

696

697

698

699

700

701

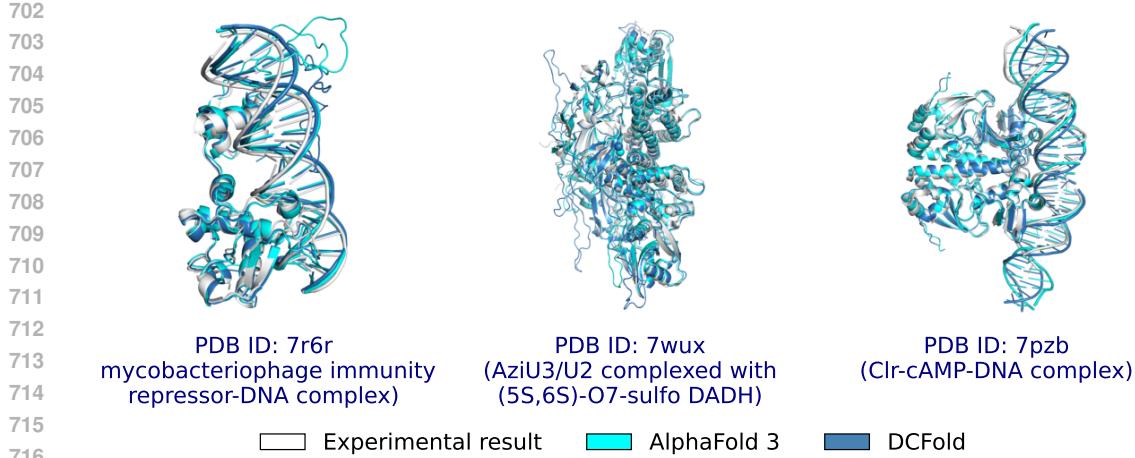


Figure 6: A structure prediction case study of DCFold, compared against AlphaFold3 and the experimental result.

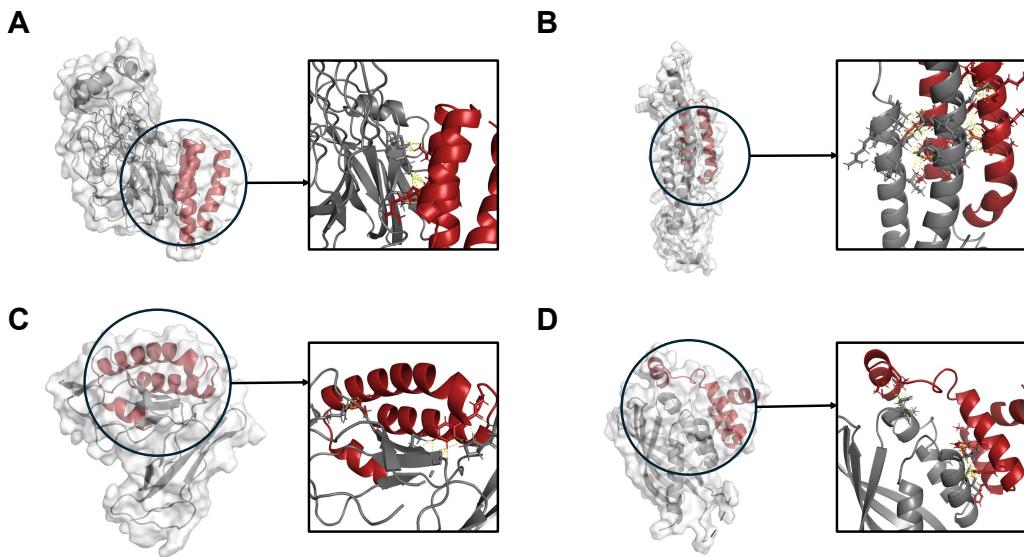


Figure 7: Examples from binder-design experiments, with targets: (A) ALK, (B) H3, (C) IL2R α , and (D) VirB8.

A DERIVATION OF TGM

A.1 PROOF OF LOCAL METRIC-KL EQUIVALENCE

We investigate the KL divergence between two distributions defined on the manifold M_+ :

$$D_{\text{KL}}(p_r \| p_t) = \int p_r(x) \log \frac{p_r(x)}{p_t(x)} dx = \int p_r(x) [\log p_r(x) - \log p_t(x)] dx \quad (9)$$

We perform a Taylor expansion of $\log p_{\theta^*}(\gamma_t(x))$ and substitute the result into the KL divergence.

$$\log p_{t-\Delta t}(x) = \log p_t(x) - \Delta t \frac{\partial}{\partial x} \log p_t(x) + \frac{1}{2} (\Delta t)^2 \frac{\partial^2}{\partial x^2} \log p_t(x) + \mathcal{O}((\Delta t)^3) \quad (10)$$

756 Substituting it into the KL divergence yields:
 757

$$\begin{aligned}
 758 \quad D_{\text{KL}}(p_r \| p_t) &= \int p_r(x) \left[-\Delta t \frac{\partial}{\partial t} \log p_t(x) + \frac{1}{2} (\Delta t)^2 \frac{\partial^2}{\partial t^2} \log p_t(x) + \mathcal{O}((\Delta t)^3) \right] dx \\
 759 \\
 760 \quad &= \int \left[p_t(x) - \Delta t \frac{\partial}{\partial t} p_t(x) + \frac{1}{2} (\Delta t)^2 \frac{\partial^2}{\partial t^2} p_t(x) + \mathcal{O}((\Delta t)^3) \right] \\
 761 \\
 762 \quad &\quad \left[-\Delta t \frac{\partial}{\partial t} \log p_t(x) + \frac{1}{2} (\Delta t)^2 \frac{\partial^2}{\partial t^2} \log p_t(x) + \mathcal{O}((\Delta t)^3) \right] dx
 \end{aligned} \tag{11}$$

763
 764
 765 The first-order term vanishes:
 766

$$-\Delta t \int p_t(x) \frac{\partial}{\partial t} \log p_t(x) dx = 0, \tag{12}$$

767
 768 while the second-order term takes the following form:
 769

$$\frac{(\Delta t)^2}{2} \int p_t(x) \frac{\partial^2}{\partial t^2} \log p_t(x) dx + (\Delta t)^2 \int \frac{\partial}{\partial t} p_t(x) \frac{\partial}{\partial t} \log p_t(x) dx \tag{13}$$

770
 771 The term on the right-hand side is given by
 772

$$(\Delta t)^2 \int p_t(x) \left[\frac{\partial}{\partial t} \log p_t(x) \right]^2 dx = (\Delta t)^2 \mathcal{I}(t) \tag{14}$$

773
 774 The simplification of the left-hand side relies on the property that the integral of the score function
 775 vanishes:
 776

$$0 = \frac{\partial}{\partial t} \cdot 0 = \frac{\partial}{\partial t} \int p_t(x) \frac{\partial}{\partial t} \log p_t(x) dx = \int \frac{\partial}{\partial t} p_t(x) \frac{\partial}{\partial t} \log p_t(x) dx + \int p_t(x) \frac{\partial^2}{\partial t^2} \log p_t(x) dx \tag{15}$$

777 Thus, the term on the left-hand side can also be expressed in terms of $\mathcal{I}(t)$:
 778

$$\int p_t(x) \frac{\partial^2}{\partial t^2} \log p_t(x) dx = - \int \frac{\partial}{\partial t} p_t(x) \frac{\partial}{\partial t} \log p_t(x) dx = -\mathcal{I}(t) \tag{16}$$

779
 780 Thus, the second-order term implicitly encodes the temporal Fisher information $-\frac{(\Delta t)^2}{2} \mathcal{I}(t) +$
 781 $(\Delta t)^2 \mathcal{I}(t) = \frac{(\Delta t)^2}{2} \mathcal{I}(t)$, that is $D_{\text{KL}}(p_r(x) \| p_t(x)) = \frac{(\Delta t)^2}{2} \mathcal{I}(t) + \mathcal{O}((\Delta t)^3)$. With this, local
 782 metric-KL equivalence becomes evident.
 783

784 A.2 TEMPORAL FISHER INFORMATION IN EDM

785 We assume the forward process of diffusion is defined as $p_t(x|x_0) = \mathcal{N}(x; \mu =$
 786 $\alpha(t)x_0, \sigma^2(t)I)$, $\mathcal{I}(t) = \mathbb{E}_{p_t(x)} \left[\left(\frac{\partial}{\partial t} \log p_t(x) \right)^2 \right] = \mathbb{E}_{x_0 \sim p_{\text{data}}} \mathbb{E}_{p_t(x|x_0)} \left[\left(\frac{\partial}{\partial t} \log p_t(x) \right)^2 \right]$

787 We employ a multivariate Gaussian distribution with dimensionality D : $p(x) =$
 788 $\frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right)$, $\Sigma = \sigma^2(t)I$, $|\Sigma| = |\sigma^2(t)I| = \sigma^{2D}(t)$, $\Sigma^{-1} =$
 789 $(\sigma^2(t)I)^{-1} = \sigma^{-2}(t)I$, which yields the following simplification:
 790

$$p_t(x|x_0) = \frac{1}{(2\pi)^{D/2} \sigma^D(t)} \exp \left(-\frac{\|x - \alpha(t)x_0\|^2}{2\sigma^2(t)} \right) \tag{17}$$

$$\log p_t(x|x_0) = -\frac{D}{2} \log(2\pi) - D \log \sigma(t) - \frac{\|x - \alpha(t)x_0\|^2}{2\sigma^2(t)} \tag{18}$$

$$\begin{aligned}
\frac{\partial}{\partial t} \log p_t(x|x_0) &= -D \frac{\dot{\sigma}(t)}{\sigma(t)} - \left[-\frac{\dot{\sigma}(t)}{\sigma^3(t)} \|x - \alpha(t)x_0\|^2 - \frac{1}{2\sigma^2(t)} \left(-2\dot{\alpha}(t) (x - \alpha(t)x_0)^\top x_0 \right) \right] \\
&= -D \frac{\dot{\sigma}(t)}{\sigma(t)} + \frac{\dot{\sigma}(t)}{\sigma^3(t)} \|x - \alpha(t)x_0\|^2 + \frac{\dot{\alpha}(t)}{\sigma^2(t)} (x - \alpha(t)x_0)^\top x_0 \\
&= -D \frac{\dot{\sigma}(t)}{\sigma(t)} + \frac{\dot{\sigma}(t)}{\sigma^3(t)} \sigma^2(t) \|z\|^2 + \frac{\dot{\alpha}(t)}{\sigma^2(t)} (\sigma(t)z)^\top x_0 \\
&= -D \frac{\dot{\sigma}(t)}{\sigma(t)} + \frac{\dot{\sigma}(t)}{\sigma(t)} \|z\|^2 + \frac{\dot{\alpha}(t)}{\sigma(t)} z^\top x_0 \\
&= \frac{\dot{\sigma}(t)}{\sigma(t)} (\|z\|^2 - D) + \frac{\dot{\alpha}(t)}{\sigma(t)} z^\top x_0
\end{aligned} \tag{19}$$

Thus, $\mathcal{I}(t)$ can be decomposed into three components:

$$\begin{aligned}
\mathcal{I}(t) &= \mathbb{E}_{x_0 \sim p_{\text{data}}} \mathbb{E}_{p_t(x|x_0)} \left[\left(\frac{\dot{\sigma}(t)}{\sigma(t)} (\|z\|^2 - D) + \frac{\dot{\alpha}(t)}{\sigma(t)} z^\top x_0 \right)^2 \right] \\
&= \mathbb{E}_{x_0 \sim p_{\text{data}}} \mathbb{E}_z \left[\left(\frac{\dot{\sigma}(t)}{\sigma(t)} \right)^2 (\|z\|^2 - D)^2 + \left(\frac{\dot{\alpha}(t)}{\sigma(t)} \right)^2 (z^\top x_0)^2 + 2 \cdot \frac{\dot{\sigma}(t)\dot{\alpha}(t)}{\sigma^2(t)} (\|z\|^2 - D)(z^\top x_0) \right]
\end{aligned} \tag{20}$$

Since the first term follows a chi-squared distribution $\|z\|^2 = \sum_i z_i^2 \sim \chi^2(D)$, in this part, we introduce the data dimension D : $\mathbb{E}[\|z\|^2] = D$, $\mathbb{E}[(\|z\|^2 - D)^2] = \text{Var}[\|z\|^2] = 2D$

the second term is $\mathbb{E}[(z^\top x_0)^2] = \mathbb{E} \left[\left(\sum_i z_i (x_0)_i \right) \left(\sum_j z_j (x_0)_j \right) \right] = \sum_{i,j} (x_0)_i (x_0)_j \delta_{ij} = \|x_0\|^2$

The third term, namely the cross-term, vanishes: $\mathbb{E}[(\|z\|^2 - D)(z^\top x_0)] = \mathbb{E}[\|z\|^2 \cdot (z^\top x_0)] - D \cdot \mathbb{E}[z^\top x_0] = \mathbb{E} \left[\left(\sum_i z_i^2 \right) \left(\sum_j z_j (x_0)_j \right) \right] = \sum_{i,j} (x_0)_j \mathbb{E}[z_i^2 z_j] = 0$

$$\mathcal{I}(t) = \mathbb{E}_{x_0 \sim p_{\text{data}}} \left[\frac{\dot{\sigma}(t)}{\sigma(t)} \cdot 2D + \frac{\dot{\alpha}(t)}{\sigma(t)} \cdot \|x_0\|^2 \right] \tag{21}$$

In most prior works, due to the effect of data normalization, we can assume that $\mathbb{E}[x_0] = 0$, and therefore $\|x_0\|^2$ can be expressed in terms of $\text{Var}[x_0]$.

In the EDM framework, $\alpha(t) = 1$, $\sigma(t) = \sigma_{\text{data}} \cdot \left(s_{\text{max}}^{1/p} + (1-t) \cdot (s_{\text{min}}^{1/p} - s_{\text{max}}^{1/p}) \right)^p$. This yields a more concise expression for $I(t)$:

$$\mathcal{I}(t) = \frac{\dot{\sigma}(t)}{\sigma(t)} \cdot 2D = \frac{2D \cdot p \cdot (s_{\text{max}}^{1/p} - s_{\text{min}}^{1/p})}{s_{\text{max}}^{1/p} + (1-t)(s_{\text{min}}^{1/p} - s_{\text{max}}^{1/p})} \tag{22}$$

B IMPLEMENTATION DETAILS

B.1 TRAINING CONFIGURATION

To ensure clarity and reproducibility, we provide a detailed description of the training setup. Our full training pipeline was executed on a cluster equipped with 64 NVIDIA H800 GPUs, corresponding to an effective batch size of 64. Stage 1 focuses on learning diffusion consistency. DCFold was trained for approximately 40 hours, spanning a total of 9,000 optimization steps. This stage establishes the foundational generative capabilities leveraged in subsequent training. Stage 2 aims to refine the structural reasoning components through Pairformer consistency training. This phase required around 7 hours of computation and was conducted for 1,500 steps. The shorter duration reflects both the stability provided by Stage 1 and the efficiency of fine-tuning the Pairformer module.

B.2 BINDER HALLUCINATION

After initial binder design with DCFold, sequences are refined to improve stability and solubility using ProteinMPNN with soluble weights, while preserving residues within 4 Å of the target interface. For each binder, 20 variants are generated at temperature 0.1 with no backbone noise. These

864
865
866 Table 7: Average inference time of AlphaFold3 and DCFold across token bins.
867
868
869
870
871
872
873

#Tokens	AlphaFold3 Avg Time (s)	DCFold Avg Time (s)
≤ 255	92.63	3.76
256–383	103.31	5.77
384–511	112.35	7.17
512–639	126.41	10.87
640–767	142.78	14.65
768–895	169.20	20.02
≥ 896	212.12	27.40

874
875 sequences are re-predicted using the AF2 monomer model (3 recycles, 2 template-based models) in
876 single-sequence mode to validate structural robustness. Resulting complexes are energy-minimized
877 with Rosetta FastRelax (200 iterations) and evaluated using InterfaceAnalyzer with sidechain and
878 backbone movement. Final designs are filtered using predefined thresholds ($\text{pLDDT} > 0.8$, $\text{i_pTM} > 0.5$,
879 $\text{i_pAE} < 0.35$, shape complementarity > 0.55 , < 3 unsaturated H-bonds, binder surface
880 hydrophobicity $< 35\%$, RMSD $< 3.5 \text{ \AA}$), yielding a high-confidence set of candidates.

881 We evaluate binder quality using two constraint sets. Model-based Constraints are derived from
882 AlphaFold2 confidence outputs, requiring $\text{pLDDT} > 0.8$, interface pTM > 0.5 , global pTM > 0.45 ,
883 and interface pAE < 0.4 . Physics-based Constraints are based on physical interface metrics from
884 Rosetta, including shape complementarity > 0.5 , dSASA > 1 , > 6 interface residues, > 2 interface
885 hydrogen bonds, surface hydrophobicity < 0.37 , and < 6 unsaturated hydrogen bonds. All metrics
886 are aligned with the filters used in BindCraft.

887 B.3 HYPERPARAMETER SETTINGS FOR CONSISTENCY MODEL BASELINES

888 For completeness, we provide the implementation details of all baselines considered in our experiments:

- 889 • CD: Mean squared error (MSE) as the metric function with a weight decay rate of $\eta = 0.995$.
- 890 • sCM: $H = 2000$ warm-up iterations.
- 891 • ECM: $q = 2.0$, $b = 0.1$, $d = 3000$, and $k = 4.0$.
- 892 • TGM: Hyperparameter search yields $C_0 = 32$ and $\beta = 2$. In addition, we inherit the
893 exponential decay scheduling parameters from AlphaFold3’s EDM configuration, with $p = 7$,
894 $s_{\max} = 160$, and $s_{\min} = 4 \times 10^{-4}$.

895 For all methods, we set the weighting function to 1.

902 C EXPERIMENT DETAILS

903 C.1 RUNTIME CHARACTERISTICS ACROSS SEQUENCE LENGTHS

904 To comprehensively assess the efficiency of DCFold, we report detailed bin-wise runtime statistics
905 on the Posebusters V2 benchmark. Since AlphaFold3 supports folding protein-ligand complexes, we
906 use the total number of input tokens for each test entry as the length metric and partition sequences
907 into bins of size 128. The average inference time for each bin is summarized in Table 7.

908 Both AlphaFold3 and DCFold exhibit increasing runtime as sequence length grows. However, the
909 relative acceleration provided by DCFold is most pronounced for short sequences, where it achieves
910 up to a **24** \times speedup. For moderately long sequences, DCFold still provides more than **7.7** \times acceleration,
911 demonstrating consistent efficiency gains across all token ranges.

912 We hypothesize that this trend stems from the differing computational bottlenecks of the two methods.
913 The reduction in Diffusion NFE afforded by DCFold yields a significantly larger improvement
914 factor compared to the reduction in Pairformer cycles. As sequence length increases, the Pairformer
915 component becomes the dominant cost, diminishing the relative impact of the diffusion speedup.
916 Conversely, in shorter sequences, the Pairformer bottleneck is less pronounced, enabling the diffusion
917 efficiency gains to translate directly into substantial end-to-end acceleration.

918
919 Table 8: The total number of generated samples in the binder hallucination experiments.
920
921
922

	IL-2R α	TrkA	H3	VirB8	ALK	LTK
BindCraft	312	243	269	347	188	348
DCFold (Ours)	375	256	295	439	177	402

923
924 Table 9: Detailed information of binder targets in the binder hallucination experiments.
925
926

Target	PDB ID	Family	Description
ALK	7NWZ	Immune receptor	Neural receptor tyrosine kinase involved in development
H3	3ZTJ	Receptor tyrosine kinase	Core nucleosomal histone in eukaryotic chromatin
IL2R α	1Z92	Histone protein	Component of the interleukin-2 receptor complex in the immune system
LTK	7NX0	Bacterial secretion system protein	Homolog of ALK expressed in various tissues
TrkA	2IFG	Receptor tyrosine kinase	Neurotrophic signaling receptor activated by NGF
VirB8	4O3V	Receptor tyrosine kinase	Structural protein of the type IV secretion system in Gram-negative bacteria

938
939 C.2 BINDER HALLUCINATION
940941 We conducted experiments on a single H800 GPU. On the targets used in Table 5, the average GPU
942 time for one full hallucination with BindCraft is 138s, while DCFold requires 105s. Since we follow
943 the same pipeline as BindCraft, the total serial runtime also includes the time for ProteinMPNN and
944 the re-prediction step in addition to the design model’s GPU time. We also provide the total number
945 of designs generated in our experiments in Table 8. Overall, DCFold attains slightly better efficiency
946 while producing a comparable number of samples, ensuring a fair comparison.
947

Our binder design benchmark features six protein targets. Table 9 shows the details of the targets.

948
949 THE USE OF LARGE LANGUAGE MODELS (LLMs)
950951 We use large language models (LLMs) solely for auxiliary editing purposes, including spelling cor-
952 rection and minor grammatical adjustments. Importantly, LLMs are not involved in the conception
953 of research ideas or the development of code. We disclose this usage explicitly to ensure trans-
parency in our work.
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971