
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DCFOLD: EFFICIENT PROTEIN STRUCTURE GENERA-
TION WITH SINGLE FORWARD PASS

Anonymous authors
Paper under double-blind review

ABSTRACT

AlphaFold3 introduces a diffusion-based architecture that elevates protein struc-
ture prediction to all-atom resolution with improved accuracy. This state-of-the-
art performance has established AlphaFold3 as a foundation model for diverse
generation and design tasks. However, its iterative design substantially increases
inference time, limiting practical deployment in downstream settings such as vir-
tual screening and protein design. We propose DCFold, a single-step genera-
tive model that attains AlphaFold3-level accuracy. Our Dual Consistency train-
ing framework, which incorporates a novel Temporal Geodesic Matching (TGM)
scheduler, enables DCFold to achieve a 15× acceleration in inference while main-
taining predictive fidelity. We validate its effectiveness across both structure pre-
diction and binder design benchmarks.

1 INTRODUCTION
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Figure 1: The acceleration ratio and generative quality
of DCFold on Posebusters V2.

Proteins realize their biological functions
through intricate three-dimensional con-
formations, and predicting such struc-
tures has long been a central challenge
in computational biology. AlphaFold2
marked a breakthrough by combining mul-
tiple sequence alignments with geomet-
ric constraints in an end-to-end frame-
work, achieving near-experimental accu-
racy (Jumper et al., 2021). Building on this
foundation, AlphaFold3 reformulates the
architecture into an all-atom framework
and introduces a diffusion-based structure
module, thereby enabling the generative
modeling of not only proteins but also a
wide spectrum of biomolecular complexes
(Abramson et al., 2024). Consequently,
this series of models are widely adopted as
foundation models for downstream appli-
cations such as virtual screening and pro-
tein design (Alhumaid & Tawfik, 2024; Baselious et al., 2024; Jendrusch et al., 2025; Frank et al.,
2024; Bennett et al., 2023). However, AlphaFold3’s architecture, which relies on iterative Pairformer
recycling and multi-step diffusion (Ho et al., 2020), requires substantially greater computational
overhead than AlphaFold2, restricting its accessibility in downstream workflows.
More specifically, we observe that on long sequences, the execution time of AlphaFold3 is measured
in minutes, which severely limits its usability in downstream tasks that demand high throughput.
For instance, small-scale laboratory screening often requires predictions for thousands of candidates
(Li et al., 2023), and when extended to large public databases, this number grows to an infeasible
scale; protein design tasks typically involve comparable computational demand. Previous work
such as BindCraft has attempted to mitigate this by manually reducing the number of recycling
iterations on simpler structures, thus trading accuracy for efficiency (Pacesa et al., 2024). However,
such compromises inevitably degrade predictive performance. Moreover, in hallucination-based
approaches, the multistep iterative refinement process hinders feasible gradient backpropagation,
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ultimately preventing the broader community from adopting AlphaFold3 as a foundation model for
diverse applications.
To accelerate the diffusion process, recent advances in generative modeling have explored the use of
high-order solvers and consistency models. While high-order solvers improve efficiency, they rarely
reduce the number of sampling steps below 10 (Lu et al., 2022; Zhao et al., 2023). Consistency mod-
els, on the other hand, have achieved remarkable success in image generation and benefited from
refined training schedules (Song et al., 2023; Song & Dhariwal, 2023; Lu & Song, 2024). However,
directly applying them to AlphaFold3 faces two major challenges: (i) standard schedules assume
fixed-dimensional data and pair steps by a constant Euclidean distance, which fails to accommodate
variable protein sequence lengths and leads to unstable training dynamics (details in Section 4.4);
and (ii) AlphaFold3’s architecture also relies on iterative Pairformer recycles, introducing an addi-
tional bottleneck that conventional diffusion consistency methods cannot address.
To address these challenges, we propose DCFold, a single-step folding model trained under Dual
Consistency framework that attains AlphaFold3-level accuracy. We mitigate the inference bottle-
neck by jointly enforcing Pairformer Consistency and Diffusion Consistency, thereby eliminating
both sources of iterative overhead. Crucially, we address the fundamental challenge of diffusion
acceleration through rigorous theoretical derivations, and subsequently introduce a novel Temporal
Geodesic Matching (TGM) scheduler, which adaptively pairs timesteps in the intrinsic geometric
space of proteins. Together, these innovations preserve the predictive accuracy of AlphaFold3 while
drastically reducing inference costs, enabling one-step predictions that are both efficient and reliable.
We extensively validate the effectiveness of DCFold on structure prediction benchmarks, which
provide a rigorous and fair evaluation protocol. Beyond this standard setting, we further assess DC-
Fold in the more practical binder design tasks, where both inference speed and structural accuracy
are critical to this setting.
In short, we summarize our contributions as follows:

• We propose DCFold, an inference-efficient structure prediction model that achieves perfor-
mance and flexibility comparable to state-of-the-art applications. By leveraging the Dual
Consistency framework, DCFold eliminates the iterative overhead inherent in AlphaFold3’s
architecture.

• We identify the key limitations of conventional consistency model (CM) methods when
applied to variable-length protein sequences, and introduce Temporal Geodesic Matching
(TGM) for a novel consistency schedule that both stabilizes training and yields improved
performance.

• We evaluate the performance of DCFold across a diverse set of benchmarks and set-
tings. On both Posebusters V2 and Recent PDB, it reaches AlphaFold3-level accuracy
while achieving a notable 15× speedup. Implemented in the binder design pipeline, DC-
Fold demonstrates strong foundational capabilities while employing a lightweight archi-
tecture that ensures feasible gradient propagation. This design significantly improves the
success rate of in silico screening by enabling faster and more reliable candidate evaluation.

2 PRELIMINARY

Diffusion models have emerged as a powerful class of generative models, achieving state-of-the-
art performance across image, audio, and molecular generation tasks (Ho et al., 2020; Rombach
et al., 2022; Trippe et al., 2022). A key limitation of standard diffusion samplers is their reliance
on dozens to hundreds of function evaluations, which renders inference prohibitively expensive
in high-dimensional settings such as protein folding. To address this bottleneck, recent work has
focused on diffusion acceleration, aiming to distill or redesign the sampling process into far fewer
steps. Among these approaches, Consistency Models (CMs) (Song et al., 2023) provide a principled
framework built upon the probability flow ODE (PF-ODE), which establishes a bijective mapping
between the clean data distribution and the noise distribution. CMs introduce a consistency function
fθ(xt, t) that directly maps a noisy sample xt at time t back to the clean signal x0, subject to the
boundary condition fθ(x0, 0) = x0. Training then proceeds by discretizing the PF-ODE into a
curriculum of time intervals ti, and minimizing a loss that enforces functional consistency across
adjacent timesteps,

LCM = E
[
w(ti)d

(
fθ(xti+1 , ti+1), fθ−(x̃ti , ti)

)]
, (1)
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Figure 2: Overview of Dual Consistency framework (top: AlphaFold3; bottom: DCFold).

where w : R≥0 → R+ denotes a positive weighting function, d(·, ·) is a metric function, θ− is
an EMA copy of the network, and x̃ti is obtained by one-step PF-ODE integration. This objective
ensures that the model predictions are invariant to the choice of sampling timestep, thereby col-
lapsing multi-step trajectory into a single-step or few-step generator. Building on this foundation,
subsequent refinements such as iCT (Song & Dhariwal, 2023), sCM (Lu & Song, 2024), and ECM
(Geng et al., 2024), have optimized the weighting functions, discretization schedules, and training
methodologies, resulting in substantial improvements in both efficiency and sample quality.

3 METHOD

3.1 OVERVIEW

We introduce DCFold, a high-accuracy single-step predictor. In Section 3.2, we describe the com-
ponents of the Dual Consistency framework, which enforces consistency across the two major bot-
tlenecks of AlphaFold3. In Section 3.3, we zoom in on the diffusion acceleration challenge and
identify the key issue with prior consistency-based methods when training on variable-length se-
quences within diffusions. To tackle this challenge for complex structure prediction, we propose
Temporal Geodesic Matching (TGM), which stabilizes training on the protein sequence modality.

3.2 DUAL CONSISTENCY

Stage Module Lconfidence Ldiffusion Lpairformer
(i) Diffusion 10−4 1 ×
(ii) Pairformer 10−4 × 1

Table 1: Training stages and the weights of each term.

We identify the major factors impeding
AlphaFold3’s inference efficiency as the
iterative diffusion process and Pairformer
recycling, as illustrated in Figure 1. To
address the first challenge, we investigate
the behavior of AlphaFold3 under few-
step sampling and find that its failure pri-
marily arises from the sampling procedure itself. The default strategy of injecting extra stochastic
noise and enlarging the ODE step size turns out to be detrimental in this regime: the enlarged step
size significantly amplifies the bias in ODE predictions. To stabilize performance, we modify the
sampler by disabling noise injection (setting the noise factor γ0 = 0), fixing the rescaling factor
λ = 1, and normalizing the step size with η = 1, thereby enabling stable one-step sampling.
The first challenge concerns computational efficiency. After enabling one-step sampling, the Pair-
former becomes the critical bottleneck. To tackle this, we introduce Dual Consistency, which
applies consistency learning to both the diffusion module and the Pairformer.

Diffusion Consistency Although we already have a functional one-step sampler, we aim to max-
imize its utility. Specifically, we apply consistency distillation to the diffusion module, aligning its
single-step performance with that of the multi-step counterpart, which also provides a natural warm-
up for the subsequent Pairformer consistency stage. The training objective minimizes the MSE
between the outputs of the diffusion module at timestep t and a reference timestep r. Formally, the
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Algorithm 1 Temporal Geodesic Matching (TGM)
Require: DatasetD, pretrained diffusion model θ, noise distribution p(t), weighting function w(t),

training progress u = steps
max steps ∈ [0, 1]

1: while θ not converged do
2: Sample x0 ∼ D, ϵ ∼ N (0, I), t ∼ p(t)
3: r′ ← max (r(t, u), 0)
4: xt ← x0 + tϵ; xr′ ← x0 + r′ϵ
5: L ← w(t) ∥fθ(xt, t)− fsg(θ)(xr′ , r

′)∥22 ▷ using the same random seed
6: θ ← θ − η∇θL
7: end while

diffusion consistency loss is

Ldiffusion = Ex,t,r,ϵ

[
w(t)MSE

(
fθ(xt, t)− fsg(θ)(xr, r)

)]
, (2)

where fθ denotes diffusion module parameterized by θ, and sg(θ) denotes “stop-gradient” operator.
We find w(t) to have negligible effect in experiments and therefore set w(t) = 1.

Pairformer Consistency For the most critical bottleneck in AlphaFold3, Pairformer, we observe
that the architecture updates internal protein representations iteratively across multiple cycles. While
increasing the number of cycles generally improves prediction accuracy, it also scales inference time
linearly. Importantly, because each Pairformer cycle depends on the output of the previous one, a
single forward pass through the network inherently provides representations corresponding to differ-
ent cycle depths. This allows us to assess the model’s progressive refinement of structural accuracy
without the need for explicit time sampling as required in diffusion-based denoising processes.
To exploit this property, we introduce a cycle consistency loss. Suppose pairformer runs for N cy-
cles (with N = 4 in our experiments). After the n-th cycle, the model produces a pair representation
zn and a single representation sn. We directly adopt the total transmission error as the loss function:

Lpairformer =

N−1∑
i=1

(MSE (zi, zi+1) + MSE (si, si+1)) . (3)

Notably, we adopt the weighting strategy from AlphaFold’s supervised MSE loss. In particular,
positions corresponding to nucleic acids and small molecules are assigned higher weights than amino
acids. This ensures that structurally sensitive residues contribute proportionally to the loss. Let the
column vector α denote the per-token weighting coefficient used in AlphaFold3. For the single
representations in both Diffusion Consistency and Pairformer Consistency, we directly apply α
as the weight. In contrast, for the pair representations in Pairformer, we adopt a multiplicative
composition, using

√
α
√
α

⊤ as the weighting matrix, where the square root is applied element-
wise.
We further find that incorporating the confidence loss Lconfidence from AlphaFold3’s confidence head
improves training stability, where Lconfidence is defined as:

Lconfidence = Lplddt + Lpde + Lresolved + αpae · Lpae,

where αpae = 1, and the definitions of all loss terms follow AlphaFold3. Consequently, our training
procedure can be summarized in two stages: (i) train a one-step sampler, where only the diffusion
module is updated, with the training objective given by Lconfidence and Ldiffusion; (ii) apply pair-
former consistency, where only a 16-block Pairformer is updated, with the training objective given
by Lconfidence and Lpairformer. We summarize the weights of them in Table 1.

3.3 TEMPORAL GEODESIC MATCHING

While consistency-based methods have shown promise, directly applying them to complex architec-
tures like AlphaFold often results in weight collapse, high training cost, or reliance on task-specific
mappings. The core issue lies in scheduling for variable-size outputs such as protein structures.
Conventional schedulers pair timesteps (t, r) at fixed Euclidean intervals, producing an ill-posed
curriculum: on long sequences, even small ∆t triggers drastic distribution shifts that demand unre-
alistic predictive leaps, whereas on short sequences the same interval provides only weak signals.

4
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This mismatch overlooks the non-uniform accumulation of information with data dimensionality,
leading to instability and collapse.
To address these limitations, we introduce Temporal Geodesic Matching (TGM), a general and scal-
able distillation framework. TGM explicitly selects training pairs (t, r) such that their geodesic dis-
tance on the temporal information manifold is preserved, thereby offering a principled mechanism
to stabilize training and extend consistency learning to large-scale protein modeling tasks. Unlike
Euclidean-based heuristics, TGM aligns the distillation dynamics with the intrinsic statistical geom-
etry of the diffusion trajectory. By doing so, it ensures stability and fidelity even in high-dimensional
structured output spaces such as protein backbones.
We begin by formalizing the diffusion trajectory as a geometric object. Let pt(x)t∈[0,T ] denote the
family of intermediate distributions induced by the forward diffusion process. We interpret it as
a coordinate charting a one-dimensional temporal information manifold Mt, where each point
corresponds to a distribution pt(x).

Definition 1 We define the temporal metric via the Fisher information with respect to the diffusion
time t, which we refer to as the temporal Fisher information, and use it as the Riemannian metric
tensor ofMt:

g(t) := I(t) = Ept(x)

[(
∂

∂t
log pt(x)

)2
]
. (4)

Definition 2 On the manifold where the temporal Fisher information serves as the Riemannian
metric tensor, the geodesic distance between two time points t and r is defined as the corresponding
geodesic length:

dg(t, r) =

∫ t

r

√
I(τ)dτ. (5)

Our central thesis is that a stable and efficient distillation process must be grounded in the Kullback-
Leibler (KL) divergence, as this is the canonical metric underlying the variational objective of diffu-
sion models. We motivate the introduction of the Fisher information through the following theorem:

Proposition 1 (Local Metric-KL Equivalence) For a small step ∆t = t − r ≥ 0, the geodesic
distance between neighboring distributions is given by:

dg(t, r) =
√
2DKL (pr(x)∥pt(x))

1
2 +O

(
(∆t)3

)
. (6)

The proof of Proposition 1 is provided in the Appendix A.1. The metric dg provides a principled
measure of distributional discrepancy along the temporal axis. Building on this, TGM stabilizes
training by enforcing a consistent alignment rule: for a given training progress u = steps

max steps ∈ [0, 1],
each timestep t is paired with a reference point r at a fixed temporal distance, i.e., dg(t, r) =
C(u), where C(u) is a monotonically decreasing function. In our experiments, we specify C(0) =
C0 as a hyperparameter, C(1) = 0, C(u) = C0(1 − u)β , β > 0, and approximate r(t, u) =

t − C0√
I(t)

(1− u)
β via one-step Euler method. While it is also feasible to employ higher-order

numerical solvers, we did not observe significant performance gains from doing so. Furthermore,
we provide the analytical form of I(t):
Proposition 2 For any diffusion model that satisfies the classical setting of pt(x|x0) = N (x;µ =
α(t)x0, σ

2(t)I):

I(t) = Ex0∼pdata

[
σ̇(t)

σ(t)
· 2D +

α̇(t)

σ(t)
∥x0∥2

]
, (7)

where D denotes the dimensionality of the vector.

This analytical form underscores the universality of TGM. In most generative tasks, data can natu-
rally be represented as fixed-length vectors. Furthermore, when normalized (as in image generation)
or invariant to random rotations (as in protein folding), the ∥x0∥2 term admits a simplification to
Var(x0) under the assumption E[x0] = 0. In our experiments, due to AlphaFold’s adoption of the
EDM framework(Karras et al., 2022), we present here the specific form of I(t) that is used:

I(t) =
2D · p

(
s
1/p
max − s

1/p
min

)
s
1/p
max + (1− t)

(
s
1/p
min − s

1/p
max

) , (8)
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Table 2: Posebusters V2 RMSD benchmark results. We report the percentage of predictions with
RMSD below different thresholds.

Method Best (%) Worst (%)

< 1 < 2 < 3 < 5 < 1 < 2 < 3 < 5

AlphaFold3 67.14 82.86 87.14 93.81 45.71 70.00 79.05 87.62
AF3 ODE 51.43 74.77 83.81 92.38 37.62 66.19 75.71 87.62
DCFold (Ours) 58.10 78.57 86.67 94.29 46.67 71.43 80.00 90.48

Table 3: TM-score and Success Rate (SR) on different protein categories in the Homology Recent
PDB dataset. Values in parentheses denote the absolute improvement relative to AF3 ODE.

PL-complex Monomer PP-complex

Method TM-score SR (%) TM-score SR (%) TM-score SR (%)

AF3 ODE 0.815 92.3 0.830 92.9 0.763 87.0
AlphaFold3 0.810 (–0.6) 93.9 (+1.6pp) 0.839 (+1.0) 94.5 (+1.6pp) 0.788 (+3.2) 91.1 (+4.0pp)
DCFold (Ours) 0.824 (+1.2) 94.9 (+2.6pp) 0.850 (+2.3) 95.7 (+2.9pp) 0.800 (+4.8) 92.2 (+5.2pp)

where the definition of smin and smax follow EDM, which are used in AlphaFold3’s diffusion pro-
cess to control the noise strength. Here we incorporate the data dimensionality D into the training
schedule to balance the differences in learning difficulty across amino acid sequences of varying
lengths. Importantly, as the dimensionality increases, the KL divergence between distributions ac-
cumulates linearly, causing classical consistency training to exaggerate information disparities for
long sequences. And we provide in Algorithm 1 the procedure for applying TGM to the diffusion
module.

3.4 DOWNSTREAM TASK

After ensuring the consistency of AlphaFold3, we find that our method now holds substantial po-
tential for downstream applications. As a representative example, we validate the effectiveness of
DCFold in the task of binder design. This task typically requires models to perform large-scale sam-
pling, followed by stringent multi-stage filtering to eliminate implausible sequences, leaving only
a small subset of viable candidates. Moreover, in binder hallucination–based design frameworks,
the network must be fully differentiable and amenable to gradient-based optimization (Pacesa et al.,
2024). These properties make DCFold particularly well-suited for this setting, allowing it to fully
demonstrate its performance advantages. The experimental details are presented in Section 4.3.

4 EXPERIMENT

We design our experiments to evaluate both the accuracy and practical utility of DCFold. In Sec-
tion 4.1, we evaluate the structural prediction capability of DCFold, showing that DCFold matches
or surpasses AlphaFold3 while reducing cost. In Section 4.3, we assess binder hallucination, demon-
strating that the reshaped output distribution improves downstream design success. Section 4.4 iso-
lates the effect of TGM and shows its advantage over prior consistency schedules. Together, these
results highlight the efficiency, stability, and applicability of DCFold across protein modeling tasks.

4.1 STRUCTURE PREDICTION

In this section, we demonstrate that DCFold retains strong capability for one-step prediction.

Baselines We compare these AlphaFold3 variants: (i) AlphaFold3 (Abramson et al., 2024) –
The original configuration of AlphaFold3 employs the full set of recycling cycles and diffusion
steps, serving as a strong baseline as well as the reference target that DCFold aims to approximate.
(ii) AF3 ODE – AlphaFold3 configured with a single sampling step and a single recycling cycle,
serving as a reference baseline without retraining. (iii) AF3 TGM – a partially distilled AlphaFold3
variant, which builds upon AF3 ODE by applying only our TGM diffusion consistency distillation
without pairformer distillation. This isolates the contribution of TGM to performance under one-
step sampling. (iv) DCFold – our fully distilled model after applying dual consistency training,

6
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which uses only 1 recycle and 1 diffusion denoising step. Both the baseline and the initialization of
DCFold are derived from Protenix, an open-source reimplementation of AlphaFold3. (v) Protenix-
Mini – We also include a lightweight variant of Protenix, which reduces the parameter count from
368M to 135M and uses 2-step ODE sampling to lower computational cost.

Data For training, we use PDB entries released after September 30, 2021, organized following
the Protenix scheme with identical filtering protocols. Evaluation is performed on two benchmarks:
(i) PoseBusters V2 (Buttenschoen et al., 2024), a curated benchmark of recent high-quality pro-
tein–ligand crystal complexes with drug-like molecules, restricted to post-2021 releases; and (ii) the
Low Homology Recent PDB dataset (Jumper et al., 2021; Team et al., 2025), containing numerous
protein and nucleic acid interfaces. Introduced in AlphaFold3, we employ the Protenix open-source
implementation. All entries predating the training cutoff are excluded from evaluation.

Metrics On Posebusters V2, we evaluate predictions using the RMSD between predicted and ex-
perimental ligand coordinates. For each complex, we report the proportions of generated poses
whose best and worst RMSDs (with respect to the ground-truth structure) fall below the thresholds
of 1, 2, 3, and 5 Å. Ground truth is not used for any filtering, so this does not introduce data leak-
age. These metrics quantify how Dual Consistency reshapes AlphaFold3’s output distribution. On
RecentPDB, we measure backbone accuracy using the TM-score (Biasini et al., 2013), where val-
ues above 0.5 indicate correct folds; the success rate is defined as the proportion of structures with
RMSD < 2 Å; and local accuracy is assessed using lDDT (Mariani et al., 2013), which ranges from
0–100 and reflects residue-level geometric precision.
Overall, DCFold achieves accuracy comparable to AlphaFold3 while using only a single recycle
and diffusion step, demonstrating both efficiency and robustness. The results in Table 2, Table 3 and
Figure 3 highlight these key observations:
AlphaFold3 admits single-step generation. With a proper choice of ODE parameters, the AF3
ODE solver is capable of generating approximately correct protein structures.
DCFold enhances generative performance. Training with Dual Consistency substantially im-
proves the performance of the AF3 ODE model: across several RMSD thresholds, DCFold ap-
proaches or even matches AlphaFold3, demonstrating that the distilled model effectively recovers
accuracy despite relying on only a single recycle and diffusion step.
DCFold reshapes the distribution of generated structures. Dual Consistency reshapes the output
distribution of AlphaFold3 by effectively tightening it. This effect is reflected in the improved worst-
case RMSD, indicating more stable and reliable predictions, while the best-case RMSD remains
largely unchanged. Such a redistribution reduces extreme errors and enhances the consistency of
single-step predictions, which is particularly valuable for accelerating downstream scientific work-
flows where both efficiency and reliability are critical.
The improvement is especially evident in Success Rate, where DCFold achieves substantially larger
gains than in average TM-score. This observation further supports our claim that DCFold reshapes
the distribution of generated structures. In particular, DCFold demonstrates a stronger ability than
AlphaFold3 to avoid generating implausible biological complexes.
Both components of Dual Consistency are beneficial. In the lDDT experiments shown in Figure 3,
DCFold delivers accuracy on par with AlphaFold3. We further conduct ablation studies disentan-
gling the effects of Diffusion Consistency and Pairformer Consistency, and find that both compo-
nents contribute complementary gains. Together, these results highlight that Dual Consistency is the
key driver behind the observed improvements.

4.2 DIVERSITY AND CONFIDENCE

To more comprehensively characterize the performance of DCFold , we conducted an extended
analysis of its structural diversity and predictive confidence on the Posebusters V2 benchmark.

Metrics. For each test sequence, we sampled five structures and computed all pairwise TM-scores
among these predictions. We report the dataset-level average of these pairwise values as the Diver-
sity metric (lower is better). We further compute the mean pLDDT across all sampled structures as
the Confidence metric (higher is better).
DCFold maintains strong sample diversity and confidence. As shown in Table 4, after Dual
Consistency training, DCFold exhibits no substantial deviation from AlphaFold3 in either metric.

7
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Figure 3: lDDT performance on the Recent PDB dataset.

Table 4: Diversity and confidence metrics on the Posebusters V2 benchmark.
Method Diversity (↓) Confidence (↑)
AF3 (5 samples) 0.9646± 0.0410 93.97± 2.92
AF3 (15 samples) 0.9642± 0.0415 93.95± 2.93
AF3 (5 seeds × 1 sample) 0.9697± 0.0421 93.90± 3.01

DCFold (5 samples) 0.9701± 0.0565 94.14± 2.97
DCFold (15 samples) 0.9708± 0.0567 94.13± 2.96
DCFold (5 seeds × 1 sample) 0.9712± 0.0570 94.15± 2.97

Diversity shows a slight decrease, whereas confidence displays a slight increase. These trends sug-
gest that enforcing Dual Consistency mildly concentrates the structural distribution while preserving
high prediction quality.
To assess the robustness of these observations under increased sampling, we additionally evaluated:
(i) 15 samples drawn under a fixed seed, and (ii) 5 random seeds with 1 sample each. Under both
settings, neither AlphaFold3 nor DCFold exhibited meaningful improvements in diversity. This
behavior aligns with the well-known strong conditionality of AlphaFold-series models, which tends
to limit diversity gains from additional sampling alone.
Importantly, DCFold remains compatible with a broad set of diversity-enhancing strategies proposed
in prior work, including sampling MSAs, clustering or masking MSA columns, and tuning dropout
rates (Wayment-Steele et al., 2024; Wallner, 2023; Kalakoti & Wallner, 2025). Our acceleration
approach is orthogonal to these methods, and all such techniques can be directly applied to DCFold
with expected diversity improvements comparable to those previously reported for AlphaFold3.

4.3 BINDER HALLUCINATION

After maintaining the consistency between Pairformer and Diffusion, DCFold achieves efficient
inference and stable gradient backpropagation with modest computational cost. We focus on the
binder hallucination task, which serves as a representative benchmark due to its stringent require-
ments: it demands a fully differentiable folding model, while the filtering stage eliminates a large
fraction of implausible candidates. As a result, success in this setting critically depends on achieving
efficient inference. Following the same hallucination strategy and filtering pipeline as BindCraft (de-
tails provided in Appendix B.2) (Pacesa et al., 2024), we leverage confidence scores and additional
loss terms from DCFold as feedback signals for sequence evaluation. To ensure a fair comparison,
folding constraints are consistently computed using the outputs of AlphaFold2, thereby avoiding
potential numerical discrepancies in confidence calibration between DCFold and AlphaFold2.

Data We adopt the six representative entries from Cao et al. (2022) as the design targets, namely
IL2-Rα, TrkA, H3, VirB8, ALK, and LTK. They span multiple functional categories, including
receptors, enzymes, transcription factors, and bacterial proteins. They have been widely adopted in
prior studies as common benchmarks for design and docking tasks. For each case, we restrict binder
length to 55–65 residues and perform a continuous 48-hour hallucination run.
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Table 5: In silico success rates across six targets for binder design (values shown as physics-based
constraints / model-based constraints).

IL-2Rα TrkA H3 VirB8 ALK LTK Average
BindCraft .38/.84 .29/.88 .16/.52 .15/.72 .14/.48 .43/.70 .26/.69
DCFold (Ours) .37/.79 .31/.84 .23/.71 .21/.85 .12/.54 .47/.93 .29/.78

Metrics We compute the Success Rate using the same two filters as BindCraft. The model-based
constraint is derived from AlphaFold2’s confidence score, whereas the physics-based constraint re-
lies on physical metrics obtained from Rosetta. Additional details are provided in Appendix B.2.
DCFold achieves higher in silico success rates than the AF2-based BindCraft baseline across the
majority of targets. With the incorporation of DCFold, AlphaFold3 can readily support binder hal-
lucination strategies that were previously only feasible within the AlphaFold2 framework. Notably,
DCFold achieves much higher success rates on several targets (e.g., H3, VirB8, and LTK), indi-
cating that our reshaping of AlphaFold3’s output distribution translates into tangible improvements
in downstream design tasks. These findings highlight that DCFold bridges the methodological gap
between AlphaFold2- and AlphaFold3-based pipelines, and unlocks additional performance gains.
We have added more details about the experimental results in Appendix C.2. Figure 7 visualizes
representative binder–target complexes, illustrating the interactions between the generated binders
and their targets.

4.4 EMPIRICAL VALIDATION OF TGM

Table 6: Success Rates of Different Consistency
Models on Posebusters V2.

Method Time (s/step) Success rate (%)
CD 18.5 25.6↓
sCM 38.1 -
ECM 11.6 75.7↑
TGM 11.6 77.5↑

We conduct experiments on feasible generic
consistency-model baselines, including CD
(Song et al., 2023), sCM (Lu & Song, 2024),
ECM (Geng et al., 2024), and TGM. Results
on Posebusters V2 are summarized in Table 6.1
We observe that among all runnable baselines,
a naive implementation of CD leads to training
collapse and severely degrades performance.
Only ECM and TGM are able to enhance
the performance of the diffusion module, with
TGM yielding the largest performance gains. Therefore, in the following experiments, we take ECM
as the representative of prior general consistency models and investigate how TGM exhibits distinct
behavior on protein folding tasks. Detailed hyperparameter settings for each method are provided in
Appendix B.3.
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Figure 4: The relative error of the Euler
solver for r(t, u).

We conduct an in-depth analysis of the sources of im-
provement introduced by TGM and present the gradi-
ent norm and loss curve throughout training in Figure 5.
We observe that the training dynamics of ECM exhibits
poor smoothness, characterized by distinct staircase-like
patterns, and is accompanied by a large gradient vari-
ance. This corroborates our hypothesis in Section 3.3 that
classical consistency algorithms degrade under variable-
length sequences. In contrast, TGM consistently main-
tains balanced gradients, indicating that the learning dif-
ficulty of the network remains at a fixed distance from
its current capacity, effectively counteracting the adverse
effects introduced by variable-length sequences.
In addition, we further assess whether the Euler method
employed in TGM introduces excessive numerical error
in Figure 4. We observe that the error is relatively large
during the early stages of training but decreases as train-
ing progresses, leading to more accurate estimates in later stages. Moreover, the error remains con-

1Due to the substantial computational overhead of sCM, processing long sequences often results in out-of-
memory (OOM) errors, preventing it from participating in a fair comparison.
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Figure 5: Gradient norm and loss curve during training for ECM and TGM.

sistently low throughout the entire training process, indicating that our approximation is sufficiently
reliable. This also explains why employing higher-order algorithms does not yield substantially
greater benefits.

5 RELATED WORK

Protein Structure Prediction Protein structure prediction has rapidly advanced with deep learn-
ing. Classical methods such as Rosetta (Rohl et al., 2004) and co-evolutionary analysis (Marks et al.,
2011; Ovchinnikov et al., 2017) provided key insights but were limited in accuracy and scalability.
The advent of deep neural networks enabled models like RaptorX (Xu, 2019) and trRosetta (Yang
et al., 2020) to exploit large multiple sequence alignments (MSAs), setting the stage for a decisive
breakthrough. AlphaFold2 (Jumper et al., 2021) combined evolutionary information with a novel
attention architecture, achieving near-experimental resolution.
Efforts to reduce reliance on MSAs led to models such as ESMFold (Lin et al., 2022), OmegaFold
(Wu et al., 2022), and HelixFold-Single (Fang et al., 2022), which leverage protein language models
for fast single-sequence prediction, albeit at lower accuracy. Extensions like AlphaFold-Multimer
(Evans et al., 2021) generalized AF2 to protein–protein interactions, establishing it as a foundation
model. Building on this, AlphaFold3 (Abramson et al., 2024) introduced a diffusion-based struc-
ture module and unified biomolecular representation, enabling prediction of protein–ligand, nucleic
acid, and heterogeneous complexes. Despite setting new standards in accuracy and scope, AF3’s
computational overhead remains a key barrier, driving research into acceleration, distillation, and
approximation (Cheng et al., 2022).

Diffusion Acceleration Recent advances in diffusion acceleration fall into three categories:
training-free solvers, training-based distillation, and flow-based reformulations. Training-free
solvers leverage higher-order integration, predictor–corrector schemes, and adaptive noise sched-
ules to achieve high-quality generation in a few dozen steps, though performance often degrades in
the extreme few-step regime (Song et al., 2020; Lu et al., 2022; Zhao et al., 2023). Training-based
distillation compresses long diffusion chains into compact generators: progressive distillation iter-
atively reduces step counts, adversarial variants integrate GAN-style objectives, and Consistency
Models (CMs) enforce self-consistency across time to enable single- or few-step generation with
strong fidelity (Salimans & Ho, 2022; Sauer et al., 2024; Song et al., 2023). In parallel, flow-based
methods reformulate diffusion as velocity fields with straightened trajectories, allowing efficient
integration with simple solvers (Liu et al., 2022; Lipman et al., 2022).

6 CONCLUSION

We present DCFold, a dual-consistency distillation framework that compresses AlphaFold3 into
a high-fidelity single-step sampler. By jointly enforcing diffusion and Pairformer consistency and
introducing the Temporal Geodesic Matching schedule, DCFold achieves stable training on variable-
length protein sequences while reducing inference cost by up to 15×. Experiments on structure
prediction and binder design show that DCFold matches or surpasses AlphaFold3 in accuracy and
substantially improves downstream usability, bridging AlphaFold2’s efficiency with AlphaFold3’s
accuracy to enable scalable, differentiable protein design.
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Yogesh Kalakoti and Björn Wallner. Afsample2 predicts multiple conformations and ensembles
with alphafold2. Communications Biology, 8(1):373, 2025.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Lin Li, Esther Gupta, John Spaeth, Leslie Shing, Rafael Jaimes, Emily Engelhart, Randolph Lopez,
Rajmonda S Caceres, Tristan Bepler, and Matthew E Walsh. Machine learning optimization
of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries. Nature
communications, 14(1):3454, 2023.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos San-
tos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein
sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022:500902,
2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. lddt: a local
superposition-free score for comparing protein structures and models using distance difference
tests. Bioinformatics, 29(21):2722–2728, 2013.

Debora S Marks, Lucy J Colwell, Robert Sheridan, Thomas A Hopf, Andrea Pagnani, Riccardo
Zecchina, and Chris Sander. Protein 3d structure computed from evolutionary sequence variation.
PloS one, 6(12):e28766, 2011.

Sergey Ovchinnikov, Hahnbeom Park, Neha Varghese, Po-Ssu Huang, Georgios A Pavlopoulos,
David E Kim, Hetunandan Kamisetty, Nikos C Kyrpides, and David Baker. Protein structure
determination using metagenome sequence data. Science, 355(6322):294–298, 2017.

Martin Pacesa, Lennart Nickel, Christian Schellhaas, Joseph Schmidt, Ekaterina Pyatova, Lucas
Kissling, Patrick Barendse, Jagrity Choudhury, Srajan Kapoor, Ana Alcaraz-Serna, et al. Bind-
craft: one-shot design of functional protein binders. bioRxiv, pp. 2024–09, 2024.

Carol A Rohl, Charlie EM Strauss, Kira MS Misura, and David Baker. Protein structure prediction
using rosetta. In Methods in enzymology, volume 383, pp. 66–93. Elsevier, 2004.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

ByteDance AML AI4Science Team, Xinshi Chen, Yuxuan Zhang, Chan Lu, Wenzhi Ma, Jiaqi Guan,
Chengyue Gong, Jincai Yang, Hanyu Zhang, Ke Zhang, Shenghao Wu, Kuangqi Zhou, Yanping
Yang, Zhenyu Liu, Lan Wang, Bo Shi, Shaochen Shi, and Wenzhi Xiao. Protenix - advancing
structure prediction through a comprehensive alphafold3 reproduction. bioRxiv, 2025. doi: 10.
1101/2025.01.08.631967. URL https://www.biorxiv.org/content/early/2025/
01/11/2025.01.08.631967.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

Björn Wallner. Afsample: improving multimer prediction with alphafold using massive sampling.
Bioinformatics, 39(9):btad573, 2023.

Hannah K Wayment-Steele, Adedolapo Ojoawo, Renee Otten, Julia M Apitz, Warintra Pitsawong,
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PDB ID: 7r6r
(mycobacteriophage immunity

repressor-DNA complex)

PDB ID: 7wux
(AziU3/U2 complexed with

(5S,6S)-O7-sulfo DADH)

PDB ID: 7pzb
(Clr-cAMP-DNA complex)

Experimental result AlphaFold 3 DCFold

Figure 6: A structure prediction case study of DCFold, compared against AlphaFold3 and the ex-
perimental result.

A B

C D

Figure 7: Examples from binder-design experiments, with targets: (A) ALK, (B) H3, (C) IL2Rα,
and (D) VirB8.

A DERIVATION OF TGM

A.1 PROOF OF LOCAL METRIC-KL EQUIVALENCE

We investigate the KL divergence between two distributions defined on the manifoldMt:

DKL(pr∥pt) =
∫

pr(x) log
pr(x)

pt(x)
dx =

∫
pr(x) [log pr(x)− log pt(x)] dx (9)

We perform a Taylor expansion of log pt−∆t(x) and substitute the result into the KL divergence.

log pt−∆t(x) = log pt(x)−∆t
∂

∂t
log pt(x) +

1

2
(∆t)2

∂2

∂t2
log pt(x) +O

(
(∆t)3

)
(10)
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Substituting it into the KL divergence yields:

DKL(pr∥pt) =
∫

pr(x)

[
−∆t

∂

∂t
log pt(x) +

1

2
(∆t)2

∂2

∂t2
log pt(x) +O

(
(∆t)3

)]
dx

=

∫ [
pt(x)−∆t

∂

∂t
pt(x) +

1

2
(∆t)2

∂2

∂t2
pt(x) +O

(
(∆t)3

)]
·[

−∆t
∂

∂t
log pt(x) +

1

2
(∆t)2

∂2

∂t2
log pt(x) +O

(
(∆t)3

)]
dx (11)

The first-order term vanishes:

−∆t

∫
pt(x)

∂

∂t
log pt(x) dx = 0, (12)

while the second-order term takes the following form:

(∆t)2

2

∫
pt(x)

∂2

∂t2
log pt(x) dx+ (∆t)2

∫
∂

∂t
pt(x)

∂

∂t
log pt(x) dx (13)

The term on the right-hand side is given by

(∆t)2
∫

pt(x)

[
∂

∂t
logt(x)

]2
dx = (∆t)2I(t) (14)

The simplification of the left-hand side relies on the property that the integral of the score function
vanishes:

0 =
∂

∂t
·0 =

∂

∂t

∫
pt(x)

∂

∂t
log pt(x) dx =

∫
∂

∂t
pt(x)

∂

∂t
log pt(x) dx+

∫
pt(x)

∂2

∂t2
log pt(x) dx

(15)
Thus, the term on the left-hand side can also be expressed in terms of I(t):∫

pt(x)
∂2

∂t2
log pt(x) dx = −

∫
∂

∂t
pt(x)

∂

∂t
log pt(x) dx = −I(t) (16)

Thus, the second-order term implicitly encodes the temporal Fisher information − (∆t)2

2 I(t) +
(∆t)2I(t) = (∆t)2

2 I(t), that is DKL (pr(x)∥pt(x)) = (∆t)2

2 I(t) + O
(
(∆t)3

)
. With this, local

metric-KL equivalence becomes evident.

A.2 TEMPORAL FISHER INFORMATION IN EDM

We assume the forward process of diffusion is defined as pt(x|x0) = N (x;µ =

α(t)x0, σ
2(t)I), I(t) = Ept(x)

[(
∂
∂t log pt(x)

)2]
= Ex0∼pdataEpt(x|x0)

[(
∂
∂t log pt(x)

)2]
We employ a multivariate Gaussian distribution with dimensionality D: p(x) =

1
(2π)D/2|Σ|1/2 exp

(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)
, Σ = σ2(t)I, |Σ| = |σ2(t)I| = σ2D(t),Σ−1 =(

σ2(t)I
)−1

= σ−2(t)I , which yields the following simplification:

pt(x|x0) =
1

(2π)D/2σD(t)
exp

(
−∥x− α(t)x0∥2

2σ2(t)

)
(17)

log pt(x|x0) = −
D

2
log(2π)−D log σ(t)− ∥x− α(t)x0∥2

2σ2(t)
(18)
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∂

∂t
log pt(x|x0) = −D

σ̇(t)

σ(t)
−
[
− σ̇(t)

σ3(t)
∥x− α(t)x0∥2 −

1

2σ2(t)

(
−2α̇(t) (x− α(t)x0)

⊤
x0

)]
= −Dσ̇(t)

σ(t)
+

σ̇(t)

σ3(t)
∥x− α(t)x0∥2 +

α̇(t)

σ2(t)
(x− α(t)x0)

⊤
x0

= −Dσ̇(t)

σ(t)
+

σ̇(t)

σ3(t)
σ2(t)∥z∥2 + α̇(t)

σ2(t)
(σ(t)z)

⊤
x0

= −Dσ̇(t)

σ(t)
+

σ̇(t)

σ(t)
∥z∥2 + α̇(t)

σ(t)
z⊤x0

=
σ̇(t)

σ(t)
(∥z∥2 −D) +

α̇(t)

σ(t)
z⊤x0 (19)

Thus, I(t) can be decomposed into three components:

I(t) = Ex0∼pdataEpt(x|x0)

[(
σ̇(t)

σ(t)
(∥z∥2 −D) +

α̇(t)

σ(t)
z⊤x0

)2
]

= Ex0∼pdataEz

[(
σ̇(t)

σ(t)

)2

(∥z∥2 −D)2 +

(
α̇(t)

σ(t)

)2

(z⊤x0)
2 + 2 · σ̇(t)α̇(t)

σ2(t)
(∥z∥2 −D)(z⊤x0)

]
(20)

Since the first term follows a chi-squared distribution ∥z∥2 =
∑

i z
2
i ∼ χ2(D), in this part, we

introduce the data dimension D: E[∥z∥2] = D,E
[
(∥z∥2 −D)2

]
= Var[∥z∥2] = 2D

the second term is E
[
(z⊤x0)

2
]
= E

[
(
∑

i zi(x0)i)
(∑

j zj(x0)j

)]
=

∑
i,j(x0)i(x0)jδij = ∥x0∥2

The third term, namely the cross-term, vanishes: E
[
(∥z∥2 −D)(z⊤x0)

]
= E

[
∥z∥2 · (z⊤x0)

]
−

D · E[z⊤x0] = E
[
(
∑

i z
2
i )(

∑
j zj(x0)j)

]
=

∑
i,j(x0)jE[z2i zj ] = 0

I(t) = Ex0∼pdata

[
σ̇(t)

σ(t)
· 2D +

α̇(t)

σ(t)
· ∥x0∥2

]
(21)

In most prior works, due to the effect of data normalization, we can assume that E[x0] = 0, and
therefore ∥x0∥2 can be expressed in terms of Var[x0].

In the EDM framework, α(t) = 1, σ(t) = σdata ·
(
s
1/p
max + (1− t) · (s1/pmin − s

1/p
max)

)p

. This yields a
more concise expression for I(t):

I(t) = σ̇(t)

σ(t)
· 2D =

2D · p · (s1/pmax − s
1/p
min )

s
1/p
max + (1− t)(s

1/p
min − s

1/p
max)

(22)

B IMPLEMENTATION DETAILS

B.1 TRAINING CONFIGURATION

To ensure clarity and reproducibility, we provide a detailed description of the training setup. Our full
training pipeline was executed on a cluster equipped with 64 NVIDIA H800 GPUs, corresponding to
an effective batch size of 64. Stage 1 focuses on learning diffusion consistency. DCFold was trained
for approximately 40 hours, spanning a total of 9,000 optimization steps. This stage establishes
the foundational generative capabilities leveraged in subsequent training. Stage 2 aims to refine
the structural reasoning components through Pairformer consistency training. This phase required
around 7 hours of computation and was conducted for 1,500 steps. The shorter duration reflects both
the stability provided by Stage 1 and the efficiency of fine-tuning the Pairformer module.

B.2 BINDER HALLUCINATION

After initial binder design with DCFold, sequences are refined to improve stability and solubility
using ProteinMPNN with soluble weights, while preserving residues within 4 Å of the target inter-
face. For each binder, 20 variants are generated at temperature 0.1 with no backbone noise. These
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Table 7: Average inference time of AlphaFold3 and DCFold across token bins.
#Tokens AlphaFold3 Avg Time (s) DCFold Avg Time (s)
≤ 255 92.63 3.76
256–383 103.31 5.77
384–511 112.35 7.17
512–639 126.41 10.87
640–767 142.78 14.65
768–895 169.20 20.02
≥ 896 212.12 27.40

sequences are re-predicted using the AF2 monomer model (3 recycles, 2 template-based models) in
single-sequence mode to validate structural robustness. Resulting complexes are energy-minimized
with Rosetta FastRelax (200 iterations) and evaluated using InterfaceAnalyzer with sidechain and
backbone movement. Final designs are filtered using predefined thresholds (pLDDT > 0.8, i pTM
> 0.5, i pAE < 0.35, shape complementarity > 0.55, < 3 unsaturated H-bonds, binder surface
hydrophobicity < 35%, RMSD < 3.5 Å), yielding a high-confidence set of candidates.
We evaluate binder quality using two constraint sets. Model-based Constraints are derived from
AlphaFold2 confidence outputs, requiring pLDDT > 0.8, interface pTM > 0.5, global pTM > 0.45,
and interface pAE < 0.4. Physics-based Constraints are based on physical interface metrics from
Rosetta, including shape complementarity > 0.5, dSASA > 1, > 6 interface residues, > 2 interface
hydrogen bonds, surface hydrophobicity < 0.37, and < 6 unsaturated hydrogen bonds. All metrics
are aligned with the filters used in BindCraft.

B.3 HYPERPARAMETER SETTINGS FOR CONSISTENCY MODEL BASELINES

For completeness, we provide the implementation details of all baselines considered in our experi-
ments:

• CD: Mean squared error (MSE) as the metric function with a weight decay rate of η =
0.995.

• sCM: H = 2000 warm-up iterations.

• ECM: q = 2.0, b = 0.1, d = 3000, and k = 4.0.

• TGM: Hyperparameter search yields C0 = 32 and β = 2. In addition, we inherit the
exponential decay scheduling parameters from AlphaFold3’s EDM configuration, with p =
7, smax = 160, and smin = 4× 10−4.

For all methods, we set the weighting function to 1.

C EXPERIMENT DETAILS

C.1 RUNTIME CHARACTERISTICS ACROSS SEQUENCE LENGTHS

To comprehensively assess the efficiency of DCFold, we report detailed bin-wise runtime statistics
on the Posebusters V2 benchmark. Since AlphaFold3 supports folding protein-ligand complexes, we
use the total number of input tokens for each test entry as the length metric and partition sequences
into bins of size 128. The average inference time for each bin is summarized in Table 7.
Both AlphaFold3 and DCFold exhibit increasing runtime as sequence length grows. However, the
relative acceleration provided by DCFold is most pronounced for short sequences, where it achieves
up to a 24× speedup. For moderately long sequences, DCFold still provides more than 7.7× accel-
eration, demonstrating consistent efficiency gains across all token ranges.
We hypothesize that this trend stems from the differing computational bottlenecks of the two meth-
ods. The reduction in Diffusion NFE afforded by DCFold yields a significantly larger improvement
factor compared to the reduction in Pairformer cycles. As sequence length increases, the Pairformer
component becomes the dominant cost, diminishing the relative impact of the diffusion speedup.
Conversely, in shorter sequences, the Pairformer bottleneck is less pronounced, enabling the diffu-
sion efficiency gains to translate directly into substantial end-to-end acceleration.
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Table 8: The total number of generated samples in the binder hallucination experiments.
IL-2Rα TrkA H3 VirB8 ALK LTK

BindCraft 312 243 269 347 188 348
DCFold (Ours) 375 256 295 439 177 402

Table 9: Detailed information of binder targets in the binder hallucination experiments.
Target PDB ID Family Description
ALK 7NWZ Immune receptor Neural receptor tyrosine kinase involved in

development
H3 3ZTJ Receptor tyrosine kinase Core nucleosomal histone in eukaryotic

chromatin
IL2Rα 1Z92 Histone protein Component of the interleukin-2 receptor

complex in the immune system
LTK 7NX0 Bacterial secretion sys-

tem protein
Homolog of ALK expressed in various tis-
sues

TrkA 2IFG Receptor tyrosine kinase Neurotrophic signaling receptor activated
by NGF

VirB8 4O3V Receptor tyrosine kinase Structural protein of the type IV secretion
system in Gram-negative bacteria

C.2 BINDER HALLUCINATION

We conducted experiments on a single H800 GPU. On the targets used in Table 5, the average GPU
time for one full hallucination with BindCraft is 138s, while DCFold requires 105s. Since we follow
the same pipeline as BindCraft, the total serial runtime also includes the time for ProteinMPNN and
the re-prediction step in addition to the design model’s GPU time. We also provide the total number
of designs generated in our experiments in Table 8. Overall, DCFold attains slightly better efficiency
while producing a comparable number of samples, ensuring a fair comparison.
Our binder design benchmark features six protein targets. Table 9 shows the details of the targets.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models (LLMs) solely for auxiliary editing purposes, including spelling cor-
rection and minor grammatical adjustments. Importantly, LLMs are not involved in the conception
of research ideas or the development of code. We disclose this usage explicitly to ensure trans-
parency in our work.
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