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Abstract

LLMs are increasingly used to design reward functions based on human preferences
in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless
Multi-Armed Bandits, a framework for allocating limited resources among agents.
In applications such as public health, this approach empowers grassroots health
workers to tailor automated allocation decisions to community needs. In the pres-
ence of multiple agents, altering the reward function based on human preferences
can impact subpopulations very differently, leading to complex tradeoffs and a
multi-objective resource allocation problem. We are the first to present a principled
method termed Social Choice Language Model for dealing with these tradeoffs for
LLM-designed rewards for multiagent planners in general and restless bandits in
particular. The novel part of our model is a transparent and configurable selection
component, called an adjudicator, external to the LLM that controls complex
tradeoffs via a user-selected social welfare function. Our experiments on a mobile
health program dataset demonstrate that we reliably select more effective, aligned,
and balanced reward functions compared to purely LLM-based approaches.

1 Introduction

Reward functions play a fundamental role in the generation of optimal policies for sequential
decision-making via reinforcement learning. Previous work has shown that LLMs are an effective
tool for designing reward functions that can be guided and customized via human language prompts
[12, 7, 11, 27, 13, 28, 9]. We study the problem of designing high-quality reward functions aligned
with human preference prompts in the context of sequential resource allocation problem in mobile
health. We present a transparent framework around LLMs that constructs effective, aligned, and
balanced reward functions for complex human prompts.

Specifically, our work studies the reward design problem for restless multi-armed bandits (RMABs),
a popular model in multiagent systems for sequentially allocating a limited number of resources to
a set of agents [26, 17]. In RMABs, each agent is represented by an individual Markov Decision
Process including a reward function. By choosing these reward functions, one can control which
agents are more or less likely to receive a resource. RMABs have been used in various domains such
as machine maintenance [1], anti-poaching [19], and healthcare [5, 24]. In many of them, system
organizers have evolving allocation priorities based on agents’ features that need to be incorporated
into the resource allocation process [8, 25]. For instance, in a healthcare program, a healthcare worker
might want to change the allocation policy to prioritize low-income beneficiaries who are at higher
risk or older beneficiaries who have transportation barriers for healthcare access [16, 23] via the
preference prompt: Prioritize low-income beneficiaries and older beneficiaries.
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Figure 1: Overview of SCLM. Step 1: preference prompt is passed to the generator, which performs
evolutionary search to create a pool R of candidate reward functions. Step 2: these functions are
passed to the adjudicator where a scorer model (simulator/LLM scorer) computes alignment scores.
Step 3: a user-defined social welfare function selects a reward function based on the alignment scores.

Translating such human language prompts to effective and aligned reward functions is a general,
non-trivial challenge in RL [9, 7, 12], e.g., as it is unclear how changes in the reward influence the
used policy downstream. However, the multiagent nature of the RMAB problem adds a new twist to
the problem of reward design in RL: It becomes fundamentally multi-objective. Consider the above
example prompt asking for the prioritization of two subpopulations. As these subpopulations may
contain different agents, selecting a reward function will most likely involve trading off the interests of
the low-income vs. older beneficiaries, making this a multi-objective problem. If this multi-objective
nature is ignored, a selected reward function might heavily favor one of the two groups (e.g., leading
to the allocation of many resources to low-income beneficiaries, and no resources to older ones).

We present a Social Choice Language Model (SCLM) that designs reward functions aligned with
complex, multi-objective human language preferences in a mobile health program (see Figure 1). Our
pipeline separates generation of candidate reward functions in the generator from the selection of
one function in the adjudicator. SCLM combines the generative power of LLMs to design reward
functions with capabilities of social choice to handle multi-objective decision-making scenarios.

2 Preliminaries

An instance of Restless Multi-Armed Bandits (RMAB) is defined by a set of N arms (or agents), a
time horizon T , and a budget K. Each arm i ∈ [N ] is an independently evolving MDP with state
space Si, actions Ai = {0, 1}, transition function Pi : Si ×Ai × Si → R≥0, and reward function
Ri : Si → R. We refer to 1 as the active action corresponding to pulling the arm (i.e., allocating a
resource) and 0 as the passive action corresponding to not pulling the arm. We focus on MDP with
two states, i.e., Si = {0, 1} for all i ∈ [N ] where 0 is the bad and 1 is the good state. For each step
in which an agent is in the good state, they derive a utility of 1, while they derive a utility of 0 in the
bad state. Accordingly, agents’ default reward function R∗ is R∗(s) = s. We assume that there is
a set of categorical features. Each arm is associated with a value of each feature. A global reward
function is a reward function defined over features, which induces a reward function for each arm by
plugging in its feature values.

In each step within time horizon T , the planner observes the state of all arms and decides to pull a
subset of at most K arm. As solving the RMAB problem optimally is computationally intractable
[18], we make use of the very popular state-dependent Whittle index [26, 17], which tries to quantify
for each state of each arm the reward gain achieved from applying the active action to the arm in this
state. In the Whittle index policy Π, in each step, we compute Whittle index for each arm (based
on its current state) and pull arms with the K highest Whittle indices. For a global reward function
R, we write Π(R) to denote the Whittle index policy for R, i.e., the Whittle index policy for the
instance where each agent uses the function R after plugging in their feature values as their reward.
We refer to Π(R∗) as the default policy. To assess the quality of a global reward function R, we often
consider the utility feature distribution for some feature X . This distribution shows for each value of
the feature, the expected utility generated by arms with this feature value under the policy Π(R).

3 Social Choice Language Model (SCLM)

We propose a Social Choice Language Model to generate rewards from human language composite
preference prompts (see Figure 1). Separating the generation and selection of reward functions, the
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model consists of two sequential components. The LLM-powered generator generates a pool of
candidate reward functions. Subsequently, taking a social-choice-inspired viewpoint, the adjudicator
selects a reward function from the pool in two steps: i) a scorer model computes an alignment score
for each reward function with each prioritization clause (i.e., we judge each reward function from
perspective of all relevant “objectives”) and ii) a user-defined social welfare function aggregates these
scores into a “winning” candidate reward function.

Generator Given a prompt, generator creates a set of candidate reward functions (as Python code)
via a variant of evolutionary search [6]: We proceed in multiple steps. First, inputting the problem
description, feature descriptions and the preference prompt, we ask an LLM to generate code for a
reward function. We repeat this query np times to obtain a set R of np candidate reward functions.
Afterwards, for each function R ∈ R we compute the utility feature distributions of the policy
Π(R) induced by the reward function R on the given RMAB instance (via repeatedly simulating the
policy on the instance). Then, the prompt and the set of candidate reward functions together with
the associated utility feature distributions are passed to an LLM, which is asked to select the reward
function R′ from R best aligned with the prompt [12, 22]. Now, we repeat the whole process, this
time including the selected policy R′ as a seed in the reward function generation prompts. Once we
have executed the process nr times, we add all generated np · nr candidate reward functions R to the
pool R (see Section A.2 for details).

Adjudicator The adjudicator selects a reward function from pool of candidate reward functions
returned by generator. To handle complex tradeoffs arising within composite prompts and resulting
multi-objective optimization problem, the adjudicator follows a social choice approach. Social
choice is a discipline at the intersection of economics, philosophy, and mathematics and concerned
with aggregating potentially contradicting preferences of a set of voters into a fair compromise
alternative from a given candidate set [4, 15]. It thus provides a theoretically grounded methodology
for balancing competing interests. In our problem, we interpret reward functions as candidates and
preference clauses in the prompt as voters with their preferences over the candidates reflecting the
reward function’s alignment with the clause. This view gives rise to the following strategy: Given
a prompt P = {p1, p2, . . . , pℓ}, we evaluate each reward function R ∈ R from the perspective of
each preference clause pi by computing an (alignment) score si(R). si(R) measures the alignment
of Π(R) with preference clause pi, i.e., how much the voter representing pi “likes” the candidate R.

Social Welfare Functions Social welfare functions select an alternative based on input preferences
of voters. The pros and cons of individual social welfare functions have been extensively researched
and debated in social choice [4, 21]. We make use of cardinal social welfare functions [10] which
take as input our alignment scores (si(R))i∈[ℓ],R∈R and output the winning reward function. We
consider the two arguably most popular social welfare functions:

Utilitarian Return the reward function maximizing the sum of its scores, i.e.,
argmaxR∈R

∑
i∈[ℓ] si(R).

Egalitarian Return the reward function maximizing its minimum score, i.e.,
argmaxR∈R mini∈[ℓ] si(R).

Social welfare functions also allow for assigning a different importance to clauses: The user could
submit an importance score wi for each clause pi, which can be easily incorporated in the social
welfare function, e.g., the Utilitarian welfare function becomes argmaxR∈R

∑
i∈[ℓ] wi · si(R).

Selecting the social welfare function gives us control over the tradeoffs between objectives: By
picking the egalitarian function, we ensure that one clause will not get prioritized over another. In
contrast, the Utilitarian function prioritizes the summed alignment, allowing for mismatches between
clauses. Further, the adjudicator makes the selection process more transparent, as the different
objectives, the selection criterion, and the performance of the candidate reward functions regarding
the objectives become explicit. To compute alignment scores si(R), we present two general methods.

Simulator Scorer Model (SCLM-SIM) First, for each preference clause pi ∈ P , we compute a
reward function Ri aligned with pi by casting it as a singular prompt to the DLM pipeline. Next, for
each R ∈ R, we compute si(R) as the expected reward according to reward function Ri produced
by policy Π(R). si(R) quantifies the quality of the policy induced by the candidate reward function
R from the perspective of pi (as captured by Ri). As the scale of the reward functions can vary
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significantly among preference clauses, we normalize the scores by the performance of the default
policy, i.e., we compute si(R)−si(R

∗)
si(R∗) .

LLM Scorer Model (SCLM-LLM) The Simulator Scorer Model assumes access to reward
functions capturing individual preference clauses well. If no well-aligned reward functions can be
obtained, the performance of SCLM-SIM can deteriorate because it can become noisy. Another
disadvantage of SCLM-SIM is that the scores in SCLM-SIM are all computed via simulation, which
can be computationally expensive. Motivated by this, we propose a faster and more flexible LLM-
based approach, where we prompt an LLM to rate the alignment of a candidate reward function with
a preference clause. In particular, for each R ∈ R and pi ∈ P , we use a prompt that includes R, pi,
and the utility feature distributions produced by policy Π(R). We ask the LLM to rank how well R
aligns with the preference clause pi on a scale from 1 to 5 (see Section C for prompt texts).

4 Experiments and Results

Mobile Health Domain ARMMAN [3] is a non-profit in India that operates large-scale Maternal
and Child Care Mobile Health programs for underserved communities. One of their programs
disseminates critical health information via weekly automated voice messages. The goal of the NGO
is to maximize beneficiaries’ engagement, i.e., the number of messages they listen to. A limited
number of beneficiaries are called by health workers every week to boost engagement. The problem of
planning which beneficiaries to call has been modeled and solved as an RMAB, where the good/bad
state corresponds to a high/low weekly engagement of the beneficiary. We use anonymized data
from a quality improvement study conducted in January 2022 [24]. For each beneficiary, we have
access to their income, education, and age level, which we use as our three features. Beneficiaries’
historic listenership values are used to estimate their transition probabilities under the passive action
[14]. One problem in estimating transition probabilities under the active action is that due to the
limited number of service calls made, such transitions are rare. Thus, active transition probability
estimates are noisy. To alleviate this issue, we use the features and passive transition probabilities
from ARMMAN data together while we synthetically generate active transitions (see Section A.3 for
details). Finally, we create datasets for three different synthetic generation hyperparameters. Each
dataset consists of five sampled RMAB instances with N = 2100 arms, a budget of B = 210 and a
time horizon of T = 12.

An instance of our problem consist of two parts: A preference prompt and an RMAB instance. We
initially focus on prioritization prompts. Specifically, for each feature X , we consider two different
prioritization clauses “Prioritize agents with low/high value of feature X”. This gives rise to 6
singular prompts consisting of one prioritization clause, two for each feature. For composite prompts,
we take all combinations of two features and the two prioritization clauses for each feature (e.g.
“Prioritize agents with high value of feature A and also prioritize agents with low value of feature
B”). This results in 3 · 4 = 12 composite prompts. In our experiments, we run each prompt on the 15
RMAB instances from the three datasets.

4.1 Models & Baselines

We analyze four different variants of SCLM differing in the used social welfare function (Utilitarian
or Egalitarian) and scorer model (Simulator or LLM), e.g., we denote as SCLM-SIM-Egalitarian
SCLM with the Simulator Scorer Model and the Egalitarian social welfare function. In addition, we
consider several LLM-focused baselines (see Section C for detailed descriptions):

• LLM-Zeroshot: This baseline only queries the LLM once. It asks for a reward function aligned
with given preference prompt after providing context of problem and feature description

• DLM: This baseline implements the Decision-Language Model by Behari et al. [6].
• DLM-PromptEngg: This is a modified version of DLM where within the reflection prompt, we

include examples for singular queries of how the LLM should reason over the different reward
function choices.

Following the work of Behari et al. [6], which constitutes our most important baseline, we use Gemini
Pro [2] as the LLM in our experiments.

4



Evaluation Metrics As our goal is to fulfill the preferences specified by the user (in contrast to the
classic goal of maximizing total utility), we need to quantify the alignment of the returned reward
function with the given prompt P to evaluate our models. Due to the composite, multi-objective
nature of our prompts, we start by measuring the alignment of the returned reward function R with
each prioritization clause pi ∈ P in a separate evaluation score ei(R). We compute ei(R) as the
summed utility generated by the agents with highest/lowest value of feature X under the policy
Π(R) normalized by the utility generated by these agents under the default policy Π(R∗). Reflecting
the multi-objective nature of our problem, we consider two metrics for measuring the alignment
of a reward R with a full composite prompt: the sum and minimum of the % change of the utility
generated by the two prioritized groups under policy Π(R) compared to the default policy.

Figure 2: Sum % change (left) and minimum of
% change in utility for the two groups prioritized.
Results comparing the quality of reward design
methods for composite prioritization prompts.

Results In Figure 2, we depict average
summed and minimum alignment with the two
clauses of the composite prompt, i.e., the mini-
mum/summed change in the utility generated
by the prioritized group of agents (see sec-
tion B.1 for additional results). We start by fo-
cusing on SCLM with Simulator Scorer SCLM-
SIM (green-shaded bars), our strongest method
which significantly outperforms all baselines
for both minimum and summed % change in-
dependent of whether Utilitarian or Egalitarian
social welfare function is chosen. SCLM-SIM-
Utilitarian outperforming the baselines for min-
imum change and SCLM-SIM-Egalitarian out-
performing them for summed change highlights
the advantages of SCLM, as these objectives are not explicitly optimized by the respective models,
e.g., SCLM-SIM-Utilitarian aims at maximizing the summed change and not the minimum one, but
still performs well regarding the minimum change. This indicates that SCLM independent of chosen
welfare function does a better job at picking effective and aligned reward functions. Comparing
SCLM-SIM-Utilitarian and SCLM-SIM-Egalitarian, the two methods exhibit a big difference under
the summed change criterion, while the difference regarding minimum change is much smaller.

If we replace Simulation Scorer with LLM Scorer, the performance of the SCLM decreases, but
is still better than all of our three baselines. The difference between the LLM and Simulation
Scorer highlights the advantage of the additional information acquired through more complex and
computationally expensive simulation method. Regarding the performance of the baselines, our
DLM baseline with prompt engineering DLM-PromptEngg performs similarly to DLM. This suggests
that prompt engineering itself is not sufficient to adequately deal with the multi-objective nature of
composite prompts; an external component (like our adjudicator) is needed. Finally, LLM-zeroshot
performs the worst, which highlights the non-triviality of the reward design problem and the need for
extensive guided search within the reward function search space.

5 Conclusion and Social Impact

We present a customizable Social Choice Language Model to handle multi-objective nature of
preference prompts in reward design for RMABs in a mobile health setting. We showcase how
methods from social choice can be used to improve quality and transparency of decision-making of
LLM-based frameworks, as we present adjudicator component that makes final decision from options
generated by the LLM. SCLM significantly improves the quality of the chosen reward functions.

Our framework is especially useful in allowing experts at the grassroots - community volunteers and
health workers to participate in decision-making by incorporating their insights into policy through
natural language. This helps decentralize planning and build community tailored solutions. In
addition, the framework also allows for rapid adaptation to changing government regulations. SCLM
also adds a layer of transparency and reliability, which is crucial for widespread adoption. For future
work, we believe SCLM can be extended to handle multiple preference prompts specified by multiple
health workers or end users, which is often a challenging task because of a lack of consensus.
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Appendix

A Implementation Details

A.1 Whittle Index Policy

To formulate the Whittle Index Policy, first we define the value function for an arm i ∈ [N ] under the
subsidy λ as

V λ
i (s) = max

a∈{0,1}
Qi(s, ai, λ). (1)

Here, Qi(s, ai, λ) measures the expected discounted cumulative future reward where a subsidy λ is
added to the reward when the passive action is taken. The Whittle index associated to the state si is
then defined as:

Wi(si) := inf
m

{Qi(si, ai = 0,m) = Qi(si, ai = 1,m)} .

The whittle index is thus the value of subsidy such that the passive (a = 0) and active (a = 1) actions
have the same value. Intuitively, this captures the value of taking active action on an arm.

To implement the Whittle Index computation, we use the method in [20] based on binary search.
Additionally, for all the experiments, we cache computed whittle index for a given set of transition
probabilities and reward functions to reduce computation time.

A.2 DLM Pipeline

In our work, we use a modified version of the DLM pipeline [6], which employs the Whittle Index
policy as the planner for RMAB. Our approach differs from Behari et al. [6] in that we use the Whittle
Index policy specifically for simulating RMAB, whereas Behari et al. [6] use the PreFeRMAB policy
(Zhao and Behari et al. 2023). This modification allows for faster and more stable simulations and
effectively decouples the learning problem from the planning problem.

Specifically, the DLM consists of three components. First, a user provides a natural language
preference P . We then create a prompt for LLM which includes the context of the RMAB problem,
the preference P , a description of features available, and the index of those features in the feature
array. Finally, the LLM is asked to generate the Python code of the reward function in text format.
We describe the prompt used in Figures 4 and 5.

The LLM is queried np times to obtain np reward functions. For each reward function, we also
compute the reward distribution over all the features. Next, given all the generated reward functions
and their corresponding reward distributions, we query the LLM to select the best reward function.
We describe the prompt used in Figures 6 and 7. This is called the reflection step. The best reward
function is then used inside the prompt for next step of generating np reward functions. This process
is repeated nr times to obtain np · nr reward functions. In all our reward function generation
experiments, we query the LLM np = 4 times and run the reflection loop nr = 5 times resulting in
20 candidate reward functions.

As an LLM, we use the Gemini Pro model by Google. We query the LLM using python based API
from the generative-ai-python library.

A.3 Synthetic Dataset Generation

An RMAB problem is defined by the transition probabilities of Markov Decision Process governing
every arm and the reward functions. We consider a 2-state, 2-action Markov decision process in
all our experiments. This results in 8 transition probability parameters Pi(s, a, s

′) ∀s ∈ {0, 1}, a ∈
{0, 1}, s′ ∈ {0, 1} for every arm i. Out of these 8 parameters, we only need to define 4 parameters
Pi(s, a, s

′ = 1) ∀s ∈ {0, 1}, a ∈ {0, 1} independently, and the rest 4 parameters can be calculated
as the compliment values Pi(s, a, s

′ = 0) = 1− Pi(s, a, s
′ = 1) ∀s ∈ {0, 1}, a ∈ {0, 1}.

To simulate the effects of conflicting preferences and trade-offs in a controlled setup, we configure
the four transition probability parameters to depend on the features describing each arm. We consider
each arm to be characterized by a vector of continuous features f , with three values ranging between
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Table 1: Weight vector parameters for different synthetic datasets.
Feature A Feature B Feature C σ

Dataset 1 0.8 -1.5 1 0.1

Dataset 2 10 -1.5 1 0.1

Dataset 3 1 -1.5 10 0.1

0 and 1 (f ∈ [0, 1]3). We use the following setup to stochastically generate the 4 transition probability
parameters.

1. For every arm i, uniformly sample the two passive probability parameters Pi(s, a = 0, s′ =
1) ∼ Uniform(0, 1), ∀s ∈ {0, 1}.

2. For every arm i, uniformly sample the three features f ∼ Uniform([0, 1]3)

3. Define a three-dimensional weight vector W ∈ [0, 1]3 and a standard deviation parameter σ.

4. Sample the effect of intervention from the normal distribution as δ ∼ N (∆, σ), where
∆ = W · fT .

5. Calculate active transition probabilities as P (s, a = 1, s′) = P (s, a = 0, s′) + δ

6. Calculate the complimentary probabilities as Pi(s, a, s
′ = 0) = 1− Pi(s, a, s

′ = 1), ∀s ∈
{0, 1}, a ∈ {0, 1}

The magnitude of the weight value determines the extent to which a feature influences the effect
of the intervention, while the direction indicates whether a low or high feature value amplifies this
effect. The standard deviation parameter, σ, controls the spread of sampled probabilities around the
mean effect of the intervention. Table 1 shows the Weight vector used for the three synthetic datasets
generated in our experiments. We consider weight values that describe the following scenarios : i) all
weights are roughly equal (dataset 1) ii) one of the features has much higher weight than the other
two (dataset 2) and we switch which feature has maximum weight (dataset 3).

Synthetic Domain We create three synthetic datasets, each with three features (A, B, and C). For
some agent and feature, we randomly sample the agent’s feature value between 0 and 1. Arm’s
passive transition probabilities (P (s, a = 0, s′) for s, s′ ∈ [0, 1]) are sampled uniformly between
0 and 1. Our three datasets differ in how active transition probabilities are sampled. For each
dataset, we set a three-dimensional weight vector W ∈ [0, 1]3 specifying how much each feature
impacts the effect of applying an active action (see Section A.3 for details). For each agent, let
f denote their feature values; we sample their active transition probabilities for s, s′ ∈ [0, 1] as
P (s, a = 1, s′) = P (s, a = 0, s′)+ δ, δ ∼ N (∆, σ), where ∆ = W · fT and σ is a hyperparameter.
Subsequently, we discretize the values of all features into 5 different equal-sized buckets to be
consistent with the real-world domain. For each dataset, we sample 5 instances according to the
above procedure with N = 2100 arms, a budget of B = 210, and a time horizon of T = 12 (to
replicate the setup of the real-world domain described below where roughly 3%−10% of beneficiaries
receive a resource every week for up to three months).

A.4 Real World Dataset

As described in Section 6.1, one challenge in estimating transition probabilities under active actions
is the rarity of such transitions due to the limited number of service calls. Consequently, the estimates
for active transition probabilities tend to be noisy. To mitigate this issue, we follow a procedure similar
to that in the synthetic domain to construct the datasets, but with some modifications. Specifically,
instead of uniformly sampling passive probabilities in step 1, we use the transition probabilities
estimated from real-world data [24]. Next, in step 2, we use the attributes describing the real-world
beneficiaries to define features. Thus, instead of features A, B and C, we use features Age, Income
and Education. Finally, we use the same weight vector values as in Table 1 to generate three real world
datasets. This allows us to generate multiple datasets with varying levels of effect of intervention
based on features while still using the realistic passive transition probabilities and feature distributions.
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Table 2: Results summary comparing different reward function choice strategies aggregated across
the three synthetic Datasets. Cells in bold indicate the top 2 best values (higher is better). DLM:
Decision-Language Model, SCLM: Social Choice Language Model, SCLM-SIM: Simulation based
Scorer Model, SCLM-LLM: LLM based Scorer Model

Social Welfare Function Minimum of % change in utility Minimum of % change in utility

Method top/bottom 1 bucket top/bottom 2 buckets top/bottom 3 buckets top/bottom 1 bucket top/bottom 2 buckets top/bottom 3 buckets

LLM-zeroshot -0.266%±1.51% -0.228%±1.3% -3.269%±1.14% -15.16%±0.81% -13.249%±0.71% -12.485%±0.61%

DLM 3.879%±1.42% 5.379%±1.27% 1.89%±0.99% -7.844%±0.74% -6.249%±0.62% -6.761%±0.49%

DLM-PromptEngg 7.607%±1.53% 8.665%±1.44% 4.087%±1.24% -9.301%±0.82% -7.17%±0.81% -7.767%±0.71%

SCLM-SIM
Utilitarian

28.944%±2.12% 21.936%±1.55% 13.654%±1.07% -2.278%±1.02% -3.579%±0.83% -3.559%±0.55%

SCLM-LLM 14.348%±1.66% 10.304%±1.22% 6.333%±0.99% -3.973%±0.76% -4.428%±0.6% -4.817%±0.54%

SCLM-SIM
Egalitarian

16.448%±1.95% 11.425%±1.34% 8.6%±0.94% -1.176%±1.01% -2.028%±0.71% -1.833%±0.49%

SCLM-LLM 11.421%±1.62% 7.845%±1.21% 4.141%±0.92% -4.877%±0.73% -4.373%±0.59% -4.68%±0.5%

SCLM-SIM
Nash

28.262%±2.42% 20.416%±1.73% 11.102%±1.19% -4.053%±1.18% -5.408%±0.89% -5.261%±0.62%

SCLM-LLM 9.478%±1.68% 6.608%±1.23% 2.957%±1.02% -5.973%±0.77% -5.782%±0.6% -6.117%±0.54%

Table 3: Results summary comparing different reward function choice strategies aggregated across
the three Real World Datasets. Cells in bold indicate the top 2 best values (higher is better). DLM:
Decision-Language Model, SCLM: Social Choice Language Model, SCLM-SIM: Simulation based
Scorer Model, SCLM-LLM: LLM based Scorer Model

Social Welfare Function Minimum of % change in utility Minimum of % change in utility

Method top/bottom 1 bucket top/bottom 2 buckets top/bottom 3 buckets top/bottom 1 bucket top/bottom 2 buckets top/bottom 3 buckets

LLM-zeroshot -0.893%±1.38% -5.541%±0.79% -10.436%±0.46% -7.285%±0.69% -7.003%±0.45% -6.971%±0.26%

DLM 6.219%±1.59% -0.485%±0.95% -8.733%±0.43% -5.317%±0.84% -6.454%±0.39% -7.674%±0.19%

DLM-PromptEngg 4.341%±1.65% -3.57%±0.91% -9.417%±0.57% -4.957%±0.94% -7.366%±0.5% -7.586%±0.37%

SCLM-SIM
Utilitarian

21.502%±1.76% 10.643%±1.06% -3.434%±0.53% 2.206%±0.89% -1.203%±0.45% -4.423%±0.29%

SCLM-LLM 8.711%±1.3% -0.574%±1.08% -8.285%±0.82% -6.512%±0.63% -6.457%±0.55% -6.756%±0.43%

SCLM-SIM
Egalitarian

11.481%±1.61% 7.92%±1.01% -0.416%±0.37% 2.109%±0.75% 0.287%±0.4% -1.974%±0.22%

SCLM-LLM 8.239%±1.67% -1.919%±0.98% -9.488%±0.48% -1.561%±0.8% -4.67%±0.39% -7.059%±0.2%

SCLM-SIM
Nash

20.579%±1.8% 10.195%±1.1% -4.376%±0.54% 2.09%±0.9% -1.568%±0.47% -4.886%±0.29%

SCLM-LLM -0.732%±1.25% -4.854%±0.95% -10.455%±0.68% -9.877%±0.65% -8.373%±0.53% -8.107%±0.36%

A.5 Hyperparameters

We run all experiments with N = 2100 arms, B = 210 as budget, T = 12 weeks and γ = 0.9 as
discount factor. For every dataset, 5 RMAB instances are generated based on the different weight
vectors as described in the section above. Additionally, we run each RMAB simulation with 10
different seeds. We estimate the cumulative rewards and feature-level utility by calculating the mean
of the discounted sum of rewards over T timesteps across all 10 seeds.

A.6 Computing Resources

All experiments are run on a machine with 16GB RAM and M1 chip CPU. For every RMAB instance,
it took roughly 3 hours to generate 360 candidate reward functions (20 reward functions for each of
the 18 prompts). The primary bottleneck in speed was the API call limits for using LLM (Gemini
Pro).

B Additional Results

B.1 Composite Prioritization Prompts

In Tables 2 and 3, we show results aggregated for the synthetic and real world datasets. Specifically,
we show the Sum of % change in utility and Minimum of % change in utility not just for the
highest/lowest value of a feature but for top/bottom two and three buckets. We also include results
from the scorer model that optimizes for Nash Social Welfare function.

Overall, we observe that the Simulator-based scorer (SCLM-SIM) performs best in all scenarios, both
when optimizing for the Utilitarian objective or the Egalitarian objective. It is also worth noting that
when optimizing for one of the objectives (for instance, Utilitarian objective maximizes the sum of %
change in utility), SCLM outperforms baselines in the objective it is not explicitly optimizing for (for
instance, Minimum of % change in utility). Lastly, we observe that optimizing for the Nash objective
yields very similar performance as optimizing for the Utilitarian objective.
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Table 4: Results comparing different reward function choice selection strategies for deciding tradeoff
between utility maximization and preference alignment, aggregated across the three synthetic datasets
(left) and three real world datasets (right). Social Choice Language Model has the highest percent
change in reward for the desired attribute while also ensuring the low drop in utility as compared to
default.

Synthetic Real World

% Change in Desired Attribute Utility Metrics % Change in Desired Attribute Utility Metrics

Method top/bottom 1 bucket top/bottom 2 buckets Normalized Utility Score % drop in Utility top/bottom 1 bucket top/bottom 2 buckets Normalized Utility Score % drop in Utility

DLM-PrioritizationOnly -0.812±0.85 0.072±0.83 0.507±0.01 -4.867±0.21 5.678±0.67 1.177±0.43 0.327±0.01 -6.051±0.14

DLM-ExtendedPrompt -2.508±1.2 -1.089±1.26 0.548±0.02 -3.825±0.29 3.416±1.04 0.461±0.64 0.347±0.02 -5.689±0.25

SCLM 12.389±1.01 10.276±0.8 0.71±0.01 -1.141±0.16 9.058±0.61 4.868±0.4 0.532±0.01 -3.662±0.16

B.2 Effect of Social Choice Function

Figure 3: Comparison of different methods using the prompt “Prioritize agents with a low value for
feature B and agents with a low value for feature C”.

While both the Utilitarian and Egalitarian social welfare function leads to good overall results, the
choice between them significantly influences which reward function is selected at the instance level.
Figure 3 shows one example instance for a prompt with two prioritization clauses. Each point
corresponds to a candidate reward function with the axes measuring alignment with the two respective
clauses. (as described in the beginning of the section 6.3). The SCLM-Utilitarian model chooses a
reward function from the Pareto frontier that shows a much stronger effect for the second clause (i.e.,
the utility increase for agents with a low value of feature C is more pronounced). In contrast, the
reward function selected by SCLM-Egalitarian is much more balanced. DLM-based baselines fail to
pick a reward function from the Pareto frontier.

C Prompt Texts

In Figures 4-13, we show the prompts passed to LLM for various experiments described in the paper.
Specifically, prompt in Figures 4,5 show how to generate a reward function in code form based on
the problem description, the indices of features, and preference goals for synthetic and real-world
problem domains, respectively. Figures 6, 7 show how the LLM is prompted to select the best reward
function from those generated in the previous step for synthetic and real-world domains, respectively.
Together, these prompts establish the DLM baseline in the paper. LLM-Zeroshot baseline has the
exact same prompt as Figures 4, 5 for synthetic and real world domains. The only difference is that
there is no reflection step, and the first reward generated by LLM is chosen as the best reward.

In Figure 8 and 9, we show how the prompt is enhanced with additional information to assist in
selecting a reward function. The additional information is highlighted in bold. Section 6.4 explains
how SCLM is used to specify additional objectives, such as minimizing utility shifts in features not
included in the preference prompt and maximizing overall utility. In Figures 10, 11 we show the
prompts for the DLM-EP baselines, which explicitly include instructions to minimize utility shifts in
unintended features. In Figures 12, 13, we show the prompts that explicitly include instructions for
maximizing overall utility.
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Generator: Synthetic Domain

Prompt
Create a Python reward function for RL in resource allocation problem for agents, with the
objective of prioritizing higher states and: Focus on the agents with low value of feature A..
The function should use ’state’ (value is either 0,1) and features ’agent_feats’ (length 15 array)
to direct the RL agent. Here is a description of the features you may use along with the index
in ’agent_feats’ array:
Index Name DataType
0. Feature A bucket 1 - Binary
1. Feature A bucket 2 - Binary
2. Feature A bucket 3 - Binary
3. Feature A bucket 4 - Binary
4. Feature A bucket 5 - Binary
5. Feature B bucket 1 - Binary
6. Feature B bucket 2 - Binary
7. Feature B bucket 3 - Binary
8. Feature B bucket 4 - Binary
9. Feature B bucket 5 - Binary
10. Feature C bucket 1 - Binary
11. Feature C bucket 2 - Binary
12. Feature C bucket 3 - Binary
13. Feature C bucket 4 - Binary
14. Feature C bucket 5 - Binary
All buckets are in increasing order of the feature values. For example, ’Feature A bucket 1’
would consist of bucket of lowest values of feature A while ’Feature A bucket 5’ would consist
of highest value of feature A. This is true for Feature A, B and C.

Your task: 1. Write a simple, single-line Python reward function. Exclude the word
’return’ and exclude non-standard libraries. Format your code with triple $ signs: $$$[YOUR
FUNCTION]$$$. Note that HIGHER states are always preferred, so ensure reward increases
as state increases. Make sure reward is always positive and increasing with state.

Example Prompt: Prioritize agents that have low feature A and high feature C

Example Response: Python Code: ’$$$ state+state * ((agent_feats[0] or agent_feats[1]) and
(agent_feats[17] or agent_feats[18] or agent_feats[19])) $$$’ or ’$$$ state * (agent_feats[0]
or 3*agent_feats[19]) $$$’ or ’$$$ state + 2*state * ((5*agent_feats[0]+agent_feats[1]) and
agent_feats[19]) $$$’ In these example, agent_feats[0] and agent_feats[1] represent agents
with low values for feature A and agent_feats[17], agent_feats[18], agent_feats[19] represent
agents with high values for feature C
It is upto you to decide which features will represent a preference. For example low values
could be the lowest feature bucket, or lower three feature buckets or so on. Come up with a
unique new reward for the specified goal: Focus on the agents with low value of feature A..
Goal: Focus on the agents with low value of feature A.
Output
$$$ 2*state + state * (1*agent_feats[0]+ 0.5*agent_feats[1]) $$$

Figure 4: Prompt passed to the LLM to generate reward function based on the problem scenarios in
the Synthetic Domain.

D Ethics Statement

ARMMAN domain

Data Usage, Collection and Consent The data used for the realworld domain contains fully-
anonymyzed datasets. Our experiments constitute secondary analysis of the data and are approved by
ARMMAN’s ethics board. The paper does not involve any realworld deployment of the proposed
algorithms for ARMMAN. For data collection consent is taken from each beneficiary in ARMMAN’s
automated voice call program. Data exchange and use was regulated through clearly defined exchange
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Generator: Real World Domain

Prompt
Create a Python reward function for RL in phone call resource allocation to mothers in India,
with the objective of prioritizing higher states and: Focus on the young mothers by age. The
function should use ’state’ (value is either 0,1) and features agent feats (length 43 array) to
direct the RL agent. Here is a description of the features you may use along with the index in
agent feats array:

Index Name DataType
0. Ages 10-20 - Binary
1. Ages 21-30 - Binary
2. Ages 31-40 - Binary
3. Ages 41-50 - Binary
4. Ages 51-60 - Binary
5. Education level 1/7 – illiterate - Binary
6. Education level 2/7 – 1-5th Grade Completed - Binary
7. Education level 3/7 – 6-9th Grade Completed - Binary
8. Education level 4/7 – 10th Grade Passed - Binary
9. Education level 5/7 – 12th Grade Passed - Binary
10. Education level 6/7 – Graduate - Binary
11. Education level 7/7 – Post graduate - Binary
12. Income bracket 1 (e.g., 0-5000) - Binary
13. Income bracket 2 (e.g., 5001-10000) - Binary
14. Income bracket 3 (e.g., 10001-15000) - Binary
15. Income bracket 4 (e.g., 15001-20000) - Binary
16. Income bracket 5 (e.g., 20001-25000) - Binary
17. Income bracket 6 (e.g., 25001-30000) - Binary
18. Income bracket 7 (e.g., 30000-999999) - Binary

Your task:
Write a simple, single-line Python reward function. Exclude the word ’return’ and exclude
non-standard libraries. Format your code with triple $ signs: $$$[YOUR FUNCTION]$$$. Note
that HIGHER states are always preferred, so ensure reward increases as state increases.
Make sure reward is always positive and increasing with state. Example Prompt: Prioritize
agents that are older and rich
Example Response:
Python Code: ’$$$ state * (agent_feats[4] and agent_feats[18]) $$$’
Come up with a unique new reward for the specified goal: Focus on the young mothers by age.
Goal: Focus on the young mothers by age

Output
$$$ state * agent_feats[7] $$$

Figure 5: Prompt passed to the LLM to generate reward function based on the problem scenarios in
the Real World Domain.

protocols including anonymization, read-access only to researchers, restricted use of the data for
research purposes only, and approval by ARMMAN’s ethics review committee.

Accessibility of Health Information In our simulation experiments, we change the reward func-
tions for every agent in mobile health program. But this only improves the quality of service calls
and no health information is withheld from any agent. Participants in the program can still request
service calls through free missed call service.
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DLM Choice: Synthetic Domain

Prompt
My goal was to create a Python reward function for RL in resource allocation, with the objective
of: Focus on the agents with low value of feature A. I tried several reward functions for this
task.
Below are the reward functions I used and their corresponding reward distributions:
Function Number 0: Reward Function: 2*state + state * (1*agent_feats[0]+
0.5*agent_feats[1])
Reflection: ’
Category: A Feature A bucket 1: 113.20
Feature A bucket 2: 137.07
Feature A bucket 3: 56.51
Feature A bucket 4: 56.82
Feature A bucket 5: 54.60

Category: B Feature B bucket 1: 82.89
Feature B bucket 2: 65.36
Feature B bucket 3: 60.33
Feature B bucket 4: 50.13
Feature B bucket 5: 46.00

Category: C Feature C Bucket 1: 46.78
Feature C Bucket 2: 49.96
Feature C Bucket 3: 46.64
Feature C Bucket 4: 66.58
Feature C Bucket 5: 62.24

Function Number 1: Reward Function: state * (agent_feats[0] and not (agent_feats[1] or
agent_feats[2]))
Reflection: ’ Category: A Feature A bucket 1: 177.84
Feature A bucket 2: 54.76
Feature A bucket 3: 55.93
Feature A bucket 4: 57.00
Feature A bucket 5: 55.29

Category: B Feature B bucket 1: 64.47
Feature B bucket 2: 58.76
Feature B bucket 3: 56.96
Feature B bucket 4: 51.11
Feature B bucket 5: 50.13

Category: C Feature C Bucket 1: 49.80
Feature C Bucket 2: 51.69
Feature C Bucket 3: 48.40
Feature C Bucket 4: 65.89
Feature C Bucket 5: 60.00

Based on the above reward distributions and the given goal: Focus on those with high
education., please identify the FUNCTION NUMBER of the most effective reward function.
Provide your answer EXACTLY IN the following format: ’The best reward function is at number:
[FUNCTION NUMBER]’.

Output:
The best reward function is at number: 1

Figure 6: Prompt passed to the LLM to choose a reward function based on the context of problem
scenario in the Synthetic Domain, the generated reward functions and the reward distribution corre-
sponding to every reward function.
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DLM Choice: Real World Domain

Prompt
My goal was to create a Python reward function for RL in resource allocation, with the objective
of: Focus on those with high education. I tried several reward functions for this task. Below, I
have the given reward function, and the corresponding distribution of reward achieved across
20 agent features.
Below are the reward functions I used and their corresponding reward distributions:
Function Number 0: Reward Function: -agent_feats[5] -agent_feats[6]-agent_feats[7]-
agent_feats[8]-agent_feats[9]-agent_feats[10]-agent_feats[11]
Reflection: ’
Category: Age Ages 10-20: 121.73
Ages 21-30: 421.04
Ages 31-40: 244.49
Ages 41-50: 64.11
Ages 51-60: 10.58

Category: Income Income bracket 1 (e.g., 0-5000): 126.82
Income bracket 2 (e.g., 5001-10000): 373.62
Income bracket 3 (e.g., 10001-15000): 234.87
Income bracket 4 (e.g., 15001-20000): 77.40
Income bracket 5 (e.g., 20001-25000): 35.58
Income bracket 6 (e.g., 25001-30000): 2.58
Income bracket 7 (e.g., 30000-999999): 11.09

Category: Education Illiterate: 39.91
1-5th Grade Completed: 157.84
6-9th Grade Completed: 281.36
10th Grade Passed: 197.64
12th Grade Passed: 103.18
Graduate: 21.13
Post graduate: 60.89

Function Number 1: Reward Function: state * agent_feats[10]
Reflection: ’ Category: Age Ages 10-20: 134.22
Ages 21-30: 469.16
Ages 31-40: 270.44
Ages 41-50: 72.80
Ages 51-60: 11.96

Category: Income Income bracket 1 (e.g., 0-5000): 138.40
Income bracket 2 (e.g., 5001-10000): 414.44
Income bracket 3 (e.g., 10001-15000): 266.44
Income bracket 4 (e.g., 15001-20000): 85.33
Income bracket 5 (e.g., 20001-25000): 40.20
Income bracket 6 (e.g., 25001-30000): 2.80
Income bracket 7 (e.g., 30000-999999): 10.96

Category: Education Illiterate: 45.07
1-5th Grade Completed: 173.82
6-9th Grade Completed: 314.07
10th Grade Passed: 217.31
12th Grade Passed: 113.02
Graduate: 29.36
Post graduate: 65.93

Based on the above reward distributions and the given goal: Focus on those with high
education., please identify the FUNCTION NUMBER of the most effective reward function.
Provide your answer EXACTLY IN the following format: ’The best reward function is at number:
[FUNCTION NUMBER]’.

Output:
The best reward function is at number: 1

Figure 7: Prompt passed to the LLM to choose a reward function based on the context of problem
scenario in Real World Domain, the generated reward functions and the reward distribution corre-
sponding to every reward function. 15



DLM Choice with Prompt Engineering (DLM-PromptEngg): Real World Domain

Prompt
My goal was to create a Python reward function for RL in resource allocation, with the objective
of: Focus on those with high education. I tried several reward functions for this task. Below, I
have the given reward function, and the corresponding distribution of reward achieved across
20 agent features.
Below are the reward functions I used and their corresponding reward distributions:
Function Number 0: Reward Function: -agent_feats[5] -agent_feats[6]-agent_feats[7]-
agent_feats[8]-agent_feats[9]-agent_feats[10]-agent_feats[11]
Reflection: ’
Category: Age Ages 10-20: 121.73
Ages 21-30: 421.04
Ages 31-40: 244.49
Ages 41-50: 64.11
Ages 51-60: 10.58

Category: Income Income bracket 1 (e.g., 0-5000): 126.82
Income bracket 2 (e.g., 5001-10000): 373.62
Income bracket 3 (e.g., 10001-15000): 234.87
Income bracket 4 (e.g., 15001-20000): 77.40
Income bracket 5 (e.g., 20001-25000): 35.58
Income bracket 6 (e.g., 25001-30000): 2.58
Income bracket 7 (e.g., 30000-999999): 11.09

Category: Education Illiterate: 39.91
1-5th Grade Completed: 157.84
6-9th Grade Completed: 281.36
10th Grade Passed: 197.64
12th Grade Passed: 103.18
Graduate: 21.13
Post graduate: 60.89

Function Number 1: Reward Function: state * agent_feats[10]
Reflection: ’ Category: Age Ages 10-20: 134.22
Ages 21-30: 469.16
Ages 31-40: 270.44
Ages 41-50: 72.80
Ages 51-60: 11.96

Category: Income Income bracket 1 (e.g., 0-5000): 138.40
Income bracket 2 (e.g., 5001-10000): 414.44
Income bracket 3 (e.g., 10001-15000): 266.44
Income bracket 4 (e.g., 15001-20000): 85.33
Income bracket 5 (e.g., 20001-25000): 40.20
Income bracket 6 (e.g., 25001-30000): 2.80
Income bracket 7 (e.g., 30000-999999): 10.96

Category: Education Illiterate: 45.07
1-5th Grade Completed: 173.82
6-9th Grade Completed: 314.07
10th Grade Passed: 217.31
12th Grade Passed: 113.02
Graduate: 29.36
Post graduate: 65.93

Figure 8: Enhanced Prompt passed to the LLM to choose a reward function based on the context
of the problem scenario in the Real World Domain, the generated reward functions, the reward
distributions corresponding to every reward function and additional examples on what to look at
when choosing a reward function aligned with the preference.
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Based on the above reward distributions and the given goal: Focus on the those with low education., please
identify the FUNCTION NUMBER of the most effective reward function. You can look at the reward
distributions for different features and based on them, judge the effectiveness of the correponding
reward function. For instance, if the query wants to prioritize low income agents, you should look if the
rewards are indeed high for low income features. it is upto you to decide which features describe low
income preference. Provide your answer EXACTLY IN the following format: ’The best reward function is at
number: [FUNCTION NUMBER]’..

Output:
The best reward function is at number: 1

Figure 9: Enhanced Prompt passed to the LLM to choose a reward function based on the context
of the problem scenario in the Real World Domain, the generated reward functions, the reward
distributions corresponding to every reward function and additional examples on what to look at
when choosing a reward function aligned with the preference.
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DLM Choice with Extended Prompt for Minimizing Utility Shifts (DLM-EP): Real
World Domain

Prompt
My goal was to create a Python reward function for RL in resource allocation, with the objective
of: Focus on the young mothers by age and also focus on those with low education. I
tried several reward functions for this task. Below, I have the given reward function, and the
corresponding distribution of reward achieved across 20 agent features.
Below are the reward functions I used and their corresponding reward distributions:

Function Number 0: Reward Function: state * (agent_feats[0] or agent_feats[1])
and (agent_feats[5] or agent_feats[6])
Reflection: ’
Category: Age Ages 10-20: 163.24
Ages 21-30: 547.98
Ages 31-40: 269.78
Ages 41-50: 72.11
Ages 51-60: 10.91

Category: Income Income bracket 1 (e.g., 0-5000): 154.40
Income bracket 2 (e.g., 5001-10000): 472.98
Income bracket 3 (e.g., 10001-15000): 293.53
Income bracket 4 (e.g., 15001-20000): 89.82
Income bracket 5 (e.g., 20001-25000): 40.84
Income bracket 6 (e.g., 25001-30000): 2.91
Income bracket 7 (e.g., 30000-999999): 9.53

Category: Education Illiterate: 66.47
1-5th Grade Completed: 257.87
6-9th Grade Completed: 312.69
10th Grade Passed: 224.22
12th Grade Passed: 113.53
Graduate: 23.42
Post graduate: 65.82

Function Number 1: Reward Function: state * (agent_feats[0] or agent_feats[1]) *
(agent_feats[5] or agent_feats[6])
Reflection: ’ Category: Age Ages 10-20: 163.24
Ages 21-30: 547.98
Ages 31-40: 269.78
Ages 41-50: 72.11
Ages 51-60: 10.91

Category: Income Income bracket 1 (e.g., 0-5000): 154.40
Income bracket 2 (e.g., 5001-10000): 472.98
Income bracket 3 (e.g., 10001-15000): 293.53
Income bracket 4 (e.g., 15001-20000): 89.82
Income bracket 5 (e.g., 20001-25000): 40.84
Income bracket 6 (e.g., 25001-30000): 2.91
Income bracket 7 (e.g., 30000-999999): 9.53

Category: Education Illiterate: 66.47
1-5th Grade Completed: 257.87
6-9th Grade Completed: 312.69
10th Grade Passed: 224.22
12th Grade Passed: 113.53
Graduate: 23.42
Post graduate: 65.82
Additional Information - Rewards from Default reward function (Reward distribution from
Default reward function. Truncated for brevity.)

Figure 10: Enhanced Prompt passed to the LLM to choose a reward function based on the context
of the problem scenario in the Real World Domain, the generated reward functions, the reward
distributions corresponding to every reward function and additional information to minimize the
unintended utility shifts in dimensions not specified in the preference.
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Based on the above reward distributions and the given goal: Focus on the young mothers by age and also
focus on those with low education, please identify the FUNCTION NUMBER of the most effective reward
function. Also make sure that that you choose a reward function that does not cause unintended shifts in
reward. Unintended shifts in reward here means that the chosen reward function shouldn’t drastically
change the distribution in reward with respect to features not specified in the prompt For example, if the
prompt is to prefer agents with low education, then the chosen reward function shouldn’t change the
distribution in reward w.r.t the default reward distribution too much in the income feature buckets . Provide
your answer EXACTLY IN the following format: ’The best reward function is at number: [FUNCTION NUMBER]’.

Output:
The best reward function is at number: 1

Figure 11: Continued: Enhanced Prompt passed to the LLM to choose a reward function based on
the context of the problem scenario in the Real World Domain, the generated reward functions, the
reward distributions corresponding to every reward function and additional information to minimize
the unintended utility shifts in dimensions not specified in the preference.
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DLM Choice with Extended Prompt for Maximizing Overall Utility (DLM-EP): Real
World Domain

Prompt
My goal was to create a Python reward function for RL in resource allocation, with the objective
of: Focus on the young mothers by age and also focus on those with low education. I
tried several reward functions for this task. Below, I have the given reward function, and the
corresponding distribution of reward achieved across 20 agent features.
Below are the reward functions I used and their corresponding reward distributions:

Function Number 0: Reward Function: state * (agent_feats[0] or agent_feats[1])
and (agent_feats[5] or agent_feats[6])
Reflection: ’
Category: Age Ages 10-20: 163.24
Ages 21-30: 547.98
Ages 31-40: 269.78
Ages 41-50: 72.11
Ages 51-60: 10.91

Category: Income Income bracket 1 (e.g., 0-5000): 154.40
Income bracket 2 (e.g., 5001-10000): 472.98
Income bracket 3 (e.g., 10001-15000): 293.53
Income bracket 4 (e.g., 15001-20000): 89.82
Income bracket 5 (e.g., 20001-25000): 40.84
Income bracket 6 (e.g., 25001-30000): 2.91
Income bracket 7 (e.g., 30000-999999): 9.53

Category: Education Illiterate: 66.47
1-5th Grade Completed: 257.87
6-9th Grade Completed: 312.69
10th Grade Passed: 224.22
12th Grade Passed: 113.53
Graduate: 23.42
Post graduate: 65.82

Function Number 1: Reward Function: state * (agent_feats[0] or agent_feats[1]) *
(agent_feats[5] or agent_feats[6])
Reflection: ’ Category: Age Ages 10-20: 163.24
Ages 21-30: 547.98
Ages 31-40: 269.78
Ages 41-50: 72.11
Ages 51-60: 10.91

Category: Income Income bracket 1 (e.g., 0-5000): 154.40
Income bracket 2 (e.g., 5001-10000): 472.98
Income bracket 3 (e.g., 10001-15000): 293.53
Income bracket 4 (e.g., 15001-20000): 89.82
Income bracket 5 (e.g., 20001-25000): 40.84
Income bracket 6 (e.g., 25001-30000): 2.91
Income bracket 7 (e.g., 30000-999999): 9.53

Category: Education Illiterate: 66.47
1-5th Grade Completed: 257.87
6-9th Grade Completed: 312.69
10th Grade Passed: 224.22
12th Grade Passed: 113.53
Graduate: 23.42
Post graduate: 65.82

Figure 12: Enhanced Prompt passed to the LLM to choose a reward function based on the context
of the problem scenario in the Real World Domain, the generated reward functions, the reward
distributions corresponding to every reward function and additional information to maximize the
overall utility.
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Based on the above reward distributions and the given goal: Focus on the young mothers by age and also
focus on those with low education, please identify the FUNCTION NUMBER of the most effective reward
function. Also make sure that that you choose a reward function which also maximizes the total reward.
You can calculate this by adding up rewards in each feature bucket.. Provide your answer EXACTLY IN the
following format: ’The best reward function is at number: [FUNCTION NUMBER]’.

Output:
The best reward function is at number: 1

Figure 13: Continued: Enhanced Prompt passed to the LLM to choose a reward function based on
the context of the problem scenario in the Real World Domain, the generated reward functions, the
reward distributions corresponding to every reward function and additional information to maximize
the overall utility.
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