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Abstract

Over the years, state-of-the-art (SoTA) image captioning methods have achieved
promising results on some evaluation metrics (e.g., CIDEr). However, recent
findings show that the captions generated by these methods tend to be biased
toward the “average” caption that only captures the most general mode (a.k.a,
language pattern) in the training corpus, i.e., the so-called mode collapse problem.
Affected by it, the generated captions are limited in diversity and usually less
informative than natural image descriptions made by humans. In this paper, we seek
to avoid this problem by proposing a Discrete Mode Learning (DML) paradigm
for image captioning. Our innovative idea is to explore the rich modes in the
training caption corpus to learn a set of “mode embeddings”, and further use them
to control the mode of the generated captions for existing image captioning models.
Specifically, the proposed DML optimizes a dual architecture that consists of an
image-conditioned discrete variational autoencoder (CdVAE) branch and a mode-
conditioned image captioning (MIC) branch. The CdVAE branch maps each image
caption to one of the mode embeddings stored in a learned codebook, and is trained
with a pure non-autoregressive generation objective to make the modes distinct
and representative. The MIC branch can be simply modified from an existing
image captioning model, where the mode embedding is added to the original word
embeddings as the control signal. In the experiments, we apply the proposed DML
to two widely used image captioning models, Transformer and AoANet. The
results show that the learned mode embedding successfully facilitates these models
to generate high-quality image captions with different modes, further leading to
better performance for both diversity and quality on the MSCOCO dataset1.

1 Introduction

Image captioning aims to generate natural descriptions for a given image. It is widely used in many
real-world applications such as human-computer interaction, multi-modal recommendation, and hence
has attracted lots of research attention. Recently, many state-of-the-art (SoTA) methods [20, 26, 57]
have achieved promising results w.r.t. evaluation metrics like CIDEr [47], BLEU [38], and SPICE [1].
However, as discussed in [52], focusing on achieving higher scores on these metrics usually biases
the image captioning models towards using only the common words, phrases and language patterns
in the training corpus when describing the images (see Figure 1 for an example). In other words, the
model automatically finds the most general mode to perform captioning. As a result, the generated
captions are limited in diversity both semantically and syntactically. This is far away from the ability
of human beings as humans are able to describe the image in various ways.

1Code is available at https://github.com/bladewaltz1/ModeCap
∗Authors contributed equally. †Corresponding author.
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Captions generated by existing models:

Transformer: A man holding a frisbee while standing in a field.

AoANet: A man holding a frisbee in a field.

Captions generated by DML (Ours):

Mode-7:   There is a man playing with a frisbee.

Mode-32: Man in a blue shirt throwing a white frisbee.

Mode-43: A close up of a person with a frisbee.

Mode-3:   A young man holding a white frisbee in his right hand.

Mode-58: A man is about to throw a frisbee.

Captions generated by humans:

A man holding a white frisbee while standing on a field.

A man standing outside holding a frisbee in his hands.

A man is outside holding onto a frisbee disc.

A smiling man in the park with a frisbee.

A man is having a good time playing frisbee.

Figure 1: Captions written by humans vs. captions generated by existing models (Transformer [46]
and AoANet [20]), and by our DML. The model-generated captions prefer to use common words or
phrases while captions derived from humans are more informative and diverse. The proposed DML
generates diverse image captions based on different mode embeddings, and some of the modes tend
to yield certain language patterns. E.g., mode-7 is likely to generate captions with the pattern of

“There is ...”, mode-3 tends to produce complex sentences while mode-58 is prone to brief sentences.

The cause of this phenomenon is widely known as the mode collapse problem and has been discussed
in many prior works on generative modeling [17, 56]. Formally, given an input x and a generative
model G, mode collapse appears when the estimated output distribution PG(x) assigns most of its
probability mass to a small region of the output space, despite that the real data distribution Pdata(y)
has a much larger variance. As a consequence, the randomly sampled outputs {yi ∼ PG(x) | i ∈ N}
tend to be very similar. While mode collapse is typically a side effect for generative modeling,
it is somewhat “welcomed” in SoTA image captioning models as it usually facilitates a higher
evaluation performance on reference-based metrics like CIDEr, BLEU and SPICE. For example,
CIDEr optimization [41] based methods [11, 20] have significantly pushed the performance of image
captioning to a new level on mainstream reference-based evaluation metrics. However, as shown
in [31, 52], the success of CIDEr optimization could be largely attributed to its ability of reducing the
modes in the generated captions.

Some recent researches in image captioning have attempted to tackle the mode collapse problem
so as to improve the diversity of the generated captions. Specifically, [3, 33, 50] adopt conditional
variational autoencoders (CVAE) to encode the conditional distribution of the image captions into a
low-dimensional continuous latent space Z . When performing inference, these methods randomly
sample latent variables from Z and input them into the caption decoder to drive it towards using
different language patterns to describe the image. In this sense, the sampled latent variables can
be considered as the continuous representations of modes interpolated from all occurred modes
during training, thus alleviating the mode collapse phenomena to some extent. Nevertheless, it is
still difficult to interpret the underlying conditional distribution, i.e., which part of Z corresponds to
which kind of language patterns in the real world. Thus, for the captions derived from two sampled
mode representations, it is uncertain how they differ from each other during the sampling process, as
well as their qualities. To tackle this uncertainty, another line of works seeks to learn controllable
image captioning models. For example, [9, 44] control the style of the image captions with learned
sentiment or personality representations like “factual” or “humorous”, “positive” or “negative”, etc.
[15] controls the syntactic structure of the image captions through part-of-speech tags. [10] focuses
on different image regions to generate region-specific image captions. However, these methods
rely on additional tools or annotations to supervise the learning of modes. More critically, this also
restricts their modes within a pre-defined domain.

In this paper, we tackle the above problems by learning distinct and representative modes for image
captioning through a new Discrete Mode Learning (DML) paradigm. Different from CVAE-based
diverse image captioning methods, DML learns a codebook, which is an embedding matrix consisting
of a set of mode embeddings that spans a discrete latent space, thus the language patterns encoded in
different modes can be easily evaluated and are more perceptible. Different from previous controllable
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image captioning methods, DML requires no additional supervision for mode and hence is more
convenient to use and is not limited to the pre-defined set of control signals.

Specifically, we optimize a dual architecture in the proposed DML: Firstly, an image-conditioned
discrete variational autoencoder (CdVAE) branch, where an encoder extracts the hidden states for all
the reference captions paired with an image, and further quantizes them using their matched mode
embeddings in the codebook according to Euclidean distance. For the matching algorithm, we choose
Hungarian algorithm instead of the naive nearest neighbor look-up, which we find to be critical for
increasing the number of effective modes. Afterward, a decoder is used to reconstruct the reference
captions in a fully non-autoregressive manner, which breaks the sequential dependencies on previous
tokens and enforces the decoder to rely purely on the mode embeddings to generate different captions
based on the same image feature, leading to more distinct and representative mode embeddings.
Secondly, a mode-conditioned image captioning (MIC) branch, which can be simply modified from
an existing image captioning model by adding the mode embedding to the original word embeddings
as a control signal. During inference, the CdVAE branch is dropped, and the MIC branch is used to
generate image captions with various language patterns according to the mode embeddings in the
codebook.

In the experiments, we evaluate the effectiveness of our proposed DML paradigm by applying it to
the widely-used Transformer [46] and the state-of-the-art AoANet [20], denoted by Transformer-
DML and AoANet-DML, respectively. We observe that some of the modes tend to yield clear
language patterns in the generated captions, as shown in Figure 1, demonstrating that DML has
successfully learned perceptible modes without explicit supervision. We also find that our models
perform surprisingly well under diversity evaluation (using metrics like SelfCIDEr [52]) and oracle
performance evaluation (on mainstream reference-based metrics like CIDEr [47]), achieving new
state-of-the-art results. This shows that our learned modes are not only distinct but also effectively
cover the rich modes that appeared within the dataset, which suggests that they are very representative.
Moreover, we find that the models trained with DML outperform their original counterparts in terms
of quality on some of the modes, meaning that DML can serve as a cost-free plugin for existing
image captioning models.

2 Related Works

Image captioning. Image captioning [2, 20, 49, 53] seeks to generate descriptions based on the given
images, which has received lots of attention from the researchers [23]. The conventional paradigm
of image captioning models [16, 21, 49] mainly consists of two parts: a CNN-based image encoder
and an RNN-based decoder for caption generation. Based on this diagram, many works [2, 20, 57]
introduce the attention mechanism [42, 46, 14, 25, 53], which enforces models to consider more
about the highlighted regions. Besides, to improve the performance, [54, 55] explore the visual
relationships by constructing a semantic or scene graph, while [18, 41] optimize their models by
Reinforcement Learning (RL) and directly use CIDEr [47] to compute the reward. However, these
image captioning models mainly consider how to achieve higher evaluation scores, which usually
bias the generated captions to an “average” version that contains the common words and phrases in
the training corpus only.

Diverse and controllable image captioning. Diverse image captioning aims at learning a model that
can generate various captions based on the same image. To this end, CVAE-based models [6, 33, 50]
learn a latent space during training and then generate diverse captions by sampling different priors
from the latent space. GAN-based models [12, 24, 43] predict diverse captions by using different
random noises as inputs accompanied with the given images. Although the diverse image captioning
models are able to produce different captions during inference, it is still non-trivial to interpret the
underlying conditional distribution, leading to an uncertainty of the model behavior.

To make the generated captions controllable, some works [7, 8, 10, 13, 35, 36] introduce an additional
control signal. For example, Mathews et al. [35] provide a sentiment signal for each caption, and
seek to control the sentiment of the generated captions. Deng & Ding [13] take the length of the
caption as a control signal. Conditioned on different length level embeddings, the model is able to
generate length-controllable descriptions for the input image. However, most of these methods have
to rely on additional tools or annotations to supervise the learning of the control signal, which is
usually inconvenient to collect and further limits the language pattern within a pre-defined domain.
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Figure 2: Overall of the DML paradigm. The “↔” denotes the matching operation by using Hungarian
algorithm while the “\\” means there is no gradient flow.

3 Method

The overall architecture of the proposed Discrete Mode Learning (DML) paradigm is illustrated in
Figure 2. It consists of two branches: an image-conditioned discrete variational autoencoder (CdVAE)
branch, which contains a mode encoder Em and a masked decoder Dm; and a mode-conditioned
image captioning (MIC) branch consists of an image encoder Ec and a caption decoder Dc. The
two branches are connected through a codebook Ω that contains a set of mode embeddings learned
through the DML paradigm. During training, the model takes as inputs an image x and its paired
reference captions {yi}ni=1, and no additional supervision is required. During inference, the CdVAE
branch is dropped, and the MIC branch is used to generate image captions with various language
patterns according to the mode embeddings in the codebook. More details are as follows.

3.1 Discrete Mode Learning

In a typical image captioning model, the training objective is to maximize log p(yi|x) for each yi in
{yi}ni=1, which is ill-posed since the model is optimized to approach multiple different targets condi-
tioned on the same input x, and usually leads to a mode collapse problem. Previous works alleviate
this problem by introducing a latent variable zi to the objective function, i.e., Ezi∼p(z)[log p(yi|x, zi)],
which serves as an explicit indication of mode and drives the model to generate different targets
conditioning on different zi. E.g., in CVAE-based diverse image captioning models [33, 50], zi
is randomly sampled from a continuous latent space, which leads to an uncertainty of the model
behavior. While in some controllable image captioning models [10, 15], zi needs to be pre-defined
with the help of additional tools or annotations, which is usually restricted to a small set.

Unlike these methods, our DML samples latent variables from an embedding matrix Ω ∈ Rk×d

which we call codebook. It defines a discrete latent space, where each entry in Ω corresponds to a
potential mode embedding, and k is a hyper-parameter representing the total number of modes in
the codebook. During training, the mode encoder Em is used to extract the representation for each
caption yi, denoted by e(yi), and match the representation with one of the entries in Ω. The matched
entry is then adopted as the mode embedding of yi, denoted by q(yi), and the objective becomes:

max
Em,Dm,Ω

log p(yi|q(yi), x), where q(yi) = Match(e(yi),Ω). (1)

Here, p(yi|q(yi), x) is the conditional distribution of the caption yi given its mode embedding q(yi)
and the paired image x, which is approximated with the masked decoder Dm. Match(·, ·) indicates
the matching operation. Note that, there is usually no real gradient defined for typical matching
operators like the nearest neighbor look-up. Therefore, we follow [45] to first use the straight-through
estimator to directly copy the gradients from q(yi) to e(yi), and then apply Vector Quantization
algorithm to move q(yi) towards e(yi) through mean square loss so as to train the matched codebook
entries. The new objective function is

− log p(yi|q(yi), x) + ∥sg[e(yi)]− q(yi)∥22 + β∥e(yi)− sg[q(yi)]∥22, (2)
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where the first term inherited from Eq. (1) is used to optimize Em and Dm. The second term is used
to train the matched entries in Ω. The last term is a commitment loss that is responsible for bounding
the embedding space of Ω. sg[·] refers to “stop gradient” and β is a hyper-parameter.

3.2 Mode Encoding and Assignment

We adopt a stack of Ne transformer encoder layers as our mode encoder Em. The input of Em is yi
appended with a special [MODE] token to the start. The output of Em, e(yi) ∈ Rd, is the hidden
state of the [MODE] token from the last layer. When performing the matching process in Eq. (1), a
naive approach is to use the nearest neighbor look-up algorithm, i.e.,

q(yi) = Ωι, where ι = argmin
j

∥e(yi)− Ωj∥2. (3)

However, we find in the experiments that in the models trained with this assignment strategy, the
output of Em quickly converges to the nearby of two or three mode embeddings in Ω, which is a clear
sign of mode collapse (see Figure 5).

To avoid this, inspired by the object query assignment in [5], we treat the mode assignment of the
captions as a Bipartite Graph Matching problem and solve it using Hungarian algorithm. Specifically,
for all the reference captions {yi}ni=1 paired with an image, we construct a bipartite graph between
the output hidden states {e(yi)}ni=1 from Em and the mode embeddings in Ω. We first pad {ei}ni=1 to
the size of the codebook, k, with ∅ (assume n < k). Then, we search for a permutation of k elements
τ ∈ Sk with the lowest assignment cost:

τ̂ = argmin
τ∈Sk

k∑
i

∥e(yi)− Ωτ(i)∥2, (4)

and the assigned mode embedding for each yi is q(yi) = Ωτ̂(i). We find this assignment strategy
greatly increases the number of effective mode embeddings in Ω (see Figure 5).

3.3 Fully Non-autoregressive Decoder

After getting the mode embeddings q(yi) for each caption yi, we feed it together with the image
features from x into a decoder to generate yi and estimate the conditional distribution p(yi|q(yi), x)
in Eq. (2). In general, sequence generation models are often trained through the autoregressive
Teacher Forcing scheme, which aims to maximize the likelihood of the ground-truth token wt given
all preceding ground-truth tokens wj<t. In our setting, the objective function would be:

− log p(yi|q(yi), x) =
T∑

t=1

− log p(wt|wj<t, q(yi), x) (5)

where wt is the t-th token in yi and T is the total number of tokens in yi. However, being able to
access the previous tokens causes the decoder to ignore the mode embedding when reconstructing yi,
since the previous tokens already provide enough information for the mode of yi. As a result, the
training signals for the mode embeddings could be useless.

Therefore, we propose to use a fully non-autoregressive (NAT) objective for the CdVAE branch of
DML to facilitate the training of the mode embeddings. Specifically, the masked decoder Dm is a
stack of Nd transformer decoder layers that takes q(yi), x, and a sequence of T [MASK] tokens as
input, and predicts each target token in yi in a conditionally-independent manner, i.e.,

− log p(yi|q(yi), x) =
T∑

t=1

− log p(wt|[MASK], q(yi), x). (6)

Apply this equation to Eq. (2) will result in our final objective function for the CdVAE branch. We
find this leads to more distinct and representative mode embeddings (see Figure 5).

3.4 Learning MIC Models with DML

So far we have introduced how DML learns the mode embeddings with the CdVAE branch. Here we
show how to attach the CdVAE branch to an existing image captioning model to make it aware of the
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mode of the generated captions. Specifically, in a standard encoder-decoder-based image captioning
model, the encoder Ec encodes the information from the image x into a sequence of hidden states,
then the decoder Dc attends to the encoder hidden states and predicts the ground-truth tokens in the
reference caption yi following the Teach Forcing scheme similar to Eq. (5).

To adapt it into our DML framework, we only need to make a minor modification to the token
embedding layer of Dc by adding the mode embedding q(yi) to the word embeddings of each token
in yi (i.e., wj<t in Eq. (5)) element-wisely, resulting in our MIC branch. The training of MIC and
CdVAE is performed jointly, using the objective functions in Eq. (2) and Eq. (5), respectively. In
practice, we find the CdVAE branch is much harder to train than the MIC branch, due to its non-
autoregressive prediction manner. To make the convergence speed of the two branches compatible,
we let them use different batch sizes, i.e., for each image, the CdVAE branch takes as input all its
paired captions {yi}ni=1, while the MIC branch randomly samples just one caption from {yi}ni=1.
Moreover, the gradient from the CdVAE branch will not be back-propagated to the image encoder.

Inference. During inference, the CdVAE branch is dropped, and the inference of MIC follows a
very similar procedure as the original image captioning model. The only difference is that it requires
selecting a mode embedding from the codebook and adding it to the input token embeddings.

4 Experiment

4.1 Dataset and Evaluation Metrics

Dataset. We train and evaluate our method on MSCOCO dataset [28] that contains 123, 287 images
and each image is corresponding to at least 5 captions. For a fair comparison, we follow the previous
works [32, 33] in the area of diverse and controllable image captioning to use the m-RNN split [34]
of the COCO dataset, which divides the data into 118, 287, 4, 000 and 1, 000 for training, validation
and testing, respectively.

Quality evaluation. To assess the quality of the generated captions, we use five widely used evaluation
metrics, i.e., BLEU [38], ROUGE [27], METEOR [4], CIDEr [47], and SPICE [1]. Moreover, to
further evaluate the performance of the generated captions, we employ another CLIP-based [39]
metric namely ClipScore [19], which can assess whether the generated captions are semantically
aligned with given images, even when they are totally different from the reference captions.

Diversity evaluation. To investigate the diversity of the generated captions, we use SelfCIDEr [51],
mBLEU, and n-gram diversity (i.e., Div-n [3]). All of these metrics evaluate the diversity by
comparing the n-gram differences among the generated captions that belong to the same image.

4.2 Implementation Details

Choice of base models. The proposed DML is a general learning paradigm and we expect it can
be easily applied in many existing image captioning models and improve their controllability and
diversity. Thus, for the MIC branch, we choose two widely-used and representative architectures
as our base models, i.e., Transformer [46] and AoANet [20], denoted by Transformer-DML and
AoANet-DML separately, to show the generalization ability of DML. Most current SoTA image
captioning models, like M2Transformer [11], XLAN [37] and many vision-language pre-training
models, are based on the Transformer architecture. Moreover, the performance of Transformer and
AoANet is also competitive with the SoTA models [30] when vision-language pre-training is not
performed. Therefore, they are good baseline models to illustrate the performance of our DML
paradigm.

Detailed settings. In the CdVAE branch, the number of transformer layers for Em and Dm is set to 6
and 2, respectively. We use 12 attention heads and a hidden size of 768 for all transformer layers.
β in Eq. (2) is set to 0.25, following [45]. The number of mode embeddings in Ω is set to 64 by
default. We convert each image to 100 object proposals by Faster RCNN [40] pre-trained on Visual
Genome [22]. We train the models for 100,000 iterations with a batch of 64 images and all the paired
captions. We use AdamW [29] optimizer with a learning rate of 2e-4, and cosine decay it to 0. We
use the label smoothing of 0.1 and the gradient clipping threshold of 1.0. We train Transformer-DML
and AoANet-DML on one NVIDIA 3090 GPU with about 10 and 13 GPU hours, respectively.
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Table 1: Diversity evaluation on the best-5 sentences obtained from consensus re-ranking.

Methods LNFMM [32] COS-CVAE [33] Seq-CVAE [3] Transformer-BS Transformer-DML

Div-1 (↑) 0.37 0.39 0.33 0.21 0.43
Div-2 (↑) 0.50 0.57 0.48 0.29 0.59

SelfCIDEr (↑) - 0.79 - 0.57 0.83
mBLEU (↓) 0.64 0.53 0.64 0.78 0.54

Mode 7

Mode 43

Mode 3

Mode 58

Mode 32

There is a man in the middle of a 

field playing with a frisbee

A close up of a person with a frisbee

Man in red shirt throwing a white 

frisbee

A young man holding a white frisbee 

on top of a green field

A man getting ready to throw a frisbee

There is a man riding a 

motorcycle down the street

A close up of a person riding a 

motorcycle on a road

Man on a yellow motorcycle 

driving down the road

A man riding a yellow motorcycle 

with a yellow helmet on

A man that is sitting on a motorcycle

A close up of a person on a skate 

board

There is a man on a skateboard 

holding a can

Man on skateboard with a beer 

on the ground

A young man holding a bottle of water 

while standing on a skateboard

A person on a court with a skateboard

Image

Figure 3: Samples of captions that are generated based on different modes. Mode-7, mode-32 and
mode-43 tend to generate the captions with a certain pattern, i.e., “There is ...”, “Man ...”, and “A
close up of ...”. Mode-3 is apt to use long sentences while mode-58 is prone to brief sentences.

4.3 Evaluation on Diversity

Quantitative results. In this part, we perform a diversity analysis for the proposed DML paradigm
based on Transformer-DML. We compare our model with previous SoTA methods as well as Beam
Search (BS) and show the results in Table 1. From the table, our DML-based model achieves higher
performance on most of the diversity evaluation metrics, which demonstrates its effectiveness in
learning distinct modes.

Qualitative results. We further provide several samples of the generated captions of our Transformer-
DML model in Figure 3. We find that the learned modes exhibit clear and distinct language patterns.
More specifically, mode-7, mode-32 and mode-43 tend to follow the patterns “There is ...”, “Man ...”,
and “A close up of ...”, respectively. Mode-3 and mode-58 focus more on the semantic complexity
of the caption, i.e., mode-58 is likely to generate a brief caption while mode-3 is prone to the
complicated one. These results show that for the same image, the mode embeddings learned through
DML facilitate the model to generate captions in various and comprehensible ways.

4.4 Evaluation on Quality

Oracle results. To investigate whether the embeddings in the codebook are able to cover the rich
modes that appeared within the dataset, we calculate the caption evaluation metrics in the oracle
setting consistent with prior works [3, 32, 33], i.e., taking the maximum score for each quality
metric over all the candidate captions for each image. Specifically, we train Transformer-DML and
AoANet-DML with codebook sizes k = 20 and k = 100, and evaluate the oracle results of the
captions generated by all modes. In Table 2, the models with DML obtain the best and second best
results on all the evaluation metrics w.r.t. both 20 and 100 samples. Moreover, we compare our DML
paradigm with the SoTA baseline COS-CVAE by calculating the oracle scores of CIDEr, SPICE
and METEOR with different numbers of samples. In Figure 4, the proposed DML consistently
outperforms COS-CVAE on all settings. The high gain in quality metrics demonstrates that the
proposed DML successfully captures the rich and representative modes in the training corpus.

Results of individual mode embedding. To assess the quality of captions generated using different
modes, we calculate the evaluation scores of captions generated from some representative modes that
are manually selected with distinct patterns. In Table 3, on mode-58, Transformer-DML outperforms
the original Transformer on all reference-based metrics. Moreover, the Transformer-DML with
different mode embeddings can achieve better or at least competitive performance compared with the
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Table 2: Comparison with baselines w.r.t. oracle performance (i.e., best-1 quality) on COCO dataset.
“#Sample” refers to the number of generated captions for each image. The best and the second best
results are highlighted with bold and underline, respectively.

Method #Sample B@1 B@2 B@3 B@4 R M C S

Div-BS [48]

20

0.837 0.687 0.538 0.383 0.653 0.357 1.405 0.269
POS [15] 0.874 0.737 0.593 0.449 0.678 0.365 1.468 0.277

AG-CVAE [50] 0.834 0.698 0.573 0.471 0.638 0.309 1.259 0.244
Seq-CVAE [3] 0.870 0.727 0.591 0.445 0.671 0.356 1.448 0.279

COS-CVAE [33] 0.903 0.771 0.640 0.500 0.706 0.387 1.624 0.295
AoANet-DML (Ours) 0.917 0.799 0.682 0.554 0.734 0.418 1.734 0.328

Transformer-DML (Ours) 0.915 0.788 0.663 0.526 0.726 0.417 1.704 0.325

Div-BS [48]

100

0.846 0.698 0.555 0.402 0.666 0.372 1.448 0.290
POS [15] 0.909 0.787 0.672 0.550 0.725 0.409 1.661 0.311

AG-CVAE [50] 0.883 0.767 0.654 0.557 0.690 0.345 1.517 0.277
Seq-CVAE [3] 0.922 0.803 0.691 0.575 0.733 0.410 1.695 0.320
LNFMM [32] 0.920 0.802 0.695 0.597 0.729 0.402 1.705 0.316

COS-CVAE [33] 0.942 0.842 0.739 0.633 0.770 0.450 1.893 0.339
AoANet-DML (Ours) 0.947 0.850 0.752 0.652 0.782 0.479 1.960 0.356

Transformer-DML (Ours) 0.946 0.849 0.750 0.649 0.780 0.474 1.953 0.354
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Figure 4: Comparison between our DML and SoTA baseline COS-CVAE. We show the oracle results
of CIDEr, SPICE and METEOR with different numbers of samples.

original Transformer in terms of ClipScore. We further report the best-performed modes w.r.t. CIDEr,
SPICE and ClipScore for AoANet-DML. In Table 3, the results show that the proposed DML can
gain higher scores of CIDEr, SPICE and ClipScore by choosing the suitable mode embedding. These
results suggest that our DML not only generates diverse results, but the results of each individual
mode also yield high quality.

Further comparison with COS-CVAE. To further evaluate the effectiveness of our DML paradigm,
we run experiments using the UpDown [2] model (a two-layer LSTM with a visual attention module)
for our MIC branch, which is also the same language generation model used by COS-CVAE. The
oracle performance of this model is 1.688 and 1.942 in terms of CIDEr for 20 and 100 samples,
respectively, which still outperforms the COS-CVAE by a large margin. In fact, UpDown is a strong
model that achieves compatible performance with a 6-layer Transformer model in a general image
captioning setting (1.099 CIDEr vs. 1.114 CIDEr on Karpathy’s test split [21]), which means that
two-layer LSTMs may already have enough capacity for the COCO dataset. Moreover, considering
that COS-CVAE requires a pre-processing step to construct pseudo supervisions with the help of a
pretrained joint vision-language embedding model, the proposed end-to-end learning method could
be more convenient to use than COS-CVAE.

4.5 Performance Analysis of the CdVAE branch

In this part, we investigate the effect of our mode assignment strategy (Section 3.2) and the fully
non-autoregressive (NAT) objective (Section 3.3) used by the CdVAE branch of DML. Specifically,
we train Transformer models with a codebook size of k = 64 on three different settings: 1) DML w/o
NAT objective; 2) DML w/o Hungarian assignment; 3) the proposed DML, and visualize their mode
embeddings in the codebook and caption embeddings from the mode encoder output using t-SNE.
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Table 3: The performance of image captions generated by different modes. For Transformer-DML,
we select some representative modes that exhibit clear language patterns or semantic complexities
as shown in Figure 3. For AoANet-DML, we show the best-performed modes in terms of CIDEr,
SPICE and ClipScore, respectively (highlighted with underline). The original results of Transformer
and AoANet are obtained using the code and settings in [30]. The best results of the two captioning
methods on each metric are highlighted with bold.

Models Mode B@1 B@2 B@3 B@4 R M C S ClipScore

Transformer [46] N/A 0.751 0.589 0.448 0.338 0.558 0.276 1.119 0.207 0.990

Transformer-DML

3 0.671 0.474 0.328 0.221 0.487 0.245 0.871 0.192 1.090
7 0.677 0.497 0.359 0.253 0.499 0.247 0.958 0.189 0.967

32 0.665 0.461 0.315 0.213 0.441 0.230 0.840 0.190 1.121
43 0.658 0.481 0.339 0.238 0.479 0.234 0.909 0.175 1.098
58 0.752 0.590 0.448 0.340 0.559 0.277 1.124 0.208 0.945

AoANet [20] N/A 0.770 0.613 0.476 0.368 0.571 0.283 1.173 0.213 0.969

AoANet-DML
49 0.762 0.601 0.458 0.356 0.567 0.279 1.157 0.209 0.972
64 0.658 0.461 0.315 0.212 0.529 0.284 0.768 0.215 1.131
44 0.747 0.583 0.440 0.339 0.557 0.279 1.123 0.210 1.195
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Figure 5: Effects of the Hungarian mode assignment and the fully non-autoregressive decoding
objective. We visualize the mode embeddings (red “×”) and the caption embeddings (“·” with other
colors) on the test set by t-SNE. The inactivated modes are not shown for clarity.

As shown in Figure 5(a), DML w/o NAT only activates 5 of 64 mode embeddings, i.e., all caption
embeddings are assigned to the 5 modes. Moreover, the caption embeddings of different modes are
mixed together (zoom in to see the details) and are distributed among the twisted spaces nearby the
mode embeddings, which means that the mode embeddings and the caption embeddings may not
contain useful information. The low oracle CIDEr score (1.207) also verifies this hypothesis.

In Figure 5(b), we show that DML w/o Hungarian assignment activates even fewer modes (i.e., only
three), but the caption embeddings now have a more distinct distribution compared with the result in
Figure 5(a). This shows the importance of the fully NAT objective in CdVAE. Still, due to the small
number of modes, the oracle CIDEr score in this setting is only 1.211, indicating a limited diversity.

Lastly, in Figure 5(c), our DML obtains 29 effective mode embeddings, and the caption embeddings
are tightly distributed around their corresponding mode embeddings. Moreover, our model achieves
an oracle CIDEr of 1.871. These results demonstrate the effectiveness of the Hungarian mode
assignment and the fully non-autoregressive objective for learning distinct and representative mode
embeddings.

4.6 Ablation Studies on the CdVAE branch

In this section, we provide more analysis on the CdVAE branch of the proposed DML method. Our
experiments are based on the Transformer-DML model with a codebook size of 64.

Asymmetric batch size As we mentioned in Section 3.4, the training of the CdVAE branch is much
harder than the training of the MIC branch. Thus, we adopt asymmetric batch sizes when training
them jointly. Moreover, the gradient from the CdVAE branch will not be back-propagated to the
image encoder, so that the whole MIC branch is trained with a batch size n times smaller than that of

9



Table 4: Oracle results of different batch sizes for CdVAE branch and MIC branch. “#effective modes”
indicates the total number of modes that have ever been used during the whole training process.
“#sampled caps” refers to how many captions per image are sampled to optimize the MIC branch.

Batch size #sampled caps B1 B2 B3 B4 R M C S #effective modes

64 1 0.932 0.826 0.719 0.608 0.761 0.454 1.871 0.342 29
64 2 0.929 0.820 0.712 0.599 0.756 0.445 1.833 0.336 28
64 5 0.921 0.805 0.692 0.574 0.743 0.430 1.779 0.331 24

16 2 0.917 0.799 0.683 0.561 0.737 0.427 1.760 0.327 15
16 5 0.925 0.810 0.698 0.580 0.749 0.441 1.799 0.335 17

Table 5: Oracle results of different masking strategies for CdVAE branch. “#effective modes” is
the total number of modes that have ever been used during the whole training process. “1.0 → 0.0”
means we gradually reduce the masking probability from 1 to 0 throughout the training process.

Mask probability B1 B2 B3 B4 R M C S #effective modes

1.0 0.932 0.826 0.719 0.608 0.761 0.454 1.871 0.342 29
0.5 0.833 0.675 0.513 0.342 0.633 0.337 1.384 0.262 6

1.0 → 0.0 0.879 0.740 0.604 0.448 0.685 0.377 1.579 0.294 9
0.0 0.790 0.619 0.439 0.270 0.590 0.301 1.207 0.228 5

the CdVAE branch. Here, we show how this strategy benefits the training of our Transformer-DML
model. Specifically, during training, we change the number of sampled captions for the MIC branch
as well as the total batch size, and the rest settings are the same as in Section 4.2. The results are
shown in Table 4.

The first row in Table 4 is the performance of our default setting, which yields the best results
among all metrics, and also obtains a larger number of effective modes than other settings. When
increasing the number of sampled captions from 1 to 5 for the MIC branch, the performance of
Transformer-DML drops clearly. We believe this is due to the over-fitting of the MIC branch caused
by the large batch size. When decreasing the total batch size from 64 to 16, we observe a clear
reduction in the number of effective modes, which means the CdVAE branch is not sufficiently
trained. Moreover, with such a small batch size, the MIC branch will also suffer from under-fitting if
the number of sampled captions is small, i.e., oracle CIDEr drops from 1.799 to 1.760 when reducing
the number of sampled captions from 5 to 2. These results show the importance of balancing the
training of the two branches in the proposed DML.

Masking strategy of the masked decoder Dm When training the CdVAE branch, we use a fully
non-autoregressive objective, where the input of the masked decoder Dm are all [MASK] tokens.
This prevents the model from using the mode information leaked from the ground-truth tokens,
and we find it greatly benefits the learning of modes. Here we evaluate the performance of several
different masking strategies, including random masking the input caption using a fixed probability,
and random masking with a dynamically changed probability. The results are shown in Table 5.

From the table, the full masking strategy, i.e., a mask probability of 1.0, leads to the best performance,
which is also the default setting in DML. Moreover, introducing any additional information to
the CdVAE branch, i.e., a mask probability less than 1.0, will severely hamper the learning of
modes, where the number of effective modes drops clearly from 29 to less than 10, and the oracle
performances also drop significantly.

5 Conclusion

In this paper, we study a problem in image captioning that models tend to be biased to generate an
“average” caption, which contains the common words or phases only. To tackle this problem, we
propose a Discrete Mode Learning (DML) paradigm for image captioning. The idea is to explore
multiple rich modes in the training caption corpus to learn a codebook that contains a set of “mode
embeddings”, which enables the image captioning models to generate different captions based on
various modes. Moreover, the proposed DML paradigm can be easily plugged into the existing image
captioning models (e.g., Transformer and AoANet) to generate high-quality and diverse captions.
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