

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOMEOSTATIC ADAPTATION OF OPTIMAL POPULATION CODES UNDER METABOLIC STRESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Information processing in neural populations is inherently constrained by metabolic resource limits and noise properties. Recent data, for example, shows that neurons in mouse visual cortex can go into a “low power mode” in which they maintain firing rate homeostasis while expending less energy. This adaptation leads to increased neuronal noise and tuning curve flattening in response to metabolic stress. These dynamics are not described by existing mathematical models of optimal neural codes. We have developed a theoretical population coding framework that captures this behavior using two surprisingly simple constraints: an approximation of firing rate homeostasis and an energy limit tied to noise levels via biophysical simulation. A key feature of our contribution is an energy budget model directly connecting adenosine triphosphate (ATP) use in cells to a fully explainable mathematical framework that generalizes existing optimal population codes. Specifically, our simulation provides an energy-dependent dispersed Poisson noise model, based on the assumption that the cell will follow an optimal decay path to produce the least-noisy spike rate that is possible at a given cellular energy budget. Each state along this optimal path is associated with properties (resting potential and leak conductance) which can be measured in electrophysiology experiments and have been shown to change under prolonged caloric deprivation. We analytically derive the optimal coding strategy for neurons under varying energy budgets and coding goals, and show that our method uniquely captures how populations of tuning curves adapt while maintaining homeostasis, as has been observed empirically.

1 INTRODUCTION

Animals have limited access to calories, which constrains their brains’ ability to expend energy to represent information. Additionally, energy budgets are inconsistent over the lifetime of an organism, which must adapt in times of scarcity while maintaining as much functionality as possible. Padamsey et al. have recently shown that under long-term calorie deprivation, mice lose the ability to discriminate fine-grained visual details while keeping coarser information, and that they do so with systematic changes in biophysical cell properties that result in a flattening of neuronal tuning curves (Padamsey et al., 2022). Perhaps surprisingly, this energy-saving strategy does not result in a significant change in spike counts, demonstrating the importance of firing rate homeostasis even when energy budgets are tight.

This energy-saving strategy motivates us to develop an analytical and simulation-grounded framework that describes how metabolically-stressed neurons can optimally change to produce noisier, cheaper spike trains rather than reducing their firing rates, consistent with Padamsey et al.’s empirical observations. Firing rate homeostasis under metabolic stress, along with direct but tractable accounting for ATP use, is the key to correctly modeling how real tuning curves change. The standard analytical approaches of limiting spike rates (Ganguli & Simoncelli, 2010; Wang et al., 2016a) can predict optimal populations under a single metabolic state, but fails to capture how codes adapt to changing conditions.

The efficient coding hypothesis (Barlow et al., 1961) asserts that populations of sensory neurons are optimized to maximize information about the environment subject to resource constraints. While the impact of coding objectives (Ganguli & Simoncelli, 2010; 2014; Manning et al., 2024; Wang

et al., 2016a) and noise properties (Laughlin et al., 1998; Manning et al., 2024; Ecker et al., 2011; Wang et al., 2016a) on optimal population codes have been studied in depth, the effect of energy constraints and in particular their variation over time remains underexplored. Simple models of energy constraints (e.g., on mean firing rate in Ganguli & Simoncelli (2010); Yerxa et al. (2020); Rast & Drugowitsch (2020) or maximum firing rate in Wang et al. (2016a;b); Laughlin (1981)) are analytically convenient, but they fail to capture the complex trade-offs determining energetic costs in real cells, such as subthreshold activity and biophysical adaptations (Padamsey & Rochefort, 2023). We will show that these simplified constraints lead to inaccurate predictions of neurons' adaptation to metabolic stress (i.e., reduction of energy budget). Specifically, our model predicts tuning curve flattening closely in line with Padamsey et al. (2022), while previous population coding models capture either the shortening (Ganguli & Simoncelli, 2010) or widening (Wang et al., 2016a) behavior of energy-limited tuning curves, but not both.

We capture this behavior with two novel constraints: an energy budget (linked directly to ATP consumption, firing rate noise, and easily-measured cell properties) and an approximation of homeostasis. Remarkably, our biophysically-motivated constraints do not complicate the analysis of coding strategies; instead, they provide a simple extension of existing models to characterize the dynamics of neural coding strategies under metabolic stress. The contributions of our framework are as follows:

- We introduce two mathematically-tractable constraints that are the first to accurately describe real neurons' recently-characterized response to metabolic stress.
- Our framework generalizes previous models, and can recover disparate results from the literature with simplified parameters, offering a united mathematical explanation for the partial successes of previous work.
- Biophysical simulation grounds key parameters of our model, including a dispersed Poisson noise model that realistically describes signal degradation in calorie-deprived neurons.

2 RELATED WORK

Optimal neural codes. Since the foundational work by Barlow et al. (1961), the efficient coding hypothesis has been extensively evaluated across a variety of contexts, leading to the development of numerous information-theoretic models with strong empirical support from both neural and perceptual data (Ganguli & Simoncelli, 2016; Manning et al., 2024; Vacher & Mamassian, 2023; Risau-Gusman, 2020; Zhaoping et al., 2011; Laughlin, 1981). A variety of coding goals have been analyzed, from entropy maximization (Laughlin, 1981) to mutual information maximization (Brunel & Nadal, 1998; Wei & Stocker, 2016; Wang et al., 2016b; Manning et al., 2024; Ganguli & Simoncelli, 2010; 2014) to L_p norm error minimization (Wang et al., 2016a; Ganguli & Simoncelli, 2010; 2014; Manning et al., 2024).

Optimal coding models are often built on Fisher information (FI) (Wang et al., 2016a; Ganguli & Simoncelli, 2010; 2014; Manning et al., 2024; Wang et al., 2016b), which describes the local sensitivity of a population response around a stimulus value. One reason for this is that FI can be estimated more easily from measurements of tuning curves than entropy-based information metrics. Another is that FI optimization is closely related to standard coding objectives: maximizing log FI approximates mutual information maximization (Brunel & Nadal, 1998; Wei & Stocker, 2016), while maximizing power functions of FI minimizes L_p loss in the asymptotic limit (Wang et al., 2012). Coding goals of particular interest here are the "infomax" (mutual information maximization, through log FI maximization) and "discrimax" (discriminability maximization, through $-FI^{-1}$ maximization, implying L_2 error minimization by the Cramér Rao bound) objectives.

Optimal neuronal populations can be predicted directly from FI-based objectives, provided that significant simplifying assumptions are imposed on tuning curve shapes. For example, Wei & Stocker (2015) assumes homogeneous tuning widths or amplitudes across the population. Usefully, Ganguli & Simoncelli (2010) introduced a tiling assumption that enables a more compact representation of population codes through two continuous functions: gain and density, denoted by $g(\cdot)$ and $d(\cdot)$, respectively. These functions are then used to modulate a base shape (e.g., Gaussian or sigmoid) to construct heterogeneous population codes. Wang et al. (2012) also adopt the tiling assumption, with a fixed gain function.

108 **Constrained optimization.** Constraints shape optimal codes just as strongly as coding objectives.
 109 Constraints in prior literature can typically be categorized into three types: energy, coding capacity,
 110 and population size. Energy-based constraints, such as those based on mean firing rate (Ganguli
 111 & Simoncelli, 2010; Yerxa et al., 2020; Rast & Drugowitsch, 2020) or maximum firing rate (Wang
 112 et al., 2016a;b; Laughlin, 1981), reflect the energetic costs of neuronal firing. Coding capacity,
 113 expressed as the sum of the square root of FI, has been employed in Wei & Stocker (2016); Wang
 114 et al. (2012) and generalized to other power laws in Morais & Pillow (2018). The population size
 115 constraint Ganguli & Simoncelli (2010); Yerxa et al. (2020) reflects the finite number of neurons
 116 available during neural processing.

117 The joint influence of coding objectives and constraints on shaping optimal population codes has also
 118 been explored in recent work. Morais & Pillow (2018) show how direct trade-offs between coding
 119 objectives and FI-based constraints can obscure the relationship between these factors. Rast &
 120 Drugowitsch (2020) describe an adaptation procedure to jointly determine objectives and constraints
 121 from neural data, but their model does not allow changes in co-firing patterns like those caused by
 122 tuning curve widening. Most similar to our work, Wang et al. (2016b) analyzes ON-OFF population
 123 codes under metabolic stress by modeling both energy costs and noise levels as power laws of firing
 124 rate. However, their energy cost model is inconsistent with Padamsey et al. (2022) and they do not
 125 connect the two terms through a noise-energy trade-off. None of these constraints connect directly
 126 to ATP use, due to the biophysical complexity of real neurons.

127 **Energy costs beyond spike counts and homeostatic mechanisms.** ATP is the energy currency
 128 of cells, yet most models of energy consumption in neurons use the simplifying assumption that
 129 spikes have a fixed cost and dominate the neuron’s ATP usage. In fact, spikes are not typically the
 130 largest part of a neuron’s ATP budget, costing only 22% of energy use (Harris et al., 2012). Reversal
 131 of ion fluxes from postsynaptic receptors (50%) and reversal of leak sodium entry via the Na^+/K^+
 132 exchanger (20%) together dominate ATP usage in neurons (Harris et al., 2012). We use a biophysical
 133 model of a neuron that estimates ATP usage from all three of these sources, creating a more realistic
 134 energy constraint than spike rate alone.

135 In fact, one of the key features of our neuron simulation is that it estimates different energy rates
 136 while maintaining a fixed spike rate. This result is consistent with Padamsey et al. (2022) and
 137 relies on systematic changes in cell parameters observed in metabolically stressed mouse cortex.
 138 Homeostatic maintenance of a fixed firing rate is a commonly observed feature in neural circuits,
 139 often involving the balance of excitation and inhibition (Liang et al., 2024).

140 It is worth noting that the approximating a neuronal energy cost through firing rate is commonly
 141 adopted in recent literature (Tavoni, 2025; Koren & Panzeri, 2022; Koren et al., 2025; Gutierrez
 142 & Denève, 2019) for analyzing changes in intrinsic cell-level and/or network level properties. Al-
 143 though these works use firing rate as an energy proxy same as in Ganguli & Simoncelli (2010);
 144 Yerxa et al. (2020); Rast & Drugowitsch (2020); Wang et al. (2016a;b); Laughlin (1981), they do
 145 not consider the effect of metabolic stress on neurons, as reported in Padamsey et al. (2022). In fact,
 146 these models cannot reiterate a central finding of this recent work: that spike rates remain the same
 147 as energy use is reduced.

148 **Recently-discovered neural mechanism.** Padamsey et al. (2022) show that neurons change their
 149 biophysical state so that they can maintain their mean firing rates while expending less energy.
 150 Primarily, they modify electrical properties to reduce the current associated with receiving input
 151 spikes, because reversing this current costs significant ATP through ion pumps. Essentially, by
 152 sitting closer to the spiking threshold and receiving a smaller signal from each incoming spike,
 153 the cell uses less energy for signal-carrying spikes but also becomes readier to fire in response to
 154 stochastic inputs and system noise, which makes them more vulnerable to false firings. Because
 155 these false firings are strictly positive, they raise the zero values at the edges of their tuning curves
 156 (widening), which requires a compensatory drop in peak values (flattening) to maintain homeostasis.

158 3 ANALYTICAL MODEL

159 160 We consider a population of N neurons jointly encoding a scalar stimulus s with their mean firing
 161 rate determined by tuning curves $\{h_n(s)\}_{n=1}^N$. Assuming conditionally independent firing rates, the

162 FI of the population can be computed from the tuning curves as
 163

$$164 \quad FI(s; E) = \sum_{n=1}^n \frac{h'_n(s)^2}{\text{Var}(h_n(s); E)}. \quad (1)$$

165

166 Based on the neuron simulation described in Sec. 4, energy-varying noise can be expressed as a
 167 dispersed Poisson distribution, with a dispersion factor $\eta_\kappa(E)$ that captures variability in neural
 168 responses under different activity levels κ and energy budgets E :

$$170 \quad \text{Var}(h_n(s); E) = \eta_\kappa(E)h_n(s). \quad (2)$$

171

172 An optimal population, under an energy budget E , maximizes the expectation with respect to proba-
 173 bility $p(s)$ of a target function f on the FI, while maintaining firing rate homeostasis (expected firing
 174 rate R_n) within each neuron:

$$175 \quad \underset{h_1(\cdot), \dots, h_N(\cdot)}{\text{argmax}} \int p(s)f(FI(s; E)) ds, \quad \text{s.t. } \int p(s)h_n(s) ds = R_n, \forall n. \quad (3)$$

176

177 Notably, if $f(x) := \log x$, the formulation corresponds to infomax; whereas if $f(x) := -x^{-1}$, it
 178 corresponds to discrimax.

182 3.1 APPROXIMATION WITH TILING

184 Solving eq. (3) is challenging without parametrizing the tuning curves $h_n(s)$, due to the vast space
 185 of arbitrary continuous functions. To mitigate this difficulty, we parameterize the tuning curves
 186 using two continuous functions — gain $g(s)$ and density $d(s)$ —following the approach of Ganguli
 187 & Simoncelli (2010). Specifically, the tuning curve is defined as $h_n(s) = g(s)\hat{h}(D(s) - D(s_n))$,
 188 where s_n denotes the preferred stimulus of the n -th neuron. Here, $D(s)$ represents the cumulative
 189 function of the density $d(s)$, given by $D(s) = \int_{-\infty}^s d(s) ds$. We assume that $p(s)$ varies more
 190 smoothly than any tuning curve $h_n(s)$ and analyze the case in which the base shape $\hat{h}(\cdot)$ is Gaussian.

191 To approximate the summation in eq. (3) in terms of $g(s)$ and $d(s)$, we adopt the same tiling prop-
 192 erty as in Ganguli & Simoncelli (2010); Wang et al. (2012). Under this assumption, the Fisher
 193 information is approximated as:

$$194 \quad FI(s; E) \approx \eta_\kappa(E)^{-1}g(s)d(s)^2. \quad (4)$$

195

196 We can approximate the homeostasis constraint, and generalize it to the population level, as follows:

$$197 \quad p(s)g(s) = R(s)d(s). \quad (5)$$

198

199 This *approximate homeostasis constraint* can be visualized as a rectangular (height $g(s_n)$, width
 200 $1/d(s_n)$) approximation of each Gaussian tuning curve and a locally constant $p(s)$. Detailed deriva-
 201 tions of eqs. 4 and 5 are provided in Secs. A to C.

202 Combining the approximations in eq. (4) and eq. (5) gives the following population optimization:

$$203 \quad \underset{g(\cdot), d(\cdot)}{\text{argmax}} \int p(s)f(\eta_\kappa(E)^{-1}g(s)d(s)^2) ds, \quad \text{s.t. } p(s)g(s) = R(s)d(s). \quad (6)$$

204

205 It is evident that this optimization problem is only bounded when an additional constraint is imposed
 206 on $g(s)$ and/or $d(s)$. We propose the following generalized energy constraint:

$$207 \quad \int p(s)g(s)^\alpha ds = E, \quad \text{where } \alpha \geq 1. \quad (7)$$

208

209 This model is consistent with Padamsey et al. (2022), which shows that energy savings come from
 210 reducing synaptic conductance (analogous to gain) rather than other cell parameters that widen the
 211 tuning curve (analogous to density), which we interpret as compensation to maintain homeostasis.
 212 We will relate the energy budget E to physical energy expenditure and fix the value of α for real
 213 neurons in Sec. 4.

216 3.2 ANALYTICAL SOLUTION
217

218 We analytically solve the proposed optimization framework for various objective functions (see
219 Tab. 1) by eliminating $d(s)$ via the approximate homeostasis constraint and applying the Lagrangian
220 method. Here, we outline the key steps in the derivation for the infomax case, with other objective
221 functions and full details included in Sec. D. To solve the optimization problem defined by eqs. (6)
222 and (7), we eliminate $d(s)$ by substituting from the approximate homeostasis constraint in eq. (5),
223 yielding the following formulation:

$$224 \max_{g(\cdot)} \int p(s) \log (\eta_\kappa(E)^{-1} g(s)^3 p(s)^2 R(s)^{-2}) ds, \quad \text{s.t.} \quad \int p(s) g(s)^\alpha ds = E. \quad (8)$$

226 The corresponding Lagrangian with multiplier λ is given by:
227

$$228 \mathcal{L}(g, \lambda) = \int p(s) \log (\eta_\kappa(E)^{-1} g(s)^3 p(s)^2 R(s)^{-2}) ds - \lambda \left(\int p(s) g(s)^\alpha ds - E \right). \quad (9)$$

231 Setting $\partial_g \mathcal{L} = 0$ and using eq. (7) provides the optimal gain, with density following from eq. (5):
232

$$g(s) = E^{1/\alpha}, \quad (10)$$

$$d(s) = E^{1/\alpha} p(s) / R(s). \quad (11)$$

235 The resulting FI is obtained with eq. (4) and the discriminability bound from the Cramér Rao bound,
236 summarized in Tab. 1, along with the analytical solutions corresponding to L_p error objective func-
237 tions. It is interesting to point out that our model predicts that both density (i.e., 1/width) and gain
238 scale on the order of $E^{1/\alpha}$, while the Fisher information scales on the order of $\eta_\kappa(E)^{-1} E^{3/\alpha}$. Addi-
239 tionally, we show in Sec. N that the analytical solution in eqs. (10) and (11) are robust to differential
240 correlations, which are the dominant violation of the independent noise assumption in real neurons
241 (Moreno-Bote et al., 2014). This robustness extends to significant changes in noise correlations
242 across metabolic states.

244 Table 1: **Analytical solutions in our framework.** For comparison to other methods, see Sec. K.

	infomax	discrimax	L_p error, $p = -2\beta$
Optimized function	$f(x) = \log x$	$f(x) = -x^{-1}$	$f(x) = -x^\beta, \beta < \frac{\alpha}{3}$
Density $d(s)$	$\propto E^{\frac{1}{\alpha}} R(s)^{-1} p(s)$	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{-\alpha-1}{\alpha+3}} p(s)^{\frac{\alpha+1}{\alpha+3}}$	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{\alpha-\beta}{3\beta-\alpha}} p(s)^{\frac{\beta-\alpha}{3\beta-\alpha}}$
Gain $g(s)$	$\propto E^{\frac{1}{\alpha}}$	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{-2}{\alpha+3}} p(s)^{\frac{-2}{\alpha+3}}$	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{-2\beta}{3\beta-\alpha}} p(s)^{\frac{-2\beta}{3\beta-\alpha}}$
Fisher info $FI(s)$	$\propto \frac{E^{\frac{3}{\alpha}} p(s)^2}{\eta_\kappa(E) R(s)^2}$	$\propto \frac{E^{\frac{3}{\alpha}} p(s)^{\frac{2\alpha}{\alpha+3}}}{\eta_\kappa(E) R(s)^{\frac{\alpha+3}{\alpha+3}}}$	$\propto \frac{E^{\frac{3}{\alpha}} p(s)^{\frac{2\alpha}{3\beta-\alpha}}}{\eta_\kappa(E) R(s)^{\frac{\alpha-3\beta}{3\beta-\alpha}}}$
Disc. bound	$\propto E^{\frac{-3}{2\alpha}} p(s)^{-1}$	$\propto E^{\frac{-3}{2\alpha}} p(s)^{\frac{-\alpha}{\alpha+3}}$	$\propto E^{\frac{-3}{2\alpha}} p(s)^{\frac{-\alpha}{3\beta-\alpha}}$

253 3.3 RELATION TO EXISTING MODELS
254

256 The approximate homeostasis and energy constraints introduced in eqs. (5) and (7) are not only
257 grounded in biophysiological evidence but also generalize commonly used constraints in existing
258 models (see Tab. 2). Here, we first demonstrate how our constraints relate to those in Ganguli &
259 Simoncelli (2010), followed by a discussion of the connection to Wang et al. (2012). It is evident that
260 our energy constraint reduces to the mean firing rate (FR) constraint used in Ganguli & Simoncelli
261 (2010) when setting $\alpha = 1$ and redefining E as the mean firing rate denoted as R . The population
262 size constraint can also be recovered from our constraints as follows:

$$263 E \stackrel{\alpha:=1}{=} \int p(s) g(s) ds \stackrel{\text{approx. homeo.}}{=} \int R(s) d(s) ds \stackrel{R(s):=\frac{E}{N}}{=} \frac{E}{N} \int d(s) ds \Rightarrow \int d(s) ds = N. \quad (12)$$

266 By jointly enforcing the conditions that yield the mean FR and population size constraints, we obtain
267 $R(s) = R/N$, indicating that the population mean firing rate R is evenly distributed across neurons.
268 It is important to note that Ganguli & Simoncelli (2010) uses the parameter R to denote the total
269 expected firing rate of a neuron population. The parameter R_n in eq. (3) represents the expected
firing rate of the n^{th} neuron in the population. Meanwhile, $R(s)$ can be interpreted as the expected

270 firing rate of a neuron whose preferred stimulus is s , and can be regarded as a “continuous” version
 271 of R_n . The derivation in eq. (12) leads us to observe that approximate homeostasis, though not an
 272 explicit requirement of Ganguli & Simoncelli (2010), emerges as a signature of optimality in their
 273 model (see Sec. E for proof of this proposition).

274 To reduce our constraint to the constraint of total FI states in Wang et al. (2012), we now set $\alpha = 3/2$:
 275

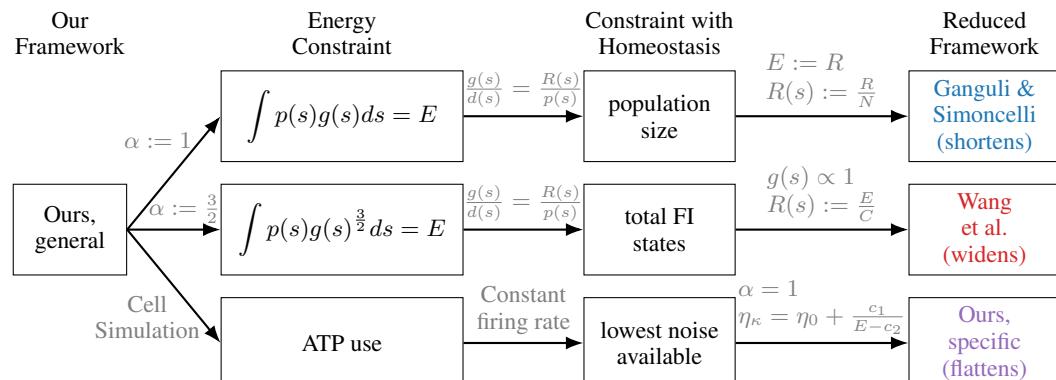
$$276 \quad E \stackrel{\alpha:=\frac{3}{2}}{=} \int p(s)g(s)^{\frac{3}{2}} ds \stackrel{\text{approx. homeo.}}{=} \int R(s) \underbrace{\left(d(s)g(s)^{\frac{1}{2}} \right)}_{\sqrt{\text{FI}}} ds \\ 277 \\ 278 \quad R(s) := \frac{E}{C} \int \sqrt{d(s)^2 g(s)} ds \Rightarrow \int \sqrt{d(s)^2 g(s)} ds = C, \\ 279$$

282 where $C \in \mathbb{R}$ is the FI coding capacity. Under the assumption $\alpha = 3/2$, the above reduction implies
 283 that our energy constraint can be interpreted as a weighted version of a coding resource constraint,
 284 where the weighting function corresponds to the firing rate $R(s)$. The generalization of our model
 285 to the existing frameworks is summarized and illustrated in Fig. 1.

286 In summary, we show that our general case can be reduced to previous models in the literature.
 287 Specifically, by setting $\alpha = 1$ and using firing rate as an energy proxy reduces our constraint to
 288 that of Ganguli & Simoncelli (2010). Furthermore, when $\alpha = 3/2$ and the FI coding capacity is
 289 incorporated, our energy constraint reduces to the coding capacity constraint proposed in Wang et al.
 290 (2012). In the following section, we will describe the biophysical parameters that reduce the general
 291 case to a true ATP-based energy constraint.

294 **Table 2: Comparison of different works on neuron population codes.** Key parameters include
 295 the total number of neurons (N), mean firing rate (R , as a constant or a function of stimulus s),
 296 Fisher information coding capacity (C), energy budget (E).

297 Works	298 Constraints	299 Constraints under Tiling	300 Noise	301 Low Energy
299 Ganguli & 300 Simoncelli (2010)	mean FR population size	$\int p(s)g(s)ds = R$ $\int d(s)ds = N$	Poisson	$R \downarrow$, shortens (N fixed)
301 Wang et al. (2016a)	max FR total FI states	$\int g(s) \propto 1$ $\int \sqrt{g(s)d(s)^2}ds = C$	Poisson or Gaussian	$C \downarrow$, widens (g fixed)
302	energy	$\int p(s)g(s)^{\alpha}ds = \bar{E}$	Energy-dependent	$\bar{E} \downarrow$, flattens
303 Ours	approx. homeostasis	$\frac{g(s)}{d(s)} = \frac{R(s)}{p(s)}$	Dispersed Poisson	($R(s)$ fixed)



320 **Figure 1: A general solution.** Our analytical framework generalizes previous work (Ganguli & Si-
 321 moncelli, 2010; Wang et al., 2016a) and predicts tuning curve flattening with a biophysical ground-
 322 ing in neuron simulation.

324 4 BIOPHYSICAL SIMULATION

326 We employ the biophysical simulator NEURON (Hines et al., 2022) to investigate the trade-offs be-
 327 tween noise and energy. We simulate a single-compartment neuron based on a stochastic Hodgkin-
 328 Huxley model in response to an input spike, under a variety of settings. Specifically, we vary the
 329 three cellular parameters identified by Padamsey et al. (2022) as changing under metabolic stress:
 330 resting potential v_{rest} , leak channel conductance g_{leak} , and synaptic conductance g_{syn} . See Fig. 2
 331 for an overview of the simulation pipeline, Sec. F for an intuitive explanation of each parameter’s
 332 effect as well as a full list of simulation parameters, Sec. G for details of energy accounting, and the
 333 supplement for full simulation code.

334 Value ranges for v_{rest} and g_{leak} follow those of Padamsey et al. (2022), and we vary g_{syn} from
 335 0 to $250 \mu S/cm^2$. This range allows us to exclude cell parameter triplets that lead to mean spike
 336 count over .8 or under .2 total during the 2 second simulation duration in the deterministic setting,
 337 so that stochastic simulation captures meaningful variance. From 10,000 simulated trials for each
 338 condition, we evaluate the mean and variance of the spike count, denoted as μ_F and σ_F^2 , as well as
 339 the energy expenditures associated with maintaining the resting state and signal activity (combining
 340 the cost of receiving and generating spikes), denoted as ϵ_{bg} and ϵ_{sig} , respectively.

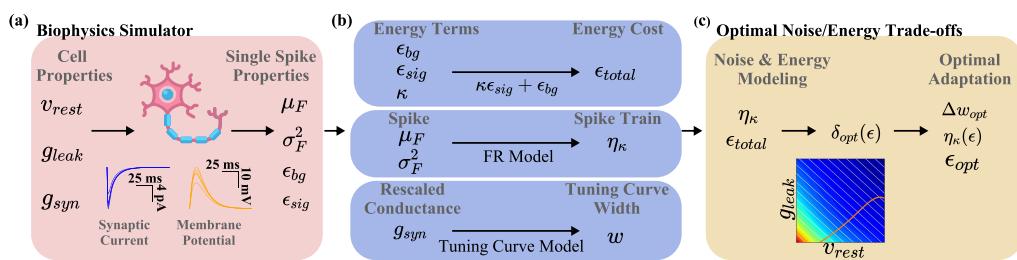
341 We then derive higher level statistics from the single-spike characteristics. First, we compute the
 342 energy cost ϵ_{total} associated with each cell state. This cost combines rest state and signaling energy,
 343 weighted by an activity level κ (see Sec. H.1). This factor is key for modeling visual neurons,
 344 which have orders-of-magnitude changes in spike rates along the visual pathway (Goris et al., 2014).
 345 Then, we use the variance of spike count to characterize noise dispersion, details in the following
 346 section. Finally, we follow Padamsey et al. (2022) to measure tuning curve widening w by asserting
 347 a Gaussian tuning curve via rescaled synaptic conductance g_{syn} , details in Sec. H.2. Note that
 348 this procedure associates a unique value of g_{syn} to each (v_{rest}, g_{leak}) pair, reducing the degrees of
 349 freedom in our cell parameter space.

350 4.1 NOISE-ENERGY OPTIMALITY

352 Using the noise σ_F^2 and energy ϵ_{total} associated with each cell state $(v_{rest}, g_{leak}, \kappa)$, we assert two
 353 hypotheses in turn to predict biophysical and information theoretic changes under metabolic stress,
 354 see Fig. 3. First, we assert a strict homeostasis constraint to extract cell parameters corresponding to
 355 constant mean spike count (white plane in Fig. 3a) and extract the corresponding energy costs (Fig.
 356 3b, energy costs across the extracted plane shown in d). We note in Fig. 3c that firing count variance
 357 saturates and then drops as g_{syn} increases, as the probability of firing approaches 1. The variance
 358 is quadratic in mean spike count, consistent with a Bernoulli distribution, but scaled by a factor that
 359 grows under increased metabolic stress. Specifically, we fit the scale of the firing variance parabola
 360 for the dispersion η_κ :

$$\sigma_F^2 = \eta_\kappa \mu_F (1 - \mu_F). \quad (14)$$

361 Fig. 3e illustrates this fitting for a single (v_{rest}, g_{leak}) state. Although we fit the η_κ based on mean
 362 and variance of spike count under single spikes, it can be generalized to spike trains (see Sec. H.3).
 363



364
 365 Figure 2: **Biophysical simulation of noise-optimal energy reduction.** (a) We change cell proper-
 366 ties of a simulated neuron to determine their impact on cell firing and energy use. (b) Single spike
 367 properties are extended to tuning curve properties under varying cell states. (c) We define optimal
 368 paths as those that minimize firing rate variance at each energy consumption level, predicting a
 369 specific noise/energy trade-off that we incorporate into our Fisher Information optimization framework.
 370
 371

We then assert our second assumption: that the cell will adapt so that for every energy budget, noise will be minimized. Fig. 3f shows a heatmap of η_κ associated with each cell state, with white lines indicating level sets of energy cost. Along each constant-energy line, the lowest noise point lies on the orange curve, which describes an optimal decay path through the cell parameter space. Specifically, this path is the solution of the following constrained optimization problem:

$$\delta_{opt}(\epsilon; \kappa) = \underset{v_{rest}, g_{leak}}{\operatorname{argmin}} \eta_\kappa(v_{rest}, g_{leak}) \quad \text{s.t.} \quad \epsilon_{total}(v_{rest}, g_{leak}; \kappa) = \epsilon. \quad (15)$$

To numerically solve this minimization problem, we fit η_κ using a 17-parameter model and intersect it with a linear fit of ϵ_{total} (see Sec. H.4 for fitting details). Each (v_{rest}, g_{leak}) cell state along the optimal path $\delta_{opt}(\epsilon, \kappa)$ corresponds to both an energy cost and a noise level, providing the empirical trade-off between these terms, as well as a tuning curve width. Note that the shape of this curve varies with activity level κ , as shown in Fig. 3g. As v_{rest} becomes less negative, signaling becomes cheaper but maintaining resting potential is more expensive, so only active cells deviate significantly from -75 mV. Additionally, changing the balance of background vs. signaling energy terms changes the slope of constant-energy-contours, which intersects with the nonlinear noise landscape to generate paths of different curvature (see Sec. I).

This simulation fixes the unknown terms α and η_κ from our mathematical model as follows. First, we note that our optimal densities in Tab. 1 are all proportional to $E^{\frac{1}{\alpha}}$. When we define E in units

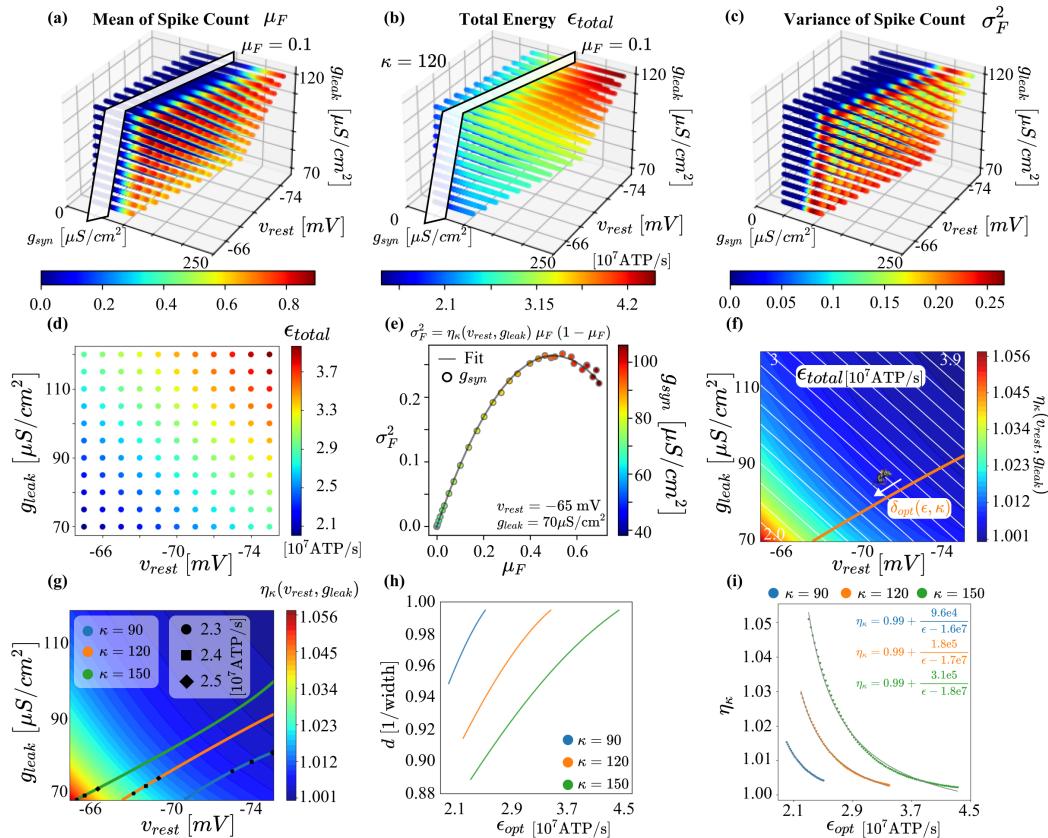


Figure 3: **Simulation results of optimal adaptations under varying signal activity levels and intermediate outcomes.** (a-c) Simulated results of total energy, and the mean and variance of spike count, respectively. (d) The energy corresponding to a fixed spike count, illustrated by the intersection in (a). (e) Fitted relationship between the mean and variance of spike count for an example pair of v_{rest} and g_{leak} , used to define the dispersion $\eta_\kappa(v_{rest}, g_{leak})$. (f) Optimal adaptations obtained numerically by minimizing dispersion along each energy contour using the fitted energy and dispersion. (g) Optimal adaptations shown across different levels of signal activity κ . (h, i) The resulting density and dispersion as a function of optimal energy, respectively.

432 of ATP/s as

433
434
$$E(\kappa) = a_1(\kappa)\epsilon_{opt} + a_2(\kappa), \quad (16)$$

435
436 we get the optimal density scales as $d(s) \propto E^{\frac{1}{\alpha}} = (a_1(\kappa)\epsilon_{opt} + a_2(\kappa))^{\frac{1}{\alpha}}$. Since Fig. 3h shows that,
437 across activity levels, the optimal density has an affine relationship with ϵ_{opt} , it follows immediately
438 that

439
440
$$\alpha = 1. \quad (17)$$

441 See Sec. J for fits of $\vec{a}(\kappa)$ values from simulation, as well as $\vec{b}(\kappa)$, $\vec{c}(\kappa)$, and $\eta_0(\kappa)$ defined below.442 The noise dispersion along the optimal adaptations shown in Fig. 3i follows the intuitive trend that a
443 decrease in energy leads to an increase in noise. Higher activity and tighter energy constraints lead
444 to larger changes in noise levels. In general, the noise dispersion takes the form

445
446
$$\eta_\kappa(\epsilon_{opt}) = \eta_0(\kappa) + \frac{b_1(\kappa)}{\epsilon_{opt} - b_2(\kappa)} = \eta_0(\kappa) + \frac{c_1(\kappa)}{E(\kappa) - c_2(\kappa)}, \quad (18)$$

447 showing a direct trade-off between noise and energy in both physical units and the analytical energy
448 budget E . Returning to our optimized solutions in Tab. 1, we note that noise only indirectly affects
449 the optimal density and gain, by shaping the optimal path and therefore setting α . It also directly
450 scales the Fisher information by a factor of $\eta_\kappa(E)^{-1}$, allowing empirically-derived η_κ values to
451 function as a plug-and-play term when estimating Fisher information for subsequent analyses, such
452 as the evaluation of perceptual thresholds.453
454

5 CONSISTENCY WITH DATA

455
456 Here, we will show that our method accurately predicts the tuning curve flattening effect seen
457 in mouse cortex (Padamsey et al., 2022), while existing models incorrectly predict shortening or
458 widening. We assume an infomax-optimal Gaussian tuning curve for a uniformly-distributed stim-
459 ulus, and explore predicted changes under metabolic stress (see Sec. L for details). Mouse data
460 in Padamsey et al. (2022), illustrated in Fig. 4a, shows a 32% widening of the tuning curve and a
461 statistically insignificant change in firing rate, which we model as an exact match in spike count. In
462 Fig. 4b, our model reiterates the 32% widening and 29% reduction in ATP consumption reported
463 in Padamsey et al. (2022). To accomplish both simultaneously, we fit a_1 and a_2 from eq. (16) to
464 to satisfy $a_2/(a_1\epsilon_{ctr}) = 0.19625$, where ϵ_{ctr} denotes the energy expenditure in the control condition.
465 In the infomax case with a uniform prior, we achieve a perfect tuning curve match because our
466 approximation of homeostasis is exact. See Sec. L for homeostatic errors in other settings.467 We compare our method to existing, non-homeostatic frameworks (Ganguli & Simoncelli, 2010;
468 Wang et al., 2016a). In Fig. 4c, Ganguli & Simoncelli (2010) constrains the mean firing rate directly,
469 with a fixed tuning curve width derived from the (fixed) population size. Because the tuning curve
470 cannot match the widening observed in data, we reduce the firing rate to match the tuning curve
471 peak instead. This requires a direct 24% reduction in the firing rate, violating homeostasis by -24%
472 under our uniform prior assumption. In Fig. 4d, Wang et al. (2016a) maintains a constant max firing
473 rate while reducing coding capacity, with a 24% reduction in coding capacity required to widen by
474 32%, resulting in a homeostatic violation of 32%. See Sec. M for a discussion of model likelihoods.475
476

6 DISCUSSION

477 Changes in energy availability are a fact of life for all sensing organisms, and a key factor in evolu-
478 tionary fitness. Indeed, there is good evidence that neural circuits maintain spike rate homeostasis
479 across a range of contexts, perhaps as an essential part of keeping activity in neural circuits bal-
480 anced (Hengen et al., 2013; Wu et al., 2020).481 We have characterized the noise-energy trade-off in a simulation that connects a tractable and
482 generalizing mathematical framework directly to ATP use. It also makes specific, testable predictions
483 about how basic biophysical properties of cells should change under metabolic stress, factoring in
484 activity level changes across the visual pathway. Specifically, the optimal paths in Fig. 3g predict
485 specific relationships between resting potential and leak conductance for neurons of different spike

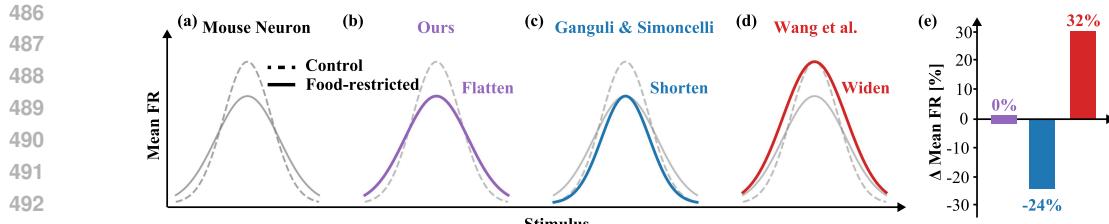


Figure 4: **Comparison of optimal tuning curves in control versus food-restricted mouse neocortex (L2/3).** (a-d) The figure illustrates how an example tuning curve in an optimal population adapts to a tightening of energy-related constraints. Under metabolic stress, real tuning curves flatten (a, based on Padamsey et al. (2022)). Our model (b, purple) predicts this flattening, while existing models predict either shortening (c, blue Ganguli & Simoncelli (2010)) or widening (d, red Wang et al. (2016a)). (e) We compute the change in mean firing rate for each method under a uniform prior. Only our model exhibits firing rate homeostasis.

rates as they face metabolic pressure. These properties are readily measured in patch-clamp experiments, and future work will perform these experiments in matched types of neurons from control and food-restricted animals.

In summary, we analytically derive and predict that both density (i.e., 1/width) and gain scale on the order of $E^{1/\alpha}$, while the Fisher information scales on the order of $\eta_\kappa(E)^{-1} E^{3/\alpha}$ (see Sec. 3). Additionally, we demonstrate that our model encompasses the competing models (Ganguli & Simoncelli, 2010; Wang et al., 2016a) as special cases. As a result, it preserves their explanatory power and, in particular, matches the ability of Ganguli & Simoncelli (2016) to produce signatures of optimality that have been found in brain areas for five measured attributes (three visual and two auditory). In Sec. 4, we use a stochastic Hodgkin–Huxley-like model to calibrate the parameters, yielding $\alpha = 1$ and $\eta_\kappa(E) = \eta_0 + \frac{c_1}{E - c_2}$. Finally, in Sec. 5, we show that the analytical solution with the calibrated α and η_κ accurately predicts the tuning-curve flattening effect reported in Padamsey et al. (2022).

Future work can address current limits of our model. Mathematically, we seek to provide more general tractable approximations of homeostasis conditions, particularly for non-Gaussian and non-tiling populations. Sigmoids and Gabors are tuning curve families of particular interest. Our single-compartment biophysical neuron model can also be extended to a more complicated simulation to capture higher-fidelity cell behaviors. It is also possible that cell recordings will show that, contrary to our central assumption, metabolic stress responses are driven primarily by non-coding factors and are not information-theoretically optimal, calling for additional modelling.

Tractable, grounded models of metabolic impacts on neural codes are needed in order to ask new kinds of optimization questions, interpret existing data, and incorporate accelerating progress in our understanding of metabolism. The new optimization questions we can ask include: how can population codes be optimized to handle a *range* of energy budgets? Does an animal’s lifetime or early life access to calories impact their neural codes? What can we tell about the needs and priorities of an animal from how their codes change under metabolic stress? In short, we can consider optimality in terms of long-term survival strategies rather than at snapshot states. The answer to these questions may lead to reinterpretations of existing data that has been used as evidence of particular optimization functions, as in Manning et al. (2024); Ganguli & Simoncelli (2016). And while Padamsey et al. (2022) describes changes that occur on the timescale of weeks, it is possible that some metabolic stress responses occur more quickly, with implications for the interpretation of neural data from food-deprived animals, common in behavioral literature. Though our model is based heavily on data from Padamsey et al. (2022), a rapidly emerging understanding of the importance of metabolic and homeostatic factors in visual system function and nervous system health (Walls et al., 2025; Lin et al., 2025; Etchegaray & Ravichandran, 2011; Meng et al., 2025; Kim et al., 2025; Sian-Hulsmann et al., 2024) suggests that more data in this area may be available soon.

540 REFERENCES
541

542 Horace B Barlow et al. Possible principles underlying the transformation of sensory messages.
543 *Sensory communication*, 1(01):217–233, 1961.

544 Nicolas Brunel and Jean-Pierre Nadal. Mutual information, fisher information, and population cod-
545 ing. *Neural computation*, 10(7):1731–1757, 1998.

546 Alexander Ecker, Philipp Berens, Andreas Tolias, and Matthias Bethge. The effect of noise correla-
547 tions in populations of diversely tuned neurons. *Nature Precedings*, pp. 1–1, 2011.

548 Jon Iker Etchegaray and Kodi Ravichandran. Role of rpe phagocytosis in the retina metabolic
549 ecosystem. In *International Workshop on Ambient Assisted Living*, pp. 429–433. Springer, 2011.

550 Deep Ganguli and Eero P. Simoncelli. Implicit encoding of prior probabilities in optimal neural
551 populations. In *Conference on Neural Information Processing Systems (NeurIPS)*, pp. 658–666,
552 2010.

553 Deep Ganguli and Eero P Simoncelli. Efficient sensory encoding and bayesian inference with het-
554 erogeneous neural populations. *Neural computation*, 26(10):2103–2134, 2014.

555 Deep Ganguli and Eero P Simoncelli. Neural and perceptual signatures of efficient sensory coding.
556 *arXiv preprint arXiv:1603.00058*, 2016.

557 Ahna R Girshick, Michael S Landy, and Eero P Simoncelli. Cardinal rules: visual orientation
558 perception reflects knowledge of environmental statistics. *Nature neuroscience*, 14(7):926–932,
559 2011.

560 Robbe LT Goris, J Anthony Movshon, and Eero P Simoncelli. Partitioning neuronal variability.
561 *Nature neuroscience*, 17(6):858–865, 2014.

562 Gabrielle J Gutierrez and Sophie Denève. Population adaptation in efficient balanced networks.
563 *ELife*, 8:e46926, 2019.

564 Julia J Harris, Renaud Jolivet, and David Attwell. Synaptic energy use and supply. *Neuron*, 75(5):
565 762–777, 2012.

566 Keith B. Hengen, Mary E. Lambo, Stephen D. VanHooser, Donald B. Katz, and Gina G. Tur-
567 rigiano. Firing rate homeostasis in visual cortex of freely behaving rodents. *Neuron*, 80:
568 335–342, 10 2013. ISSN 08966273. doi: 10.1016/j.neuron.2013.08.038. URL <https://www.cell.com/action/showFullText?pii=S0896627313007988>
569 <https://www.cell.com/action/showAbstract?pii=S0896627313007988>
570 [https://www.cell.com/neuron/abstract/S0896-6273\(13\)00798-8](https://www.cell.com/neuron/abstract/S0896-6273(13)00798-8).

571 Michael Hines, Ted Carnevale, and Robert A McDougal. Neuron simulation environment. *Encyclo-
572 pedia of computational neuroscience*, pp. 2355–2361, 2022.

573 Yihyang Kim, Solomon Ergando Dube, and Chan Bae Park. Brain energy homeostasis: the evo-
574 lution of the astrocyte-neuron lactate shuttle hypothesis. *The Korean Journal of Physiology &
575 Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of
576 Pharmacology*, 29(1):1–8, 2025.

577 Veronika Koren and Stefano Panzeri. Biologically plausible solutions for spiking networks with
578 efficient coding. *Advances in neural information processing systems*, 35:20607–20620, 2022.

579 Veronika Koren, Simone Blanco Malerba, Tilo Schwalger, and Stefano Panzeri. Efficient coding in
580 biophysically realistic excitatory-inhibitory spiking networks. *Elife*, 13:RP99545, 2025.

581 Simon Laughlin. A simple coding procedure enhances a neuron’s information capacity. *Zeitschrift
582 für Naturforschung c*, 36(9-10):910–912, 1981.

583 Simon B Laughlin, Rob R de Ruyter van Steveninck, and John C Anderson. The metabolic cost of
584 neural information. *Nature neuroscience*, 1(1):36–41, 1998.

594 Junhao Liang, Zhuda Yang, and Changsong Zhou. Excitation–inhibition balance, neural crit-
 595 icality, and activities in neuronal circuits. *Neuroscientist*, 2024. ISSN 10894098. doi:
 596 10.1177/10738584231221766.

597

598 Zitian Lin, Yunxin Xuan, Yingshi Zhang, Qirui Zhou, and Weiwei Qiu. Hypothalamus and brainstem
 599 circuits in the regulation of glucose homeostasis. *American Journal of Physiology-Endocrinology*
 600 and *Metabolism*, 328(4):E588–E598, 2025.

601 Tyler S Manning, Emma Alexander, Bruce G Cumming, Gregory C DeAngelis, Xin Huang, and
 602 Emily A Cooper. Transformations of sensory information in the brain suggest changing criteria
 603 for optimality. *PLoS computational biology*, 20(1):e1011783, 2024.

604

605 Fanhao Meng, Jing Wang, Long Wang, and Wei Zou. Glucose metabolism impairment in major
 606 depressive disorder. *Brain Research Bulletin*, pp. 111191, 2025.

607 Michael Morais and Jonathan W Pillow. Power-law efficient neural codes provide general link be-
 608 tween perceptual bias and discriminability. *Advances in Neural Information Processing Systems*,
 609 31, 2018.

610

611 Rubén Moreno-Bote, Jeffrey Beck, Ingmar Kanitscheider, Xaq Pitkow, Peter Latham, and Alexandre
 612 Pouget. Information-limiting correlations. *Nature neuroscience*, 17(10):1410–1417, 2014.

613 Zahid Padamsey and Nathalie L Rochefort. Paying the brain’s energy bill. *Current opinion in*
 614 *neurobiology*, 78:102668, 2023.

615

616 Zahid Padamsey, Danai Katsanevakis, Nathalie Dupuy, and Nathalie L Rochefort. Neocortex saves
 617 energy by reducing coding precision during food scarcity. *Neuron*, 110(2):280–296, 2022.

618 Luke I. Rast and Jan Drugowitsch. Adaptation Properties Allow Identification of Optimized Neural
 619 Codes. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2020.

620

621 Sebastián Risau-Gusman. Colour vision and information theory: the receptor noise-limited model
 622 implies optimal colour discrimination by opponent channels. *bioRxiv*, pp. 2020–08, 2020.

623

624 Jeswinder Sian-Hulsmann, Peter Riederer, and Tanja Maria Michel. Metabolic dysfunction in
 625 parkinson’s disease: unraveling the glucose–lipid connection. *Biomedicines*, 12(12):2841, 2024.

626

627 Gaia Tavoni. Convergence of efficient and predictive coding in multimodal sensory processing.
 628 *bioRxiv*, pp. 2025–02, 2025.

629

630 RC Thomas. Electrogenic sodium pump in nerve and muscle cells. *Physiological reviews*, 52(3):
 563–594, 1972.

631

632 Jonathan Vacher and Pascal Mamassian. Perceptual scales predicted by fisher information met-
 633 rics. In *International Conference on Learning Representations*, 2023. URL <https://api.semanticscholar.org/CorpusID:264289242>.

634

635 Anne B Walls, Jens V Andersen, Helle S Waagepetersen, and Lasse K Bak. Fueling brain inhibition:
 636 Integrating gabaergic neurotransmission and energy metabolism. *Neurochemical Research*, 50(2):
 637 136, 2025.

638

639 Zhuo Wang, Alan A. Stocker, and Daniel D. Lee. Optimal Neural Tuning Curves for Arbitrary
 640 Stimulus Distributions: Discrimax, Infomax and Minimum l_p Loss. In *Conference on Neural*
 641 *Information Processing Systems (NeurIPS)*, pp. 2177–2185, 2012.

642

643 Zhuo Wang, Alan A. Stocker, and Daniel D. Lee. Efficient Neural Codes That Minimize L_p Recon-
 644 struction Error. *Neural Computation*, 28(12):2656–2686, 2016a.

645

646 Zhuo Wang, Xue-Xin Wei, Alan A Stocker, and Daniel D Lee. Efficient neural codes under
 647 metabolic constraints. *Advances in neural information processing systems*, 29, 2016b.

648

649 Xue-Xin Wei and Alan A Stocker. A bayesian observer model constrained by efficient coding can
 650 explain ‘anti-bayesian’ percepts. *Nature neuroscience*, 18(10):1509–1517, 2015.

648 Xue-Xin Wei and Alan A Stocker. Mutual information, fisher information, and efficient coding.
 649 *Neural computation*, 28(2):305–326, 2016.

650
 651
 652 Yue Kris Wu, Keith B. Hengen, Gina G. Turrigiano, and Julijana Gjorgjieva. Homeostatic
 653 mechanisms regulate distinct aspects of cortical circuit dynamics. *Proceedings of the Na-*
 654 *tional Academy of Sciences of the United States of America*, 117:24514–24525, 9 2020. ISSN
 655 10916490. doi: 10.1073/PNAS.1918368117/SUPPL_FILE/PNAS.1918368117.SAPP.PDF. URL
 656 /doi/pdf/10.1073/pnas.1918368117?download=true.

657
 658 Thomas E. Yerxa, Eric Kee, Michael R. DeWeese, and Emily A. Cooper. Efficient sensory coding
 659 of multidimensional stimuli. *PLOS Computational Biology*, 16(9):e1008146, 2020.

660
 661
 662 Li Zhaoping, Wilson S Geisler, and Keith A May. Human wavelength discrimination of monochro-
 663 matic light explained by optimal wavelength decoding of light of unknown intensity. *PloS one*, 6
 664 (5):e19248, 2011.

668 A APPROXIMATE FISHER INFORMATION

669 We assume following

- 670 • Convolution tiling property: $\sum_n \frac{\hat{h}'(D(s) - D(s_n))^2}{\hat{h}(D(s) - D(s_n))} \approx I_{\text{conv}}$.
- 671
- 672 • $g(s)$ is much smoother than the function $\hat{h}(s)$.
- 673
- 674 • Each neuron responds independently.
- 675

676 The first assumption is commonly adopted in the previous literature (Ganguli & Simoncelli, 2010;
 677 Wang et al., 2016a) and the second one is implicitly used in Ganguli & Simoncelli (2010). Based on
 678 these assumptions, we can approximate the total Fisher information $FI(s)$ as:

$$\begin{aligned}
 679 FI(s; E) &= \sum_n \frac{h_n'(s)^2}{\eta_\kappa(E)h_n(s)} \text{ (If dispersed Poisson and by independence)} \\
 680 &\approx \eta_\kappa(E)^{-1} \sum_n \frac{(g(s)\hat{h}'(D(s) - D(s_n))d(s))^2}{g(s)\hat{h}(D(s) - D(s_n))} \\
 681 &= \eta_\kappa(E)^{-1} \sum_n \frac{g(s)d(s)^2\hat{h}'(D(s) - D(s_n))^2}{\hat{h}(D(s) - D(s_n))} \\
 682 &\approx \eta_\kappa(E)^{-1} g(s)d(s)^2 I_{\text{conv}}.
 \end{aligned} \tag{19}$$

683 The approximation relies on the assumptions. In our analysis, we further assume that the constant
 684 I_{conv} is equal to 1, as it does not influence the analytical solution of the proposed framework. For
 685 the self-consistency, we also derive the first equality in Sec. B.

698 B DISPERSED POISSON NOISE MODELING

700 Assuming that the firing rate of the n -th neuron, denoted r_n , is sampled from a dispersed Poisson
 701 distribution approximated by $\mathcal{N}(h_n(s), \eta_\kappa(E)h_n(s))$, we can derive the Fisher information (FI) as

702 follows:

703

$$704 FI_n(s; E) := \mathbb{E} \left[\left(\frac{\partial \log p(r_n; s)}{\partial s} \right)^2 \right] \quad (20)$$

705

706

$$707 = (h'_n(s))^2 \mathbb{E} \left[\left(\frac{-1}{2h_n(s)} + \frac{r - h_n(s)}{\eta_\kappa(E)h_n(s)} + \frac{(r - h_n(s))^2}{2\eta_\kappa(E)h_n(s)^2} \right)^2 \right] \quad (21)$$

708

709

$$710 = (h'_n(s))^2 \left(\frac{1}{4h_n(s)^2} + \frac{1}{\eta_\kappa(E)h_n(s)} + \frac{3}{4h_n(s)^2} - \frac{1}{h_n(s)^2} \right) \quad (22)$$

711

712

$$713 = \frac{h'_n(s)^2}{\eta_\kappa(E)h_n(s)}, \quad (23)$$

714

715 where the second line follows from the definition of FI, and the third line is obtained by applying
716 moment properties of the Gaussian distribution.

718 C APPROXIMATE HOMEOSTASIS

719

720 **Proposition C.1** (Approximate Homeostasis). *Assume the following:*

721

- 722 • The probability density $p(s)$ and the gain $g(s)$ of the stimulus s are much smoother than
723 $\hat{h}(D(s) - D(s_n))$, where $D(s)$ is the cumulative function of the density $d(s)$.

724

- 725 • The functions $\hat{h}(\cdot)$ and $D(s)$ are differentiable.

726

727 Then, the following approximation holds:

728

729

$$730 \int p(s)h_n(s) ds = \int p(s)g(s)\hat{h}(D(s) - D(s_n)) ds \approx p(s_n) \frac{g(s_n)}{d(s_n)} \int \hat{h}(x) dx. \quad (24)$$

731

732 In the proof, we first exploit the smoothness of the probability density $p(s)$, followed by a first-
733 order Taylor approximation of $D(s) - D(s_n)$ around s_n , and finally apply the change of variable
734 $x = d(s_n)(s - s_n)$.

735

736

737 *Proof.*

738

739

$$740 \int p(s)h_n(s) ds = \int p(s)g(s)\hat{h}(D(s) - D(s_n)) ds$$

741

$$742 \approx p(s_n)g(s_n) \int \hat{h}(D(s) - D(s_n)) ds \quad (25)$$

743

$$744 \approx p(s_n)g(s_n) \int \hat{h}(d(s_n)(s - s_n)) ds$$

745

$$746 = p(s_n) \frac{g(s_n)}{d(s_n)} \int \hat{h}(x) dx,$$

747

748 where the first approximation uses the smoothness assumption of $p(s)$, and the second approxima-
749 tion applies a first-order Taylor expansion of $D(s)$ around s_n . \square

750

751 Followed by the approximation in theorem C.1, we further relax the approximation to the population
752 level and assume the normalized $\hat{h}(x)$. Then, we obtain the approximate homeostasis constraint:

753

754

$$755 p(s) \frac{g(s)}{d(s)} = R(s). \quad (26)$$

756 D DERIVATION OF ANALYTICAL SOLUTIONS
757758 D.1 INFOMAX
759

$$\begin{aligned}
 760 \quad & \underset{g(\cdot), d(\cdot)}{\operatorname{argmax}} \int p(s) \log (\eta_\kappa(E)^{-1} g(s) d(s)^2) \mathrm{d} s \\
 761 \quad & \text { s.t. } p(s) \frac{g(s)}{d(s)}=R(s) \\
 762 \quad & \int p(s) g(s)^\alpha \mathrm{d} s=E, \quad \text { where } \alpha \geq 1 .
 \end{aligned} \tag{27}$$

763 By eliminating d , we have

$$\underset{g(\cdot)}{\operatorname{argmax}} \int p(s) \log \left(\eta_\kappa(E)^{-1} g(s)^3 p(s)^2 R(s)^{-2}\right) \mathrm{d} s, \quad \text { s.t. } \int p(s) g(s)^\alpha \mathrm{d} s=E . \tag{28}$$

764 The corresponding Lagrangian with multiplier λ is given by:

$$\mathcal{L}(g, \lambda)=\int p(s) \log \left(\eta_\kappa(E)^{-1} g(s)^3 p(s)^2 R(s)^{-2}\right) \mathrm{d} s-\lambda\left(\int p(s) g(s)^\alpha \mathrm{d} s-E\right) . \tag{29}$$

765 Setting $\partial_g \mathcal{L}=0$, we obtain

$$\frac{\partial \mathcal{L}}{\partial g}=\frac{3 p(s)}{g(s)}-\lambda \alpha p(s) g(s)^{\alpha-1}=0 \tag{30}$$

$$\Rightarrow g(s)=\left(\frac{3}{\lambda \alpha}\right)^{\frac{1}{\alpha}} \text { (Assume } p(s)>0) . \tag{31}$$

766 Then using the energy constraint, we have

$$E=\int p(s) g(s)^\alpha \mathrm{d} s=\int p(s) \frac{3}{\lambda \alpha} \mathrm{d} s=\frac{3}{\lambda \alpha}, \tag{32}$$

767 Therefore, we get the optimal solution:

$$g(s)=E^{1 / \alpha}, \tag{33}$$

$$d(s)=E^{1 / \alpha} R(s)^{-1} p(s) . \tag{34}$$

789 D.2 DISCRIMAX

$$\begin{aligned}
 790 \quad & \underset{g(\cdot), d(\cdot)}{\operatorname{argmax}} \int-p(s)\left(\eta_\kappa(E)^{-1} g(s) d(s)^2\right)^{-1} \mathrm{d} s \\
 791 \quad & \text { s.t. } p(s) \frac{g(s)}{d(s)}=R(s) \\
 792 \quad & \int p(s) g(s)^\alpha \mathrm{d} s=E, \quad \text { where } \alpha \geq 1 .
 \end{aligned} \tag{35}$$

793 By eliminating d , we have

$$\underset{g(\cdot)}{\operatorname{argmax}} \int-p(s)\left(\eta_\kappa(E)^{-1} g(s)^3 p(s)^2 R(s)^{-2}\right)^{-1} \mathrm{d} s, \quad \text { s.t. } \int p(s) g(s)^\alpha \mathrm{d} s=E . \tag{36}$$

794 The corresponding Lagrangian with multiplier λ is given by:

$$\mathcal{L}(g, \lambda)=\int-p(s)\left(\eta_\kappa(E) g(s)^{-3} p(s)^{-2} R(s)^2\right) \mathrm{d} s-\lambda\left(\int p(s) g(s)^\alpha \mathrm{d} s-E\right) . \tag{37}$$

795 Setting $\partial_g \mathcal{L}=0$, we obtain

$$\frac{\partial \mathcal{L}}{\partial g}=3 p(s)^{-1} \eta_\kappa(E) g(s)^{-4} R(s)^2-\lambda \alpha p(s) g(s)^{\alpha-1}=0 \tag{38}$$

$$\Rightarrow g(s)=\left(\frac{3 \eta_\kappa(E) R(s)^2}{\lambda \alpha p(s)^2}\right)^{\frac{1}{\alpha+3}} \tag{39}$$

810 Then using the energy constraint, we have
811

$$812 E = \int p(s)g(s)^\alpha ds = \int p(s) \left(\frac{3\eta_\kappa(E)R(s)^2}{\lambda\alpha p(s)^2} \right)^{\frac{\alpha}{\alpha+3}} ds \quad (40)$$

$$813 = \left(\frac{3\eta_\kappa(E)}{\lambda\alpha} \right)^{\frac{\alpha}{\alpha+3}} \underbrace{\left(\int p(s)^{1-\frac{2\alpha}{\alpha+3}} R(s)^{\frac{2\alpha}{\alpha+3}} ds \right)}_{A_{disc}} \quad (41)$$

$$814 \Rightarrow \lambda = \frac{3\eta_\kappa(E)}{\alpha} \left(\frac{A_{disc}}{E} \right)^{\frac{\alpha+3}{\alpha}}, \quad (42)$$

815 where we denote the integral in eq. (41) as a scalar A_{disc} . Note that A_{disc} is constant with respect to
816 s once the integral has been performed, but will vary if $p(s)$, $R(s)$, or α changes. Because this term
817 will not change the shape of any predicted distributions (e.g., gain, density, or Fisher information),
818 we suppress these dependencies in our notation for convenience.

819 Plugging λ to $g(s)$, we have
820

$$821 g(s) = \left(\frac{3\eta_\kappa(E)R(s)^2}{\lambda\alpha p(s)^2} \right)^{\frac{1}{\alpha+3}} = \left(\frac{3\eta_\kappa(E)R(s)^2}{\frac{3\eta_\kappa(E)}{\alpha} \left(\frac{A_{disc}}{E} \right)^{\frac{\alpha+3}{\alpha}} \alpha p(s)^2} \right)^{\frac{1}{\alpha+3}} \quad (43)$$

$$822 = \left(\frac{R(s)^2}{\left(\frac{A_{disc}}{E} \right)^{\frac{\alpha+3}{\alpha}} p(s)^2} \right)^{\frac{1}{\alpha+3}} \quad (44)$$

$$823 = \left(\frac{E^{\frac{1}{\alpha}} R(s)^{\frac{2}{\alpha+3}}}{A_{disc}^{\frac{1}{\alpha}} p(s)^{\frac{2}{\alpha+3}}} \right) \propto E^{\frac{1}{\alpha}} R(s)^{\frac{2}{\alpha+3}} p(s)^{\frac{-2}{\alpha+3}} \quad (45)$$

824 Therefore, we get the optimal solution:
825

$$826 g(s) \propto E^{\frac{1}{\alpha}} R(s)^{\frac{2}{\alpha+3}} p(s)^{\frac{-2}{\alpha+3}}, \quad (46)$$

$$827 d(s) \propto E^{\frac{1}{\alpha}} R(s)^{\frac{-\alpha-1}{\alpha+3}} p(s)^{\frac{\alpha+1}{\alpha+3}}. \quad (47)$$

828 D.3 GENERAL

$$829 \begin{aligned} & \underset{g(\cdot), d(\cdot)}{\operatorname{argmax}} \int -p(s) (\eta_\kappa(E)^{-1} g(s) d(s)^2)^\beta ds \\ 830 & \text{s.t. } p(s) \frac{g(s)}{d(s)} = R(s) \\ 831 & \int p(s) g(s)^\alpha ds = E, \quad \text{where } \alpha \geq 1. \end{aligned} \quad (48)$$

832 By eliminating d , we have
833

$$834 \underset{g(\cdot)}{\operatorname{argmax}} \int -p(s) (\eta_\kappa(E)^{-1} g(s)^3 p(s)^2 R(s)^{-2})^\beta ds, \quad \text{s.t. } \int p(s) g(s)^\alpha ds = E. \quad (49)$$

835 The corresponding Lagrangian with multiplier λ is given by:
836

$$837 \mathcal{L}(g, \lambda) = \int -p(s) (\eta_\kappa(E)^{-\beta} g(s)^3 p(s)^{2\beta} R(s)^{-2\beta}) ds - \lambda \left(\int p(s) g(s)^\alpha ds - E \right). \quad (50)$$

838 Setting $\partial_g \mathcal{L} = 0$, we obtain
839

$$840 \frac{\partial \mathcal{L}}{\partial g} = -p(s) \cdot 3\beta \eta_\kappa(E)^{-\beta} g(s)^{3\beta-1} p(s)^{2\beta} R(s)^{-2\beta} - \lambda \alpha p(s) g(s)^{\alpha-1} = 0, \quad (51)$$

$$841 \Rightarrow g(s) = \left(\frac{\lambda \alpha}{3\beta} \eta_\kappa(E)^\beta \cdot \frac{R(s)^{2\beta}}{p(s)^{2\beta}} \right)^{\frac{1}{3\beta-\alpha}}. \quad (52)$$

864 Then using the energy constraint, we have
 865

$$866 E = \int p(s)g(s)^\alpha ds = \left(\frac{\lambda\alpha}{3\beta} \eta_\kappa(E)^\beta \right)^{\frac{\alpha}{3\beta-\alpha}} \underbrace{\int p(s)^{1-\frac{2\alpha\beta}{3\beta-\alpha}} R(s)^{\frac{2\alpha\beta}{3\beta-\alpha}} ds}_{A_{gen}}. \quad (53)$$

$$867$$

$$868$$

$$869$$

$$870 \Rightarrow \lambda = \frac{3\beta}{\alpha} \eta_\kappa(E)^{-\beta} \left(\frac{E}{A_{gen}} \right)^{\frac{3\beta-\alpha}{\alpha}}. \quad (54)$$

$$871$$

$$872$$

873 Therefore, we get the optimal solution:
 874

$$874 g(s) \propto E^{\frac{1}{\alpha}} R(s)^{\frac{2\beta}{3\beta-\alpha}} p(s)^{\frac{-2\beta}{3\beta-\alpha}}, \quad (55)$$

$$875$$

$$876$$

$$d(s) \propto E^{\frac{1}{\alpha}} R(s)^{\frac{\alpha-\beta}{3\beta-\alpha}} p(s)^{\frac{\beta-\alpha}{3\beta-\alpha}}. \quad (56)$$

$$877$$

878 E RELATION BETWEEN APPROXIMATE HOMEOSTASIS CONSTRAINT AND 879 OPTIMALITY

$$880$$

881 **Proposition E.1** (Framework in Ganguli & Simoncelli (2010) Implies Approx. Homeostasis). *Let
 882 the optimization problem be formulated as*

$$883 \max_{g(\cdot), d(\cdot)} \int_s p(s) \cdot f(g(s)d(s)^2) ds,$$

$$884$$

$$885$$

$$886 \text{s.t.} \quad \int_s p(s)g(s)ds = R, \quad (57)$$

$$887$$

$$888 \int_s d(s)ds = N,$$

$$889$$

890 where R and N are constants. Then any optimal solution (g^*, d^*) must satisfy
 891

$$892 p(s) \frac{g(s)}{d(s)} = \frac{R}{N}. \quad (58)$$

$$893$$

$$894$$

895 *Proof.* We form the Lagrangian:

$$896 L(g, d, \lambda_1, \lambda_2) = \int_s p(s)f(g(s)d(s)^2)ds$$

$$897$$

$$898$$

$$899 - \lambda_1 \left(\int_s p(s)g(s)ds - R \right) \quad (59)$$

$$900$$

$$901 - \lambda_2 \left(\int_s d(s)ds - N \right).$$

$$902$$

$$903$$

904 Taking the first-order conditions, we have:
 905

$$\frac{\partial L}{\partial g} = p(s) \frac{\partial f(x)}{\partial x} d(s)^2 - \lambda_1 p(s) = 0, \quad (60)$$

$$906$$

$$907$$

$$\frac{\partial L}{\partial d} = 2p(s) \frac{\partial f(x)}{\partial x} g(s)d(s) - \lambda_2 = 0. \quad (61)$$

$$908$$

$$909$$

910 Dividing the two equations:
 911

$$\frac{\lambda_2}{\lambda_1} = \frac{2p(s) \frac{\partial f(x)}{\partial x} g(s)d(s)}{\frac{\partial f(x)}{\partial x} p(s)d(s)^2} = \frac{2p(s)g(s)}{d(s)}. \quad (62)$$

$$912$$

$$913$$

914 Since λ_1, λ_2 are constants (w.r.t. s), the ratio $\frac{2p(s)g(s)}{d(s)}$ must also be constant. Letting $C = \frac{\lambda_2}{2\lambda_1}$, we
 915 get

$$916 p(s) \frac{g(s)}{d(s)} = C. \quad (63)$$

$$917$$

918 To identify this constant, multiply both sides by $d(s)$ and integrate:
 919

$$920 \quad \int_s p(s)g(s)ds = C \int_s d(s)ds, \quad (64)$$

$$922 \quad \Rightarrow C = \frac{R}{N}. \quad (65)$$

924 Thus, the optimal solution must satisfy
 925

$$926 \quad p(s) \frac{g(s)}{d(s)} = \frac{R}{N}. \quad (66)$$

928 \square
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 F SIMULATION OVERVIEW
973974 Recall that current reversal is a significant energy cost, so that at a high level each of these parameters
975 has the following effect:
976977 **Resting potential v_{rest} :** When v_{rest} is less negative, receiving spikes is cheaper, because it takes
978 less of a voltage change (and therefore less current) to reach the spiking threshold. Input current
979 must be reversed by ion pumps using ATP. Perhaps counterintuitively, a less-negative v_{rest} also
980 makes sitting at rest more expensive. This is because a less negative v_{rest} shifts the balance between
981 the reversal potentials of Na^+ and K^+ , which requires counteracting a higher influx of Na^+ and
982 costs more energy to maintain (see Sec. G for details and relevant equations). This cost trade-off
983 between maintaining rest potential and reversing the current associated with incoming spikes is why
984 the optimal paths shown in Fig. 3g vary in shape as a function of the input activity level of the cell.
985986 **Leak channel conductance g_{leak} :** Leak channels are a major factor in the overall membrane
987 conductance. Using $V = IR = I/g$ we see that this mechanism also reduces the total current
988 needed to make a voltage change in the cell.
989990 **Synaptic conductance g_{syn} :** This prevents the cell from firing excessively by counteracting the
991 changes in v_{rest} and g_{leak} that reduce the energy cost of reaching spiking threshold. It scales down
992 the impact of each incoming spike so that the mean firing rate of the cell is maintained. Essentially,
993 for a cell that is twice as ready to fire, we adjust the synaptic conductance so that each incoming
994 spike only creates half the change it usually would. This rescaled state is not identical in function
995 to the original because the smaller distance to threshold, particularly in combination with the higher
996 voltage variability also observed in this state, results in more accidental output spikes. (We will
997 illustrate this effect with a figure of simulated voltage traces, showing a cell that requires three
998 sequential input spikes to fire: in the well-fed case, two large voltage steps will not cause an output
999 spike even in the presence of noise, but in the starving case, two smaller steps result in a smaller
1000 gap from threshold, which can be overcome by noise and cause an unintended output spike.) Note
1001 that this variable is how we inject a specific tuning curve into the model, following Padamsey et al.
1002 (2022).
10031004 We additionally summarize how we configure the parameters in the simulation (see Tab. 3) and list
1005 the notation (see Tab. 4) in this paper.
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 3: Simulation Parameters

Category	Value
membrane capacitance	1 $\mu\text{F}/\text{cm}^2$
membrane leaky channel conductance (control)	0.12 mS/cm^2
membrane reversal potential for passive current (control)	-75mV
membrane action potential threshold	-50mV
ion channel model file	stch_carter_subtchan.ses
Na^+ reversal potential	55 mV
K^+ reversal potential	-90 mV
Na^+ channel total conductance	35 mS/cm^2
single Na^+ channel conductance	20 pS
Na^+ channel stochasticity	False
K^+ Delayed Rectifier total conductance	4 mS/cm^2
single K^+ Delayed Rectifier conductance	20 pS
K^+ Delayed Rectifier stochasticity	False
K^+ subchan total conductance	0.18 mS/cm^2
single K^+ subchan conductance	20 pS
K^+ subchan stochasticity	True
soma diameter	8 μm
soma length	8 μm
synapse input type	synaptic conductance
synapse rise time constant (double-exponential model)	1 ms
synapse decay time constant (double-exponential model)	10 ms
synapse reversal potential	0 mV
synapse input noise model	$\mathcal{N}(g_{syn}, \frac{g_{syn}}{10})$
stimulus spiking event	single spike
stimulus stochasticity	False
simulation initial potential	-75 mV
simulation duration	2000 ms
simulation step	0.1 ms

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092

Table 4: Notation in modeling and framework

Name	Notation
resting potential	v_{rest}
membrane leaky channel conductance	g_{leak}
Maximum synapse conductance	g_{syn}
mean of spike count	μ_F
variance of spike count	σ_F^2
background energy consumption	ϵ_{bg}
signal energy consumption	ϵ_{sig}
mean of firing rate	μ_{FR}
variance of firing rate	σ_{FR}^2
stimulus-dependent synaptic conductance (gaussian shape)	$G(s)$
tuning curve width	w
signal activity	κ
total energy cost	ϵ_{total}
optimal adaptation	$\delta_{opt}(\epsilon)$
noise dispersion along optimal adaptation	$\eta_\kappa(E)$
stimulus	s
preferred stimulus of the n -th neuron	s_n
total Fisher information	$FI(s)$
Fisher information of the n -th neuron	$FI_n(s)$
objective function	$f(\cdot)$
stimulus probability density function	$p(s)$
gain	$g(s)$
density	$d(s)$
base shape (gaussian)	$\hat{h}(s)$
tuning curve of the n -th neuron	$h_n(s)$
firing rate of the n -th neuron	R_n
firing rate of approximate homeostasis	$R(s)$
energy cost of the energy constraint	E
total number of neurons	N
exponent in the energy constraint	α
exponent in the objective function of the general case	β

1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 **G BIOPHYSICAL SIMULATION**
 1135

1136 The overview of the simulation pipeline is shown in Fig. 2. We focus on three key cellular properties
 1137 — resting potential v_{rest} , leak channel conductance g_{leak} , and synaptic conductance g_{syn} — as the
 1138 primary variables in our simulation, based on findings by Padamsey et al. (2022), who reported that
 1139 neurons adapt their encoding approach through changes in these parameters.

1140 We employ a single-compartment simulation model that includes three ionic channels, one passive
 1141 (leaky) channel, and a double-exponential conductance-based synapse (see Tab. 3). Additionally,
 1142 the ionic channel modeling files are based on Padamsey et al. (2022). A single input spiking event
 1143 is delivered to the synapse at the beginning of each simulation trial. In the simulation, we configure
 1144 a three-dimensional parameter space defined by v_{rest} , g_{leak} , and g_{syn} . Specifically, v_{rest} and g_{leak}
 1145 are varied over the ranges of -75 to -65 mV and 0.07 to 0.12 mS/cm 2 , respectively. For each pair
 1146 of v_{rest} and g_{leak} , we further tune g_{syn} to ensure that the resulting mean spike count remains within
 1147 a physiologically valid range based on the g_{syn} values (corresponding to $\mu_F = 0.2$ and $\mu_F = 0.8$,
 1148 respectively) obtained from the deterministic settings. It should be noted that we slightly abuse the
 1149 notation g_{syn} to refer specifically to the maximum synaptic conductance in the double-exponential
 1150 synaptic model. At each sampled point in the parameter space, we run the simulation 10,000 times
 1151 for estimating the mean and variance of the spike count. We should note that we simplify the change
 1152 of v_{rest} as the membrane reversal potential for passive current due to the large conductance of the
 1153 leaky channel compared to others. To estimate the energy cost during active and silent signal periods,
 1154 we integrate the temporal current traces associated with the synapse, the Na $^+$ ion channel, and the
 1155 leaky Na $^+$ ion channel. The integral of the synaptic current trace is identified as the signal-related
 1156 energy expenditure, denoted ϵ_{sig} , while the sum of the integrals of the Na $^+$ current from the ion
 1157 channel and Na $^+$ leak currents is defined as the background energy expenditure, ϵ_{bg} . It is important
 1158 to note that the majority of the synaptic current is concentrated within the first 100 ms, owing to the
 1159 10 ms decay constant used in modeling the synaptic conductance. Additionally, we also convert the
 1160 integrated currents into ATP by assuming that one ATP molecule is required to pump out three Na $^+$
 1161 ions, consistent with the Na $^+$ /K $^+$ -ATPase pump (Thomas, 1972). Since our simulation only adopts a
 1162 single leaky channel summarizing all the leaky currents, we use the following formula for estimating
 1163 the Na $^+$ leak currents:

$$I_{leak}^{\text{Na}^+}(t) = g_{leak}^{\text{Na}^+} \cdot (v_{soma}(t) - E_{rev}^{\text{Na}^+}), \quad (67)$$

1164 where $v_{soma}(t)$ and $E_{rev}^{\text{Na}^+}$ are the simulated soma temporal potential and Na $^+$ reversal potential,
 1165 respectively. We further estimate the conductance of the leaky Na $^+$ ion channel, denoted as $g_{leak}^{\text{Na}^+}$, by

$$g_{leak}^{\text{Na}^+} = g_{leak}/(1 + r), \quad (68)$$

$$r := (E_{rev}^{\text{Na}^+} - E_{rev}^{\text{leak}}) / (E_{rev}^{\text{leak}} - E_{rev}^{\text{K}^+}), \quad (69)$$

1166 where E_{rev}^{leak} and $E_{rev}^{\text{K}^+}$ denote the leaky channel and K $^+$ reversal potentials.

1167 The above simulation was performed on the distributed cluster computer based on Intel(R)
 1168 Xeon(R) and does not require any GPU usage. We distributed the simulation of each cell states
 1169 (v_{rest} , g_{leak} , g_{leak}) to a core with individual 1G memory. Each simulation that executes 10,000 run
 1170 for estimating the mean and variance of spike count takes approximately 40 minutes.

1171 **H BIOPHYSIOLOGICAL MODELING**
 1172

1173 **H.1 ENERGY COST**
 1174

1175 We estimate the total energy cost as:

$$\epsilon_{total} = \kappa \epsilon_{sig} + \epsilon_{bg}, \quad (70)$$

1176 where κ represents the level of signal activity. In our simulations, κ is varied over the range from
 1177 90 to 150. A detailed analysis of how different values of κ influence the noise term η_κ along the
 1178 optimal adaptation path is provided in Sec. J.

1188
1189

H.2 TUNING CURVE WIDTH

1190
1191
1192

Following Padamsey et al. (2022), we determine the \hat{g}_{syn} that yields $\mu_F = 0.1$ for each state (v_{rest}, g_{leak}). Using these values of \hat{g}_{syn} , we define a tuning curve that maps stimulus to synaptic conductance:

1193

1194

1195

where $\phi := 0.02$ is used to compensate for the mean firing rate since \hat{g}_{syn} is determined according to $\mu_F = 0.1$. The stimulus s is defined over the range from -90 to 90 to simulate orientation input. The corresponding tuning curve from stimulus to mean firing rate is obtained by applying TC through the empirically derived mapping from g_{syn} to μ_F based on simulation data. In contrast to Padamsey et al. (2022), we compute the full width at half maximum (FWHM) of the wrapped curve, as it may deviate from a Gaussian profile. To estimate the width along the optimal path, we fit the FWHM values using a second-degree polynomial function in v_{rest} and g_{leak} and take the estimated values along the optimal states.

1203

1204

1205

H.3 SPIKE TRAIN STATISTICS

1206

1207

1208

1209

1210

1211

In simulation, we input a deterministic spike and probe the probability of responding spiking output under different configurations, including synaptic conductance, membrane leaky channel conductance, and resting potential. This simulation characterizes the neuron excitability under different conditions. However, profiling this excitability curve does not directly provide the variance of output firing rate required in modeling Fisher information in our framework. To address this limitation, we mathematically derived the variance of output firing rate based on the following assumptions:

1212

1213

1214

1215

1216

1217

1218

- The response output spikings are independent.
- The input spikes follow Poisson distribution with a rate $\lambda \in \mathbb{R}$.
- The variance of the spike count σ_F^2 can be approximated by a parabola of the mean μ_F : $\sigma_F^2 \approx \eta_\kappa \mu_F (1 - \mu_F)$.

1219

Based on these assumptions, we define the probability distribution of input spikes K as:

1220

1221

1222

1223

In other word, $K \sim Pois(\lambda T)$, where T is a given time window. Since our simulation input is a single input, we can estimate the mean and variance of spike count F by the following empirical distribution:

1227

1228

$$p(F = k; \text{single spike input}) = p_k, \quad k \in \mathbb{N} \cup \{0\}. \quad (73)$$

1229

1230

1231

It should be noted that the number of output spikes k in the simulation is typically less than 3. Then the total output spike counts O is:

1232

1233

1234

$$O = \sum_{i=0}^K F_i, \quad (\text{by independence}) \quad (74)$$

1235

1236

1237

where F_i is a realization of F and F_i corresponds to i -th spike in the input spiking train. Based on this model, we can calculate the expectation and variance of O by

1238

1239

1240

1241

$$E[O] = E[E[O|K]] = E[KE[F]] = \lambda T E[F] = \lambda T \mu_F, \quad (75)$$

$$\text{Var}[O] = E[\text{Var}[O|K]] + \text{Var}[E[O|K]] = \lambda T \text{Var}[F] + \lambda T E[F]^2 = \lambda T \sigma_F^2 + \lambda T \mu_F^2, \quad (76)$$

where $E[S]$ and $\text{Var}[S]$ can be estimated from the simulation.

Now, we have to approximate the relation between (75) and (76). More specifically, we want to formulate (76) in term of (75).

$$\begin{aligned}
 \frac{\text{Var}[O]}{\text{E}[O]} &= \frac{\lambda T \sigma_F^2 + \lambda T \mu_F^2}{\lambda T \text{E}[S]} \\
 &= \frac{\lambda T \eta_\kappa \mu_F (1 - \mu_F) + \lambda T \mu_F^2}{\lambda T \mu_F} \quad (\text{by } \sigma_F^2 \approx \eta_\kappa \mu_F (1 - \mu_F)) \\
 &= \eta_\kappa (1 - \mu_F) + \mu_F \\
 &= \eta_\kappa - \mu_F (\eta_\kappa - 1) \\
 &\approx \eta_\kappa \quad (\text{if } \mu_F \text{ small}).
 \end{aligned} \tag{77}$$

The last approximation holds when neurons operate at the low spiking region, where we make $\mu_F = 0.1$ in our simulation. The eq. (77) also indicates a dispersed Poisson model. In eq. (77), we use a parabolic function to model the variance of spike count. As shown in Fig. 5, the fitted parabolas align closely with the simulation results, demonstrating the accuracy of the approximation.

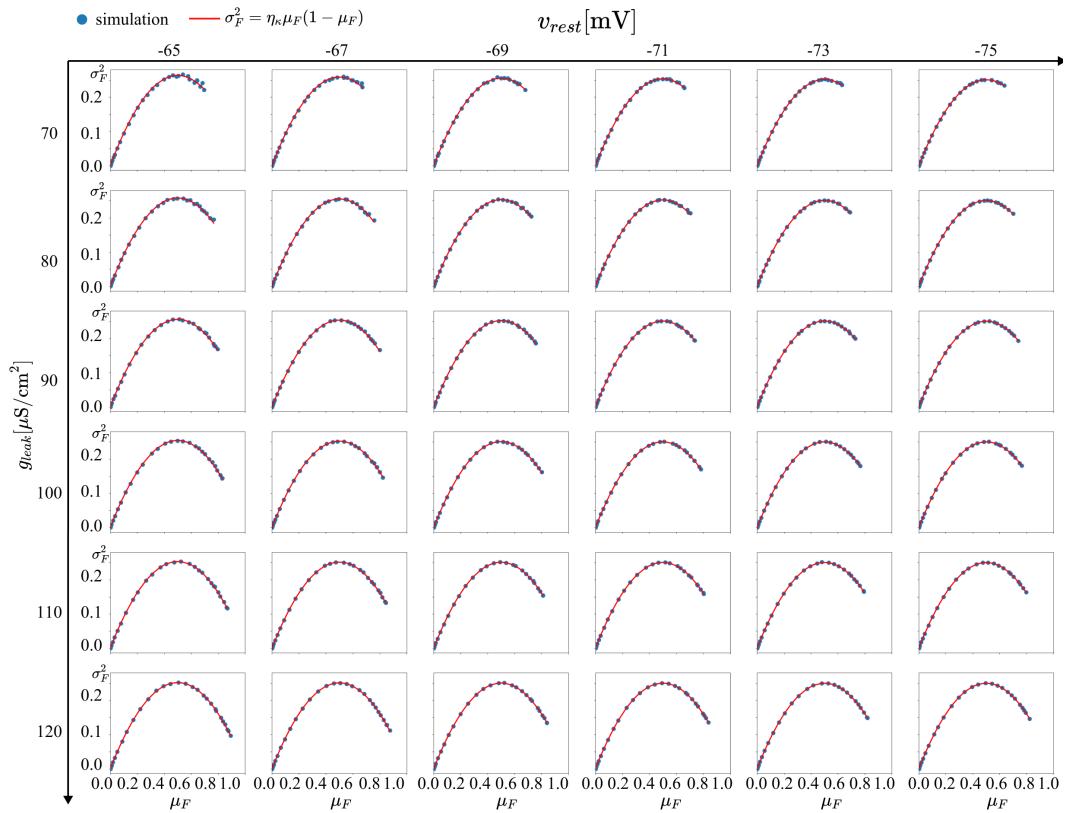


Figure 5: **Fitted parabolas for the mean and variance of spike count.** We fit a parabolic relationship between the mean and variance of spike count across different cellular states (v_{rest} , g_{leak}). For visualization purposes, only every second value of v_{rest} and g_{leak} is shown.

1296 H.4 FITTING OF WIDTH, ENERGY, AND NOISE
12971298 We fit the estimated width and energy in 2 and 1 degree polynomial functions in v_{rest} and $gleak$,
1299 respectively (see Fig. 6). Additionally, the estimated noise is fitted with

1300
$$P_4(v_{rest}, gleak) e^{w_1 v_{rest} + w_2 gleak}, \quad (78)$$

1301

1302 where P_4 denotes the degree-4 polynomial in v_{rest} and $gleak$, and w_1 and w_2 are the learning
1303 weights. Note that we additionally impose a non-negative constraint on the noise fitting parame-
1304 ters, further mitigating potential overfitting. The relative errors of these fittings are less than 2%. We
1305 select a degree 1 for energy fitting to enhance the stability of the numerical optimization in eq. (15),
1306 owing to the linearity of the constraint, which aligns with the straight energy contour. The degrees
1307 for the width and noise fitting are determined based on the maximum relative error.1308 I CHANGE OF ENERGY CONTOURS UNDER VARYING ACTIVITY LEVEL
13091311 The change of energy contours under varying κ is shown in Fig. 7. Note that underlying noise is
1312 independent of κ but the angle of constant-energy lines changes, becoming steeper with higher cell
1313 activity. This results in different curvatures of the optimal path shape.1314 J NOISE AND WIDTH CHANGE ALONG THE OPTIMAL PATH WITH VARYING
1315 ACTIVITY LEVELS
13161318 Here, we investigate how the activity level κ influences the density (defined as the inverse of tuning
1319 curve width) and the behavior of the noise dispersion curve $\eta_\kappa(\epsilon)$ along the optimal adaptations.
1320 Specifically, we vary κ from 90 to 150 and fit the proposed models to the corresponding density and
1321 noise data as described in Sec. 4.1.1322 The fitted parameters are shown in Fig. 8a-e. To characterize their dependence on κ , we fit an affine
1323 relation to (a_1, a_2) as a function of κ (see dotted lines in Fig. 8). Due to the presence of outliers as
1324 $\kappa < 100$, we restrict the fitting to data with $\kappa \geq 100$. The resulting fits (dotted lines in Fig. 8a, b)
1325 are given by:

1326
$$a_1(\kappa) = -6.193 \cdot 10^{-11} \kappa + 1.462 \cdot 10^{-8}, \quad (79)$$

1327

1328
$$a_2(\kappa) = 1.626 \cdot 10^{-4} \kappa + 0.7452. \quad (80)$$

1329

1330 Additionally, we fit polynomial models of degree 2, 2, and 2 to b_1 , b_2 , and η_0 , respectively (see
1331 dashed lines in Fig. 8c-e). The fitted expressions are:

1332
$$b_1(\kappa) = 3.093 \cdot 10^1 \kappa^2 - 3.922 \cdot 10^3 \kappa + 2.013 \cdot 10^5, \quad (81)$$

1333

1334
$$b_2(\kappa) = -5.996 \cdot 10^2 \kappa^2 + 1.888 \cdot 10^5 \kappa + 3.370 \cdot 10^6, \quad (82)$$

1335

1336
$$\eta_0(\kappa) = -6.102 \cdot 10^{-7} \kappa^2 + 6.004 \cdot 10^{-5} \kappa + 9.934 \cdot 10^{-1}. \quad (83)$$

1337

1338 We further visualize the consequences of these deviations in the resulting density and noise disper-
1339 sion curves. As shown in Fig. 8f, g, the predicted density and noise dispersion values increasingly
1340 deviate from simulation results as κ decreases. It should note that the values of $\vec{c}(\kappa)$ can be easily
1341 derived from the values of \vec{a} and \vec{b} .1342
1343
1344
1345
1346
1347
1348
1349

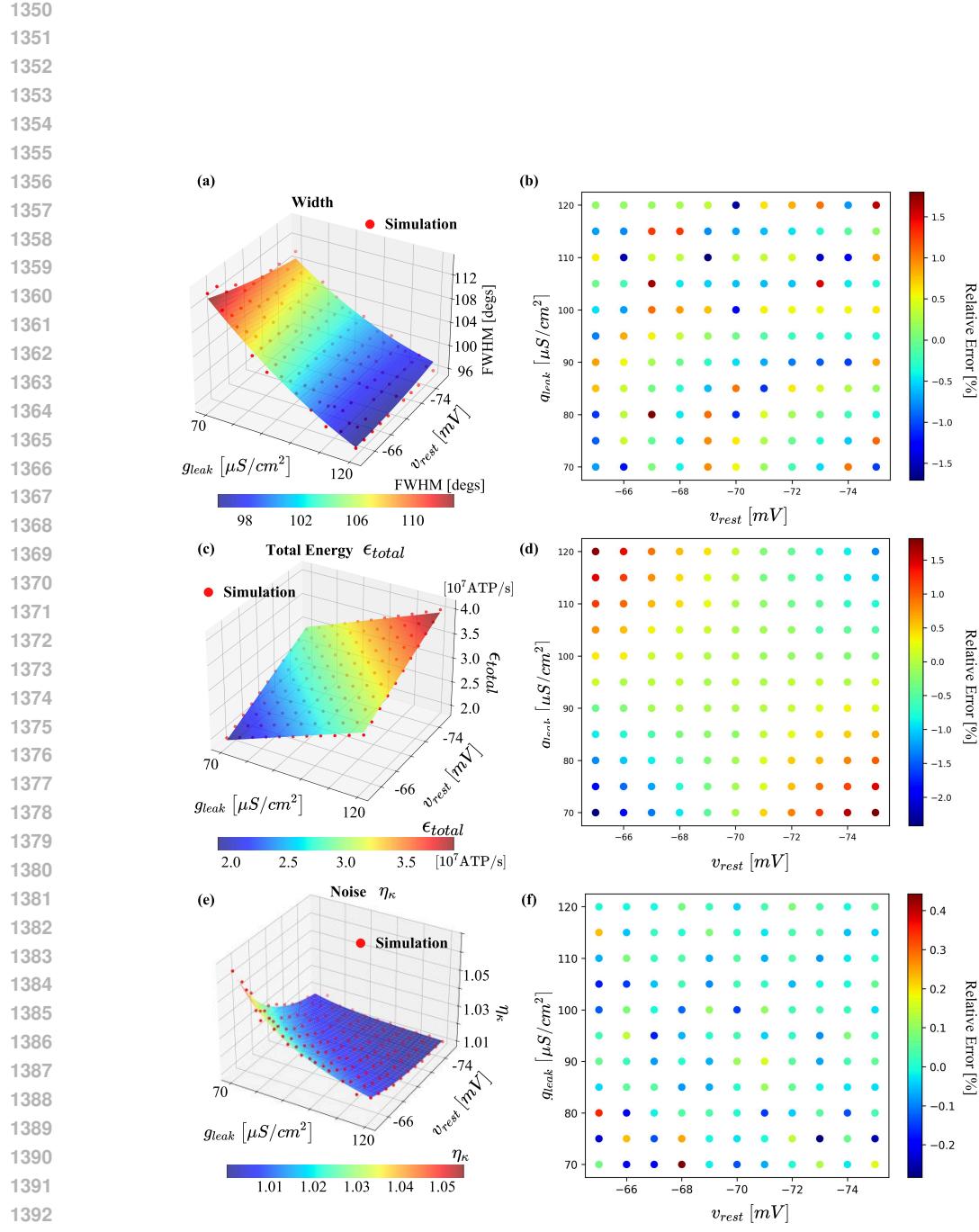


Figure 6: **Surface fitting to width, total energy, and noise.** (a, b) We use 2 degree polynomial function in v_{rest} and g_{leak} to fit the estimated FWHM, with the relative error provided. (c, d) We use 1 degree polynomial function in v_{rest} and g_{leak} to fit the estimated total energy, with the relative error provided. (e, f) We use eq. (78) to fit the estimated total energy, with the relative error provided.

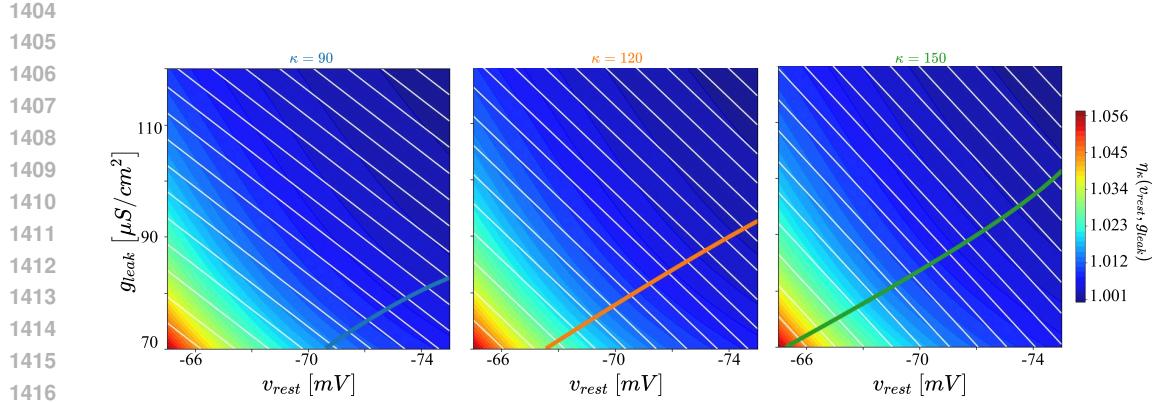


Figure 7: **Impact of cell activity level κ on constant-energy contours and optimal paths.** We show varying angles of constant energy contours (white) resulting in different optimal path shapes (blue, orange, green) under $\kappa = 90, 120$, and 150 , respectively.

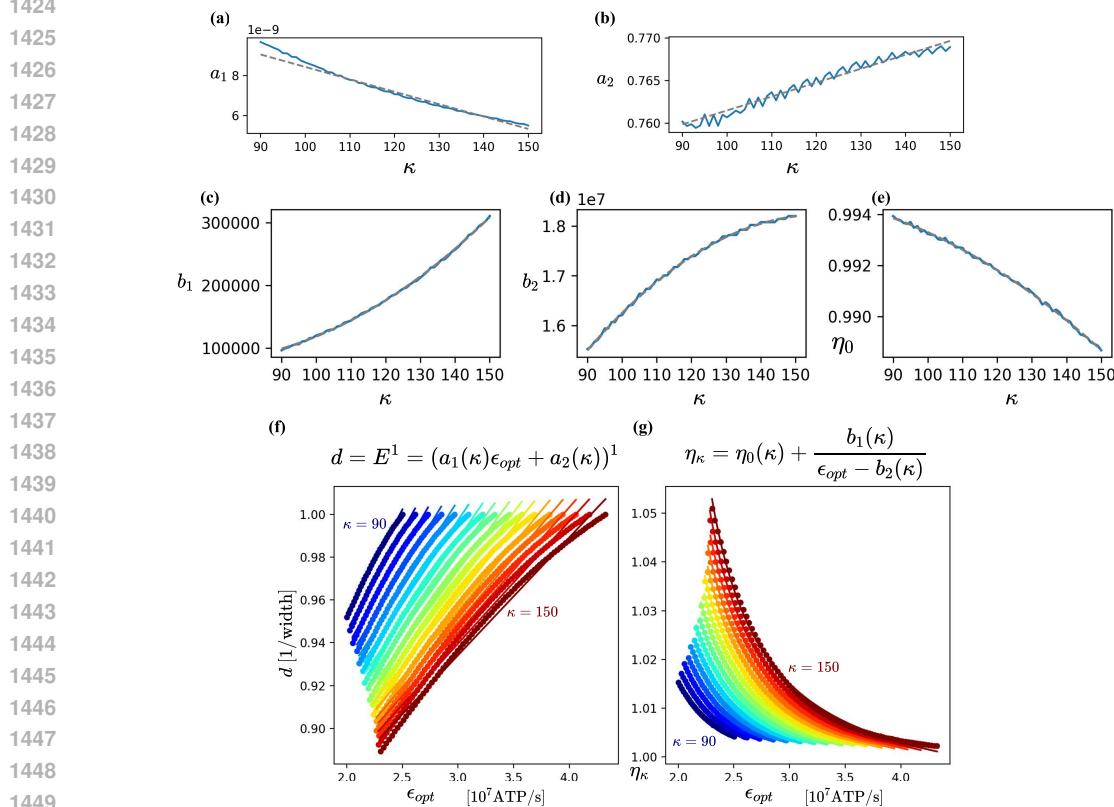


Figure 8: **Relationship between κ and the fitting parameters in the energy budget and the noise dispersion model as in eqs. (16) and (18).** (a, b) To represent the energy budget in ATP/s units, we fit the parameters (a_1, a_2) as an affine function of κ . (c–e) To model the noise in ATP/s units, we fit the parameters (b_1, b_2, η_0) with polynomials of κ . Dotted lines indicate polynomial fits of degree 2, 2, and 2 to b_1 , b_2 , and η_0 , respectively. (f, g) The resulting energy budget and noise dispersion curves (solid lines) generated using the fitted expressions are compared with the simulation data. For visualization purposes, we display every fourth value of κ in the plotted results.

1458 **K ANALYTICAL SOLUTION COMPARISON**
14591460 We compare the our analytical solution to Ganguli & Simoncelli (2010); Wang et al. (2016a) under
1461 the different objectives (see. Tabs. 5 to 7).
14621463 **Table 5: Comparison of infomax analytical solutions**
1464

	Ours	Ganguli & Simoncelli (2010)	Wang et al. (2016a)
Density			
(tuning width)⁻¹	$E^{\frac{1}{\alpha}} R(s)^{-1} p(s)$	$Np(s)$	$Cp(s)$
$d(s)$			
Gain	$E^{\frac{1}{\alpha}}$	R	1
$g(s)$			
Fisher			
information	$\frac{E^{\alpha} p(s)^2}{\eta_{\kappa}(E) R(s)^2}$	$N^2 Rp(s)$	$C^2 p(s)^2$
$FI(s)$			

1478 **Table 6: Comparison of discrimax analytical solutions**
1479

	Ours	Ganguli & Simoncelli (2010)	Wang et al. (2016a)
Density			
(tuning width)⁻¹	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{-\alpha-1}{\alpha+3}} p(s)^{\frac{\alpha+1}{\alpha+3}}$	$\propto Np(s)^{\frac{1}{2}}$	$\propto Cp(s)^{\frac{1}{3}}$
$d(s)$			
Gain	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{-2}{\alpha+3}} p(s)^{\frac{-2}{\alpha+3}}$	$\propto Rp(s)^{\frac{-1}{2}}$	1
$g(s)$			
Fisher			
information	$\propto \frac{E^{\alpha} p(s)^{\frac{2}{\alpha+3}}}{\eta_{\kappa}(E) R(s)^{\frac{2\alpha}{\alpha+3}}}$	$\propto N^2 Rp(s)^{\frac{1}{2}}$	$C^2 p(s)^{\frac{2}{3}}$
$FI(s)$			

1492 **Table 7: Comparison of general analytical solutions (L_p error, $p = -2\beta$).**
1493

	Ours	Ganguli & Simoncelli (2010)	Wang et al. (2016a)
Density			
(tuning width)⁻¹	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{\alpha-\beta}{3\beta-\alpha}} p(s)^{\frac{\beta-\alpha}{3\beta-\alpha}}$	$\propto Np(s)^{\frac{\beta-1}{3\beta-1}}$	$\propto Cp(s)^{\frac{1}{1-2\beta}}$
$d(s)$			
Gain	$\propto E^{\frac{1}{\alpha}} R(s)^{\frac{2\beta}{3\beta-\alpha}} p(s)^{\frac{2\beta}{3\beta-\alpha}}$	$\propto Rp(s)^{\frac{2\beta}{1-3\beta}}$	1
$g(s)$			
Fisher			
information	$\propto \frac{E^{\alpha} p(s)^{\frac{2\alpha}{3\beta-\alpha}}}{\eta_{\kappa}(E) R(s)^{\frac{2\alpha}{\alpha-3\beta}}}$	$\propto N^2 Rp(s)^{\frac{2}{1-3\beta}}$	$C^2 p(s)^{\frac{2}{1-2\beta}}$
$FI(s)$			

1506 **L DETAILS IN CONSISTENCY WITH DATA**
15071508 **L.1 DERIVATION OF THE PARAMETER SETTINGS**
15091510 In Sec. 5, we aim to find the parameters \vec{a} for simultaneously accomplish 32% widening and 29%
1511 reduction in ATP consumption. Combining with the density analytical solution in our model, the

1512 32% widening implies
 1513

$$1.32 = \frac{w_{ms}}{w_{ctr}} = \frac{d_{ctr}}{d_{ms}} = \frac{E_{ctr}}{E_{ms}} = \frac{a_1 \epsilon_{ctr} + a_2}{a_1 \epsilon_{ms} + a_2} \quad (84)$$

$$= \frac{1 + \frac{a_2}{a_1 \epsilon_{ctr}}}{\frac{\epsilon_{ms}}{\epsilon_{ctr}} + \frac{a_2}{a_1 \epsilon_{ctr}}} = \frac{1 + \frac{a_2}{a_1 \epsilon_{ctr}}}{0.71 + \frac{a_2}{a_1 \epsilon_{ctr}}} \Rightarrow \frac{a_2}{a_1 \epsilon_{ctr}} = 0.19625, \quad (85)$$

1518 where ms denotes metabolic stress.
 1519

1520 Given a fixed tuning curve width derived from the fixed population size, we reduce the firing rate
 1521 according (R) in Ganguli & Simoncelli (2010) according to the decrease in the maximum mean
 1522 firing rate in the mouse neuron. Due to the gaussian assumption, 32% widening, and a uniform
 1523 prior, we can calculate the decrease in the maximum mean firing rate by
 1524

$$\frac{\max_s \frac{1}{1.32\sigma\sqrt{2\pi}} e^{\frac{-s^2}{2(1.32\sigma)^2}}}{\max_s \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-s^2}{2\sigma^2}}} = \frac{1}{1.32} \approx 76\% = (1 - \underbrace{24\%}_{\text{decrease}}). \quad (86)$$

1525 Similarly, due to 32% widening and a uniform prior, we can calculate the decrease in the coding
 1526 capacity in Wang et al. (2016a) by
 1527

$$\frac{1}{1.32} = \frac{w_{ctr}}{w_{ms}} = \frac{d_{ms}}{d_{ctr}} = \frac{C_{ms}}{C_{ctr}} \Rightarrow C_{ms} \approx (1 - \underbrace{24\%}_{\text{decrease}}) \cdot C_{ctr}. \quad (87)$$

1534 L.2 MEAN FIRING RATE DEVIATION 1535

1536 Here, we analyze changes in firing rate under different coding objectives and prior distributions (see
 1537 Fig. 9). Across all coding objectives, we adopt a consistent configuration: $b/(a\epsilon_{ctr}) = 0.19625$, a
 1538 29% reduction in energy expenditure, and $\alpha = 1$, consistent with the settings used in Sec. 5. Addi-
 1539 tionally, we fix $E = 6$ and $R(s) = 1$ for all cases, as these parameters yield a control tuning width
 1540 of 35 degrees under a uniform prior — following the simulation conditions reported in Padamsey
 1541 et al. (2022). After generating the population codes according to Tab. 1, we extract the tuning curve
 1542 corresponding to the neuron with preferred stimulus $s_n = 90^\circ$. Each extracted tuning curve is nor-
 1543 malized by the peak value of its respective control condition, a transformation that does not affect
 1544 the analysis of firing rate deviation.
 1545

Fig. 9a shows the uniform prior assumed in Sec. 5, along with the infomax case (Fig. 9b reiterates
 Fig. 4b). Here we illustrate that, under constant $R(s) = R$, all objective functions lead to the same
 original tuning curves and adaptations, all with perfect homeostasis.
 1546

In addition to the uniform prior, we also consider as a non-uniform prior the distribution of edge
 1547 orientations in natural scenes, as reported in Girshick et al. (2011). When replacing the uniform prior
 1548 with the non-uniform one, the deviation in mean firing rate (compared to each control condition,
 1549 shown in dotted purple) remains within .2% across infomax, discriminax, and L_1 error objectives. As
 1550 shown in Fig. 9g and h, the tuning curves deviate from a Gaussian profile due to the dependence of
 1551 the gain function $g(s)$ on the prior distribution for L_p norm losses (see Tabs. 6 and 7).
 1552

1554 L.3 MEAN FIRING RATE DEVIATION WITH NON-GAUSSIAN TUNING CURVE 1555

1556 Although we adopt the Gaussian function as our base shape \hat{h} , our model is not restricted to it. To
 1557 further test generality, we evaluate the homeostasis approximation error using a one-dimensional
 1558 Gabor function, a commonly adopted tuning curve (Manning et al., 2024). As shown in Fig. 10,
 1559 the mean FR deviation remains within .5%, demonstrating that our homeostasis approximation also
 1560 holds for non-Gaussian tuning base shapes. Note that the optimality of the derived Gabor tuning
 1561 curve still requires evaluation of the tiling property, as discussed in Sec. A.
 1562

1563
 1564
 1565

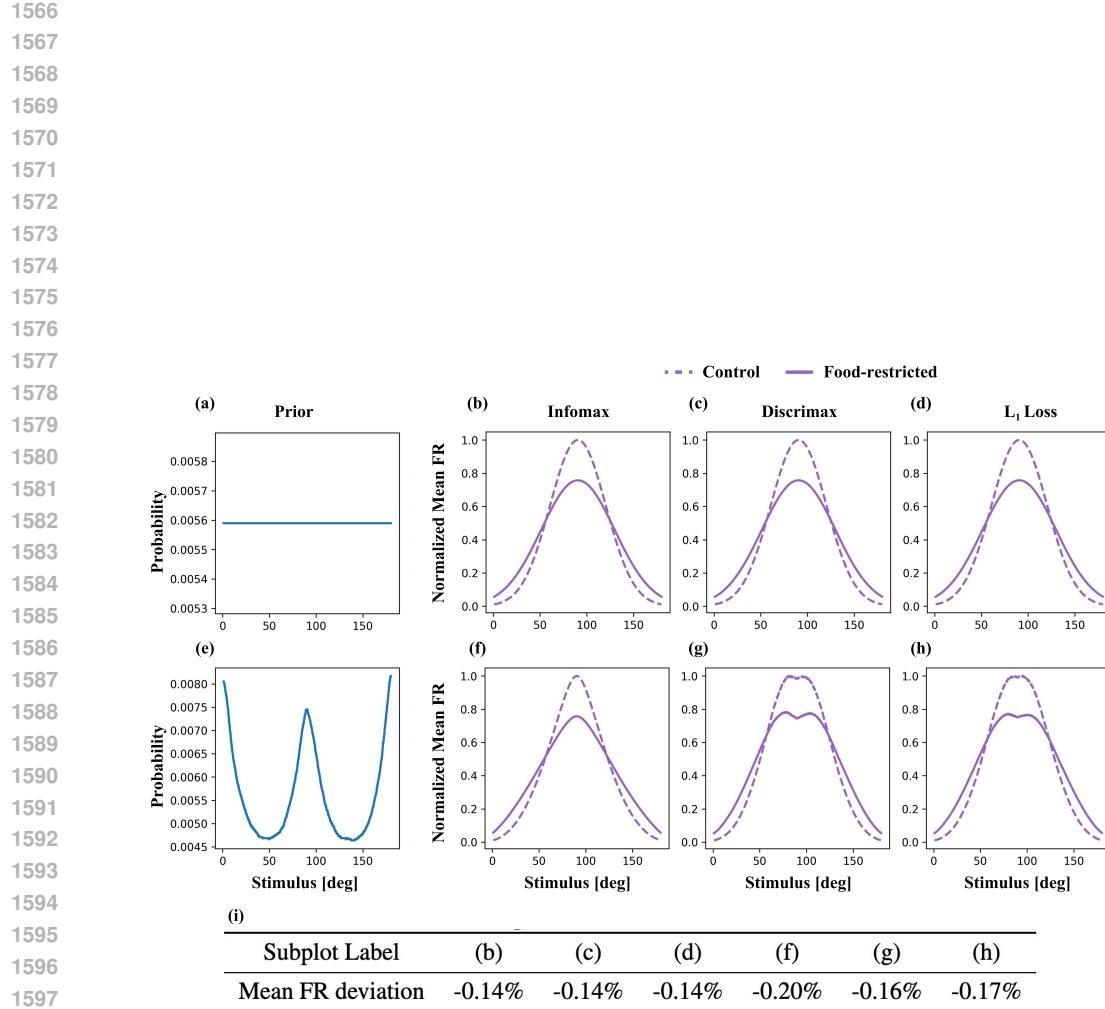


Figure 9: **Gaussian base shape adaptation under varying objectives and a non-uniform prior results in slight violations of homeostasis.** (a) The uniform prior used in Fig. 4. (b) Under a uniform prior and the infomax objective, it reiterates Fig. 4b. (c) Under the discrimax objective, the optimal gain varies as a function of $p(s)$ and $R(s)$. However, by assuming uniform $p(s)$ and $R(s)$, the resulting tuning curve remains unchanged from the infomax case. (d) The L_1 error minimization objective yields the same results to (c). (e) A non-uniform prior derived from the distribution of edge orientations in natural scenes, as reported in Girshick et al. (2011). (f) The resulting tuning curve under the infomax objective with the non-uniform prior. (g, h) Under the discrimax and general objectives, the optimal gain varies with $p(s)$ (and $R(s)$, though we assume a constant R in this simulation). Despite these variations, the mean firing rate deviation remains within .2%. (i) The mean FR deviation in the above conditions.

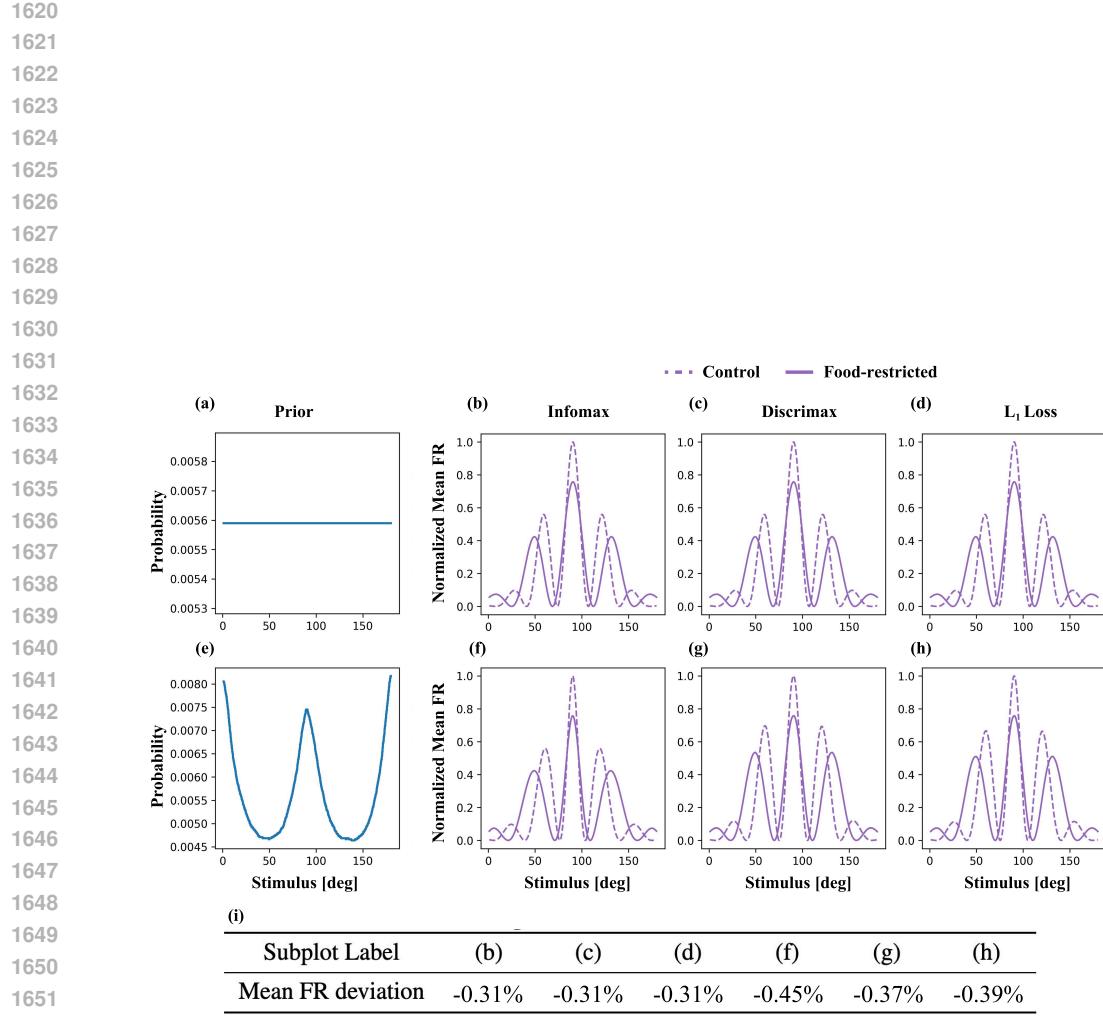


Figure 10: **Gabor base shape adaptation under varying objectives and a non-uniform prior results in slight violations of homeostasis.** (a) The uniform prior used in Fig. 4. (b) Under a uniform prior and the infomax objective. (c) Under the discriminax objective, the optimal gain varies as a function of $p(s)$ and $R(s)$. However, by assuming uniform $p(s)$ and $R(s)$, the resulting tuning curve remains unchanged from the infomax case. (d) The L_1 error minimization objective yields the same results to (c). (e) A non-uniform prior derived from the distribution of edge orientations in natural scenes, as reported in Girshick et al. (2011). (f) The resulting tuning curve under the infomax objective with the non-uniform prior. (g, h) Under the discriminax and general objectives, the optimal gain varies with $p(s)$ (and $R(s)$, though we assume a constant R in this simulation). Despite these variations, the mean firing rate deviation remains within .5%. (i) The mean FR deviation in the above conditions.

1674 M FITNESS OF THE DERIVED TUNING CURVES

1675
 1676 Here, we adopt the likelihood method to evaluate the fitness of our model on the data presented
 1677 in Padamsey et al. (2022) and compared to Ganguli & Simoncelli (2010); Wang et al. (2016a).
 1678

1679 M.1 LIKELIHOOD

1680
 1681 Following the dispersed Poisson distribution, we can derive the log likelihood function of a single
 1682 neuron as

$$1683 \log \mathcal{L} \left(h_n(s) | r_n^{(1)}(s), r_n^{(2)}(s), \dots, r_n^{(k)}(s) \right) \quad (88)$$

$$1685 = \log \left[\prod_{j=1}^k \frac{1}{\sqrt{2\pi\eta_\kappa(E)h_n(s)}} \exp \left(-\frac{(r_n^{(j)}(s) - h_n(s))^2}{2\eta_\kappa(E)h_n(s)} \right) \right] \quad (89)$$

$$1688 = \sum_{j=1}^k \log \left[\frac{1}{\sqrt{2\pi\eta_\kappa(E)h_n(s)}} \exp \left(-\frac{(r_n^{(j)}(s) - h_n(s))^2}{2\eta_\kappa(E)h_n(s)} \right) \right] \quad (90)$$

$$1691 = \sum_{j=1}^k \left[-\frac{1}{2} \log (2\pi\eta_\kappa(E)h_n(s)) - \frac{(r_n^{(j)}(s) - h_n(s))^2}{2\eta_\kappa(E)h_n(s)} \right] \quad (91)$$

$$1695 = -\frac{k}{2} \log (2\pi\eta_\kappa(E)h_n(s)) - \frac{1}{2\eta_\kappa(E)h_n(s)} \sum_{j=1}^k (r_n^{(j)}(s) - h_n(s))^2 \quad (92)$$

1696 where k is the total number of responses (trials). For optimization, we can drop the constant terms,
 1697 giving:

$$1700 \log \mathcal{L}_n \propto -\frac{k}{2} \log (h_n(s)) - \frac{\sum_{j=1}^k (r_n^{(j)}(s) - h_n(s))^2}{2\eta_\kappa(E)h_n(s)}. \quad (93)$$

1701 To extend the model to the entire population of N neurons, we follow the standard assumption that
 1702 the noise in each neuron's response is independent. This assumption allows us to formulate the total
 1703 log-likelihood for the population as the sum of the log-likelihoods for each individual neuron.

$$1706 \log \mathcal{L}_{total} = \sum_{n=1}^N \log \mathcal{L}_n. \quad (94)$$

1707 Note that future work could explore the impact of information-limiting noise correlations (Moreno-
 1708 Bote et al., 2014), but this would require grounding in data that has never been collected to model
 1709 how these correlations might be impacted by metabolism.

1712 M.2 CALIBRATION

1713
 1714 Estimating the gain function g and density function d by maximizing the log-likelihood in eq. (94)
 1715 is challenging. The difficulty arises because the second term in the RHS of eq. (93), has a complex,
 1716 non-linear dependence on g and d . Furthermore, the optimization is constrained by the requirements
 1717 of approximate homeostasis and energy constraint. However, we believe that this method can be
 1718 used to calibrate the parameters E , α , and $R(s)$.

$$1720 \log \mathcal{L}_n \propto -\frac{k}{2} \log \left(g(s) \hat{h}(D(s) - D(s_n)) \right) - \frac{\sum_{j=1}^k (r_n^{(j)}(s) - g(s) \hat{h}(D(s) - D(s_n)))^2}{2\eta_\kappa(E)g(s)\hat{h}(D(s) - D(s_n))}. \quad (95)$$

1721 Based on the analytical solution (assuming an infomax objective) presented in the manuscript, we
 1722 can substitute $g(s)$ and $d(s)$ with:

$$1723 g(s) = E^{1/\alpha}, \quad (96)$$

$$1725 d(s) = E^{1/\alpha} R(s)^{-1} p(s). \quad (97)$$

1728
 1729 Although eq. (95) is defined in terms of D rather than d , we can approximate D numerically. We then
 1730 can exploit the differentiability of the involved functions to iteratively optimize the parameters using
 1731 gradient-based approaches. Nevertheless, due to the nonlinear nature of eq. (95), the optimization
 1732 process may converge to suboptimal local minima.

1733 By the approach above, we can integrate our analytical solution with a data-driven calibration of the
 1734 parameters E , α , and $R(s)$. However, the stability and efficacy of this method have not yet been
 1735 rigorously evaluated. We believe this presents an interesting direction for future work, especially as
 1736 larger datasets become available.

1737 M.3 LIKELIHOOD ON BIOLOGICAL DATA

1738
 1739 We can apply the method in eq. (95) to evaluate the fit of the tuning curves shown in Fig. 4 to
 1740 the data in Padamsey et al. (2022). Note that this data has significant drawbacks: rather than tak-
 1741 ing repeated measurements from the same cell, then repeating the full experiment under a tighter
 1742 metabolic constraint, Padamsey et al. (2022) instead aligns and averages responses from 29 cells
 1743 in the control condition and 32 different cells in the food restricted condition, which are taken as
 1744 representative of variations over repeated trials of a single underlying tuning curve. Because this is
 1745 the only data available, we will use it as an illustrative example here, but note that future spike train
 1746 data is needed to refine these estimates. Specifically, we find log likelihoods as -155 (Ganguli &
 1747 Simoncelli, 2010), -107 (Wang et al., 2016a), -85 (ours), -47 (ours with optimized η). This shows the
 1748 expected ordering of fit quality.

1749 N EVALUATION OF FLATTENING EFFECT ON NON-INDEPENDENT NOISE

1750
 1751 Our proposed framework assumes conditionally independent noise (see Sec. A) for analytical
 1752 tractability. However, this assumption may be unrealistic due to the presence of noise correlations
 1753 across neurons. To assess the extent to which such noise model mismatch induces a flattening effect,
 1754 we incorporate differential correlations (Moreno-Bote et al., 2014), which have been identified as a
 1755 dominant factor limiting information transmission.

1756
 1757 Specifically, we aim to optimize the following constrained optimization problem corresponding to
 1758 the infomax case:

$$1759 \underset{g(\cdot), d(\cdot)}{\operatorname{argmax}} \int p(s) \log \left(\frac{\eta_\kappa(E)^{-1} g(s) d(s)^2}{1 + \eta_\kappa(E)^{-1} c g(s) d(s)^2} \right) ds, \quad (98)$$

$$1760 \text{ s.t. } p(s)g(s) = R(s)d(s), \quad (99)$$

$$1761 \int p(s)g(s) ds = E, \quad (100)$$

1762
 1763 where $c \geq 0$ denotes the strength of differential correlations. In the simulation, we set $\eta_\kappa(E) = 1$,
 1764 as its value varies only slightly (from 1 to 1.06; see Fig. 3i). For simplicity, we further specify
 1765 $R(s) = 1$. The stimulus distribution $p(s)$ is chosen to match the empirical distribution of edge
 1766 orientations in natural scenes reported by Girshick et al. (2011). However, numerically solving this
 1767 constrained optimization problem is challenging. To mitigate this difficulty, we use the approximate
 1768 homeostasis constraint to express $d(s)$ in terms of $g(s)$ and relax the energy constraint using an
 1769 ℓ_2 -norm regularization term with penalty weight $\lambda_{\text{penalty}} = 100$. The relaxed optimization problem
 1770 is as follows:

$$1771 \underset{g(\cdot)}{\operatorname{argmax}} \int p(s) \log \left(\frac{p(s)^2 g(s)^3}{1 + c p(s)^2 g^3(s)} \right) ds - \lambda_{\text{penalty}} \left\| \int p(s)g(s) ds - E \right\|^2. \quad (101)$$

1772
 1773 We then perform gradient descent with a step size of 10^{-3} for 3000 iterations. After obtaining the
 1774 optimal $g(s)$, we recover the optimal $d(s)$ by the approximate homeostasis constraint. Note that
 1775 we vary the correlation strength up to 1000, which is substantially larger than the noise variance of
 1776 individual neurons (i.e., $\eta_\kappa = 1$).

1777
 1778 The optimal gain and density functions exhibit only modest changes across different levels of
 1779 differential correlations; in contrast, metabolic stress produces a substantially larger effect (see
 1780 Fig. 11a–b). We then derive the optimal tuning curves associated with the gain and density functions

in Fig. 11a–b, which display the same flattening pattern predicted by our analytical solution in the infomax setting. In Fig. 11d, we quantitatively evaluate the relative broadening for each matched pair of correlation strengths in the control and food-restricted conditions. Although increasing the differential correlation strength from 0 to 1000 results in an additional 4% broadening, this effect is minor compared to the impact of metabolic stress, which produces approximately 38% broadening.

This numerical experiment demonstrates that the flattening effect predicted by our proposed model remains robust even when differential correlations are taken into account.

We conducted similar experiments with $\lambda_{\text{penalty}} = 10$ and $\lambda_{\text{penalty}} = 1000$ (see Figs. 12 and 13) to evaluate whether the broadening effect arises from any numerical artifact introduced by the choice of the penalty weight λ_{penalty} . As shown in Figs. 11 to 13, the trend of the broadening effect remains consistent — increasing the differential correlation strength results in additional broadening. We therefore conclude that the broadening effect is not the numerical artifact.

Additionally, we computed the regularizer error,

$$\left\| \int p(s) g(s) ds - E \right\|^2,$$

under $\lambda_{\text{penalty}} = 10, 100, 1000$, as shown in Fig. 14. The results show that the default setting $\lambda_{\text{penalty}} = 100$ is a reasonable choice for solving the relaxed problem.

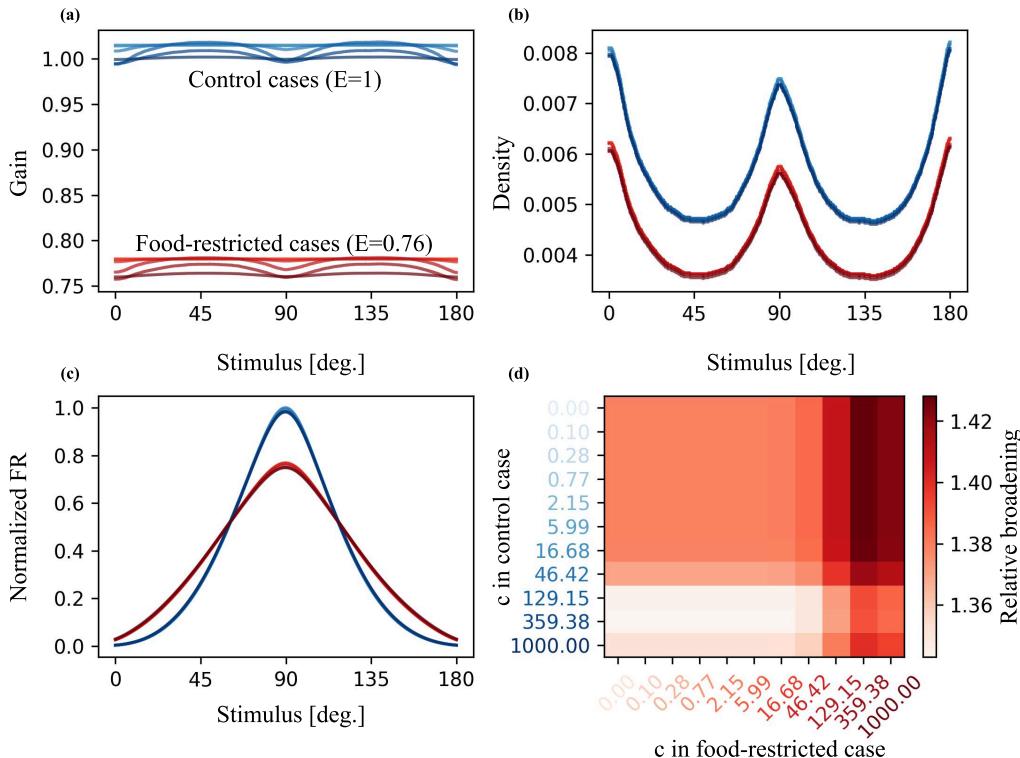
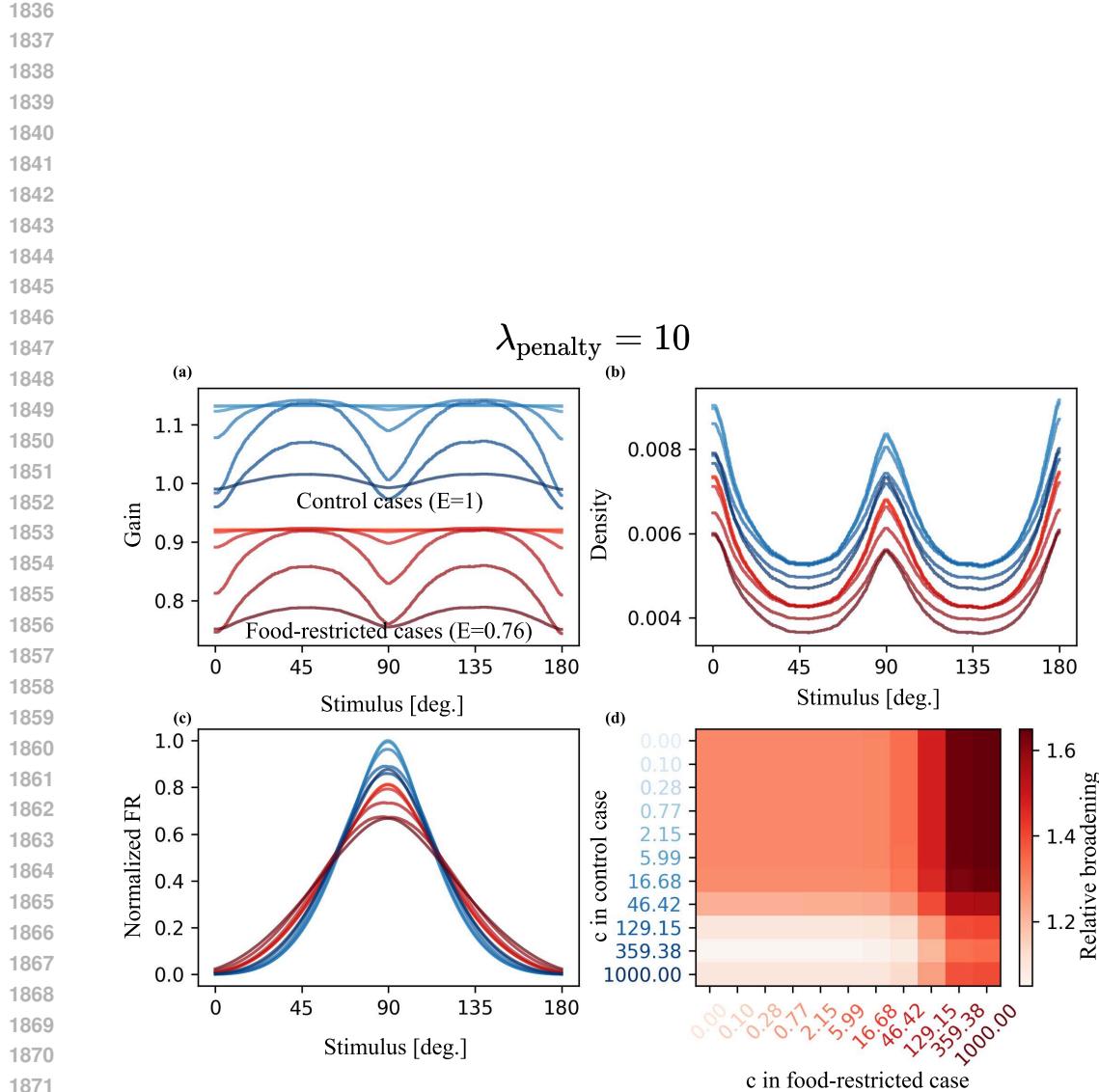


Figure 11: **Comparison of gain, density, tuning curves, and broadening effects under varying levels of differential correlations.** (a–b) Optimal gain and density functions obtained across different strengths of differential correlations. Blue and red curves represent the control and food-restricted conditions, respectively, with color gradients indicating increasing correlation strength. (c) Optimal tuning curves corresponding to the gain and density functions shown in panels (a) and (b). (d) Relative broadening effect for each matched pair of control and food-restricted conditions. The top-left pair corresponds to the case assuming independent noise. Note that this experiment is under $\lambda_{\text{penalty}} = 100$.



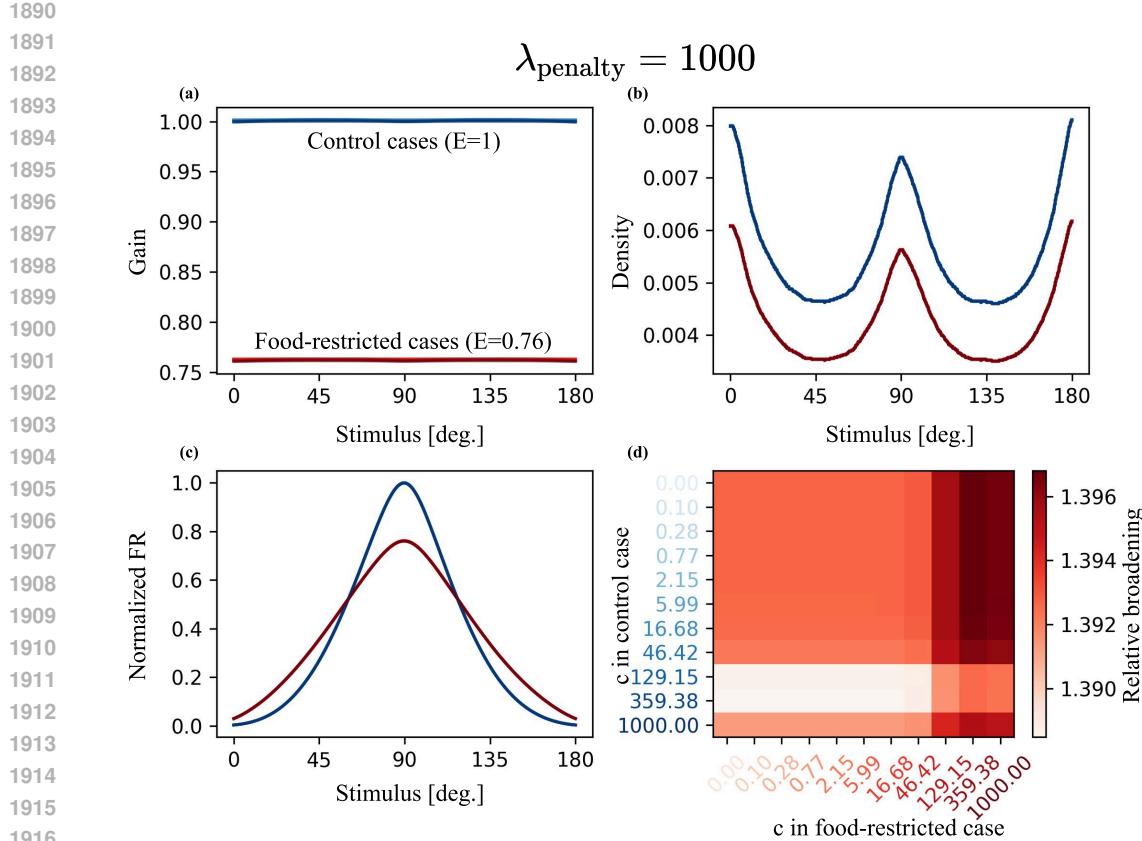


Figure 13: **Comparison of gain, density, tuning curves, and broadening effects under varying levels of differential correlations.** (a–b) Optimal gain and density functions obtained across different strengths of differential correlations. Blue and red curves represent the control and food-restricted conditions, respectively, with color gradients indicating increasing correlation strength. (c) Optimal tuning curves corresponding to the gain and density functions shown in panels (a) and (b). (d) Relative broadening effect for each matched pair of control and food-restricted conditions. The top-left pair corresponds to the case assuming independent noise. Note that this experiment is under $\lambda_{\text{penalty}} = 1000$.

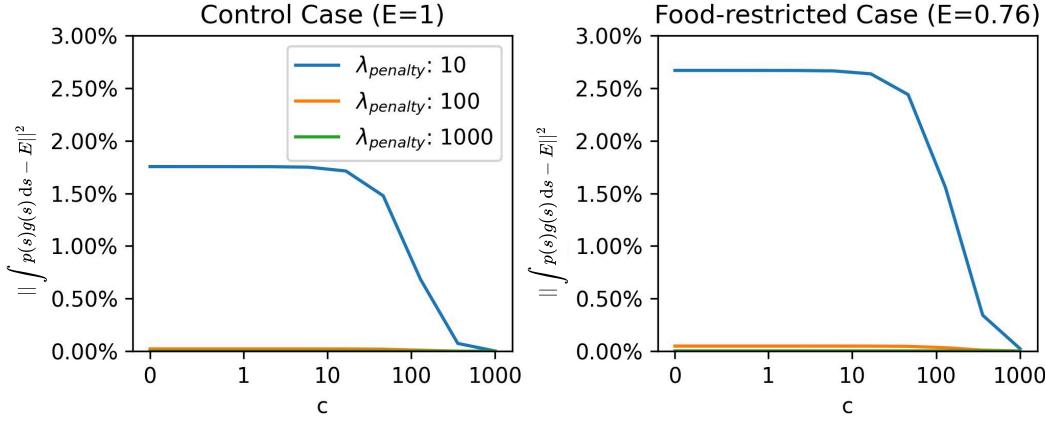


Figure 14: **Evaluation of the effect of penalty weight λ_{penalty} .**