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Abstract

In numerous scientific scenarios, experimental samples are designed as multiple data groups
based on their underlying structures, e.g., with 1000 samples in each group, where these
samples share certain similarities but include systematic physicochemical variations. Then,
a smaller number of samples (e.g., 10) are selected to be placed in the parallel synthesizer,
under a lengthy process, to collect their properties for subsequent machine learning analysis.
Active learning, a technique that selects the most informative samples for the model, could
reduce the cost of such a lengthy procedure by achieving better model performance with
fewer labelled samples. However, generic batch-mode active learning algorithms are designed
for sampling from a single sample pool and thus lack the mechanism to accelerate concur-
rent experiment execution with multiple data groups in such scientific scenarios. This paper
proposes an active learning approach for scientific data with inherent group information,
integrating multiple-output quantile regression for uncertainty estimation and combining
the diversity of data distribution as a hybrid query method. The proposed method im-
proves the efficiency of concurrent experiments, and the experimental results demonstrate
its effectiveness on a suite of material science tasks.

1 Introduction

Active learning (AL) approaches are powerful means of optimising predictive model performance relative
to the cost of data acquisition (Settles, 2009). These considerations are particularly relevant in scientific
domains that may require extensive synthesis, characterisation, experimentation, and/or simulation. These
data generation costs are significantly higher than queries to a human oracle, a typical example of an
expensive annotation process. Thus, AL is strongly motivated to drive discovery and verification of scientific
properties or principles by alleviating budget limitation problems, removing redundancy of experimentation,
and eliminating sources of bias (Graff et al., 2021; Smith et al., 2018).

However, even in domains with a significant basis in data-driven research, such as biology (Thornton et al.,
2021), biomedical science (Acosta et al., 2022), materials science (Xu et al., 2023), and chemistry (Abolhasani
& Kumacheva, 2023), AL implementations may result in inconsistent and inefficient annotation processes.
Inefficient annotation, wherein equivalent or superior predictive model performance is achieved with a random
sampling strategy, has been noted in some scientific data sets or cases (Stolte et al., 2025; Figueroa et al.,
2012; Geuenich et al., 2024). Inconsistent performance of AL (dependent on initialisation and random
processes) can be dramatic in small and high dimensional data sets (Dong et al., 2024); this is a strong
barrier to the uptake of AL methods into one-shot scientific workflows.

Underlying constraints in real-world synthesis or experimentation impose structure on data acquisition, for
example, grouped synthesis at a particular temperature, catalyst (Xu et al., 2024), pressure (Li et al., 2022),
restricted availability of chemical constituents (Mülhopt et al., 2018), high-throughput synthesis (HTS)
(Roberts & Owen, 2011), or a fixed capacity to experimental equipment (Papiez et al., 2019). Typical batch
AL can address the above constraints by grouping query tasks. However, no current AL framework will
accommodate grouped synthesis constraints. In the conventional AL framework, all unlabelled samples are
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Figure 1: An example shows our constrained AL framework. The base model is the multiple-output quantile
regression trained with the labelled data. The unlabelled data comprises Ngroups = 4 distinct data groups.
There is Noracles = 2 oracles for data annotation. AL acquisition function selects Nsynthesis = 5 samples from
each of selected Noracles different data groups.

in the same pool, and data selection is globally optimised, with no mechanism to consider underlying data
groupings.

Synthesis constraints are ubiquitous. Samples from the same group are generated on the same synthe-
sizer (e.g. physical microplate) under the same environmental conditions (e.g. temperature, pressure) or
constituents (whether chemical or macroscale). Gradual physicochemical variations within the synthesised
group create diverse data (Magalhães et al., 2010). This type of data generation with constraints encom-
passes traditional synthesis and HTS methods. HTS methods process sample groups rapidly, accelerating
scientific discovery (Tan et al., 2023; Macarron et al., 2011; Xu et al., 2023). Although recent work has
considered AL applied to guide HTS (Noh et al., 2024; Guan et al., 2023), a systematic study on adapting
the AL framework to HTS has yet to be conducted. For effective use of AL in these domains, downstream
annotation processes must also be performed within a group with a query batch size that matches the syn-
thesizer capacity. Otherwise, selected samples will be dispersed across different synthesis groups, resulting
in inefficient use of synthesizer space and longer running time. The capability of multi-sample efficient
parallelism in AL combined with constrained experimentation will be limited.

Recent traditional AL algorithms are typically formulated for classification problems (Gal et al., 2017; Ash
et al., 2019; Wang et al., 2022), and most of these methods cannot be easily extended to scientific regression
tasks (Yarahmadi et al., 2023; Ravi & Desikan, 2023). This distinction is due to the classifier’s predictive
probability (e.g., the output of the softmax function), which directly provides the model confidence for
AL acquisition functions, while regression does not. Furthermore, query strategies for AL are commonly
designed based on uncertainty or diversity metrics (Fu et al., 2013; Wang et al., 2022). The uncertainty
methods designed for regression rely on ensembles (Krogh & Vedelsby, 1994) or are model-specific (Riis
et al., 2022), which are not general enough for different application scenarios. AL methods use hybrid
metrics, which can lead to superior model performance (Shui et al., 2020; Ash et al., 2019), but a hybrid AL
method for regression is underdeveloped compared to classification (Holzmüller et al., 2023).

To address the above limitations and maximise the value of AL in data generation with constraints to accel-
erate scientific discovery, we propose a new AL regression approach based on hybrid metrics and introduce a
constrained AL framework designed for group annotation processes. Specifically, we apply a multiple-output
quantile regression model (MQR) with CatBoost (Koenker & Bassett Jr, 1978; Dorogush et al., 2018) to
estimate the predictive probability of the intervals for each unlabelled sample. Next, we evaluate the un-
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certainty for each unlabelled sample based on the entropy (Shannon, 1948). In each data group, we apply
the K-Means++ seeding algorithm (Arthur & Vassilvitskii, 2007) to enhance the diversity of our sample
selection. Figure 1 shows an example of our constrained AL framework. The unlabelled data consist of
Ngroups distinct data groups. We limit the AL selection from Noracles different groups in each AL iteration,
where Noracles symbolises the number of synthesizers that can run experiments in parallel. Using the AL
acquisition function, we evaluate and identify the ranked top Nsynthesis samples from each group. We then
calculate the averaged acquisition scores of these top Nsynthesis samples in each group for the group ranking.
Finally, we select these top-ranked Nsynthesis samples from the top Noracles groups as selected samples in each
AL iteration.

Our contributions are: (1). We introduce a simple AL method to accelerate data generation with constraints
by limiting sample selection to predefined groups, which guarantees experimentation efficiency under ex-
perimental equipment or resource limits. (2). We apply the predictive interval probability of MQR for AL
regression tasks, which bridges the gap between AL regression and classification methods and enables the
application of some AL classification methods to regression. (3). Experiments demonstrate its effectiveness
for scientific tasks. It can also be adapted to other applications where data collection is group-wise.

2 Related Work

The majority of AL approaches for regression can be classified into uncertainty-based and diversity-based
query strategies or hybrid methods that combine different aspects of AL metrics.

Uncertainty and Diversity in AL. The classical uncertainty-based AL regression method is the Query-
by-Committee (QBC) (Krogh & Vedelsby, 1994; RayChaudhuri & Hamey, 1995), in which the uncertainty is
calculated as the disagreement among the learners in the ensemble model. The effectiveness of QBC depends
on the diversity of learners. Information-theoretic Bayesian AL attempts to select samples that maximally
reduce some information criterion, such as posterior entropy (MacKay, 1992; Houlsby et al., 2011). These
methods are often restricted to models that can produce closed-form or accurate approximate predictive or
posterior uncertainty and cannot be readily applied to tree-based models, which are considered in this work.
The diversity-based AL regression methods aim to maximise the minimum distance between unlabelled
samples and the labelled set. For example, based on greedy passive sampling (Yu & Kim, 2010), Wu et al.
(2019) proposed three schemes of greedy sampling (GS) to characterise the diversity in the feature space
(GSx), the output space (GSy), and from both (iGS). Their methods are simple and efficient. However, GSx
and iGS sampling are sensitive to the topology information of the feature space, whereas the AL selection
of GSy relies on the model accuracy.

Other Criteria in AL. Another AL regression method, expected model change maximisation (EMCM), is
to select a batch of samples that potentially make the most significant change (gradient) to the model (Cai
et al., 2016). They use Bootstrap to construct an ensemble of models, estimate the predictive distribution
of labels, and calculate the gradient of each sample while considering the correlations among the samples.
The graph-based AL for regression (Zhang et al., 2020) uses the feature vectors of samples to formulate the
query strategy as a bipartite graph optimisation process. The graph nodes are represented as labelled and
unlabelled samples to estimate the uncertainty reduction of removing samples from the unlabelled set to the
labelled set.

Hybrid AL Strategies. Hybrid AL strategies that combine multiple metrics in sampling have become
more prevalent in recent years (Ren et al., 2021). For instance, the multiple criteria AL (MCAL) (Demir &
Bruzzone, 2014) method considers relevancy, diversity, and density criteria in the sample selection. It uses a
two-step procedure based on the SVR model and a clustering approach to select the most representative and
informative samples. The inverse-distance based exploration for AL (IDEAL) method (Bemporad, 2023)
uses inverse distance weighting (IDW) functions to calculate the uncertainty of samples for informativeness,
considers the density function to guarantee representativeness, and uses IDW exploration of unselected areas
for diversity. However, the IDEAL method requires setting an appropriate exploration weight parameter.
The iterative representativeness diversity maximisation (iRDM) method (Liu et al., 2021) uses the k-means
algorithm and the diversity metric of the GSx approach to select samples that consider representativeness
and diversity in sample selection. This method does not use any information from the model and is suitable
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for data with clustering characteristics in the feature space. The regression tree-based AL (RT-AL) method
(Jose et al., 2023a; 2024) selects diverse, representative, and informative samples by building the standard
regression tree and sampling from leaves, which uses information from the feature space and the output space.
Their extension work QRT-AL (Jose et al., 2023b) is to apply quantile regression, assign weight to different
quantile intervals and aim to sample the area in the quantile of interest. This is the first work to use quantile
regression on AL selection, but their method and task are completely different from ours. When sampling
from the leaves, their method assigns some predefined weights to different quantile intervals to represent
the different interest levels on different ranges of target values. It tends to select more samples from their
interested ranges. However, our method is to sample across the whole label space used for general scientific
discovery purposes. We evaluate the interval probability from the MQR predictions, which differs from
the QRT-AL method. Besides the above methods, most hybrid AL methods are designed for classification
(Lughofer, 2012; Huang & Zhou, 2013; Yang et al., 2015; Ash et al., 2019; Yin et al., 2017; Zhdanov, 2019;
Shui et al., 2020; Wu et al., 2021).

AL in Scientific Applications. Many studies combine AL and chemistry synthesis to enhance compound-
specific screening methods. For example, research has applied Bayesian optimisation (BO) and AL to verify
the performance of different acquisition strategies such as greedy, upper confidence bound, and Thompson
sampling to accelerate HTS experimentation (Graff et al., 2021). In catalyst synthesis, the expected im-
provement and predictive variance acquisition functions are used with BO to reduce experimentation time,
carbon dioxide footprint, and operating cost (Suvarna et al., 2024). Furthermore, some AL applications
exist on the materials discovery and design (Kusne et al., 2020; Jablonka et al., 2021; Lookman et al., 2019).
However, these studies focus on applying AL methods rather than designing AL methods for specific ex-
perimental scenarios, but we design a new AL method suitable for scientific scenarios that have constrained
experimentation.

Quantile Regression. Quantile Regression (QR) can acquire the probability distribution in regression
problems that use the prediction interval to assess the uncertainty of predictions and has been widely
explored in the past (Koenker & Bassett Jr, 1978; Koenker, 2005) in various domains (Yu et al., 2003;
Koenker, 2004). Some recent applied engineering studies use simple QR metrics to calculate the uncertainty
in an AL context (Nguyen et al., 2024; 2025), for example, from a confidence interval between two quantiles.
MQR can estimate the multiple response variables and formulate a distribution of predictions to yield more
probability information and has been studied in (Paindaveine & Šiman, 2011; Chakraborty, 2003; Hasson
et al., 2021; Feldman et al., 2023). These characteristics of MQR provide an opportunity to formulate a
general-purpose uncertainty-based AL strategy.

3 Problem and Active Learning Framework

This section presents our AL framework with data generation constraints designed for the scientific group
data workflow.

3.1 Problem Setting

In pool-based AL, we have a data set D that is completely characterised in feature space but has incomplete
label information. Acquiring new labels requires the additional cost of querying an oracle. This framework
applies to a pool-based AL setting in which the unlabelled data exhibit an underlying grouping of samples in
one or more dimensions of the known feature space (e.g., synthesis temperature and chemical constituents).
This grouping is intended to relate to a common synthesis setting that necessitates batching processes in
laboratories and other scientific scenarios. To emulate this problem, we define an integer input parameter
Noracle, the number of oracles available (or the capacity of experimental equipment) to label samples simul-
taneously. There are Ngroups data groups that can vary in size and impose a synthesis constraint which
restricts us to synthesising batches of size Nsynthesis from the same group in each AL iteration.

In pool-based AL, the data set D is defined for an indexed set of points P as the union of the unlabelled data
set U and labelled set L, indexed by

P = PU ∪ PL (1)
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such that
D = U ∪ L =

{
xi : i ∈ PU

}
∪

{
(xj , yj) : j ∈ PL

}
, (2)

in terms of the d-dimensional feature vectors x ∈ Rd and numerical labels y ∈ R. In our problem setting,
categorical or discretised synthesis constraints further arrange the data into Ngroups non-overlapping groups
indexed by

P =
Ngroups⋃

j=1
Gj , (3)

where the number of samples in each group can vary. In this framework, at each AL iteration, the labels are
queried for a batch containing Nsynthesis×Noracles samples and the corresponding indices are moved from the
unlabelled set to the labelled set. The typical batch-mode AL approaches select a batch of samples denoted
by the set of indices B ⊂ PU to label based on an acquisition function F operating on the unlabelled set of
feature data

B = F
(
U, Nbatch

)
(4)

= F
(
{xi : i ∈ PU} , Nbatch

)
, (5)

where Nbatch is the query batch size. For many AL methods, the acquisition function can be written in
terms of a scalar acquisition score g(x), which is a function of the sample’s feature vector x. The acquisition
function for batch AL then selects the highest valued Nbatch scores across all unlabelled feature vectors, so
Eq. 4 becomes

B = arg max
Nbatch

{
g(xi) : i ∈ PU

}
. (6)

3.2 Acquisition Scores of Baseline Models

In this study, we compare our method to the most commonly used AL methods in regression as baselines:
Greedy sampling methods (Wu et al., 2019) and Query-by-Committee (QBC) (RayChaudhuri & Hamey,
1995). Greedy sampling is based on maximising the diversity of data sampled by maximising the minimum
separating sampled data points. There are three primary variations to greedy sampling: GSx, GSy and iGS,
based on which distances are used. GSx maximises the minimum distance of the unlabelled samples to the
labelled samples in the feature space. So, for each unlabelled sample xi, the acquisition score g(xi) is the
minimum Euclidean distance of xi to all the labelled samples xj in the feature space,

GSx : g(xi) = min
j∈PL
∥xi − xj∥ . (7)

GSy maximises the minimum distance of the unlabelled sample to the labelled samples in the output space,
the acquisition score of the unlabelled sample xi is

GSy : g(xi) = min
j∈PL
|f(xi)− yj |, (8)

in terms of the predicted output value of the base model f . We only consider the situation that has one
response variable. By combining the GSx and GSy, the iGS method maximises the minimum distance of the
unlabelled sample to the labelled samples from both feature and output spaces, and the acquisition score of
the unlabelled sample xi is

iGS : g(xi) = min
j∈PL

(
∥xi − xj∥ ⊙ |f(xi)− yj |

)
, (9)

which is first to calculate the element-wise product of vectors of the input space and output space distances
and then take the minimum value across all labelled samples.

The QBC method uses model disagreement as a measure of model uncertainty to guide sampling. In this
approach, multiple sets of labelled data L are bootstrapped with replacement. A model is trained for each
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set of labelled data. The committee with Nlearners models quantifies disagreement between each model’s
predicted values xi, using the variance for each unlabelled sample with acquisition score

QBC : g(xi) =

∑Nlearners
j=1

(
fj(xi)−mean

(
f(xi)

))2

Nlearners
, (10)

where the mean
(
f(xi)

)
is also defined over the committee.

3.3 Constrained AL Framework

Our constrained AL framework adapts to the above problem setting. To impose synthesis and experimental
constraints, the AL batch selection is restricted to the top-scoring Nsynthesis samples from the highest-ranked
Noracles groups. Using this constrained framework replicates the scientific synthesis use case and accelerates
the batching annotation process while simultaneously improving efficiency. Any AL query strategies with a
defined acquisition score g(·) can be transferred to this framework. Our constrained AL framework shown
in Figure 1 is implemented with the following steps:

1. Select Candidate Sets in Groups:
Select Nsynthesis samples from each unlabelled data group based on the acquisition function F to get
a candidate batch of indices Bj . Bj is only defined if the set of unlabelled samples from that group
has more than Nsynthesis elements. By Eq. 5,

Bj = F
(
{xi : i ∈ PU ∩Gj} , Nsynthesis

)
, (11)

where j ∈ {1, · · · , Ngroups} and |Gj ∩ PU| ≥ Nsynthesis. If the AL method only defines an aquisition
score g(xi) for sample selection, Eq. 11 becomes

Bj = arg max
Nsynthesis

{
g(xi) : i ∈ PU ∩Gj

}
. (12)

The union of the group indices j that have the above candidate sets is denoted as A′.

2. Select Groups:
Based on the number of available oracles, determine which synthesis groups will be selected by
calculating the average value of the acquisition scores g(x) for the unlabelled samples in each group’s
candidate set. Then rank and select the top Noracles groups,

A = arg max
Noracles

{
mean

(
g(xi) : i ∈ Bj

)
: j ∈ A′

}
, (13)

where A is the set of group indices selected, and g(x) are the metric values used for ranking samples.

3. Select Batch Samples:
Eq. 4 and 5 are updated to take the candidate set containing Nsynthesis samples from each of those
groups with the batch indices,

B =
⋃
j∈A

Bj . (14)

In total, the AL batch size is Noracles ×Nsynthesis.

4. Annotate and Update:
Labels yi are queried for the batch indices i ∈ B. The unlabelled and labelled index sets are updated
PL = PL ∪ B, PU = PU \ B. Update the base ML model with an updated set of labelled data if
required. This step is identical to the traditional batch AL framework.

These steps are repeated for a fixed number of iterations or until a defined stopping criteria is met.
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4 Active Learning Strategy

Our approach to AL balances selection based on uncertainty estimated in the output space and diversity
in the feature space. Our method (MQR-UD) leverages hybrid criteria based on multiple-output quantile
regression (MQR) Uncertainty and data Diversity to perform AL selection.

4.1 Uncertainty Contribution: MQR Acquisition Score

Multiple-output Quantile Regression. While ordinary linear regression captures the mean of the re-
sponse variable, QR explores the conditional distribution by using an asymmetric loss function that penalises
overestimation and underestimation differently (Koenker & Bassett Jr, 1978; Steinwart & Christmann, 2011;
Romano et al., 2019). This makes QR more robust to outliers and adds value to scenarios when the predic-
tion uncertainty needs to be considered. In our AL method, uncertainty estimation is derived from MQR
predictions, which can represent the probability distribution in the output space.

To define this uncertainty contribution to the acquisition score, assume we have a set of α equally spaced
quantiles: τ1, τ2, . . . , τα. We first optimise the MQR using all labelled data L (as defined in Eq. 2),

θ̂ = argmin
θ

1
|PL|

∑
i∈PL

α∑
k=1

(
τk − 1condition (yi ≤ ŷik)

)
(yi − ŷik) , (15)

where θ̂ is a set of optimised parameters of the MQR, ŷik = qk (xi; θk) is the predicted value of data sample
xi by the quantile function qk at quantile τk, and 1condition(·) refers to the indicator function.

Predictive Probability in Regression. Uncertainty estimation for AL in classification can be derived
from the predicted probabilities, concretely considered the model confidence (Lewis & Catlett, 1994; Hwa,
2004). However, predictive probability cannot be obtained directly from general regression models. To
address this limitation, we use multiple outputs of MQR to capture posterior probabilities in prediction
intervals for AL regression.

The conditional distribution function of response variable Y given the specific explanatory variable x is
F (y | x) := P{Y ≤ y | X = x}. The quantile function qk with the quanitle τk is qk(x) := inf{F (y | x) ≥ τk}
(Romano et al., 2019). Let {τk}α

k=1 be a set of α uniformly spaced quantiles, where τk ∈ (0, 1) for all
k ∈ {1, · · · , α}. Corresponding to these quantiles, we have a set of quantile functions {qk}α

k=1, each trained
using the labelled set L. For any sample xi, it has a set of predictions {ŷik}α

k=1, the cumulative distribution
function (cdf) of the MQR predictions {ŷik}α

k=1 of xi is shown in Figure 2. For any sample xi, the probability
of yi falling within an interval [A, B) can be estimated as the proportion of quantile predictions in the interval,
where A, B ∈ R and B > A. The same principle applies to the interval [B, C], where C is the maximum
value of predictions, so this boundary is included in the interval.

For a given interval [A, B), the probability of the sample single prediction y being in the interval [A, B) can
be defined as P (A ≤ y < B) := F (B)−F (A), where F (B)−F (A) is the fraction of F (y) within the interval
[A, B). Since the quantiles τ1, τ2, · · · , τα are uniformly spaced, the predictive probability in the interval
[A, B) can be estimated as the proportion of the predicted values failing into the interval

P (A ≤ y < B) ≈

∑α
k=1 1condition

(
qk(xi; θ̂k) ∈ [A, B)

)
α

, (16)

where qk(x; θ̂k) is the prediction value of the kth quantile. The same principle applies to the predictive
probability in the interval [B, C], as P (B ≤ y ≤ C).

Prediction Intervals Probability. Given that the samples in each data group are typically designed
according to some common configurations in the same experiment or other synthesis constraints, they share
some common characteristics (Shevlin, 2017). This consistency of the annotation experiment within the same
data group allows for meaningful comparison within each group while implying differences among groups
that arise from the varying experimental or synthesis conditions. We, therefore, formulate the predictive
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Figure 2: The CDF of the sample predictions of MQR. An example of Pt Nanoparticle data (Barnard et al.,
2018)

intervals group-wise to capture details within the data group and ensure interval lengths do not make the
probability sparse. In addition, posterior intervals based on individual sample prediction are not comparable
because intervals differ among individual samples. The probability of intervals derived from all the unlabelled
sample predictions might be sparse due to the big difference in the output space among groups. Thus, we
split prediction intervals in each group to characterise the predictive probability for unlabelled samples.

Firstly, based on the feature vectors for each data group {xi : i ∈ Gj}, where |Gj ∩ PU| ≥ Nsynthesis, let the
MQR predictions of all samples across all quantiles τ be denoted as a matrix Aj ∈ R|Gj |×α. Aj is defined
as:

Aj =

 q1(x1; θ̂1) · · · qα(x1; θ̂α)
... . . . ...

q1(x|Gj |; θ̂1) · · · qα(x|Gj |; θ̂α)

 . (17)

We then formulate the predictive probability of each sample in the jth group by partitioning Aj into sub-
equal intervals based on its prediction interval. We define the total number of intervals as H, which is a
hyperparameter of the method. The interval width can be calculated as

wj := max(Aj)−min(Aj)
H

, (18)

where max(Aj) and min(Aj) are the maximum and minimum values of all the predictions among all samples
and quantiles in the jth group. We index intervals from the smallest to largest values with the indices
h = {1, · · · , H}. The lower and upper boundary of the hth interval in jth group is denoted as

Ih
lower := min(Aj) + (h− 1) ∗ wj ,

Ih
upper := min(Aj) + h ∗ wj .

(19)

For each unlabelled sample {xi : i ∈ Gj ∩ PU} in the jth group, we split the predictions {ŷik}α
k=1 into H

intervals. The total number of predictions of xi in the hth interval is defined as

Ch
i :=

α∑
k=1

1condition(ŷik ∈ Ih), where Ih =
{

[Ih
lower, Ih

upper), h = 1, · · · , H − 1
[Ih

lower, Ih
upper], h = H

. (20)

The predictive probability distribution of sample xi across all intervals in the group is denoted as:

Pi := [P 1
i , · · · , P H

i ] ∈ RH , (21)
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where P h
i = P (yi ∈ Ih | xi,L) = Ch

i

α represents the probability that yi falls into the hth interval. We define
an acquisition score in terms of the entropy H (Shannon, 1948) as

g(xi) = H(Pi) := −
H∑

h=1
P h

i log P h
i , (22)

which has been widely used in AL classification (Wang & Shang, 2014).

4.2 Diversity Contribution: K-Means++ Seeded Batching

Typical batch AL acquisition functions (Eq. 4) select the top Nbatch ranked samples based on an acquisi-
tion function. We, however, use an inherently batched clustering-inspired approach to define the diversity
contribution to our acquisition function. The K-Means++ seeding algorithm is an initialisation method for
K-Means clustering (Lloyd, 1982) which, in a novel approach, we use to introduce diversity in data batch
selection while saving computational cost compared with the clustering-based methods. Some examples of
the K-Means++ seeding algorithm within AL methods are Holzmüller et al. (2023); Ash et al. (2019). We
first define the diversity contribution generally (in terms of a general unlabelled data set U and query batch
size Nbatch), which will be combined with the uncertainty component and the constrained AL framework in
the following section.

To define a general batch-mode AL acquisition function with the form of F(U, Nbatch) for our diversity
contribution, we apply the K-Means++ seeding algorithm (Arthur & Vassilvitskii, 2007; Pedregosa et al.,
2011) to select Nbatch centre indices cn, where n = 1, · · · , Nbatch. The set of centre indices is denoted as

{c1, · · · , cNbatch} = K-Means++
(
U, Nbatch

)
, (23)

where |U| ≥ Nbatch. All unlabelled samples are then assigned to a cluster Cn based on the minimum
Euclidean distance to a cluster center cn, denoted as

Cn =
{

i : i ∈ PU and ∥xi − xcn
∥ < ∥xi − xck

∥ , ∀ k ∈ {1, · · · , Nbatch} and k ̸= n
}

, (24)

where the index i and indices PU are defined by Eq. 2. By the Eq. 4, we define the batch acquisition function
F(U, Nbatch) in terms of a general acquisition score g(xi) as,

B = F
(
U, Nbatch

)
(25)

=
{

arg max {g(xi) : i ∈ Cn} : n = 1, · · · , Nbatch

}
, (26)

which can be contrasted to the Eq. 6.

4.3 MQR-UD Hybrid Method

The prior two subsections define our novel acquisition score (Eq. 22) and acquisition function (Eq. 26).
These were defined generally so that, for example, the acquisition function could be applied with any of the
baseline approach acquisition scores in Section 3.2. However, we intend to combine these into a hybrid AL
function incorporating diversity and uncertainty contributions in an inherently batched approach.

The implementation of our MQR-UD AL strategy within the constrained AL framework (Section 3.2) is
summarised in Algorithm 1. While steps 3. and 4. of the framework are AL strategy independent, we
describe the implementation of Steps 1 and 2 below. In step 1. of the framework, both our acquisition
score and acquisition function are used to select the candidate batch within available synthesis groups, so
Eq. 11 becomes

Bj = F
(
{xi : i ∈ PU ∩Gj} , Nsynthesis

)
(27)

=
{

arg max {H(Pi) : i ∈ Ck} : k = 1, · · · , Nsynthesis

}
, (28)

where j ∈ {1, · · · , Ngroups} and |Gj ∩ PU| ≥ Nsynthesis. The entropy (H(Pi)) and clusters (Ck) defined on
the same synthesis group sets (PU ∩ Gj). The step 2. of the AL frame, "Select Groups" uses only the
acquisition score (Eq. 22) to select Noracles groups by Eq. 13.
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Algorithm 1: MQR-UD AL Strategy
INPUT: U: Unlabelled pool; L: Labelled set; α: No. of quantiles; H: No. of intervals; Noracles: No. of
groups to be selected at each AL iteration; Nsynthesis: No. of samples to be selected in the selected
group at each AL iteration; T : No. of AL iterations; q: quantile function;

OUTPUT: Updated L
while 1 ≤ t ≤ T do

f = {qk(θ̂k)}α
k=1, optimised using L by Eq. 15;

s = 0, the initial count of available groups in U that contain more than Nsynthesis samples;
for j = 1 to Ngroups do

if |Gj ∩ PU| ≥ Nsynthesis then
Aj ← Eq. 17;
Split intervals by Eq. 18, 19;
for i ∈ PU ∩Gj do
Pi ← Eq. 20, 21;

end
Bj ← Eq. 22, 27, 28, select the candidate set of the group;
s = s + 1;

end
end
if s < Noralces then

break; Stop the AL cycle since there are not enough available unlabelled data groups.
end
A← Eq. 13, where g(xi)← Eq. 22. Get the indices of Noracles groups with the highest averaged
entropy values;
B← Eq. 14, select a batch of samples indices from the top-ranked candidate sets;
Query labels for samples, which indices in B to form the labelled set Lt in the tth AL cycle;
PL = PL ∪ B, PU = PU \ B, L = L ∪ Lt, U = U \ Lt;
t = t + 1.

end

5 Experiments

5.1 Data

The scientific tabular data sets used in this study are Periodic Graphene Oxide (Barnard et al., 2019), Plat-
inum Nanoparticle (Barnard et al., 2018), Ruthenium Nanoparticle (Barnard & Opletal, 2019a), Palladium
Nanoparticle (Barnard & Opletal, 2019b), and Superconductivity (Hamidieh, 2018). The first four datasets
are derived from computational simulations and contain multiple labels. We use the most general labels to
evaluate the AL performance, which are various energy measurements of the chemical/materials systems in
this study. The prediction property of Periodic Graphene Oxide is Fermi Energy. The group information is
based on the combination of the amount of C, H, and O components in the materials. The predicted labels
of Platinum Nanoparticle, Ruthenium Nanoparticle and Palladium Nanoparticle are Formation Energy. The
data are all grouped by synthesis temperature. The lab data Superconductivity is sourced from the UCI
Irvine (Dua & Graff, 2017). The predictive label is the superconductor critical temperature. The group
information is based on samples with the same chemical constituents in chemical formulas. Materials with
the same chemical constituents require the same raw materials to be produced but should be reproducible.
In this study, we assume that given the same raw materials, a laboratory could reproduce the materials
with alternative equipment, or an alternative lab could reproduce the materials with the same equipment.
However, we observed that data groups in Superconductivity data have diverse sizes ranging from 1 to 719
samples. Such inconsistent group sizes make it difficult for the AL setting to set a reasonable Nsynthesis to
query in each data group, and would reduce efficiency in real applications. Thus, we split this data set into
two subsets, Superconductivity-L and Superconductivity-S, respectively. The Superconductivity-L data is
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filtered by setting the data group sizes to |Gj | ≥ 100, and Superconductivity-S is set by the data group
size to |Gj | < 100. Superconductivity datasets contain some samples that have the same features x after
characterisation, but they are not identical in the chemical formula. Thus, we keep all these samples to
ensure they are consistent with their original data distribution, which this operation is also has been widely
tested in previous machine learning tasks (Cui et al., 2021; Ma et al., 2021). The detailed information and
the group distributions of each data set can be found in Appendix B.1. We process all the data sets by
removing the mean and scaling to unit variance. For each data set, we reserve 30% of data testing Dtest and
use 70% in an unlabelled pool U.

5.2 Model and Training

Since the data sets used in this study are tabular, we use the tree-based model for better fitting. Catboost
(Prokhorenkova et al., 2018) applies the gradient boosting technique and has been proven to solve the problem
of prediction shifts. More importantly, Catboost provides an MQR loss function, enabling a single model
to produce multiple quantile predictions by splitting the leaf nodes, significantly accelerating the training
process. We use 1000 trees for all experiments and set the early stopping condition as when average training
loss reduction over every five 5 epochs cannot be larger than 1 × 10−4, training is stopped. We retain the
package defaults for other model parameters (Dorogush et al., 2018).

5.3 Active Learning

The baseline methods used in this study are introduced in Section 3.2. The original work uses the sequential-
mode AL with GSx, GSy, iGS and QBC, while our method uses the batch-mode AL framework, which selects
a batch of samples to be labelled and then retrains the model at each AL iteration. Therefore, we adapted
GSy, iGS and QBC to the vanilla batch mode in our experiments by selecting a batch of samples based
on their ranked scores (distances or prediction variance). The model prediction is the median value of
MQR predictions in the baseline methods. GSx does not require any prediction information, so there is
no difference between sequential and vanilla batch modes in the selection within each data group. For
the baseline methods, we calculate the acquisition scores for each unlabelled sample and then rank the top
Nsynthesis samples in each data group, computing the averaged acquisition scores of the top Nsynthesis samples
for group ranking. Then, we select those Nsynthesis samples from the top-ranked Noracles groups. For the
random baseline, we first choose Noracles different groups randomly, and random selection is applied in each
selected data group to select Nsynthesis samples. The details of each baseline method can be found in Section
3.2, which is also adapted to our constrained AL framework in Section 3.3.

For Superconductivity-S data, since it contains multiple samples with identical feature vectors x, the K-
means++ algorithm would be unable to differentiate between them, leading to ambiguous clustering results.
Therefore, in cases where the number of unique samples in each group does not exceed Nsynthesis, we use
only entropy values without doing K-means++ as the function g(x) for these particular groups.

We use two evaluation metrics, the RMSE and R2 on the separate test set Dtest to evaluate our results. We use
the same MQR model at each experiment as the evaluation model among AL methods. The predicted label
value ŷi in RMSE and R2 is the median value of the MQR predictions. All results are from 20 independent
trials, and the mean value among 20 experiments for each method is reported. For all experiments, we set
the total number of quantiles α = 99, and the number of intervals H = 5. For the initialisation stage in
AL, we first randomly select one data group and randomly query 10 samples in the selected group for all
experiments. For the QBC method, since training multiple MQR models is too computationally expensive,
we apply Nlearners = 5 Catboost regression models as the committee models, which is a commonly used
hyperparameter in previous research (Bemporad, 2023; Jose et al., 2023b).

5.4 Ablation Study

Two sets of ablation studies are included in this work to verify the effectiveness of the method. Firstly,
we perform the MQR-UD-reverse experiments, which apply the inverse acquisition scores g(x) to select
samples in data groups. It uses the smallest entropy value (Eq. 22) of samples in each cluster to calculate
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the averaged uncertainty scores to select data groups. The only difference between MQR-UD-reverse and
MQR-UD is that we use the smallest entropy values rather than the largest in the MQR-UD. Another
ablation study is to evaluate the effectiveness of the hybrid AL metrics. Thus, we remove the K-Means++
seeding algorithm (diversity) and only apply the maximum entropy (uncertainty) as an acquisition function
to select data groups. It selects the set of samples with the maximum entropy values in each data group
as the candidate sets and uses the averaged entropy values of candidate sets to select the top groups and
then samples. This ablation study verifies the effectiveness of the diversity and uncertainty metrics and
names MQR-U. In Figure 7, we compare the MQR-UD, MQR-UD-reverse, MQR-U, and random sampling
for analysis. The experimental setting is Noracles = 5.

6 Results and Discussion

Figure 3: Experimental results of the simulation data. The experimental settings are Noracles = 1, Nsynthesis =
10, T = 20.

Figure 4: Experimental results of the real data. The experimental settings are Noracles = 1, Nsynthesis =
10, T = 20 for Superconductivity-L data, and Noracles = 1, Nsynthesis = 5, T = 40 for Superconductivity-S
data.
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Figure 5: Experimental results of the simulation data. The experimental settings are Noracles = 5, Nsynthesis =
10, T = 10.

Figure 6: Experimental results of the real data. The experimental settings are Noracles = 5, Nsynthesis =
10, T = 10 for Superconductivity-L data, and Noracles = 5, Nsynthesis = 5, T = 20 for Superconductivity-S
data.

The main experimental results are shown as Figures 3 to 6. The results of the simulation data are shown in
Figure 3 and 5, and the results of real data are shown in Figure 4 and 6. The ablation studies are shown in
Figure 7. For all results in these figures, we plot from the first AL iteration, which does not include the AL
initialisation step. All AL methods have the same random initialisation in each experiment and the same
starting point on the test set in performance. We plot the mean of 20 independent experiments, and the
shaded areas represent the standard error.

For simulation data, plots in Figure 3 and 5 demonstrate that our MQR-UD method achieves lower RMSE
and higher R2 values with fewer iterations than the other methods overall when Noracles is set to 1 or 5. iGS
generally outperforms random sampling of RMSE across most cases, except the Ruthenium Nanoparticle data
when Noracles = 5. iGS demonstrates comparable performance to our method in some cases, for example,
on Graphene Oxide Nanoflake data when Noracles is set to 1 and 5. However, it exhibits less optimal results
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Figure 7: Ablation study results on RMSE metric. The experimental settings are Noracles = 5, Nsynthesis =
5, T = 20 for Superconductivity-S and Noracles = 5, Nsynthesis = 10, T = 10 for other data.

during early AL iterations in other cases. The performance of GSx varies significantly across data sets, which
demonstrates strong results on some data sets while performing markedly weaker outcomes on others. For
example, when data has a higher dimension (Graphene Oxide Nanoflake), the diversity measurement from
the feature vectors in GSx is not reliable. It leads to worse results in both settings (Noracles is 1 and 5).
However, GSx performed as well as ours on the Ruthenium Nanoparticle data in both settings. In addition,
GSy usually performs worse than iGS since it only considers diversity in the output space. QBC always
performs worse than the other AL methods and only surpasses GSy in some cases. The possible reason is
that the uncertainty estimation is hard because of the lower randomness in the tree-based model compared
with the neural networks. Notably, the random sampling sometimes outperforms AL methods, for instance,
on the Graphene Oxide Nanoflake when Noracles is 1 and 5, and Ruthenium Nanoparticle with Noracles = 5.
The R2 results have a similar conclusion with the RMSE results, in which the curves have similar trends.
The Platinum Nanoparticle exhibits different stopping points in Figure 5 and 7 due to its relatively smaller
group sizes and number of groups. Thus, in the later AL iterations, there are not enough available groups for
the query. The AL algorithms terminate when the unlabelled pool contains fewer than Noracles = 5 distinct
available groups.

For real data results shown in Figures 4, 6, our methods outstrip the other AL methods on RMSE and R2 in
both cases Noracles = 1 and Noracles = 5 of Superconductivity-L data in the early AL iteration, while a little
bit worse than GSx in later iterations. Superconductivity-S data has a total of 3863 data groups before the
data split, but the number of samples in each group is relatively smaller than that of other data sets. In this
case, random sampling and iGS outperform the other AL methods when Noracles = 1 and Noracles = 5. Our
MQR-UD method performs worse and has limitations in this case because of various reasons. Firstly, the
small sample sizes within each data group significantly impact our uncertainty estimation approach. This is
because our method relies on group boundaries to partition prediction intervals, as defined in Equation 18.
Secondly, the cluster-based hybrid method is simple and intuitive, but it has a problem when clusters contain
samples with significantly different uncertainty scores; the lower-scoring samples influence the selection of
the entire data group. A detailed analysis of these limitations is in the Appendix C.2.

In Figure 7, the ablation study shows that when we use the minimum value of g(x) (entropy value in Eq. 22)
to rank groups and select samples, the performance of MQR-UD-reverse is much worse than MQR-UD on
RMSE metric. Notably, MQR-UD-reverse even underperforms random sampling across the evaluated data
sets, except for Palladium Nanoparticle data, which performs roughly similarly to the random sampling.
When we solely use the uncertainty metric (entropy) to query samples, MQR-U consistently underperforms
compared to MQR-UD on RMSE, with particularly notable performance gaps observed in the Platinum
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Nanoparticle, Ruthenium Nanoparticle, and Superconductivity-L data sets. For Graphene Oxide Nanoflake
data, the performance of MQR-U is very close to that of MQR-UD since the data selection based on the
single uncertainty scores has already introduced diversity in the selection of this dataset. Thus, in this
case, the cluster-based selection is not necessary. The performance of Superconductivity-S is the same as
the second point of limitation analysis of this dataset in the above content. The ablation study on the R2

metric is in the Appendix C.1, yielding conclusions similar to those observed for RMSE. The analysis of the
hyper-parameter H on the data set Graphene Oxide Nanoflake is shown in Appendix C.3.

Additionally, QR models sometimes require calibration to ensure more accurate coverage rates of prediction
intervals, which typically needs a separate labelled calibration set (Romano et al., 2019; Akrami et al., 2022;
Feldman et al., 2023). This study uses the median value of MQR predictions for AL evaluation, which is
less sensitive than other quantiles. Since AL selection depends on the relative uncertainty values among
samples rather than absolute values and accounts for additional annotation costs, calibration is unnecessary
for AL selection. However, the calibration step might need to be considered when using our method to
predict interval probabilities for other purposes. Overall, these findings demonstrate the effectiveness of our
hybrid approach, with both the diversity and uncertainty components making meaningful contributions to
the overall AL model performance.

7 Conclusion

This study bridges AL with the scientific synthesis annotation process to solve data selection within data
generation constraint scenarios. We first propose a constrained AL framework to fit this use case and then
develop an optimised AL query strategy within that framework. Our framework is broadly applicable. Any
AL method with a defined acquisition score can be easily integrated. Our AL regression method applies
MQR for uncertainty estimation, and the k-Means++ seeding algorithm is used to increase the data diversity
in the selection. Experimental validation demonstrates that our method is competitive with the existing AL
methods across various data sets. Therefore, our method is significant for synthesis experimentation in
different scientific fields and can help accelerate the lengthy synthesis process of chemical and biological
samples, leading to faster scientific discoveries. In future work, the predictive probability derived from MQR
can be applied to classification-designed AL methods. Therefore, our work has a profound value for AL
in regression and can standardise and narrow the gap between AL methods in classification and regression
problems.
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A Notations

• Noracle: the number of oracles available to label samples simultaneously.

• Ngroups: total number of data groups.

• Nsynthesis: number of samples to be synthesized in each group at each AL iteration.

• Nbatch: AL query batch size.

• Nlearners: the number of models in the committee for the QBC method.

• D: data set used for AL.

• P: indices of samples in D.

• PU: indices of unlabelled samples in D.

• PL: indices of labelled sample in D.

• U: unlabelled data feature vectors.

• L: labelled data with feature vectors and labels.

• Gj : indices of samples in the data group with group index j.

• F : an AL acquisition function.

• B: indices of a batch of samples selected by the AL acquisition function.

• g(xi): the AL acquisition score of the sample xi.

• f : the base model.

• Bj : indices of samples in candidate set of the group with group index j.

• A: indices of the selected group at each AL iteration.

• A′: the union of the group indices j that have the candidate sets.

• α: the total number of quantiles of MQR.

• τk: the kth quantile level to be estimated.

• qk: the quantile function at quantile τk.

• 1condition(·): the indicator function.

• Aj : the MQR predictions of the jth data group, where Aj ∈ R|Gj |×α.

• H: hyperparameter that defines how many intervals (bins) to split in the output space.

• wj : interval width of the jth data group.

• Ih
lower: lower boundary of the hth interval in each data group.

• Ih
upper: upper boundary of the hth interval in each data group.

• Ch
i : the total number of predictions from MQR of xi in the hth interval.

• Pi: the predictive probability of xi from MQR model, Pi ∈ RH .

• H(Pi): entropy value of xi.

• K-Means++
(
D, N ): K-Means++ seeding algorithm, the input values are dataset D and the total

number of centroids (N) to initialise. The returned values are indices of the N centres.
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B Data Sets Information

B.1 Data Sets Summary

We preprocess the data sets by removing the columns with missing values, deleting some unnecessary features
like ID, and deleting the duplicated samples. In the Superconductivity dataset, duplicated features actually
represent different materials in the lab, so we keep all samples the same as the original data. Table 1 shows
the data set information after processing. The columns are the number of features, the number of samples,
labels are tested in this study, and the information used to split data groups. Figure 8 shows the data group
distribution in each data set.

Dataset No. of Features No. of Samples Label Information Group by
Graphene Oxide Nanoflake 412 1617 Fermi Energy C, H, O components
Platinum Nanoparticle 182 1299 Formation Energy synthesis temperature
Ruthenium Nanoparticle 182 2500 Formation Energy synthesis temperature
Palladium Nanoparticle 182 3996 Formation Energy synthesis temperature
Superconductivity-L 82 3590 Critical Temperature chemical constituents
Superconductivity-S 82 17673 Critical Temperature chemical constituents

Table 1: Data sets summary after processing

Figure 8: The group distribution.

C Empirical Study

C.1 Ablation Study on R2 Metric

In this section, we present the ablation study results of MQR-UD-reverse and MQR-U on the R2 metric
(Figure 9). The findings indicate that MQR-UD-reverse significantly underperforms compared to MQR-UD,
while MQR-U performs better than MQR-UD-reverse but remains inferior to MQR-UD in most cases. For the
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Graphene Oxide Nanoflake dataset, the data selections of MQR-U already encompass the diverse information
in feature space, so the performance is quite similar to that of MQR-UD. The comparative performance
between MQR-UD and MQR-U aligns with the limitation analysis discussed for the Superconductivity-S
dataset in Appendix C.2. Overall, this ablation study shows the effectiveness of both the uncertainty and
diversity metrics of the MQR-UD and the design of the acquisition function. It also demonstrates the
limitation case of the data selection.

Figure 9: Ablation study results on R2 metric. The experimental settings are Noracles = 5, Nsynthesis = 5, T =
20 for Superconductivity-S and Noracles = 5, Nsynthesis = 10, T = 10 for other datasets.

C.2 Detailed Limitation Analysis on Superconductivity-S data

As shown in Figures 4 and 6, the MQR-UD method underperforms compared to other AL approaches, with
the exception of QBC. In contrast, both iGS and random sampling demonstrate excellent performance,
surpassing the other methods. Thus, we analyse the reason why our method performs worse on this dataset
and discuss the limitations of our method in this section.

Superconductivity-S data has a total of 3863 data groups before data splitting. However, after the splitting,
it has averaged 730.4 available data groups (containing samples larger than Nsynthesis) across 20 trials. This
indicates that the size of some data groups is very small. In this case, the uncertainty estimation for each
group is not accurate since we use the minimum and maximum of each data group’s prediction to split the
intervals, which makes the intervals relatively dense. In addition, we use the K-means++ seeding algorithm
to introduce mandatory diversity into data selection, but this sometimes causes selection bias that ignores
some high-value samples. For example, when a data group has some samples with higher estimated entropy
but contains some negative samples with extremely low entropy, the cluster-based method sometimes makes
the group ranking consider these negative samples and causes these groups to not be selected because their
lower entropy decreases the averaged values within the group. From Figure 10, we can see an example of
this case in group 689 (The last line of the Figure). The green shaded area shows that this group contains
some samples with very high uncertainty, but the candidate set (red dots) involves the sample with the lower
uncertainty values and makes the group have the lower averaged entropy values than other groups and not
be selected. Thus, when the K-means++ seeding algorithm cannot provide diverse cluster centres in the
feature space, our method might also have unsatisfactory results.
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Figure 10: The data selection of the Superconductivity-S data with the setting Noracles = 5, Nsynthesis = 5.
This visualization represents observations from a single trial in the 5th AL iteration. The candidate samples
in each group are represented as red dots, while selected samples are displayed as blue dots with blue-shaded
areas. The green shaded areas highlight the top-ranked groups containing samples with the highest top
Nsynthesis entropy values (MQR-U). ’Sel avg’ is the averaged entropy value of the selected samples by MQR-
UD, and ’Top avg’ is the averaged entropy value of the selected samples by MQR-U.

C.3 Hyper-parameter Analysis

Figure 11: The hyper-parameter analysis of H on Graphene Oxide Nanoflake data, settings are Noracles =
5, Nsynthesis = 10, T = 10.

In this section, we use the Graphene Oxide Nanoflake data with the settings Noracles = 5, Nsynthesis = 10, T =
10 to analyse the impact of hyper-parameter H (number of intervals) in this study. From the results shown
in Figure 11, we could observe that when increasing H to a larger number, for instance, H = 40 and H = 80,
the uncertainty quantification from interval probability would be affected since the total number of quantiles
is α = 99 and interval distribution might be sparse. In these cases, the uncertainty difference of samples
might be hard to capture. When setting H as a reasonably smaller value range, the AL performance is
relatively better, for example, H = 10 in this plot and H = 5 in our main results.
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