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Abstract—While real-world problems are often challenging to
analyze analytically, deep learning excels in modeling complex
processes from data. Existing optimization frameworks like
CasADi facilitate seamless usage of solvers but face challenges
when integrating learned process models into numerical opti-
mizations. To address this gap, we present the Learning for
CasADi (L4CasADi) framework, enabling the seamless integra-
tion of PyTorch-learned models with CasADi for efficient and
potentially hardware-accelerated numerical optimization. The
applicability of L4CasADi is demonstrated with two robotic
tutorial examples: First, we optimize a fish’s trajectory in a
turbulent river for energy efficiency where the turbulent flow is
represented by a PyTorch model. Second, we demonstrate how
an implicit Neural Radiance Field environment representation
can be easily leveraged for optimal control with L4CasADi.

L4CasADi is available under MIT license at
https://github.com/Tim-Salzmann/l4casadi

I. INTRODUCTION

Accurate mathematical problem formulation is at the core
of every numerical optimization procedure. While many real-
world problems are hard to formulate analytically, data-driven
methods, especially deep learning methods, thrive in modeling
complex processes from data. Efficiently integrating learned
process models into numerical optimizations is challenging,
as data-driven models and numerical optimization come with
their respective tools and characteristics: Deep learning mod-
els, commonly constructed in PyTorch [1], TensorFlow [2], or
JAX [3], leverage first-order optimization methods (backprop-
agation) in time-expensive offline training on a large amount of
data. Solutions to complex problems can be learned from data
without defining any prior structure on the task. Once trained,
however, their inference is fast and can be further acceler-
ated on dedicated hardware (GPUs). Numerical optimization
techniques, in contrast, employ second-order methods, pri-
marily interior point and sequential quadratic programming,
to formulate optimization problems, potentially subject to
constraints. Solving these problems necessitates formulating a
specific problem structure and proficiently selecting a suitable
solver algorithm (IPOPT, SNOPT, qpOASES, OSQP, ECOS,
etc.[4]–[8]). Aiming to remove the overhead of adapting the
syntax for each solver,CasADi [9] allowes seamless usage
across them.

Thus, both PyTorch and CasADi have established them-
selves as prominent tools within their respective research
domains, owing to their comprehensive functionalities, user-
friendliness, and adaptability. However, the increasing im-
portance of data-driven approaches in optimization poses a

challenge for CasADi as it lacks native support for learned
functions.

We seek to close this gap by presenting the Learning for
CasADi (L4CasADi) framework, which enables the seamless
integration of learned PyTorch models with the numerical opti-
mization framework CasADi [9]. L4CasADi enables hardware
acceleration for learned components in a CasADi optimization.

II. L4CASADI - SYNTAX AND USAGE

L4CasADi was designed with three key desiderata in mind:
(I) Simplicity for the user, (II) generalizability across PyTorch
model architectures, and (III) efficiency in runtime. We will
provide an insight into how these desiderata manifest within
the user experience of L4CasADi.

Similarly to PyTorch, L4CasADi models are constructed in
Python. Defining an L4CasADi model in Python given a pre-
defined PyTorch model is as easy as

import l4casadi as l4c
# Construct L4CasADi Model from PyTorch Model
l4casadi_model = l4c.L4CasADi(

pyTorch_model,
device='cuda', # Accelerator Device
name='l4casadi_f' # Unique name

)

where the architecture of the PyTorch model is unrestricted
and large models can be accelerated with dedicated hardware.
Once an L4CasADi model is defined it can be employed in a
variety of settings, as will be outlined in the following.

Python
Once defined, an L4CasADi model can be seamlessly inte-

grated with a CasADi symbolic graph within CasADi’s Python
interface. On the first call, L4CasADi will automatically gen-
erate C++ code and compile the L4CasADi model for runtime
efficiency.

# Use L4CasADi Model in CasADi Symbolic Graph
y: casadi.MX = l4casadi_model(x: casadi.MX)

The resulting symbolic output variable can be included
in any further CasADi operations. This seamless integration
empowers the utilization of CasADi’s extensive toolkit to for-
mulate and solve optimization problems involving L4CasADi
models.

# Minimize the L4CasADi Model using IPOPT
nlp = {'x': x, 'f': y}
solver = casadi.nlpsol("solver", "ipopt", nlp)
sol = solver()

https://github.com/Tim-Salzmann/l4casadi


III. TUTORIAL EXAMPLES

To showcase the practical application of the proposed frame-
work and how it opens up new research avenues at ease,
we present two illustrative case studies. First, we formulate a
trajectory generator that finds the minimum energy path for a
fish swimming upstream in a turbulent river. The second case
study demonstrates how L4CasADi facilitates the incorpora-
tion of cutting-edge computer vision models into optimization
problems. In this case, we optimize a collision-free trajectory
through an implicit environment representation given as a
Neural Radiance Field (NeRF). These two case studies are
distinguished by their simplicity and ease of comprehension,
and thereby, serve as excellent templates for users to adapt to
more intricate scenarios.

A. Fish Navigation in Turbulent Flow

The example shows how to design an optimization-based
trajectory generator to navigate a turbulent fluid flow. The
flow, and thus the fish’s dynamics, are modeled by a Neural
Network in PyTorch, while the optimal trajectory optimization
problem is formulated in CasADi. By using L4CasADi, both
can be combined and optimized jointly. When doing so, we
seek to find the minimum energy trajectory that allows a fish to
navigate from the starting point to the goal. For this purpose,
the fish needs to swim upstream a river where a circular stone
causes the flow to be turbulent.

1) Problem Formulation and Implementation: We model
the fish as a planar point mass actuated by velocity commands
under the influence of the river’s velocity field:

ṗ(t) = v(t) + vfl(t,p(t)) , (1)

where p(t),v(t) ∈ R2 are the position and velocity of the
fish at time t and vfl(t,p(t)) ∈ R2 is the velocity of the
river at time t and position p(t). In simpler terms, the fish’s
movement results from a combination of its own effort, and
the influence of the turbulent flow. Eq. (1) can be written as
a standard nonlinear dynamic system f , defined as

ẋ(t) = f(x(t),u(t), t) = u(t) + vfl(t,x(t)) , (2)

whose states and inputs are the fish’s position x(t) = p(t)
and velocity command u(t) = v(t). To add realism to the
problem, we constrain the fish’s actuation by imposing box
constraints on the velocity commands u ∈ [u, ū], limit the
trajectory to lie within the rivers bounds

[
p, p̄

]
and constrain

the trajectory to dodge the stone generating the turbulent flow.
To compute the trajectory that minimizes the fish’s effort to

reach the goal while swimming upstream, we formulate the

following Nonlinear Program (NLP):

min
x 0,··· ,xN ,

u 0,··· ,uN−1

N−2∑
k=0

∣∣∣∣∣∣∣∣uk+1 − uk

∆t

∣∣∣∣∣∣∣∣2 (3a)

s.t. x0 = p0 , xN = pf , (3b)
xk+1 = xk +∆t · f(xk,uk, tk), (3c)
u ≤ uk ≤ ū , k = 0, · · · , N − 1 , (3d)
p ≤ xk ≤ p̄ , k = 0, · · · , N , (3e)

||xk||2 ≥ r2st , k = 0, · · · , N . (3f)

where p0 and pf are the initial and goal positions, ∆t is the
time step and rst is the radius of the stone located at the
origin. The cost function (3a) minimizes the differences in
subsequent control (velocity) inputs which effectively mini-
mizes the energy introduced into the system, constraint (3b)
sets the starting and ending positions, (3c) enforces the system
dynamics defined in (2), (3d) bounds the input commands,
(3e) guarantees that the fish remains within the river’s bounds
and (3f) ensures that the fish does not collide with the stone.
Notice that, due to the spatial bounds in (3f) and yet-to-be-
defined turbulent flow model vfl(·) within the dynamic model
f(x,u) in (3c), the NLP (3) is nonlinear and non-convex.

L4CasADi allows for implementing the NLP in (3) in
CasADi, modeling the turbulent flow vfl(t,p(t)) by a Neural
Network that has previously been trained in PyTorch. Given
the nonlinear and non-convex structure of (3), the state-of-the-
art interior-point solver IPOPT [4] is chosen as a solver.

2) Outcome and Visualization: The trajectory obtained
from solving the NLP (3) is illustrated in Fig. 1 through a
series of image sequences. The upper segment of figure (A)
displays the magenta trajectory of the fish juxtaposed with the
vorticity of the turbulent flow. Meanwhile, the middle segment
(B) portrays the velocity field of the turbulent flow. In both
instances, the stone is represented by a gray circle. The third
segment (C) shows the velocity commands necessary to trace
this trajectory. For a better insight, we encourage readers to
view the accompanying animations for this example1.

Fig. 1 reveals that the computed trajectory strategically
utilizes the velocity field of the turbulent flow to minimize
the energy required for reaching the objective. To put it
simply, the object behaves like it’s riding/surfing the river’s
current. Examining Fig. 1 enables us to comprehend this
phenomenon from three distinct perspectives: Firstly, in (A),
it becomes evident that the fish exploits the positive vortices
(blue) to ascend and the negative ones (red) to descend. This
observation is similarly evident in (B), where the fish adeptly
positions itself per the velocity field, enabling it to exert
minimal effort in the y-axis direction throughout the majority
of the navigation, as depicted by the green line in (C).

1 https://github.com/Tim-Salzmann/l4casadi/blob/main/examples/fish
turbulent flow/README.md.

https://github.com/Tim-Salzmann/l4casadi/blob/main/examples/fish_turbulent_flow/README.md
https://github.com/Tim-Salzmann/l4casadi/blob/main/examples/fish_turbulent_flow/README.md
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Fig. 1: Minimum energy trajectory (magenta) to navigate from the start (green) to the goal (red) in the presence of a turbulent
flow represented by its vorticity (A) and velocity field (B). The trajectory generator is implemented in CasADi, while the flow
is modeled by a Neural Network in PyTorch1.

B. Trajectory Optimization in NeRFs

Neural Radiance Fields (NeRFs) are a powerful 3D repre-
sentation technique that leverages deep learning to reconstruct
3D scenes from a collection of 2D images. NeRFs encode the
scene’s geometry and appearance into a continuous function,
allowing for the rendering of photorealistic images from arbi-
trary viewpoints. As a byproduct, the densities (translucencies)
of the scene’s objects at any point in the 3D environment are
implicitly captured in the network. In this example, we demon-
strate that such state-of-the-art learned models from computer
vision research can be easily incorporated into optimization
procedures using L4CasADi. To showcase this, we present
the problem of finding a collision-free trajectory through the
densities represented by a learned NeRF, where densities
below a predefined threshold are deemed as unobstructed
regions within the environment.

1) Problem Formulation: The trajectory to be planned is
assumed to be given by a time-parametric polynomial of
degree 9:

r(c, t) =

9∑
i=0

cit
i (4)

where the parametric variable t is time and c ∈ R9×3 are the
polynomial’s coefficients.

L4CasADi enables the integration of a NeRF as an implicit
environment representation into the optimization problem. For
this purpose, we define the following function:

ρ = fNeRF(p) (5)

where ρ ∈ R+ is the density of a location whose Euclidean
coordinates are given by p ∈ R3, i.e., it returns 0 for obstacle-
free space while its value increases as the location becomes
occupied.

Having defined the analytical expression of the trajectory
in (4) and the NeRF-based environment representation in (5),
we formulate a NLP that minimizes the curve’s snap, while
ensuring that it remains collision-free:

min
c

N∑
k=0

∣∣∣∣∣∣r(4)(c, tk)∣∣∣∣∣∣2 (6a)

s.t. r(c, 0) = p0 , r
(1)(c, 0) = 0, r(2)(c, 0) = 0 , (6b)

r(c, T ) = pf , r
(1)(c, T ) = 0, r(2)(c, T ) = 0 , (6c)

ρ̄ > fNeRF (r(c, tk)) , k = 0, · · · , N , (6d)

where r(n)(·) is the n-th time derivative of eq. (4), N is the
number of evaluation points, T is the total time assigned to
the trajectory. Constraints (6b) and (6c) define the starting and



Fig. 2: NeRF renders of three examples with a collision-free minimum snap optimized trajectory through the NeRF object. In
each example, we vary the start point (blue) and goal point (green). Right: 2D slice with all three trajectories.

ending conditions and (6d) ensures that the NeRF density at
all points along the trajectory is below a threshold ρ̄ and thus
collision-free.

This problem, in its original form without the NeRF, is well-
studied in the planning and trajectory optimization community.
Its mathematical structure allows it to be formulated as a
quadratic programming (QP) problem, which can be solved
efficiently. Being able to incorporate computer vision models
in the problem formulation expands the scope of research
possibilities but can simultaneously introduce greater com-
plexity to the optimization task: The NeRF in (5) makes
the resulting NLP highly non-convex due to the non-smooth
density landscape as depicted in Section III-B.

2) Implementation: We utilize a pre-trained NeRF of a
yellow Lego bulldozer, a commonly employed example in
NeRF research. IPOPT [4] is again used as a solver. However,
due to the complexity of the problem, we apply a two-stage
approach. The first phase optimizes the trajectory to closely
follow a sparse set of predetermined collision-free points,
excluding the NeRF constraint in Eq. (6d). This results in a
sub-optimal yet feasible trajectory. In the second phase, we
initialize the solver with the first-phase solution and optimize
for the full NLP in Eq. (6) including constraining all points
to have a lower NeRF density than ρ̄ = 1. To ensure IPOPT
utilizes the warmstarted trajectory in phase two, we initialize
IPOPT with a small barrier parameter µ = 1e−4 (See Eq. (3a)
in [4]). This compels IPOPT to remain within the region of
feasible solutions from the beginning.

3) Outcome and Visualization: The optimized trajectory for
three different configurations with varying start- and goal-
points are shown in Fig. 2. For a better understanding of
the problem space and the solution trajectories, we also
visualize a 2D slice through the environment with the three
optimal trajectories in Section III-B. The optimal minimal
snap trajectories are clearly collision-free with the NeRF’s
density representation. We encourage the reader to view the
accompanying animations for this example2.

2https://github.com/Tim-Salzmann/l4casadi/blob/main/examples/nerf
trajectory optimization/README.md.

IV. RELATED WORK

The increasing prevalence of data-driven models in op-
timization has spurred a surge of scholarly contributions,
making it infeasible to comprehensively review the entire
landscape of this domain within the scope of this discussion.
Instead, we will concentrate on specific frameworks that inte-
grate learned models with numerical optimization techniques,
specifically PyTorch and CasADi.

a) Learning and Numerical Optimization: Multiple ap-
proaches have been proposed to bring advanced numerical op-
timization algorithms within learning frameworks like PyTorch
and TensorFlow [10], [11]. However, these integrations often
result in the re-implementation of individual solver algorithms
within the learning framework, which may not exhibit the
same robustness and maturity as the well-established solvers
within CasADi. Recently, NeuroMANCER [12] enables the
formulation of optimization problems entirely in PyTorch.
Naturally, learned components in PyTorch can be included,
even optimized within the problem solution. However, because
NeuroMANCER is restricted to the PyTorch environment they
are mostly limited to the first-order solvers within — not using
second-order approaches such as IPOPT or SQP which have
been proven to be efficient and robust.

b) PyTorch and CasADi: The demand for such a frame-
work within the community is evident from prior endeavors
aimed at uniting the two concepts of learning in PyTorch
and optimization in CasADi. Multiple packages, do-mpc [13],
HILO-MPC [14], and ML-CasADi [15], provide the capa-
bilities to rebuild simple architectures of PyTorch models
directly in CasADi by copying the learned weight tensors and
formulate matrix multiplications and activation functions in
CasADi. This approach, is restricted to models comprised of
the limited CasADi function set which is not optimized for
large matrix multiplications and can not use hardware accel-
eration. Additionally, [15] calculates function evaluations and
sensitivities for the learned model separated from CasADi in
the PyTorch framework and subsequently injects these results
into the CasADi graph. The applicability of this approach,
however, is limited to specific optimization algorithms and
introduces inefficiencies in the form of excessive context
switches and memory transfers between CasADi and PyTorch.

https://github.com/Tim-Salzmann/l4casadi/blob/main/examples/nerf_trajectory_optimization/README.md
https://github.com/Tim-Salzmann/l4casadi/blob/main/examples/nerf_trajectory_optimization/README.md
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