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Abstract
Transformer models trained on NLP tasks with medical codes often have randomly initialized embeddings that are then
adjusted based on training data. For terms appearing infrequently in the dataset, there is little opportunity to improve
these representations and learn semantic similarity with other concepts. Medical ontologies represent many biomedical
concepts and define a relationship structure between these concepts, making ontologies a valuable source of domain-specific
information. Holographic Reduced Representations (HRR) are capable of encoding ontological structure by composing atomic
vectors to create structured higher-level concept vectors. We developed an embedding layer that generates concept vectors for
clinical diagnostic codes by applying HRR operations that compose atomic vectors based on the SNOMED CT ontology. This
approach allows for learning the atomic vectors while maintaining structure in the concept vectors. We trained a Bidirectional
Encoder Representations from the Transformers (BERT) model to process sequences of clinical diagnostic codes and used the
resulting HRR concept vectors as the embedding matrix for the model. The HRR-based approach introduced interpretable
structure into code embeddings while maintaining or modestly improving performance on the masked language modeling
(MLM) pre-training task (particularly for rare codes) as well as the fine-tuning tasks of mortality and disease prediction. This
approach also better maintains semantic similarity between medically related concept vectors, due to both shared atomic
vectors and disentangling of code-frequency information.
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1. Introduction
Transformers [1] jointly optimize high-dimensional vec-
tor embeddings that represent input tokens, and a net-
work that contextualizes and transforms these embed-
dings to perform a task. Originally designed for natu-
ral language processing (NLP) tasks, transformers are
now widely used with other data modalities. In medical
applications, one important modality consists of medi-
cal codes that are extensively used in electronic health
records (EHR). A prominent example in this space is Med-
BERT [2], which consumes a sequence of diagnosis codes.
Tasks that Med-BERT and other EHR-transformers per-
form include disease and mortality prediction.

Deep networks have traditionally been alternatives to
symbolic artificial intelligence with different advantages
[3]. Deep networks use real-world data effectively, but
symbolic approaches have completive properties, such as
better transparency and capacity for incorporating struc-
tured information, inspiring many efforts to combine the
two approaches in neuro-symbolic systems [4]. Addi-
tional transparency and ability to incorporate structured
information are potential benefits of symbolic approaches
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in medical applications [5]. Standard large language mod-
els (LLMs) can be prone to biases in the training data,
such as frequency bias, which can result in medical mis-
information and potentially clinical harm [6, 7, 8].
Here we use a novel neuro-symbolic medical trans-

former architecture incorporating structured knowledge
from an authoritative medical ontology into the embed-
dings. Specifically, we use vector-symbolic holographic
reduced representations (HRRs) [9] to produce composite
medical-code embeddings and backpropagate through
the architecture to optimize the embeddings of atomic
concepts. This approach produces optimized medical
code embeddings with an explicit structure that incorpo-
rates medical knowledge.

We test our method, Holographic Reduced Representa-
tion Bi-directional Encoder Representations from Trans-
formers (HRRBERT), on the Medical Information Mart
for Intensive Care (MIMIC)-IV dataset [10] and show im-
provements in both pre-training and fine-tuning tasks.
We also show that our embeddings of ontologically sim-
ilar rare medical codes have high cosine similarity, in
contrast with embeddings that are learned in the stan-
dard way. Finally, we investigate learned representations
of medical-code frequency, in light of recent demonstra-
tion of frequency bias in EHR-transformers [6].

We contribute:

• A novel neuro-symbolic architecture, HRRBERT,
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that combines vector-symbolic embeddings with
the BERT LLM architecture, leading to better per-
formance in medical tasks.

• Efficient construction of vector-symbolic embed-
dings that leverage PyTorch autograd on GPUs.

• Optimized medical-code embeddings that better
respect semantic similarity of medical terminol-
ogy than standard embeddings for infrequently
used codes.

We focus here on processing medical codes, but our
methods would extend naturally to foundation models
that combine medical codes and natural language. Specif-
ically, the trained atomic vectors of our vector-symbolic
embeddings could share a dictionary with language em-
beddings, so that training of each could improve the
representation of the other.

1.1. Background and Related Works
The Vector-Symbolic Architectures (VSA) approach is a
computing paradigm that relies on high dimensionality
and randomness to represent concepts as unique vectors
in a high dimensional space [11]. VSAs create and manip-
ulate distributed representations of concepts by combin-
ing base vectors with bundling, binding, and permutation
algebraic operators [12]. For example, a scene with a red
box and a green ball could be described with the vector
SCENE=RED⊗BOX+GREEN⊗BALL, where ⊗ indicates
binding, and + indicates bundling. The atomic concepts
of RED, GREEN, BOX, and BALL are represented by base
vectors, which are typically random. VSAs also define
an inverse operation that allows the decomposition of a
composite representation. For example, the scene rep-
resentation could be queried as SCENE⊗BOX−1. This
should return the representation of GREEN or an approx-
imation of GREEN that is identifiable when compared to
a dictionary. In a VSA, the similarity between concepts
can be assessed by measuring the distance between the
two corresponding vectors.
VSAs were proposed to address challenges in mod-

elling cognition, particularly language [12]. However,
VSAs have been successfully applied across a variety of
domains and modalities outside of the area of language
as well, including in vision [13, 14], biosignal process-
ing [15], and time-series classification [16]. Regardless
of the modality or application, VSAs provide value by
enriching vectors with additional information, such as
spatial semantic information in images and global time
encoding in time series.
An early VSA framework was Smolensky’s Tensor

Product Representation [17], which addressed the need
for compositionality, but suffered from exploding model
dimensionality. The VSA framework introduced by Plate,
Holographic Reduced Representations (HRR), improved

upon Smolensky’s by using circular convolution as the
binding operator [9]. Circular convolution keeps the
output in the same dimension, solving the problem of
exploding dimensionality.
In the field of deep learning, HRRs have been used

in previous work to recast self-attention for transformer
models [18], to improve the efficiency of neural networks
performing a multi-label classification task by using an
HRR-based output layer [3], and as a learningmodel itself
with a dynamic encoder that is updated through train-
ing [19]. In all of these works, the efficiency and simple
arithmetic of HRRs are leveraged. Our work differs in
that we also leverage the ability of HRRs to create struc-
tured vectors to represent complex concepts as inputs to
a transformer model.
VSAs such as HRRs can effectively encode domain

knowledge, including complex concepts and the relation-
ships between them. For instance, Nickel et al. [20] pro-
pose holographic embeddings that make use of VSA prop-
erties to learn and represent knowledge graphs. Encod-
ing domain knowledge is of interest in the field of deep
learning, as it could improve, for example, a deep neural
network’s ability to leverage human knowledge and to
communicate its results within a framework that humans
understand [21]. Ontologies are a form of domain knowl-
edge incorporated into machine learning models to use
background knowledge to create embeddings with mean-
ingful similarity metrics and for other purposes [22]. In
our work, we use HRRs to encode domain knowledge
in trainable embeddings for a transformer model. The
domain knowledge we use comes from the Systematized
Nomenclature of Medicine Clinical Terms (SNOMEDCT),
which is a widely used clinical ontology system that in-
cludes definitions of relationships between clinical con-
cepts [23].

To the best of our knowledge, HRRs have not been used
before as embeddings for transformer models. Trans-
former models typically use learned embeddings with
random initializations [1]. However, in the context of rep-
resenting ontological concepts, using such unstructured
embeddings can have undesirable effects. One problem
is the inconsistency between the rate of co-occurrence
or patterns of occurrence of medical concepts and their
degree of semantic similarity described by the ontology.
For example, the concepts of “Type I Diabetes” and “Type
II Diabetes” are mutually exclusive in EHR data and do
not follow the same patterns of occurrence due to dif-
ferences in pathology and patient populations [24]. The
differences in occurrence make it difficult for a trans-
former model to learn embeddings with accurate simi-
larity metrics. The concepts should have relatively high
similarity according to the ontology. They both share a
common ancestor of “Diabetes Mellitus,” they are both
metabolic disorders that affect blood glucose levels, and
they can both lead to similar health outcomes. Song et al.



[24] seeks to address this type of inconsistency by train-
ing multiple “multi-sense” embeddings for each non-leaf
node in an ontology’s knowledge graph via an attention
mechanism. However, the “multi-sense” embeddings do
not address the learned frequency-related bias that also
arises from the co-occurrence of concepts. Frequency-
related bias raises an explainability issue, as it leads to
learned embeddings that do not reflect true similarity
relationships between concepts, for example, as defined
in an ontology, but instead reflect the frequency of the
concepts in the dataset [6]. This bias particularly affects
codes that are used less frequently.

Our proposed approach, HRRBERT, uses the structure
from SNOMED CT to represent thousands of concepts
with high-dim-ensional vectors such that each vector
reflects a particular clinical meaning and can be compared
to other vectors using the HRR similarity metric, cosine
similarity. It also leverages the computing properties of
HRRs to provide structured embeddings for a LLM that
supports optimization through backpropagation.

2. Methods

2.1. MIMIC-IV Dataset
The data used in this study was derived from the Med-
ical Information Mart for Intensive Care (MIMIC) v2.0
database, which is composed of de-identified EHRs from
in-patient hospital visits between 2008 and 2019 [10].
MIMIC-IV is available through PhysioNet [25]. We used
the ICD-9 and ICD-10 diagnostic codes from the icd_di-
agnosis table from the MIMIC-IV hosp module. We fil-
tered patients who did not have at least one diagnostic
code associated with their records. Sequences of codes
were generated per patient by sorting their hospital visits
by time. Within one visit, the order of codes from the
MIMIC-IV database was used, since it represents the rel-
ative importance of the code for that visit. Each unique
code was assigned a token. In total, there were 189,980
patient records in the dataset. We used 174,890 patient
records for pre-training, on which we performed a 90–10
training-validation split. We reserved 15k records for
fine-tuning tasks.

2.2. Model Architecture
We utilized a BERT-base model architecture with a post-
layer norm position and a sequence length of 128 ICD
codes [26]. A custom embedding class was used to sup-
port the functionality required for our HRR embeddings.
We adapted the BERT segment embeddings to represent
groups of codes from the same hospital visit, using up
to 100 segment embeddings to encode visit sequencing.
An embedding dimension of 𝑑 = 768 was used, and all
embeddings were initialized from ∼ 𝒩𝑑(0, 0.02), as in

[26], including the atomic vectors for HRR embeddings.
Fine-tuning used a constant learning rate schedule with a
weight decay of 4e-6. Fine-tuning lasted 10 epochs with
a batch size of 80.

2.3. Encoding SNOMED Ontology with
HRR Embeddings

In this section, we detail the methodologies of construct-
ing vector embeddings for ICD disease codes using HRR
operations based on the SNOMED CT structured clini-
cal vocabulary. We first describe our mapping from ICD
concepts to SNOMED CT terms. Next, we define how
the atomic symbols present in the SNOMED CT ontology
are combined using HRR operations to construct con-
cept vectors for the ICD codes. Finally, we describe our
method to efficiently compute the HRR embedding ma-
trix using default PyTorch operations that are compatible
with autograd.

2.3.1. Mapping ICD to SNOMED CT Ontology

Our data uses ICD-9 and ICD-10 disease codes while
our symbolic ontology is defined in SNOMED CT, so we
required a mapping from the ICD to the SNOMED CT
system to build our symbolic architecture. We used the
SNOMED CT International Release from May 31, 2022
[23] and only included SNOMED CT terms that were
active at the time of that release. While SNOMED pub-
lishes a mapping tool from SNOMED CT to ICD-10, a
majority of ICD-10 concepts have one-to-manymappings
in the ICD-to-SNOMED CT direction [27]. To increase
the fraction of one-to-one mappings, we used additional
published mappings from the Observational Medical Out-
comes Partnership (OMOP) [28], mappings from ICD-9
directly to SNOMED CT [29], and mappings from ICD-10
to ICD-9 [30].
Notably, after excluding ICD codes with no active

SNOMED CT mapping, 671 out of the 26,164 unique
ICD codes in the MIMIC-IV dataset were missing map-
pings. When those individual codes were removed, a
data volume of 4.62% of codes was lost. This removed 58
out of 190,180 patients from the dataset, as they had no
valid ICD codes in their history. Overall, the remaining
25,493 ICD codes mapped to a total of 12,263 SNOMED
CT terms.

2.3.2. SNOMED CT vector symbolic architecture

Next, we define how the contents of the SNOMED CT
ontology were used to construct a symbolic graph to
represent ICD concepts. For a given SNOMED CT term,
we used its descriptive words and its relationships to
other SNOMED CT terms. A relationship is defined by
a relationship type and a target term. In total, there



were 13,852 SNOMED CT target terms and 40 SNOMED
CT relationship types used to represent all desired ICD
concepts. In the ontology, many ICD concepts share
SNOMED CT terms in their representations.
The set of relationships was not necessarily unique

for each SNOMED CT term. To add more unique in-
formation, we used a term’s “fully specified name” and
any “synonyms” as an additional set of words describing
that term. We set all text to lowercase, stripped punctua-
tion, and split on spaces to create a vocabulary of words.
We removed common English stopwords from a custom
stopword list that was collected with assistance from a
medical physician. The procedure resulted in a total of
8833 vocabulary words.

Overall, there were a total of 22,725 “atomic” symbols
for the VSA which included the SNOMED CT terms, rela-
tionships, and the description vocabulary. Each symbol
was assigned an “atomic vector”. We built a “concept vec-
tor” for each of the target 25,493 ICD codes using HRR
operations to combine atomic vectors according to the
SNOMED CT ontology structure.
To build a 𝑑-dimensional concept vector for a given

ICD concept, we first considered the set of all relation-
ships that the concept maps to. We used the HRR opera-
tor for binding, circular convolution, to combine vectors
representing the relationship type and destination term
and defined the concept vector to be the bundling of
these bound relationships. For the description words,
we bundled the vectors representing each word together
and bound this result with a new vector representing the
relationship type “description,” as shown in Equation 1.

ICD concept= ∑
SNOMED CT

rel ⊛term + ∑
words

desc⊛word (1)

Formally, let ∶ {1, 2, ..., 𝑁𝑎} be the set of integers enu-
merating the unique atomic symbols for SNOMED CT
terms and description words. Let ∶ {1, 2, ..., 𝑁𝑟} be the
set of integers enumerating unique relationships for
SNOMED CT terms, including the description relation-
ship and the binding identity. Let ∶ {1, 2, ..., 𝑁𝑐} be the set
of integers enumerating the ICD-9 and ICD-10 disease
concepts represented by the VSA.

has an associated embedding matrix ∈𝑁𝑎×𝑑, where
atomic vector 𝑘 =[𝑘,∶], 𝑘 ∈ is the 𝑘-th row the embed-
ding matrix. Similarly, there is relationship embedding
matrix, ∈𝑁𝑟×𝑑 and 𝑗 =[𝑗,∶], 𝑗 ∈; and an ICD concept em-
bedding matrix, ∈𝑁𝑐×𝑑 and 𝑖 =[𝑖,∶], 𝑖 ∈. We described the
VSA with the formula in Equation 2, where 𝒢𝑖 is a graph
representing the connections between ICD concept 𝑖 to
atomic symbols 𝑘 by relationship 𝑗.

𝑖= ∑
(𝑗,𝑘)∈𝒢𝑖

𝑗⊛𝑘 (2)

Additional details on how to efficiently use PyTorch
autograd to learn through these HRR operations are pro-
vided in Appendix A.1.

2.3.3. Embedding Configurations

We call our method of constructing embeddings for ICD
codes purely from HRR representations “HRRBase” and
the standard method of creating transformer token em-
beddings from random vectors “unstructured”. While the
HRRBase configuration enforces the ontology structure,
we wondered whether it would be too rigid and have dif-
ficulty representing information not present in SNOMED
CT. As dataset frequency information for ICD medical
codes is not present in the HRR structure, we tried adding
an embedding that represented the empirical frequency
of that ICD code in the dataset. We also tried adding fully
learnable embeddings with no prior structure.
Given the wide range of ICD code frequencies in

MIMIC, we log-transformed the empirical ICD code fre-
quencies, and then discretized the resulting range. For
our HRRFreq configuration, we used the sinusoidal fre-
quency encoding as in [1] to encode the discretized log-
frequency information. The frequency embeddings were
normalized before being summed with the HRR embed-
ding vectors.
We defined two additional configurations in which

a standard embedding vector was integrated with the
structured HRR concept vector. With “HRRAdd”, a learn-
able embedding was added to the concept embedding,
HRRAdd = +add,add ∈𝑁𝑐×𝑑. However, this roughly dou-
bled the number of learnable parameters compared to
other formulations.
With “HRRCat”, a learnable embedding of dimension

𝑑/2 was concatenated with the HRR concept embed-
ding of dimension 𝑑/2. This keeps the total number
of learnable parameters roughly the same as the unstruc-
tured configuration (25,493 𝑑-dimensional vectors) and
the HRRBase configuration (22,725 𝑑-dimensional vec-
tors). The final embeddingmatrix was defined as HRRCat
= [ cat], where ,cat ∈ 𝑅𝑁𝑐×𝑑/2.

2.4. Experiments
We pre-trained the unstructured, HRRBase, HRRCat, and
HRRAdd embedding configurations of HRRBERT on the
masked language modelling (MLM) task, for 3 trials each.
For each of the 3 pre-trained models, 10 fine-tuning trials
were conducted for a total of 30 trials per fine-tuning task.
The best checkpoint from the 10 epochs of fine-tuning
was saved based on validation performance. A test set
containing 666 patient records was used to evaluate each
of the fine-tuned models for both mortality and disease
prediction. We report accuracy, precision, recall, and
F1 scores averaged over the 30 trials for the fine-tuning
tasks.



3. Experimental Results

3.1. Pre-training

Figure 1: Pre-training validation set evaluation results for
different configurations

MLM accuracy is evaluated on a validation set over the
course of pre-training. Pre-training results for different
configurations are shown in Figure 1. The pre-training
results are averaged over 3 runs for each of the configu-
rations except for HRRFreq where only 1 model run was
completed.

The baseline of learned unstructured embeddings has
a peak pre-training validation performance of around
33.4%. HRRBase embeddings perform around 17% worse
compared to the baseline of learned unstructured embed-
dings. We hypothesize that this decrease in performance
is due to a lack of embedded frequency information in
HRRBase compared to learned unstructured embeddings.
HRRFreq (which combines SNOMED CT information
with frequency information) has a similar performance
compared to unstructured embeddings, supporting this
hypothesis. Compared to baseline, HRRAdd and HRRCat
improve pre-training performance by a modest margin of
around 2%. We posit that this almost 20% increase in per-
formance of HRRCat and HRRAdd over HRRBase during
pre-training is partly due to the fully learnable embed-
ding used in HRRCat and HRRAdd learning frequency
information.

3.2. Fine-tuning
We fine tuned the networks for mortality prediction and
disease prediction. Across metrics and tasks, the best
results were often seen in HRRBase (Table 1) with some
being statistically significant.

3.2.1. Mortality Prediction Task

The mortality prediction task is defined as predicting
patient mortality within 6 months after the last visit. Bi-
nary mortality labels were generated by comparing the
time difference between the last visit and the mortality

date. A training set of 13k patient records along with a
validation set of 2k patient records were used to fine-tune
each model on mortality prediction. Table 1 shows the
evaluation results of mortality prediction for each of the
configurations. We performed a two-sided Dunnett’s test
to compare our multiple experimental HRR embedding
configurations to the control unstructured embeddings,
with 𝑝 < 0.05 significance level. HRRBase embeddings
had a significantly greater mean F1-score (𝑝 = 0.043)
and precision (𝑝 = 0.042) compared to unstructured em-
beddings.

3.2.2. Disease Prediction Task

The disease prediction task is defined as predicting which
disease chapters were recorded in the patient’s last visit
using information from earlier visits. We converted all
ICD codes in a patient’s last visit into a multi-label bi-
nary vector of disease chapters. As there are 22 disease
chapters defined in ICD-10, the multi-label binary vector
has a size of 22 with binary values corresponding to the
presence of a disease in each chapter. A training set of
4.5k patient records along with a validation set of 500
patient records were used to fine-tune each model on
this task. Table 1 shows the evaluation results of disease
prediction for each of the configurations. For the two-
sided Dunnett test, Levene’s test shows that the equal
variance condition is satisfied, and the Shapiro-Wilk test
suggests normal distributions except for HRRAdd accu-
racy. The test showed HRRBase embeddings had a signif-
icantly greater mean accuracy (𝑝 = 0.033) and precision
(𝑝 = 0.023) compared to unstructured embeddings. No
other comparisons of mean metrics for HRR embeddings
were significantly greater than the control.

3.2.3. eICU Mortality Prediction

An additional experiment conducted on the Philips Elec-
tronic Intensive Care Unit (eICU) [31] shows corrobo-
rating results with the MIMIC-IV experiments. For our
experiment, we applied our mortality prediction models
that were fine-tuned on MIMIC-IV to eICU data to see
if our results generalize. Table 1 shows that HRRBase
embeddings had a significantly greater mean accuracy
(𝑝 = 0.046) compared to unstructured embeddings when
applied to the eICU dataset. These models are not opti-
mized for mortality prediction for other hospitals where
coding methodology and clinical practice may differ. For
example, the most common code in the eICU dataset
represents acute respiratory failure, whereas the most
common code in the MIMIC-IV dataset represents hyper-
tension.



Table 1
Finetuning mean test scores and standard deviations for mortality prediction, disease prediction, eICU mortality prediction,
and both Really-Out-Of-Distribution (ROOD) Unseen and Overall disease prediction tasks. The best scores are bolded and are
underlined if statistically significant.

Finetuning Task Configuration Accuracy Precision Recall F1-Score
ROOD
Unseen

HRRBase 94.9±1.0 83.5±4.6 76.8±5.1 79.5±4.9
Unstructured 92.3±0.3 46.2±0.0 50.0±0.1 48.0±0.1

ROOD
Overall

HRRBase 81.9±0.1 78.3±0.3 75.2±0.8 76.4±0.5
Unstructured 81.9±0.2 78.7±0.7 74.4±1.2 76.0±0.8

Mortality
Prediction

HRRBase 84.4±2.3 65.8±2.0 85.6±2.2 69.2±2.7
HRRAdd 84.0±2.2 65.7±1.9 85.7±2.3 68.9±2.5
HRRCat 83.9±2.3 65.6±1.7 84.9±2.8 68.8±2.5
Unstructured 83.4±1.9 64.9±1.2 84.6±2.2 67.9±1.8

Disease
Prediction

HRRBase 79.9±0.5 73.0±1.2 67.2±0.7 69.0±0.6
HRRAdd 79.6±0.7 72.6±1.4 67.3±0.9 69.0±0.6
HRRCat 79.6±0.8 72.5±1.7 67.3±1.0 68.9±0.8
Unstructured 79.4±0.5 72.1±1.1 67.8±1.0 69.2±0.7

eICU
Mortality
Prediction

HRRBase 68.9±1.3 75.0±1.8 57.0±5.8 64.5±3.5
HRRAdd 68.1±1.6 74.0±2.2 56.2±6.8 63.6±3.9
HRRCat 68.2±1.2 73.8±2.6 57.0±7.2 64.0±3.7

3.2.4. Really-Out-Of-Distribution (ROOD) Disease
Prediction

We conducted an additional disease-prediction experi-
ment to test generalization to patients with codes outside
the training distribution. We found six patients with
records that consisted of only 32 codes between them
(see list of codes in Appendix A). We created a really-
out-of-distribution (ROOD) dataset that consisted of all
patients in MIMIC-IV (nearly 30K) with at least one of
these codes. We used this as a validation set. The sepa-
rate pre-training and fine-tuning dataset did not contain
these codes. We also created a smaller validation dataset
consisting of the six patients with only these codes. Dur-
ing pretraining, the HRRBase and unstructured models
did not encounter any examples using the 32 ROOD codes
and so did not explicitly learn representations for those
codes. The trained models were then tested using the
ROOD dataset.

Results from Table 1 on ROOD dataset disease predic-
tion show that HRRBase outperforms the unstructured
embedding model for contexts of entirely unseen codes.
We assess statistical significance using two-tailed, in-
dependent t-test with unequal variance, as some mea-
surements failed Levene’s test for equal variance. The
means of all the metrics for HRRBase are significantly
greater than for unstructured when making inferences
on patients with entirely unseen codes, 𝑝 < 0.001 for all
metrics. Given the embedded ontological structure, we
hypothesize that HRRBase implicitly learns useful em-
beddings for the 32 unseen ROOD codes by learning any
shared embedding components of the VSA when training

on other codes. Unstructured embeddings cannot learn
better representations for codes never seen in training.

3.3. t-SNE of Frequency Bias

Figure 2: Comparing t-SNE of (a) unstructured embeddings,
(b) HRRAdd, (c) HRRCat, and (d) HRRBase. The t-SNE graphs
are color-coded by the frequency of the ICD codes in the
dataset - highly frequent codes are colored blue while infre-
quent codes are colored red.

We computed t-SNE dimension reductions to visual-
ize relationships among ICD code embeddings in the
pre-trained models. Figure 2 shows that unstructured
embeddings of common ICD codes are clustered together
with a large separation from those of uncommon codes.
This suggests that code-frequency information is promi-
nently represented in these embeddings, consistent with
frequency bias in related models [6]. Common and un-
common code clusters are less distinct in HRRBase, which
does not explicitly encode frequency information.
As shown in Figure 1, adding code-frequency infor-

mation to the structured HRRBase embeddings, i.e. the
HRRFreq embeddings, improved the pre-training loss be
similar to unstructured embeddings. This suggests that
unstructured components in HRRAdd and HRRCat may



Figure 3: t-SNE representation of sinusoidal frequency em-
beddings (left), and unstructured embedding components of
HRRAdd (middle) and HRRCat (right).

have learned some frequency information, since these
losses are also similar to the loss of models with Unstruc-
tured embeddings. To investigate whether this occurred,
we performed t-SNE dimension reductions of the unstruc-
tured components of HRRAdd and HRRCat and colored
the points by code frequency, shown in Figure 3. This
graph suggests that these additional unstructured em-
beddings learn some frequency information, due to clus-
tering of high frequency codes. However, the frequency
information learned by HRRCat and HRRAdd learnable
embeddings influence overall embeddings less strongly
in comparison to unstructured embeddings as seen in Fig-
ure 2, where low frequency embeddings are less distinctly
separated from higher frequency embeddings.

3.4. Top-k Accuracy for MLM
Accurately predicting infrequently used disease codes
is an important clinically relevant task. Given that the
model trains and sees more common codes compared
to rare codes, rare codes are naturally challenging to
predict. Through promising empirical results on out-of-
distribution mortality prediction for eICU and disease
prediction on ROOD, we hypothesized that our HRR em-
bedding models should have improved accuracy when
predicting rare codes in the dataset compared to unstruc-
tured embedding models, since rare codes should share
some atomic vectors in their representations with com-
mon codes.
To test this, we evaluated the accuracy of an MLM

pre-trained model predicting a single masked code of a
known frequency. We split the codes in the pre-training
validation dataset into 7 bins from log frequency -14 to 0,
such that each bin has a width of 2. The most common
codes are in a bin with log frequencies between -2 and 0,
while the rarest codes are from a bin with log frequencies
between -14 and -12. From each bin, we selected 400
codes at random, repeating codes from that bin if there
were fewer than 400. For each of these codes, we selected
one patient that had that code in their history, masked
that code as would be done in MLM, and created a dataset
of these 2,800 patients to use for MLM inference.

Figure 4 and Figure 5, respectively, show the MLM top-
10 and Top-100 accuracy on predicting codes in the differ-

Figure 4: The top-10 MLM accuracy for binned code frequen-
cies in log scale. Common codes are in frequency bin 0 with
rarest codes being in frequency bin -12. 0.05, 0.01, and 0.001
significance levels comparing to unstructured embeddings are
indicated with 1, 2, and 3 asterisks respectively. Note that
HRRBase is expected to perform poorly in this test due to lack
of code-frequency information.

Figure 5: The top-100MLM accuracy for binned code frequen-
cies in log scale. Common codes are in frequency bin 0 with
rarest codes being in frequency bin -12. 0.05, 0.01, and 0.001
significance levels comparing to unstructured embeddings are
indicated with 1, 2, and 3 asterisks respectively.

ent frequency bins, averaged across the three pre-training
models per configuration. Significant comparisons to the
unstructured control at a 𝑝 < 0.05 level indicated with
an asterisk. We assess statistical significance for each bin
using a two-tailed Dunnett’s test comparing mean accu-
racy scores of experimental HRR configurations against
the control unstructured configuration. Notably, the top-
100 accuracy in frequency bin -12 is non-zero for the
HRR methods. These codes in the rarest bin occur only



Table 2
Three cosine similarity case studies looking at related ICD codes for unstructured and HRRBase. The top 4 cosine-similar ICD
codes to the chosen code are listed (most to least similar) with their full description and similarity value.

2724-9 - Other and unspecified hyperlipidemia
Unstructured HRRBase

Pure hypercholesterolemia 0.542 Other hyperlipidemia 1.000
Hyperlipidemia, unspecified 0.482 Hyperlipidemia, unspecified 1.000

Esophageal reflux 0.304 Pure hypercholesterolemia 0.463
Anemia, unspecified 0.279 Mixed hyperlipidemia 0.418

9916-9 - Hypothermia
Unstructured HRRBase

Frostbite of hand 0.418 Hypothermia, initial encounter 0.794
Frostbite of foot 0.361 Hypothermia not with low env. temp. 0.592

Drowning and nonfatal submersion 0.352 Effect of reduced temp., initial encounter 0.590
Immersion foot 0.341 Other specified effects of reduced temp. 0.590

K219-10 - Gastro-esophageal reflux disease without esophagitis
Unstructured HRRBase

Esophageal reflux 0.565 Esophageal reflux 0.635
Hyperlipidemia, unspecified 0.335 Gastro-eso. reflux d. with esophagitis 0.512
Anxiety disorder, unspecified 0.332 Reflux esophagitis 0.512

Essential (primary) hypertension 0.326 Hypothyroidism, unspecified 0.268

once in the dataset and therefore have never been used
by the model for gradient updates, since they are in the
validation dataset. This suggests that the HRR methods
have some ability to provide clinically relevant informa-
tion about rare codes. However, accuracy with the rarest
codes remains too low to be of practical value, perhaps
due to limited overlap of these codes’ atomic vectors with
those of more common codes.

3.5. Medical Code Case Study
Table 2 shows case studies for codes Other and un-
specified hyperlipidemia (2724-9), Hypothermia (9916-9),
and Gastro-esophageal Reflux disease without esophagi-
tis (K219-10). In the first case study for 2724-9, we ob-
serve highly ontologically similar codes, such as Other
hyperlipidemia and Hyperlipidemia, unspecified, are en-
coded with high cosine similarity for HRRBase, which
is not the case for unstructured embeddings. The co-
occurrence problem can be seen in the second case study
for 9916-9. The most similar codes for HRRBase are medi-
cally similar codes that would not usually co-occur, while
for unstructured embeddings the most similar codes co-
occur frequently. For the final case study on K219-10,
frequency-related bias can be observed in the unstruc-
tured embeddings with frequent but mostly ontologically
unrelated codes as part of the top list of cosine similar
codes, whereas the top list of cosine similar codes for
HRRBase contains medically similar codes.
We broadened this case study to test statistical dif-

ferences in cosine and semantic embedding similarity

between structured and unstructured embeddings. 30
ICD codes were selected from different frequency cate-
gories in the dataset, with 10 codes drawn randomly from
the 300 most common codes, 10 codes drawn randomly
by weighted frequency from codes appearing fewer than
30 times in the dataset, and 10 codes randomly selected
by weighted frequency from the entire dataset. For each
selected code, the top 4 cosine-similar ICD codes were
assessed by a physician for ontological similarity.

For each frequency category, a one-tailed Fisher’s exact
test was conducted to determine whether a relationship
existed between embedding type and clinical relatedness.
We found that results in the case of the rare codes were
statistically significant, with 𝑝 = 2.44×10−8. With 10 rare
codes and the top 4 cosine-similar ICD codes selected for
each rare code, there are 40 top cosine-similar codes in to-
tal. In the case of unstructured embeddings, only 4 of the
top 40 cosine-similar codes were deemed to be strongly
ontologically related by our physician with the remain-
ing codes deemed to be less related and unrelated. In the
case of our structured HRRBase embeddings, 28 of the
top 40 cosine-similar codes were deemed to be strongly
ontologically related by our physician with the remain-
ing codes deemed to be less related and unrelated. This
suggests that knowledge-integrated structured embed-
dings are associated with greater clinical relevance of the
top cosine-similar codes than unstructured embeddings
for rare codes where little training data exists.



4. Discussion
Transformers have leading performance in many applica-
tions, but their internal processes are opaque, emerging
from enormous parameter sets and data volumes beyond
human experience. It is hard to know when they can
be trusted. For example, generative transformers are
prone to subtle confabulations. Transformers have a
general-purpose architecture that performs as well in
vision and other modalities as in language. They are a
culmination of a key trend in artificial intelligence, away
from problem-specific engineering, and toward massive
data and computation. This trend is justified in terms of
performance. However, given two models with equal per-
formance, one with more explicit conceptual structure is
preferable in terms of trust and explainability.

Thework presented here is a step in this direction, with
our HRRBase embeddings that have explicit conceptual
structure and perform equivalently or better compared
to typical transformer embeddings. The benefit of struc-
tured embeddings becomes more pronounced for tasks
that involve codes that are rare or are not present in
training data. HRR embeddings can also be relied on to
represent medical meaning rather than co-occurrence in
the training data. They also untangle the representation
of code frequency, so that it can be included or not, and
its effects on decisions understood. Importantly, despite
this additional structure, the embeddings are thoroughly
learned, suggesting that the approach will be consistent
with high performance beyond the examples we have
studied.

As our method scales with and leverages PyTorch au-
tograd in the construction of the vector-symbolic em-
beddings, it is compatible with existing medical LLM
architectures as an embedding component capable of
encoding domain knowledge.

Future work could explore the potential of these struc-
tured embeddings for explaining and controlling the ob-
served frequency bias. As HRRs can be queried with lin-
ear operations, future work could also explore whether
transformers can learn to extract specific information
from these composite embeddings. Limitations to ad-
dress in future work include the complexity of processing
knowledge graphs to be compatible with HRRs. Another
important limitation is that our method relies on rare-
code HRRs sharing atomic elements with common-code
HRRs. However, in SNOMED CT, rare codes are likely to
contain some rare atomic elements. To address this point,
in addition to SNOMED CT, knowledge could be encoded
from sources such as pre-trained medical embeddings,
different medical ontologies, and other medical domain
knowledge to further improve our proposed methodol-
ogy. In LLMs that process both medical codes and text,
it would make sense to share word embeddings between
modalities. This would allow training of each modality

to benefit from training of the other, and may help to
align the representations of codes and text.

5. Conclusion
We proposed a novel hybrid neural-symbolic approach
called HRR-BERT that integrates medical ontologies rep-
resented by HRR embeddings. In tests with the MIMIC-
IV dataset, HRRBERT models modestly outperformed
baseline models with unstructured embeddings for pre-
training, disease prediction accuracy, mortality predic-
tion F1, and fine-tuning tasks involving infrequently seen
codes. HRRBERT models had pronounced performance
advantages in MLM with rare codes and disease pre-
diction for patients with no codes seen during training
(ROOD - Unseen in Table 1). We also showed that HRRs
can be used to create medical code embeddings that bet-
ter respect ontological similarities for rare codes. A key
benefit of our approach is that it facilitates explainability
by disentangling token-frequency information, which
is prominently represented but implicit in unstructured
embeddings.
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A. List of 32 ROOD Codes
The following is the list of 32 ROOD codes:

1. G248-10: Other dystonia
2. E8498-9: Accidents occurring in other specified

places
3. E9688-9: Assault by other specified means
4. Z681-10: Bodymass index (BMI) 19.9 or less, adult
5. 30550-9: Opioid abuse, unspecified
6. R262-10: Difficulty in walking, not elsewhere clas-

sified
7. E887-9: Fracture, cause unspecified
8. R471-10: Dysarthria and anarthria
9. 9916-9: Hypothermia
10. E9010-9: Accident due to excessive cold due to

weather conditions
11. F10129-10: Alcohol abuse with intoxication, un-

specified
12. E8499-9: Accidents occurring in unspecified place
13. R636-10: Underweight
14. 920-9: Contusion of face, scalp, and neck except

eye(s)
15. R4182-10: Altered mental status, unspecified
16. 95901-9: Head injury, unspecified
17. 78097-9: Altered mental status
18. F29-10: Unspecified psychosis not due to a sub-

stance or known physiological condition
19. Z880-10: Allergy status to penicillin
20. Z818-10: Family history of other mental and be-

havioral disorders
21. 81600-9: Closed fracture of phalanx or phalanges

of hand, unspecified
22. 87341-9: Open wound of cheek, without mention

of complication
23. H9222-10: Otorrhagia, left ear
24. Z978-10: Presence of other specified devices
25. G20-10: Parkinson’s disease

26. G249-10: Dystonia, unspecified
27. 9100-9: Abrasion or friction burn of face, neck,

and scalp except eye, without mention of infec-
tion

28. 78906-9: Abdominal pain, epigastric
29. E8889-9: Unspecified fall
30. 30500-9: Alcohol abuse, unspecified
31. G520-10: Disorders of olfactory nerve
32. 8020-9: Closed fracture of nasal bones

A.1. Learning through HRR Operations
Efficiently

To make the HRR concept embeddings useful for a deep
neural network, the operations used to form the embed-
dings need to be compatible with backpropagation so
that gradient descent can update the lower-level atomic
vectors. We desired a function that produced the ICD
concept embedding matrix, , given the inputs of the VSA
knowledge graphs, 𝒢𝑖, and symbol embedding matrices,
and .

We attempted three approaches to computing through
VSA operations. First, we naively tried to compute each
concept vector in one at a time. However, this approach
was too slow in both forward and backward pass, re-
quiring more than 1 second for each pass. Our second
approach was using slices of along the relationship di-
mension as a sparse binary matrix, which, when multi-
plied with , would perform the indexing and summing
of atomic vectors for each concept. This result can be
convolved with the relationship vector and added to the
concept embedding matrix. This approach was much
faster and used a moderate amount of memory for one
of our less complex VSA formulations. However, when
dealing with our most complex formulation, it used ∼15
GB of memory.
Our final approach took advantage of the fact that

many disease concepts use relationship, but to different
atomic symbols. Also, number of times a concept uses
a particular relationship is relatively low, except for the
SNOMED “isA” relationship and our defined “descrip-
tion” relationship. Thus, for a particular relationship,
we can contribute to building many disease concept vec-
tors at once by selecting many atomic vectors, doing a
vectorized convolution with the relationship vector, and
distributing the results to be added with the appropriate
concept embedding rows. This step needs to be repeated
at most 𝑚 times for a particular relationship, where 𝑚 is
the maximum multiplicity of that relationship among all
concepts. We improved memory efficiency by perform-
ing fast Fourier transforms (FFTs) on the atomic vector
embeddings and construct the concept vectors by per-
forming binding via element-wise multiplication in the
Fourier domain. Due to the linearity of the HRR opera-
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tions, we performed a final FFT on the complex-valued
concept embedding to convert back to the real domain.
The final approach is much faster than the first ap-

proach since it takes advantage of vectorized operations
to contribute to many concept vectors at once. It is also
more memory efficient than the second approach since
all the intermediate results are dense, so allocations are
not wasted on creating mostly sparse results. On our
most complex formulation, this approach uses ∼3.5 GB
of memory, and takes ∼80 ms and ∼550 ms for forward
and backward pass respectively.
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