
Retrieval & Fine-Tuning for In-Context Tabular Models

Valentin Thomas * 1 Junwei Ma * 1 Rasa Hosseinzadeh 1

Keyvan Golestan 1 Guangwei Yu 1 Maksims Volkovs 1 Anthony Caterini 1

Abstract
Tabular data is a pervasive modality spanning a
wide range of domains, and the inherent diversity
poses a considerable challenge for deep learning.
Recent advancements using transformer-based
in-context learning have shown promise on
smaller and less complex datasets, but have
struggled to scale to larger and more complex
ones. To address this limitation, we propose a
combination of retrieval and fine-tuning: we can
adapt the transformer to a local subset of the data
by collecting nearest neighbours, and then per-
form task-specific fine-tuning with this retrieved
set of neighbours in context. Using TabPFN
as the base model – currently the best tabular
in-context learner – and applying our retrieval and
fine-tuning scheme on top results in what we call
a locally-calibrated PFN, or LoCalPFN. We con-
duct extensive evaluation on 95 datasets curated
by TabZilla from OpenML, upon which we estab-
lish a new state-of-the-art with LoCalPFN – even
with respect to tuned tree-based models. Notably,
we show a significant boost in performance com-
pared to the base in-context model, demonstrating
the efficacy of our approach and advancing the
frontier of deep learning in tabular data.

1. Introduction
Tabular data is the most pervasive modality for practical
problems in data science, spanning across a wide variety
of domains including finance, healthcare, and science
(Benjelloun et al., 2020; Ulmer et al., 2020; Clements
et al., 2020; Tang et al., 2020; Urban & Gates, 2021).
The diversity and heterogeneity of tabular data pose
great challenges for deep learning approaches (Grinsztajn
et al., 2022), unlike modalities such as text and image

*Equal contribution 1Layer 6 AI, Toronto, Canada. Correspon-
dence to: Valentin Thomas <valentin.t@layer6.ai>, Junwei Ma
<jeremy@layer6.ai>.

Proceedings of the 1 st Workshop on In-Context Learning at the
41 st International Conference on Machine Learning, Vienna, Aus-
tria. 2024. Copyright 2024 by the author(s).

in which neural networks can be designed to specifically
exploit inductive biases underlying the data (Borisov
et al., 2022). As such, obtaining a performant neural
network on a particular tabular data task often results in
expensive iterations of training and hyperparameter tuning.
Meanwhile, tree-based methods such as XGBoost (Chen &
Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2018)
have proven to be more robust to the inherent challenges of
tabular data, and thus have remained the dominant approach
for this setting (Grinsztajn et al., 2022; Shwartz-Ziv &
Armon, 2022; Borisov et al., 2022). Yet recently, there
has been progress made with transformers and In-Context
Learning (ICL): one such example is TabPFN (Hollmann
et al., 2023), which is trained using a prior-fitting procedure
(Müller et al., 2022) that exposes the network to millions
of possible data-generating processes, thus taking a step
towards encapsulating the heterogeneity of tabular data.
Such approaches differ from classical algorithms in that they
process entirely new datasets in a single forward pass and
obviate the need for training and hyperparameter tuning.

Despite the promise of transformer-based ICL methods
in the tabular setting – particularly on smaller datasets –
scaling remains an issue: memory scales quadratically in
the size of the context. This limits performance when the
entire dataset cannot fit into memory, and contrasts with
classical algorithms that tend to improve as the amount
of available data increases. In addition to this, and as
depicted in Figure 1, TabPFN in particular can struggle
with underfitting as dataset complexity increases, even
when the entire dataset fits into the context; we observe this
shortcoming in real datasets as well, and suspect this could
apply to any ICL-based model for tabular data.

To improve the scaling of tabular ICL methods in both
dataset size and complexity, we draw on two techniques
that have been incredibly successful in foundational
large language models: retrieval (Lewis et al., 2020) and
fine-tuning (Bommasani et al., 2021). On the retrieval
side, we use the k-Nearest Neighbours (kNN) of a given
query point as the context for classification; modifying
the context in this way empirically allows for both
enhanced processing of larger datasets and more complex
decision boundaries. We also fine-tune end-to-end for
each task, using an approximate neighbour scheme to

1



Retrieval & Fine-Tuning for In-Context Tabular Models

(a) Vanilla TabPFN, full context (b) TabPFN-kNN, k = 100

1 2 3 4 5 6 7 8 9
Number of pairs of concentric circles

0.6

0.7

0.8

0.9

1.0

AU
C

TabPFN
TabPFN 10-NN
TabPFN 30-NN
TabPFN 100-NN
TabPFN 300-NN

(c) Performance vs. Complexity

Figure 1: a) TabPFN – even when using the entire training data as context – underfits and cannot classify patterns such
as three pairs of concentric circles of two classes. Decision boundaries are in black and shaded areas show the predicted
class. b) Applying an adaptive local context for each point using its k nearest neighbours can easily solve this problem.
c) We observe that this approach is robust to the numbers of neighbours used (k) even when the dataset complexity increases
and always performs better than vanilla TabPFN using full context (N = 1000). Each point is averaged over 25 seeds.

facilitate backpropagation, and demonstrate significant
performance gains beyond just kNN. We named our model
Locally-Calibrated PFN – or LoCalPFN for short – to
represent the addition of retrieval and fine-tuning on top of
a base TabPFN model, although this idea should naturally
transfer to potential future ICL-based tabular foundation
models as well (van Breugel & van der Schaar, 2024). We
demonstrate that LoCalPFN is state-of-the-art against both
neural approaches and well-tuned tree-based techniques
across a 95-dataset benchmark from TabZilla (McElfresh
et al., 2023). We summarize our contributions below:

1. Provide insights into TabPFN – the current state-of-
the-art tabular ICL transformer-based framework – and
analyze how its performance scales across several axes
in both synthetic and real datasets. We identify a failure
to scale in both dataset size and complexity.

2. Propose LoCalPFN to address the scaling failures men-
tioned above, using a combination of retrieval and fine-
tuning to allow for more effective use of the context.

3. Show LoCalPFN compares favourably to strong base-
lines on a large variety of datasets through extensive
experimentation, analysis, and ablation.

2. Improving Tabular In-Context Learning
with Retrieval and Fine-Tuning

In this section, we describe ICL applied to tabular data – in
particular TabPFN – and the limitations of such an approach.
Then, we present our contributions where we treat the in-
context learner as a base model on top of which retrieval
and fine-tuning are applied.

2.1. Preliminaries

Our method generally applies to in-context learners,
specifically for classification tasks on tabular data. While, at
the time of writing the only successful model of that type is
TabPFN (Hollmann et al., 2023), we expect other such base
models to be published in the future. TabPFN is trained
using a prior-fitting procedure (Müller et al., 2022) where
a large number of synthetic datasets are generated using
randomly initialized neural networks. This approach trains
an underlying transformer-based network on various genera-
tive processes designed to simulate the diverse interrelations
that exist among the features of realistic tabular datasets.

After the prior-fitting procedure, the learned TabPFN model
ingests an entire training dataset Dtrain ≜ {(xi

train, y
i
train)}Ni=1

consisting of feature-label pairs xi
train ∈ RD and yitrain ∈

{1, . . . , C} for i ∈ {1, . . . , N}, along with features of a
query point xqy (potentially in a batch), and outputs a distri-
bution over labels yqy ∈ {1, . . . , C}. Specifically, denoting
the TabPFN network (outputting logits) as f , the resulting
posterior predictive distribution is modelled by:

pθ(yqy | xqy,Dtrain) =
exp(fθ(xqy,Dtrain)[yqy])∑C
c=1 exp(fθ(xqy,Dtrain)[c])

, (1)

where [·] denotes the vector indexing operation.

Contrary to classical machine learning methods which are
trained on one dataset and then evaluated on the same dis-
tribution, TabPFN has been shown to be able to perform
classification on a wide range of tasks without training,
thanks to its diverse prior-fitting procedure. This makes it
one of the rare foundation models for tabular data. Key to
this is the ICL ability of TabPFN: by using various train-
ing examples as context, analogous to how transformers on
language use the preceding tokens as context, TabPFN can
classify new query points in a single forward pass.

2



Retrieval & Fine-Tuning for In-Context Tabular Models

2.2. What is a Good Context for Tabular Data?

The quadratic growth of memory usage with context length
in transformers presents a challenge: the number of support
examples we can use is limited. For instance, while TabPFN
performs best on small and simple datasets, where the
entire training set fits within the context, it is unclear how
to best use TabPFN for large and complex datasets. Naïvely,
we might consider a random subsample of the training
data as context (McElfresh et al., 2023; Feuer et al., 2024).
However, Ma et al. (2024) show that this method does
not scale either and observe a drop in performance as the
dataset size increases.

Given these limitations, it is natural to ask “What constitutes
a good context for tabular data?”. This topic has been
thoroughly researched in natural language processing,
which resulted in various techniques for prompt engineering.
The situation is more complicated in the tabular domain,
as there is no natural order to tabular data as opposed to the
natural order of the words in language.

Specifically for TabPFN, some attempts have been made
to use a summary of the dataset as context, through either
k-means centroids (Feuer et al., 2024) or direct prompt
optimization (Feuer et al., 2024; Ma et al., 2024). Yet in
either case the flexibility of the method is limited by the use
of a single context for all query points. Instead, we propose
a different approach here, where we use a local context
tailored to each individual point we wish to classify. For
tabular data, we hypothesize that the most critical informa-
tion to classify a query point xqy is contained in its vicinity.
Extensive evaluations (McElfresh et al., 2023) support
this fact by showing that a simple kNN classifier can rival
modern deep architectures designed for tabular data, such
as TabNet (Arik & Pfister, 2021) and VIME (Yoon et al.,
2020). We thus believe that using nearby points as context
is a good inductive bias for tabular data classification.

2.3. Better Expressivity and Scaling with local
information

To do this, the first step is to replace the global context
by a local context, i.e., with kNN(xqy) as the k-nearest
neighbours of the query xqy in the training data Dtrain, we
replace equation 1 by

pθ(y | xqy,Dtrain) =
exp(fθ(xqy, kNN(xqy))[y])∑C
c=1 exp(fθ(xqy, kNN(xqy))[c])

.

(2)

Better Expressivity It is well known that in kNN regres-
sion and classification, the number of neighbours k controls
the bias/variance trade-off and as such the expressivity of
the model. More precisely, large k tends to “oversmooth”
and suffer from high bias/underfitting, while small k enables
more complex decision boundaries but can suffer from more

variance/overfitting (Hastie et al., 2009). We show that this
phenomenon is still true for transformers, beyond the simple
kNN classifier, in Figure 1. We generate datasets of size
N = 1000 so that it can be used as context by TabPFN
without subsampling. As we increase the complexity of the
dataset, measured by the number of concentric circles in this
case, TabPFN fails to accurately classify (e.g., for 3 pairs of
circles in (a) and more generally in (c)). Retrieving fewer
samples (k = 10, 30, 100, or 300) for each query point us-
ing its k-nearest neighbours from the training data leads to
large improvements in AUC over TabPFN as the complexity
of the data increases ((b) and (c)). Note that k = 1000 would
correspond to using all samples as context, and thus is equiv-
alent to vanilla TabPFN. As such there is a continuum be-
tween TabPFN using the full dataset as context and our local
context method using kNN, which we call TabPFN-kNN.

While Figure 1 is on toy synthetic data, we believe this
result remains surprising: a priori, we would expect
a 25-million-parameter model (TabPFN) to be able to
learn a few circles, even with just ICL. Meanwhile, we
believe that using local contexts allows TabPFN to fit more
complex patterns, such as the three circles of Figure 1, in
the same way that using local linear regression enables
more expressive (and in that case nonlinear) decision
boundaries (Cleveland & Devlin, 1988; Hastie, 2017).

Better Scaling Using a local context has another benefit: it
allows our method’s performance to scale with the training
dataset size. In machine learning, it is generally expected
that the performance of an algorithm improves as the train-
ing set size N increases, since the empirical risk converges
to the expected risk (Vapnik, 2013). However, ICL-based
methods (such as TabPFN) that require subsampling when
the maximum context length is smaller than N do not scale
with N . TabPFN-kNN, on the other hand, can still benefit
from larger training set sizes N even when the number
of neighbours k is much smaller than N , as the search is
performed over the whole training set. We demonstrate
this fact in Figure 2 for three real datasets. While the exact
patterns in the loss curves differ, we observe a similar trend
across many datasets, where the benefits of using TabPFN-
kNN grow as the dataset becomes larger. In Figure 10 we
provide more detailed figures which include training loss.

2.4. Efficient End-to-End Fine-Tuning With Retrieval

In addition to retrieval, we fine-tune the model end-to-end
on each dataset to further improve performance, as is
common in Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020). However, naïve fine-tuning is not computation-
ally efficient. Transformer-based in-context models work
with inputs of shape (B,Lctx +Lqy, d) where B is the batch
size, Lctx and Lqy are the context and query lengths, and d is
the embedding dimension. TabPFN uses only one fixed con-

3



Retrieval & Fine-Tuning for In-Context Tabular Models

26 28 210 212 214

Dataset size

4 × 10 1

5 × 10 1

Te
st

 lo
ss

(a) adult-census

26 28 210 212 214

Dataset size
3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

Te
st

 lo
ss

(b) electricity

25 26 27 28 29 210 211 212 213

Dataset size

10 1

Te
st

 lo
ss

(c) eeg-eye-state

Figure 2: Example of the behaviour of TabPFN and TabPFN-kNN as we vary the dataset size and the context length for
three large datasets. TabPFN is in shades of green and TabPFN-kNN is in shades of blue. The opacity represents the context
length used (also labelled on each line). It corresponds to random training samples for TabPFN and nearest neighbours
for TabPFN-kNN. TabPFN is limited by context size and cannot make efficient use of larger datasets. While for context
length = dataset size (k = N ) TabPFN and TabPFN-kNN have the same performance, TabPFN-kNN can leverage larger
datasets with kNN-based contexts and shows improvements, often even for lower context lengths. Each point on this plot
is the average of 100 random resamplings of the data.

p(· |xqy,Dtrain)TabPFN

Local contextkNN

Dtrain xqy

Figure 3: Overall architecture of LoCalPFN. During infer-
ence, for each query xqy, we compute its kNNs and use
them as context.

text for all points, with B = 1, Lctx the training dataset size
(or maximum context length if too large), and Lqy = Nqy
the number of points to classify. Contrary to text, there is
no auto-regressive attention mask: the context examples
all attend to each other (blue arrows on Figure 3) while the
queries only attend to the context and not to each other (red
arrows on Figure 3). Therefore, the predicted classes can
be computed in parallel and at a reduced memory footprint.

By comparison, when using a local context with exact neigh-
bours, the context is no longer shared, and therefore the
batch dimension must be used for queries: the input has
shape B = Nqy, Lctx = k – the number of neighbours –
and Lqy = 1, since the queries use distinct contexts. This
is significantly less efficient than the inference performed
by TabPFN, which both requires much less memory, and
also allows the queries to be processed in parallel. There-
fore, our main limitation is in fact the forward and backward
passes when using exact neighbors, unlike most applications
where retrieval is the bottleneck. As such, most common ap-
proximate kNN methods cannot address this issue. Instead,
to improve computational efficiency during the end-to-end
fine-tuning, we opt for a simple neighbour approximation
technique wherein many queries share the same context. An

1) Sample point 2) Compute kNN

3) Shuffle and split into context and queries

Context

Queries

Figure 4: Efficient local context computation for fine-tuning.

illustration of the method is provided in Section 2.4 for a
single batch dimension. More generally, let us assume that
we want to pass gradients on Nqy examples at once, using
a context length of Lctx. We propose to only use B different
contexts, which we will use to classify Nqy/B samples each:
First, B training examples are sampled. Then, their individ-
ual kNN search is performed with k = Lctx +Lqyfor Lqy =
Nqy/B. Finally, those batches of k samples are shuffled and
split into a context vector of length Lctx, and a query vector
of length Lqy, constructing the input vector of size (B,Lctx+
Lqy, d). This allows us to efficiently trade-off accuracy of
the neighbours versus computational complexity: with lower
B we share contexts between many points but this comes
at the cost of an approximation in the kNN search as the no-
tion of neighborhood is not transitive, i.e., the neighbour of
your neighbour might not be your neighbour. However each
sequence in each batch only contains examples which are
in the general vicinity of each other. In practice, we observe
that this method does not lead to any significant degradation
in performance while allowing much faster training.

4



Retrieval & Fine-Tuning for In-Context Tabular Models

3. Related work
Foundational Techniques for Tabular Deep Learners
Deep learning techniques have historically struggled on
tabular data (Grinsztajn et al., 2022), where inductive biases
are much harder to capture architecturally (Beyazit et al.,
2023) as compared to text or images. The comparative lack
of progress on a large foundation model for tabular data (van
Breugel & van der Schaar, 2024) is yet more evidence of
this. However, recent approaches have successfully begun
to leverage foundational ideas to improve performance.
For example, Non-Parametric Transformers (Kossen et al.,
2021) and SAINT (Somepalli et al., 2021) both combine
row-attentive transformer-based backbones with some form
of self-supervised pre-training; however, the former is lim-
ited by context size (a common theme for naïve ICL-based
learners), whereas the latter is not based on ICL and thus
does not as easily apply to novel datasets. Models such as
RIM (Qin et al., 2021) and TabR (Gorishniy et al., 2024) on
the other hand demonstrate how to effectively design tabular
deep learners incorporating retrieval modules, but still
require costly and brittle rounds of hyperparameter tuning
to adapt to any specific dataset. Our approach is meant to
target some combination of all these methods: provide ICL-
based generalization capabilities, but without limitations on
the context size. The retrieval mechanism within TabR itself
relies on kNN, which is one of the most straightforward
and widely used retrieval-based machine learning methods
(Hastie et al., 2009). In fact, kNN is still being actively
studied in the literature, e.g., in Differential Nearest
Neighbours Regression (DNNR) (Nader et al., 2022),
which aims to make kNN differentiable; this showcases the
potential of simple methods like kNN in different forms,
although DNNR tackles a separate scope from our method.

TabPFN and Extensions TabPFN (Hollmann et al., 2023)
is a transformer-based in-context learner that has emerged
as a popular model for tabular data, demonstrating strong
performance on some benchmarks (McElfresh et al., 2023).
It uses a prior-fitting process (Müller et al., 2022) allowing
for rapid adaptation to new tasks. This strong ability to
quickly generalize makes TabPFN somewhat of a founda-
tion model for tabular data (van Breugel & van der Schaar,
2024), from which techniques for generation (Ma et al.,
2023) and dataset distillation (Ma et al., 2024) for example
can emerge – interpretability is also being studied (Rundel
et al., 2024). TuneTables (Feuer et al., 2024) attempts to use
tabular sketching (Munteanu & Schwiegelshohn, 2018) to
summarize the incoming dataset and more effectively scale
TabPFN’s context; however, much like Ma et al. (2024),
this approach is limited by the use of a single context for all
datapoints, as opposed to an adaptive local context. Lastly,
den Breejen et al. (2023) is able to show some limited im-
provements by fine-tuning TabPFN, which we extend here
by more closely pairing the retrieval and fine-tuning aspects.

Links with LLMs The idea of pre-training a model on
corpora of text prior to fine-tuning has been explored in the
Natural Language Processing domain for both classification
and generation tasks (Dai & Le, 2015; Howard & Ruder,
2018; Radford et al., 2018). Later iterations refined this
idea to train a model and use its in-context learning abilities
for new tasks (Brown et al., 2020). This elicited research
into prompt engineering to determine what to actually put
in a model’s context (Nye et al., 2021; Wei et al., 2022).
Similar to prompt engineering, to better utilize the model’s
context, one can search for similar examples from a cor-
pora and use them to facilitate the task; this is known as
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020)
in the generative context. Other variants of the idea include
training jointly with retrieval (Guu et al., 2020; Borgeaud
et al., 2022) and augmenting the output of the model with
kNN via interpolating (Khandelwal et al., 2019). These
ideas are analogous to our approach of (i) fine-tuning and
retrieving jointly, and (ii) disjoint kNN and fine-tuning in
our ablations, respectively. LLMs have also been directly
applied to tabular data (Dinh et al., 2022; Hegselmann et al.,
2023; Fang et al., 2024) however, due to the pre-training
of these foundation models on large text corpora, there is
the possibility of data leakage, which causes concern with
evaluations (Bordt et al., 2024). Note that this is not the
case with TabPFN as it has been trained on synthetic data.

4. Experiments
4.1. Experimental Setup

We evaluate our methods against competitive baselines us-
ing 95 out of the 176 datasets from TabZilla (McElfresh
et al., 2023), originally sourced from OpenML (Bischl et al.,
2021). These datasets originate from diverse sources, includ-
ing academic research, competitions, government agencies,
and corporations. The 95 datasets are filtered from TabZilla
to meet TabPFN’s architectural requirements by ensuring
that each dataset has at most 100 features, at most 10 classes,
does not contain NaN values, and has at least one instance
per class for each split. The details of the datasets are de-
scribed in Appendix A.1. We further split the datasets into
two subsets: “small” datasets which contain less than 2,000
instances, and “medium/large” which contain at least 2,000
instances (up to 130,064). For each dataset, we use the splits
from TabZilla with train-validation-test ratio of 80:10:10.
Since TabPFN was trained with a maximum of 1,024 data
points as context size, the small datasets are roughly consid-
ered in-distribution for TabPFN whereas the large datasets
are considered out-of-distribution.

We conduct our experiments using 10-fold cross-validation
over all datasets for all methods. For all baselines, we apply
30 rounds of hyperparameter tuning as in McElfresh et al.
(2023) and choose the best hyperparameters for each fold

5



Retrieval & Fine-Tuning for In-Context Tabular Models

according to its validation AUC. In addition, the TabPFN
baseline is reported without further ensembling or transfor-
mations, unless otherwise noted. Our methods also build on
top of this same TabPFN baseline without further process-
ing. We also compare against TabPFN with transformations
in Section 4.4. More details of the baseline models can
be found in Appendix A.2.1. We use the faiss (Johnson
et al., 2019; Douze et al., 2024) library for efficient kNN
search in our methods; this enables us to harness parallel
computation to accelerate the nearest neighbour search. We
evaluate our methods TabPFN-kNN and LoCalPFN against
other models in the following sections. Notably, without
further fine-tuning, LoCalPFN is identical to TabPFN-kNN.
Details of our method are in Appendix A.2.2.

Note on evaluation and the computation of proper
confidence intervals: While many works evaluate
tabular data methods on a small set of datasets and report
confidence intervals/standard deviations for those, we
choose to evaluate on a large number of datasets in order
to have more meaningful results. However, this makes
it harder to compute meaningful uncertainty. Agarwal
et al. (2021) dealt with a related problem in reinforcement
learning; we follow their lead by, for example, reporting
the interquartile mean (IQM, i.e., the mean of the middle
50% of scores), and we use their library to compute 95%
confidence intervals via stratified bootstrapping.

4.2. Main Experiments

As shown in Section 4.2, averaged over 95 datasets, Lo-
CalPFN outperforms all other baselines, with significant im-
provement over TabPFN itself. Among the 47 small datasets,
we found that TabPFN is in fact quite competitive with other
methods, similar to what had been reported by McElfresh
et al. (2023). Nevertheless, LoCalPFN further improves the
performance even in this setting and positions itself as the
best method. For the 48 medium/large datasets, TabPFN un-
derperforms the tree-based methods by a wide margin. Sim-
ply applying kNN on top of TabPFN leads to a drastic perfor-
mance increase on top of TabPFN. Finally, LoCalPFN fur-
ther improves on TabPFN-kNN, and either performs on par
with, or outperforms, all other methods. We also measure
the accuracy and F1 score over all datasets and see a similar
pattern; those details can be found in Table 6 and Table 7.

Deep Learning Model Comparisons: Note that most deep
learning baselines are significantly more expensive to train
and tune on larger datasets, and as such, most of them could
not be run on all datasets (McElfresh et al., 2023). Neverthe-
less, in Table 5 we compare TabPFN-kNN and LoCalPFN
to other deep learning based methods on the datasets on
which the baselines have been able to run, and show an
even larger improvement in performance. The datasets we
used for this comparison can be found in Table 4.

4.3. Analysis: Scaling with Dataset Size and Complexity

In this section, we further validate that LoCalPFN addresses
the scaling problems of TabPFN. We see in Figure 1 and
2 that TabPFN scales badly with both size and complexity;
here, we verify this phenomenon in real datasets. While
this may appear contradictory to Table 1 of McElfresh
et al. (2023), which shows TabPFN excelling on a large
benchmark suite, we note that the aforementioned study
mostly contained small datasets and thus it did not show
the same performance drop-off observed here.

Scaling with Size In Figure 5, we report the AUC of
different algorithms relative to the AUC of Random
Forest for different dataset sizes. We choose relative
AUC for clarity as there is no clear correlation between
the maximum AUC attainable on a dataset and its size.
We see that, compared to the Random Forest baseline,
TabPFN’s performance drops drastically when the dataset
size increases beyond 3,000, indicating poor scaling with
N . On the other hand, the other methods we report scale
more favourably with the dataset size. We also see that
LoCalPFN scales favourably compared to the Random
Forest baseline, and even outperforms XGBoost for large
datasets. Error bars represent the 95% confidence interval.

Scaling with Complexity While in Figure 1 we could
easily control the complexity of the task, there is no
generally accepted measure of complexity for an arbitrary
dataset. Here, we propose a simple proxy for complexity:
for a given dataset, we measure the difference between the
best and worst AUCs of a given set of algorithms, similarly
to McElfresh et al. (2023). The rationale is that AUC
itself cannot capture complexity, as for instance learning
to separate two Gaussians can be done optimally by a linear
classifier, but the error rate depends on their variance. In
Figure 6, we analyze performance across different levels of
this complexity measure. We first calculate the difference in
AUC for each dataset using all listed methods in Section 4.2,
then we divide the datasets into five quantiles on the x-axis,
with increasing complexity as we move to the right; on the
y-axis, we report the mean AUC relative to Random Forest
across 10 folds and across the datasets in each bin. We
see that TabPFN scales poorly with increasing complexity,
and LoCalPFN still outperforms all other methods in the
quantiles of higher complexity, demonstrating that its
improvements are not just limited to “easy” datasets.

4.4. Ablation Studies

In this section, we provide ablation studies on different
design choices for LoCalPFN.

Importance of Joint Retrieval and Fine-Tuning One
could naïvely consider simply fine-tuning the in-context
learner on randomly sampled context during training. In

6



Retrieval & Fine-Tuning for In-Context Tabular Models

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
kNN 0.843 [0.838-0.847] 0.812 [0.808-0.816] 0.807 [0.798-0.816] 0.781 [0.772-0.789] 0.882 [0.880-0.884] 0.848 [0.847-0.850]

TabPFN 0.917 [0.914-0.919] 0.867 [0.864-0.870] 0.898 [0.892-0.904] 0.849 [0.843-0.856] 0.927 [0.925-0.929] 0.884 [0.883-0.885]

TabPFN 3k 0.924 [0.922-0.927] 0.873 [0.869-0.876] 0.903 [0.897-0.909] 0.852 [0.845-0.858] 0.938 [0.937-0.939] 0.893 [0.892-0.894]

LightGBM 0.940 [0.937-0.942] 0.885 [0.881-0.888] 0.884 [0.876-0.891] 0.838 [0.831-0.845] 0.966 [0.964-0.967] 0.931 [0.930-0.932]

RandomForest 0.936 [0.934-0.939] 0.886 [0.883-0.890] 0.895 [0.888-0.901] 0.848 [0.841-0.854] 0.955 [0.954-0.956] 0.920 [0.919-0.921]

CatBoost 0.942 [0.939-0.944] 0.891 [0.888-0.895] 0.907 [0.901-0.914] 0.856 [0.849-0.862] 0.961 [0.960-0.962] 0.926 [0.925-0.927]

XGBoost 0.943 [0.940-0.946] 0.892 [0.889-0.895] 0.907 [0.900-0.914] 0.861 [0.854-0.867] 0.965 [0.964-0.966] 0.931 [0.929-0.932]

TabPFN-kNN 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

Table 1: AUC scores and confidence intervals for all 95 datasets, 47 small datasets, and 48 medium/large datasets.

0-1 1-3 3-10 10-50 50+
Dataset size (x1000)

0.10
0.08
0.06
0.04
0.02
0.00
0.02
0.04

M
ea

n 
AU

C 
(re

la
tiv

e 
to

 R
F)

TabPFN-kNN
XGBoost
TabPFN
RandomForest
LightGBM
LoCalPFN

Figure 5: AUC vs. Size

Figure 7 (left) and Table 8, we see that this indeed improves
performance over TabPFN. However, applying TabPFN-
kNN on top of a naïvely fine-tuned model does not improve
performance further. Therefore, it is crucial to fine-tune the
model end-to-end with the retrieval (LocalPFN).

Choice of Embedding We also try different embeddings.
The simplest approach is to use the raw standardized fea-
tures for the nearest neighbour retrieval. In Figure 7 (centre)
and Table 9, it is shown that this simple approach is ac-
tually very competitive. We compare it to two additional
approaches: using one hot encodings (when the size of
the resulting vector does not exceed 100 features), and the
output of the encoder layer of TabPFN. For the latter, we
recompute the search index every 30 gradient steps. The
results show that the former, using one hot encodings, does
lead to some improvement, however mostly for smaller
datasets (see Figure 11 and Figure 12).

Why do simple embeddings work so well? While Tabular
data is complex in many regards (Grinsztajn et al., 2022),
features in tabular data are often semantically meaningful.
For this reason, we expect distances that decompose over in-
dividual features (i.e d(x, x′) =

∑
i di(xi, x

′
i)) to be a good

inductive bias for tabular data, especially when it is normal-
ized. This would not be the case for most natural signals.

Importance of Using a Local Context Up until now,
we have mostly compared to TabPFN with a random
context of size 1,000. To prove our point that using a

0-20% 20-40% 40-60% 60-80% 80-100%
Complexity estimate (Easiest to Hardest)

0.04

0.02

0.00

0.02

0.04

0.06

M
ea

n 
AU

C 
(re

la
tiv

e 
to

 R
F)

Figure 6: AUC vs. Complexity

local context is inherently better than a global context
(same context for all queries), we attempt to find the best
model using a global context by first using an ensemble
of 32 TabPFN models (with randomized feature and class
ordering as in Hollmann et al. (2023)), which we denote
TabPFN-32ens, and then by increasing the context size
of the ensembled TabPFN to 3,000 (TabPFN-3k-32ens).
As depicted in Figure 7 (right) and detailed in Table 10,
while improving significantly upon TabPFN, these are
still not competitive even with our TabPFN-kNN. As
one can criticize the use of a single context to classify
queries, we further experimented with a “Bayesian”
view of the probability by averaging it over contexts
pθ(yqy | xqy,Dtrain) ≜

∫
C pθ(yqy | xqy, C)p(C | Dtrain)dC,

where C is a context obtained from the training data Dtrain.
We experimented with splitting Dtrain into chunks of size
3,000, and averaging the probabilities over those chunks.
We call this method TabPFN-32ens-3k-int (for integral) and
show that, while it does improve upon the single random
context, it does not outperform TabPFN-kNN. Additionally,
this method is very expensive as: (i) using 3,000 context ex-
amples is GPU memory intensive, and (ii) the integral over
chunks makes the inference scale as O(N). The last method
we compared to is “In-Context Distillation” (Ma et al., 2024)
(TabPFN-ICD) where, similarly to Feuer et al. (2024), the
authors directly optimize the context. While this last method
leads to better performance (including on larger datasets,
see Figure 12), since it performs task-specific tuning it is
more comparable to LoCalPFN, which remains superior.

7



Retrieval & Fine-Tuning for In-Context Tabular Models

Tab
PFN

Fin
e-t

un
e

Fin
e-t

un
e +

 kN
N

Tab
PFN

-kN
N

LoC
alP

FN
0.86

0.87

0.88

0.89

0.90

0.91

0.92

M
ea

n 
AU

C

Importance of joint retrieval and fine-tuning

LoC
alP

FN
-en

cod
er

LoC
alP

FN
-ra

w

LoC
alP

FN
-on

e h
ot

0.86

0.87

0.88

0.89

0.90

0.91

0.92 Impact of embedding choices

Tab
PFN

Tab
PFN

-32
en

s

Tab
PFN

-3k
-32

en
s

Tab
PFN

-3k
-32

en
s-in

t

Tab
PFN

-IC
D

Tab
PFN

-kN
N

LoC
alP

FN
0.86

0.87

0.88

0.89

0.90

0.91

0.92 Importance of using a local context

Figure 7: Ablations for different design choices on all 95 datasets. Left: Fine-tuning jointly with retrieval yields better
performance. Centre: The choice of embeddings for retrieval does not change the performance drastically but can lead
to some improvements. Right: Methods using a context that does not depend on the current query do not match the
performance of methods that use a local context.

20 50 100 200 500 700
1000

Maximum number of neighbours

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935

M
ea

n 
AU

C

LoCalPFN
TabPFN-kNN
XGBoost
RandomForest

Figure 8: Ablating max # of neighbours

Sensitivity to Number of Neighbours We also ablate
the choice of the number of neighbours used as context.
This is the only hyperparameter for TabPFN-kNN and also
an important hyperparameter for LoCalPFN. In practice,
for the number of neighbours, we use the minimum of (i)
10 times the square root of the training set size, and (ii)
a pre-defined maximum. For large datasets, the number
of neighbours should roughly align with the pre-defined
maximum. In Figure 8, we vary this pre-defined maximum
while observing the mean AUC on the 48 medium/large
datasets. We found that TabPFN-kNN is not very sensitive
to this choice as long as it is at least 100. We also see that
LoCalPFN is able to improve TabPFN-kNN on all context
sizes. Surprisingly, we observe that LoCalPFN is able to
outperform the random forest baseline using a maximum
context size of only 50, and also outperform the XGBoost
baseline with maximum context size of 500. The details
of the ablation can be found in Table 11.

Other Ablations We also ascertain the quality of the
approximate local context in real datasets in Appendix A.5.5
and Table 12, and we provide a runtime analysis of various
methods in Appendix A.5.6 and Figure 13.

5. Conclusion and Limitations
In this paper, we demonstrate how to use retrieval and
fine-tuning to improve performance on tabular data
classification tasks by introducing LoCalPFN as a version
of this framework that uses TabPFN as the base model.
LoCalPFN breaks new ground for neural approaches on
tabular data, even showing improvements over workhorse
tree-based techniques. We also provide TabPFN-kNN as
a variant without fine-tuning, demonstrating its superiority
over the base model and practical utility.

However, despite its successes, our framework also has
some limitations. The first is that we have only shown that
retrieval and fine-tuning improve TabPFN, since it is the
only proven ICL-based tabular model. Thus, we cannot
be certain that our ideas would directly transfer to new
base models, although the success of these concepts in
other domains provides some evidence. It is also worth
noting that the original RAG paper (Lewis et al., 2020) only
initially demonstrated success on BART. Next, the reliance
on TabPFN as a base model brings some limitations:
besides the constraints on number of features and classes
discussed in Section 4.1, we are also unable to easily test
our ideas in regression tasks since TabPFN is not designed
for them. Although we expect these constraints to gradually
be lifted as tabular foundation models improve and increase
their scope, we also note that tree-based methods are not
nearly as susceptible to these issues. Going further on the
comparison with tree-based methods, while we note that
LoCalPFN performs better than them in our experimental
study, we also point out in Appendix A.5.6 that the runtime
of LoCalPFN is slower. Yet it is still faster than other
deep learning approaches, and the cheaper TabPFN-kNN
variant runs as fast as any tree-based method on datasets
we studied, while still attaining respectable performance.
Overall, we believe that the benefits of our framework far
outweigh the limitations, as LoCalPFN greatly expands the
capabilities of deep learning on tabular data.

8



Retrieval & Fine-Tuning for In-Context Tabular Models

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. In Advances in Neural
Information Processing Systems, 2021.

Arik, S. Ö. and Pfister, T. Tabnet: Attentive interpretable
tabular learning. In AAAI Conference on Artificial Intelli-
gence, pp. 6679–6687, 2021.

Benjelloun, O., Chen, S., and Noy, N. Google dataset search
by the numbers. In The Semantic Web – ISWC 2020, pp.
667–682, 2020.

Beyazit, E., Kozaczuk, J., Li, B., Wallace, V., and Fadlallah,
B. An inductive bias for tabular deep learning. In Ad-
vances in Neural Information Processing Systems, 2023.

Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter,
F., Lang, M., Gomes Mantovani, R., van Rijn, J., and
Vanschoren, J. OpenML benchmarking suites. In Pro-
ceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, 2021.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Bordt, S., Nori, H., and Caruana, R. Elephants never forget:
Testing language models for memorization of tabular data.
arXiv preprint arXiv:2403.06644, 2024.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., Van Den Driessche, G. B., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In International
Conference on Machine Learning, pp. 2206–2240, 2022.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

Chen, T. and Guestrin, C. XGBoost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SigKDD

International Conference on Knowledge Discovery and
Data Mining, pp. 785–794, 2016.

Clements, J. M., Xu, D., Yousefi, N., and Efimov, D. Se-
quential deep learning for credit risk monitoring with
tabular financial data. arXiv preprint arXiv:2012.15330,
2020.

Cleveland, W. S. and Devlin, S. J. Locally weighted regres-
sion: An approach to regression analysis by local fitting.
Journal of the American Statistical Association, 83(403):
596–610, 1988.

Dai, A. M. and Le, Q. V. Semi-supervised sequence learning.
In Advances in Neural Information Processing Systems,
2015.

den Breejen, F., Bae, S., Cha, S., Kim, T.-Y., Koh, S. H.,
and Yun, S.-Y. Fine-tuning the retrieval mechanism for
tabular deep learning. In NeurIPS 2023 Second Table
Representation Learning Workshop, 2023.

Dinh, T., Zeng, Y., Zhang, R., Lin, Z., Gira, M., Rajput,
S., Sohn, J.-y., Papailiopoulos, D., and Lee, K. LIFT:
Language-interfaced fine-tuning for non-language ma-
chine learning tasks. In Advances in Neural Information
Processing Systems, 2022.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazaré, P.-E., Lomeli, M., Hosseini, L., and Jégou, H.
The Faiss library. arXiv preprint 2401.08281, 2024.

Fang, X., Xu, W., Tan, F. A., Zhang, J., Hu, Z., Qi, Y., Nick-
leach, S., Socolinsky, D., Sengamedu, S., and Faloutsos,
C. Large language models (LLMs) on tabular data: Pre-
diction, generation, and understanding – A survey. arXiv
preprint arXiv:2402.17944, 2024.

Feuer, B., Schirrmeister, R. T., Cherepanova, V., Hegde,
C., Hutter, F., Goldblum, M., Cohen, N., and White, C.
TuneTables: Context optimization for scalable prior-data
fitted networks. arXiv preprint arXiv:2402.11137, 2024.

Gorishniy, Y., Rubachev, I., Kartashev, N., Shlenskii, D.,
Kotelnikov, A., and Babenko, A. TabR: Tabular deep
learning meets nearest neighbors. In International Con-
ference on Learning Representations, 2024.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do
tree-based models still outperform deep learning on typ-
ical tabular data? In Advances in Neural Information
Processing Systems, 2022.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.
Retrieval augmented language model pre-training. In
International Conference on Machine Learning, pp. 3929–
3938, 2020.

9



Retrieval & Fine-Tuning for In-Context Tabular Models

Hastie, T. Generalized additive models. In Statistical models
in S, pp. 249–307. Routledge, 2017.

Hastie, T., Tibshirani, R., and Friedman, J. H. The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction, volume 2. Springer, 2009.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. TabLLM: Few-shot classification of
tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp.
5549–5581, 2023.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F.
TabPFN: A transformer that solves small tabular classifi-
cation problems in a second. In International Conference
on Learning Representations, 2023.

Howard, J. and Ruder, S. Universal language model
fine-tuning for text classification. arXiv preprint
arXiv:1801.06146, 2018.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with GPUs. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L.,
and Lewis, M. Generalization through memorization:
Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019.

Kossen, J., Band, N., Lyle, C., Gomez, A., Rainforth, T.,
and Gal, Y. Self-attention between datapoints: Going
beyond individual input-output pairs in deep learning.
In Advances in Neural Information Processing Systems,
2021.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., Riedel, S., and Kiela, D. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. In Advances in
Neural Information Processing Systems, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

Ma, J., Dankar, A., Stein, G., Yu, G., and Caterini, A. TabPF-
Gen – Tabular data generation with TabPFN. In NeurIPS
2023 Second Table Representation Learning Workshop,
2023.

Ma, J., Thomas, V., Yu, G., and Caterini, A. In-
context data distillation with TabPFN. arXiv preprint
arXiv:2402.06971, 2024.

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V.,
Ramakrishnan, G., Goldblum, M., and White, C. When

do neural nets outperform boosted trees on tabular data?
In Advances in Neural Information Processing Systems,
2023.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F. Transformers can do Bayesian inference. In
International Conference on Learning Representations,
2022.

Munteanu, A. and Schwiegelshohn, C. Coresets-methods
and history: A theoreticians design pattern for approxima-
tion and streaming algorithms. KI-Künstliche Intelligenz,
32:37–53, 2018.

Nader, Y., Sixt, L., and Landgraf, T. DNNR: Differential
nearest neighbors regression. In International Conference
on Machine Learning, pp. 16296–16317, 2022.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., Sutton, C., and Odena, A. Show your work:
Scratchpads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114, 2021.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. CatBoost: Unbiased boosting with cat-
egorical features. In Advances in Neural Information
Processing Systems, 2018.

Qin, J., Zhang, W., Su, R., Liu, Z., Liu, W., Tang, R., He, X.,
and Yu, Y. Retrieval & interaction machine for tabular
data prediction. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp.
1379–1389, 2021.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training, 2018.

Rundel, D., Kobialka, J., von Crailsheim, C., Feurer, M., Na-
gler, T., and Rügamer, D. Interpretable machine learning
for TabPFN. arXiv preprint arXiv:2403.10923, 2024.

Shwartz-Ziv, R. and Armon, A. Tabular data: Deep learning
is not all you need. Information Fusion, 81:84–90, 2022.

Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss,
C. B., and Goldstein, T. SAINT: Improved neural net-
works for tabular data via row attention and contrastive
pre-training. arXiv preprint arXiv:2106.01342, 2021.

Tang, Q., Xia, G., Zhang, X., and Long, F. A customer
churn prediction model based on XGBoost and MLP. In
International Conference on Computer Engineering and
Application (ICCEA), pp. 608–612, 2020.

Ulmer, D., Meijerink, L., and Cinà, G. Trust issues: Uncer-
tainty estimation does not enable reliable OOD detection

10



Retrieval & Fine-Tuning for In-Context Tabular Models

on medical tabular data. In Machine Learning for Health,
pp. 341–354, 2020.

Urban, C. J. and Gates, K. M. Deep learning: A primer for
psychologists. Psychological Methods, 26(6):743, 2021.

van Breugel, B. and van der Schaar, M. Why tabular founda-
tion models should be a research priority. In International
Conference on Machine Learning, 2024.

Vapnik, V. The Nature of Statistical Learning Theory.
Springer Science & Business Media, 2013.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., and Zhou, D. Chain-of-thought prompting
elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, 2022.

Yoon, J., Zhang, Y., Jordon, J., and Van der Schaar, M.
VIME: Extending the success of self-and semi-supervised
learning to tabular domain. Advances in Neural Informa-
tion Processing Systems, 2020.

11



Retrieval & Fine-Tuning for In-Context Tabular Models

A. Appendix
A.1. Datasets

Table 2: 47 Small Datasets

dataset did # instances # feat # classes # cat imbalance ratio

Australian 146818 690 14 2 8 1.248
LED-display-domain-7digit 125921 500 7 10 0 1.541
acute-inflammations 10089 120 6 2 5 1.400
balance-scale 11 625 4 3 0 5.878
banknote-authentication 10093 1372 4 2 0 1.249
blood-transfusion-service-center 10101 748 4 2 0 3.202
breast-cancer 145799 286 9 2 9 2.365
car-evaluation 146192 1728 21 4 21 18.615
car 146821 1728 6 4 6 18.615
climate-model-simulation-crashes 146819 540 18 2 0 10.739
cmc 23 1473 9 3 7 1.889
credit-g 31 1000 20 2 13 2.333
diabetes 37 768 8 2 0 1.866
dresses-sales 125920 500 12 2 11 1.381
fertility 9984 100 9 2 0 7.333
hayes-roth 146063 160 4 3 0 2.097
hill-valley 145847 1212 100 2 0 1.000
ilpd 9971 583 10 2 1 2.491
ionosphere 145984 351 34 2 0 1.786
iris 59 150 4 3 0 1.000
kc2 3913 522 21 2 0 3.879
monks-problems-2 146065 601 6 2 6 1.917
pc1 3918 1109 21 2 0 13.403
pc3 3903 1563 37 2 0 8.769
pc4 3902 1458 37 2 0 7.191
postoperative-patient-data 146210 88 8 2 8 2.667
profb 3561 672 9 2 4 2.000
qsar-biodeg 9957 1055 41 2 0 1.963
socmob 3797 1156 5 2 4 3.516
sonar 39 208 60 2 0 1.144
steel-plates-fault 146817 1941 27 7 0 12.236
tae 47 151 5 3 2 1.061
tic-tac-toe 49 958 9 2 9 1.886
transplant 3748 131 3 2 0 1.729
vehicle 53 846 18 4 0 1.095
wdbc 9946 569 30 2 0 1.684
yeast 145793 1269 8 4 0 2.704

Table 3: 48 Medium/Large Datasets

dataset did # instances # feat # classes # cat imbalance ratio

GesturePhaseSegmentationProcessed 14969 9873 32 5 0 2.956
JapaneseVowels 3510 9961 14 9 0 2.064
MagicTelescope 3954 19020 10 2 0 1.844
MiniBooNE 168335 130064 50 2 0 2.563
PhishingWebsites 14952 11055 30 2 30 1.257
Satellite 167211 5100 36 2 0 67.000
adult-census 3953 32561 14 2 8 3.153
adult 7592 48842 14 2 8 3.179
artificial-characters 14964 10218 7 10 0 2.360
bank-marketing 14965 45211 16 2 9 7.548
cardiotocography 9979 2126 35 10 0 10.925
churn 167141 5000 20 2 4 6.072
connect-4 146195 67557 42 3 42 6.896
eeg-eye-state 14951 14980 14 2 0 1.228
electricity 219 45312 8 2 1 1.355
elevators 3711 16599 18 2 0 2.236
first-order-theorem-proving 9985 6118 51 6 0 5.255
jannis 168330 83733 54 4 0 22.835
kc1 3917 2109 21 2 0 5.469
kr-vs-kp 3 3196 36 2 36 1.093
magic 146206 19020 10 2 0 1.844
mfeat-fourier 14 2000 76 10 0 1.000
mfeat-karhunen 16 2000 64 10 0 1.000
mfeat-morphological 18 2000 6 10 0 1.000

Continued on next page

12



Retrieval & Fine-Tuning for In-Context Tabular Models

Table 3: 48 Medium/Large Datasets

dataset did # instances # feat # classes # cat imblance ratio

mfeat-zernike 22 2000 47 10 0 1.000
mushroom 24 8124 22 2 22 1.075
numerai28.6 167120 96320 21 2 0 1.021
nursery 9892 12958 8 4 8 13.171
optdigits 28 5620 64 10 0 1.032
ozone-level-8hr 9978 2534 72 2 0 14.838
page-blocks 30 5473 10 5 0 175.464
pendigits 32 10992 16 10 0 1.084
phoneme 9952 5404 5 2 0 2.407
pollen 3735 3848 5 2 0 1.000
satimage 2074 6430 36 6 0 2.450
segment 146822 2310 16 7 0 1.000
shuttle 146212 58000 9 7 0 4558.600
spambase 43 4601 57 2 0 1.538
splice 45 3190 60 3 60 2.158
sylvine 168912 5124 20 2 0 1.000
wall-robot-navigation 9960 5456 24 4 0 6.723
wilt 146820 4839 5 2 0 17.540

Table 4: 71 Datasets Selected for Benchmarking Deep Learning Models

dataset did # instances # feat # classes # cat imblance ratio

Australian 146818 690 14 2 8 1.248
LED-display-domain-7digit 125921 500 7 10 0 1.541
Satellite 167211 5100 36 2 0 67.000
acute-inflammations 10089 120 6 2 5 1.400
balance-scale 11 625 4 3 0 5.878
banknote-authentication 10093 1372 4 2 0 1.249
blood-transfusion-service-center 10101 748 4 2 0 3.202
breast-cancer 145799 286 9 2 9 2.365
car-evaluation 146192 1728 21 4 21 18.615
car 146821 1728 6 4 6 18.615
cardiotocography 9979 2126 35 10 0 10.925
churn 167141 5000 20 2 4 6.072
climate-model-simulation-crashes 146819 540 18 2 0 10.739
cmc 23 1473 9 3 7 1.889
credit-g 31 1000 20 2 13 2.333
diabetes 37 768 8 2 0 1.866
dresses-sales 125920 500 12 2 11 1.381
eeg-eye-state 14951 14980 14 2 0 1.228
fertility 9984 100 9 2 0 7.333
first-order-theorem-proving 9985 6118 51 6 0 5.255
hayes-roth 146063 160 4 3 0 2.097
hill-valley 145847 1212 100 2 0 1.000
ilpd 9971 583 10 2 1 2.491
ionosphere 145984 351 34 2 0 1.786
iris 59 150 4 3 0 1.000
kc1 3917 2109 21 2 0 5.469
kc2 3913 522 21 2 0 3.879
kr-vs-kp 3 3196 36 2 36 1.093
mfeat-fourier 14 2000 76 10 0 1.000
mfeat-karhunen 16 2000 64 10 0 1.000
mfeat-morphological 18 2000 6 10 0 1.000
mfeat-zernike 22 2000 47 10 0 1.000
monks-problems-2 146065 601 6 2 6 1.917
mushroom 24 8124 22 2 22 1.075
optdigits 28 5620 64 10 0 1.032
ozone-level-8hr 9978 2534 72 2 0 14.838
page-blocks 30 5473 10 5 0 175.464
pc1 3918 1109 21 2 0 13.403
pc3 3903 1563 37 2 0 8.769
pc4 3902 1458 37 2 0 7.191
phoneme 9952 5404 5 2 0 2.407
pollen 3735 3848 5 2 0 1.000
postoperative-patient-data 146210 88 8 2 8 2.667
profb 3561 672 9 2 4 2.000
qsar-biodeg 9957 1055 41 2 0 1.963
satimage 2074 6430 36 6 0 2.450
segment 146822 2310 16 7 0 1.000
socmob 3797 1156 5 2 4 3.516

Continued on next page

13



Retrieval & Fine-Tuning for In-Context Tabular Models

Table 4: 71 Datasets Selected for Benchmarking Deep Learning Models

dataset did # instances # feat # classes # cat imblance ratio

sonar 39 208 60 2 0 1.144
spambase 43 4601 57 2 0 1.538
splice 45 3190 60 3 60 2.158
steel-plates-fault 146817 1941 27 7 0 12.236
tae 47 151 5 3 2 1.061
tic-tac-toe 49 958 9 2 9 1.886
transplant 3748 131 3 2 0 1.729
vehicle 53 846 18 4 0 1.095
wall-robot-navigation 9960 5456 24 4 0 6.723
wdbc 9946 569 30 2 0 1.684
wilt 146820 4839 5 2 0 17.540
yeast 145793 1269 8 4 0 2.704

A.2. Experiment Details

A.2.1. BASELINE DETAILS

We use the experimental results from TabZilla (McElfresh et al., 2023) when they are available. These re-
sults include the tree-based models and the deep learning model baselines. These results can be found
in https://github.com/naszilla/tabzilla and https://drive.google.com/drive/folders/
1cHisTmruPHDCYVOYnaqvTdybLngMkB8R.

For different variations of TabPFN inference techniques, we conduct experiments directly using the TabPFN repository
https://github.com/automl/TabPFN.

A.2.2. LOCALPFN DETAILS

For all TabPFN-kNN experiments, we use a fixed number of neighbours equal to the minimum of (i) 10 times the square
root of the dataset size, and (ii) 1000. We find this works well in practice since it adapts to small and large datasets. In
practice, we use a batch size of 512 for inference using the faiss library for speedup.

For LoCalPFN experiments, we use the exact same setup as TabPFN-kNN during inference. Therefore, at step 0, LoCalPFN
and TabPFN-kNN are equivalent. For training LoCalPFN, we adopt the AdamW (Loshchilov & Hutter, 2019) optimizer with
a learning rate of 0.01 and weight decay of 0.01. We do not have warmup or a learning rate scheduler. For the approximate
local context for training, we use the same number of neighbours as TabPFN-kNN. We use a fixed number of query points
(1,000) sampled from the training set and a batch of 2. For our reported results, we also use one-hot encoding for neighbour
retrieval and inference. In addition, we evaluate our model every 30 gradient steps and apply early stopping based on the
validation set AUC for each fold respectively.

All experiments for our proposed methods can be run on a machine with a single NVIDIA RTX 6000 GPU Ada Generation,
995Gi RAM, and AMD Ryzen Threadripper PRO 5995WX 64-Cores CPU. Additional runtime analysis can be found in
Figure 13.

A.3. Additional Experiments

A.3.1. COMPARISON TO DEEP LEARNING MODELS

In addition to tree-based models, we also compare LoCalPFN and TabPFN-kNN with deep learning based methods. We use
the results directly from the TabZilla repository. However, due to the fact that a lot of the deep learning baselines are very
computationally expensive, many of them were not able to run on all datasets. Therefore, we propose a subset of the 95
datasets which contains 71 datasets upon which all the deep learning methods could run. The details of the 71 dataset subset
can be found in Table 4.

The complete results can be found in Table 5. We can see that LoCalPFN still outperforms all other models.

A.3.2. COMPARISON WITH OTHER METRICS

Here we also compare the performance of LoCalPFN with other models using accuracy and F1 score as the metric. We can
observe a similar pattern here: LoCalPFN either matches or outperforms other models on either of these metrics as well.

14

https://github.com/naszilla/tabzilla
https://drive.google.com/drive/folders/1cHisTmruPHDCYVOYnaqvTdybLngMkB8R
https://drive.google.com/drive/folders/1cHisTmruPHDCYVOYnaqvTdybLngMkB8R
https://github.com/automl/TabPFN


Retrieval & Fine-Tuning for In-Context Tabular Models

Table 5: LoCalPFN outperforms deep learning baselines significantly.

All 71 Datasets
Algorithm IQM AUC Mean AUC
VIME 0.771 [0.760-0.782] 0.741 [0.732-0.750]
rtdl_MLP 0.855 [0.848-0.862] 0.812 [0.806-0.818]
TabNet 0.881 [0.874-0.888] 0.825 [0.818-0.832]
STG 0.877 [0.872-0.883] 0.829 [0.823-0.834]
rtdl_ResNet 0.917 [0.912-0.922] 0.862 [0.857-0.867]
rtdl_FTTransformer 0.919 [0.913-0.924] 0.869 [0.864-0.874]
TabPFN 0.929 [0.925-0.932] 0.875 [0.871-0.879]
Fine-Tune 0.936 [0.932-0.939] 0.881 [0.876-0.886]
TabPFN-kNN 0.948 [0.944-0.951] 0.889 [0.884-0.894]
LoCalPFN-encoder 0.956 [0.953-0.959] 0.892 [0.887-0.897]
LoCalPFN-raw 0.957 [0.954-0.960] 0.893 [0.887-0.898]
Fine-Tune+kNN 0.951 [0.948-0.954] 0.893 [0.888-0.897]
LoCalPFN 0.959 [0.956-0.962] 0.903 [0.899-0.907]

Table 6: Accuracy comparison for LoCalPFN and the baseline models.

All Small Medium/Large
Algorithm IQM Acc Mean Acc IQM Acc Mean Acc IQM Acc Mean Acc
TabPFN 0.856 [0.853-0.859] 0.817 [0.815-0.820] 0.836 [0.830-0.842] 0.806 [0.801-0.811] 0.871 [0.869-0.872] 0.828 [0.826-0.830]

TabPFN 3k 0.862 [0.859-0.865] 0.823 [0.820-0.826] 0.839 [0.833-0.845] 0.808 [0.803-0.813] 0.881 [0.879-0.882] 0.837 [0.835-0.839]

RandomForest 0.875 [0.873-0.878] 0.839 [0.837-0.841] 0.834 [0.827-0.840] 0.807 [0.802-0.812] 0.900 [0.899-0.901] 0.866 [0.865-0.867]

LightGBM 0.878 [0.875-0.881] 0.842 [0.839-0.845] 0.830 [0.824-0.837] 0.807 [0.802-0.812] 0.918 [0.916-0.919] 0.886 [0.885-0.887]

CatBoost 0.883 [0.880-0.886] 0.847 [0.844-0.849] 0.844 [0.838-0.850] 0.815 [0.810-0.820] 0.908 [0.907-0.909] 0.876 [0.875-0.877]

XGBoost 0.889 [0.886-0.892] 0.848 [0.845-0.851] 0.840 [0.833-0.847] 0.811 [0.804-0.817] 0.919 [0.918-0.920] 0.887 [0.886-0.888]

TabPFN-kNN 0.877 [0.874-0.879] 0.843 [0.841-0.845] 0.856 [0.851-0.862] 0.825 [0.820-0.829] 0.891 [0.890-0.892] 0.861 [0.860-0.862]

LoCalPFN 0.902 [0.900-0.905] 0.865 [0.863-0.868] 0.875 [0.869-0.881] 0.840 [0.835-0.845] 0.918 [0.916-0.919] 0.890 [0.889-0.891]

Table 7: F1 score comparison for LoCalPFN and the baseline models.

All Small Medium/Large
Algorithm IQM F1 Mean F1 IQM F1 Mean F1 IQM F1 Mean F1
TabPFN 0.843 [0.840-0.846] 0.796 [0.794-0.799] 0.818 [0.812-0.825] 0.783 [0.778-0.789] 0.861 [0.859-0.863] 0.809 [0.807-0.811]

TabPFN 3k 0.850 [0.847-0.853] 0.801 [0.798-0.804] 0.821 [0.814-0.828] 0.784 [0.779-0.789] 0.872 [0.870-0.874] 0.818 [0.816-0.820]

RandomForest 0.875 [0.872-0.877] 0.837 [0.835-0.839] 0.831 [0.824-0.838] 0.805 [0.800-0.811] 0.900 [0.898-0.901] 0.863 [0.862-0.864]

LightGBM 0.877 [0.874-0.881] 0.841 [0.838-0.844] 0.829 [0.823-0.836] 0.806 [0.801-0.811] 0.917 [0.916-0.919] 0.885 [0.884-0.886]

CatBoost 0.882 [0.879-0.885] 0.845 [0.843-0.848] 0.842 [0.836-0.849] 0.814 [0.808-0.819] 0.908 [0.907-0.909] 0.875 [0.874-0.876]

XGBoost 0.888 [0.885-0.891] 0.847 [0.844-0.850] 0.839 [0.832-0.846] 0.810 [0.804-0.816] 0.919 [0.918-0.920] 0.886 [0.885-0.887]

TabPFN-kNN 0.867 [0.864-0.870] 0.829 [0.827-0.832] 0.841 [0.834-0.847] 0.804 [0.800-0.809] 0.884 [0.883-0.886] 0.854 [0.853-0.855]

LoCalPFN 0.897 [0.894-0.899] 0.859 [0.856-0.861] 0.869 [0.863-0.874] 0.832 [0.827-0.837] 0.915 [0.913-0.916] 0.885 [0.884-0.886]

15



Retrieval & Fine-Tuning for In-Context Tabular Models

A.4. Additional Analyses

0-1 1-3 3-10 10-50 50+
Dataset size (x1000)

0.75

0.80

0.85

0.90

0.95

M
ea

n 
AU

C

TabPFN-kNN
XGBoost
TabPFN
RandomForest
LightGBM
LoCalPFN

(a) Absolute (i.e., non-relative) mean AUC vs. dataset
size

0-20% 20-40% 40-60% 60-80% 80-100%
Complexity estimate (Easiest to Hardest)

0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975

M
ea

n 
AU

C

TabPFN-kNN
XGBoost
TabPFN
RandomForest
LightGBM
LoCalPFN

(b) Absolute (i.e., non-relative) mean AUC vs. complexity

Figure 9: Analysis of AUC as a function of size and complexity. TabPFN fails to scale both in size and complexity while
LoCalPFN is able to still outperform on the far end of the spectrum.

16



Retrieval & Fine-Tuning for In-Context Tabular Models

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Train loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 lo
ss log_ctx_length

4.0
5.0
6.0
7.0
8.0
training_set_size
2000
4000
6000
8000
10000
method
ctx
knn

(a) Two pairs of concentric circles

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Train loss

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Te
st

 lo
ss

log_ctx_length
4
5
6
7
8
9
10
training_set_size
4000
8000
12000
16000
20000
method
ctx
knn

(b) adult-census

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Train loss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 lo
ss

log_ctx_length
4
5
6
7
8
9
10
training_set_size
4000
8000
12000
16000
20000
method
ctx
knn

(c) electricity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Train loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 lo
ss

log_ctx_length
4
5
6
7
8
9
10
training_set_size
2000
4000
6000
8000
10000
method
ctx
knn

(d) eeg-eye-state

Figure 10: Test loss vs. training loss for TabPFN-kNN (crosses), TabPFN (circles) for different dataset sizes and con-
text/number of neighbours used on four datasets. We observe generally that for low number of neighbours (dark crosses)
and especially for small datasets (small crosses) there is significant overfitting (higher test loss than train loss). TabPFN
tends to overfit less, especially on larger datasets, which is expected. Overall, using TapPFN-kNN results in better underfit-
ting/overfitting trade-offs where we obtain both lower test and train losses, however the gap between them increases.

17



Retrieval & Fine-Tuning for In-Context Tabular Models

A.5. Ablation Studies

Figure 11 and Figure 12 show summaries of ablations on only the small datasets, and only the medium/large datasets,
respectively. In the remainder of this subsection we see tables that show even further detail on the results presented in the
main text.

Tab
PFN

Fin
e-t

un
e

Fin
e-t

un
e +

 kN
N

Tab
PFN

-kN
N

LoC
alP

FN
0.84

0.85

0.86

0.87

0.88

0.89

M
ea

n 
AU

C

Importance of joint retrieval and fine-tuning

LoC
alP

FN
-en

cod
er

LoC
alP

FN
-ra

w

LoC
alP

FN
-on

e h
ot

0.84

0.85

0.86

0.87

0.88

0.89 Impact of embedding choices

Tab
PFN

Tab
PFN

-32
en

s

Tab
PFN

-3k
-32

en
s

Tab
PFN

-3k
-32

en
s-in

t

Tab
PFN

-IC
D

Tab
PFN

-kN
N

LoC
alP

FN
0.84

0.85

0.86

0.87

0.88

0.89 Importance of using a local context

Figure 11: Ablations on Small Datasets

Tab
PFN

Fin
e-t

un
e

Fin
e-t

un
e +

 kN
N

Tab
PFN

-kN
N

LoC
alP

FN
0.88

0.89

0.90

0.91

0.92

0.93

0.94

M
ea

n 
AU

C

Importance of joint retrieval and fine-tuning

LoC
alP

FN
-en

cod
er

LoC
alP

FN
-ra

w

LoC
alP

FN
-on

e h
ot

0.88

0.89

0.90

0.91

0.92

0.93

0.94 Impact of embedding choices

Tab
PFN

Tab
PFN

-32
en

s

Tab
PFN

-3k
-32

en
s

Tab
PFN

-3k
-32

en
s-in

t

Tab
PFN

-IC
D

Tab
PFN

-kN
N

LoC
alP

FN
0.88

0.89

0.90

0.91

0.92

0.93

0.94 Importance of using a local context

Figure 12: Ablations on Medium/Large Datasets

A.5.1. IMPORTANCE OF JOINT RETRIEVAL AND FINE-TUNING

18



Retrieval & Fine-Tuning for In-Context Tabular Models

Table 8: Ablation for fine-tuning. Applying TabPFN-kNN on a fine-tuned model degrades the overall performance. On the
other hand, performing local calibration by jointly retrieving and fine-tuning improve performance drastically.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
TabPFN 0.917 [0.914-0.919] 0.867 [0.864-0.870] 0.898 [0.892-0.904] 0.849 [0.843-0.856] 0.927 [0.925-0.929] 0.884 [0.883-0.885]

Fine-Tune 0.934 [0.932-0.937] 0.885 [0.882-0.889] 0.905 [0.897-0.911] 0.854 [0.847-0.861] 0.953 [0.951-0.954] 0.916 [0.915-0.917]

Fine-Tune + kNN 0.938 [0.935-0.940] 0.887 [0.883-0.890] 0.928 [0.922-0.933] 0.870 [0.863-0.877] 0.946 [0.945-0.948] 0.903 [0.902-0.904]

TabPFN-kNN 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.2. CHOICE OF FEATURE ENCODING

Table 9: Ablation for choices of embedding. Converting categorical variables to one-hot gives a relatively moderate gain
over other configurations.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
LoCalPFN-encoder 0.955 [0.953-0.957] 0.899 [0.896-0.903] 0.926 [0.920-0.932] 0.864 [0.857-0.872] 0.969 [0.967-0.969] 0.934 [0.933-0.935]

LoCalPFN-raw 0.956 [0.954-0.958] 0.900 [0.896-0.904] 0.928 [0.922-0.934] 0.866 [0.858-0.873] 0.968 [0.967-0.969] 0.933 [0.932-0.934]

LoCalPFN-one_hot 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.3. OTHER INFERENCE METHODS OF TABPFN

Table 10 shows the detailed performance values for TabPFN with different inference methods.

Table 10: Ablation for different TabPFN inference methods.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
TabPFN-1k-1ens 0.917 [0.914-0.919] 0.867 [0.864-0.870] 0.898 [0.892-0.904] 0.849 [0.843-0.856] 0.927 [0.926-0.929] 0.884 [0.883-0.885]

TabPFN-1k-32ens 0.936 [0.934-0.938] 0.879 [0.875-0.882] 0.923 [0.917-0.929] 0.863 [0.857-0.870] 0.943 [0.941-0.944] 0.894 [0.891-0.896]

TabPFN-3k-32ens 0.943 [0.941-0.945] 0.885 [0.881-0.888] 0.924 [0.918-0.930] 0.864 [0.857-0.870] 0.954 [0.953-0.955] 0.905 [0.901-0.908]

TabPFN-3k-32ens-int 0.945 [0.942-0.947] 0.887 [0.883-0.890] 0.924 [0.918-0.930] 0.864 [0.857-0.870] 0.956 [0.955-0.957] 0.909 [0.908-0.910]

TabPFN-ICD 0.946 [0.944-0.948] 0.892 [0.888-0.895] 0.924 [0.919-0.930] 0.864 [0.858-0.871] 0.958 [0.957-0.959] 0.919 [0.918-0.920]

TabPFN-kNN 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.928] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.876-0.888] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.4. ABLATION FOR MAXIMUM NUMBER OF NEIGHBOURS

Table 11 shows the detailed performance values for varying size of maximum number of neighbours.

19



Retrieval & Fine-Tuning for In-Context Tabular Models

Table 11: Ablation for sensitivity of k. The number after c indicates the maximum number of neighbours used.

All Small Medium/Large
Algorithm IQM AUC Mean AUC IQM AUC Mean AUC IQM AUC Mean AUC
TabPFN-kNN-c20 0.923 [0.920-0.925] 0.874 [0.871-0.878] 0.894 [0.887-0.901] 0.845 [0.838-0.852] 0.937 [0.936-0.939] 0.903 [0.901-0.904]

TabPFN-kNN-c50 0.935 [0.933-0.938] 0.886 [0.882-0.889] 0.911 [0.905-0.917] 0.859 [0.852-0.866] 0.949 [0.948-0.950] 0.912 [0.910-0.913]

TabPFN-kNN-c100 0.943 [0.940-0.945] 0.890 [0.887-0.894] 0.921 [0.916-0.927] 0.864 [0.857-0.871] 0.954 [0.952-0.955] 0.916 [0.915-0.917]

TabPFN-kNN-c200 0.943 [0.941-0.946] 0.890 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

TabPFN-kNN-c500 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.928] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.917 [0.915-0.918]

TabPFN-kNN-c700 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.918]

TabPFN-kNN-c1000 0.943 [0.941-0.946] 0.891 [0.887-0.894] 0.922 [0.916-0.927] 0.864 [0.857-0.871] 0.955 [0.953-0.956] 0.916 [0.915-0.917]

LoCalPFN-c20 0.941 [0.938-0.944] 0.890 [0.887-0.894] 0.920 [0.913-0.926] 0.865 [0.858-0.872] 0.953 [0.952-0.955] 0.916 [0.914-0.917]

LoCalPFN-c50 0.950 [0.948-0.953] 0.898 [0.894-0.902] 0.932 [0.925-0.938] 0.873 [0.865-0.881] 0.960 [0.959-0.961] 0.923 [0.922-0.924]

LoCalPFN-c100 0.953 [0.951-0.955] 0.901 [0.897-0.904] 0.932 [0.926-0.938] 0.875 [0.868-0.882] 0.963 [0.962-0.964] 0.926 [0.925-0.927]

LoCalPFN-c200 0.955 [0.953-0.958] 0.904 [0.900-0.908] 0.935 [0.929-0.941] 0.879 [0.872-0.886] 0.965 [0.964-0.966] 0.928 [0.927-0.929]

LoCalPFN-c500 0.957 [0.955-0.959] 0.905 [0.901-0.908] 0.935 [0.930-0.941] 0.877 [0.870-0.883] 0.968 [0.967-0.968] 0.932 [0.931-0.933]

LoCalPFN-c700 0.958 [0.955-0.960] 0.906 [0.902-0.910] 0.935 [0.930-0.941] 0.879 [0.871-0.886] 0.968 [0.967-0.969] 0.933 [0.932-0.934]

LoCalPFN-c1000 0.958 [0.956-0.960] 0.908 [0.905-0.911] 0.937 [0.931-0.942] 0.882 [0.875-0.889] 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.5. QUALITY OF EFFICIENT LOCAL CONTEXT

In order to show the efficacy of the efficient local context, we compare LoCalPFN with the exact version where we use
the exact neighbours for the context during training. In Table 12, LoCalPFN-exact-b32 indicates the aforementioned
configuration with a batch size of 32, which is capped because of the GPU memory constraint. We compare this with another
variant of LoCalPFN where we use 32 queries for training, i.e., LoCalPFN-approx-q32. These two variants turn out to have
very similar AUCs, which indicates the efficacy of the efficient approximate neighbour search method.

Table 12: Exact nearest neighbour search vs. approximate nearest neighbour search.

Medium/Large
Algorithm IQM AUC Mean AUC
LoCalPFN-exact-b32 0.967 [0.966-0.968] 0.931 [0.930-0.932]

LoCalPFN-approx-q32 0.968 [0.967-0.968] 0.931 [0.930-0.932]

LoCalPFN 0.968 [0.967-0.969] 0.934 [0.933-0.935]

A.5.6. RUN TIME ANALYSIS

We also conduct a run time analysis for LoCalPFN, TabPFN-kNN, and other tree-based models. We decided to measure the
time against the mean AUC on the test set. The best algorithm should take the least amount of time and achieve the highest
AUC. Here we measure the time as the total time of training and evaluation. In Figure 13, we can see that the general trend
for all algorithms shows a positive correlation between time and AUC. In particular, we can observe TabPFN-kNN runs
surprisingly fast and also achieves quite high AUC, only very slightly below XGBoost. The fast run time together with very
few hyperparameter suggests that this should be a very good model to be used in practical machine learning engineering and
research.

We also see that LoCalPFN achieves significantly higher performance even though it suffers from higher run time. We also
want to point out that other deep learning methods shown in Table 5 take an even longer time for training and evaluation.

20



Retrieval & Fine-Tuning for In-Context Tabular Models

100 101

Time (s)
0.880

0.885

0.890

0.895

0.900

0.905

0.910

AU
C 100

200

1000

100 2001000

LoCalPFN
TabPFN-kNN
CatBoost
LightGBM
RandomForest
XGBoost

Figure 13: AUC vs Run Time for all 95 datasets. TabPFN-kNN has very low run time and comparable AUC to tree-based
models while LoCalPFN is able to achieve the highest AUC overall. We use bold text to denote maximum number of
neighbours k used.

21


	Introduction
	Improving Tabular In-Context Learning with Retrieval and Fine-Tuning
	Preliminaries
	What is a Good Context for Tabular Data?
	Better Expressivity and Scaling with local information
	Efficient End-to-End Fine-Tuning With Retrieval

	Related work
	Experiments
	Experimental Setup
	Main Experiments
	Analysis: Scaling with Dataset Size and Complexity
	Ablation Studies

	Conclusion and Limitations
	Appendix
	Datasets
	Experiment Details
	Baseline Details
	LoCalPFN Details

	Additional Experiments
	Comparison to Deep Learning Models
	Comparison with Other Metrics

	Additional Analyses
	Ablation Studies
	Importance of Joint Retrieval and Fine-tuning
	Choice of Feature Encoding
	Other Inference Methods of TabPFN
	Ablation for Maximum Number of Neighbours
	Quality of Efficient Local Context
	Run Time Analysis



