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Abstract

Time series (TS) modeling is critical in dynamic systems like weather prediction
and anomaly detection. Recent work leverages Large Language Models (LLMs)
for TS modeling due to their strong pattern recognition abilities. However, these
approaches often prioritize LLMs as the predictive backbone, neglecting traditional
TS models’ mathematical aspects, like periodicity. Conversely, ignoring LLMs
overlooks their pattern recognition strengths. To bridge this gap, we propose LLM-
TS Integrator, a framework that integrates LLM capabilities with traditional TS
modeling. At its core is the mutual information module, where a traditional TS
model is enhanced with LLM-derived insights, improving predictive performance
by maximizing mutual information between TS representations and their LLM-
generated textual counterparts. We also address the varying importance of samples
for traditional prediction and mutual information maximization. To handle this, we
introduce the sample reweighting module, which assigns dual weights to each sam-
ple—one for prediction loss and another for mutual information loss—dynamically
optimized through bi-level optimization. Our method achieves state-of-the-art or
comparable performance across five key TS tasks: short-term and long-term fore-
casting, imputation, classification, and anomaly detection. Our code is available.

1 Introduction

Time series (TS) modeling is vital across various applications, such as weather forecasting [67], eco-
nomic data imputation [22], anomaly detection in industrial monitoring [23], and action recognition
[20], as highlighted by [32]. Its practical significance continues to draw considerable interest [38, 63].

Recent trends in TS increasingly incorporate Large Language Models (LLMs) for their pattern
recognition abilities [33, 80, 35, 54, 24, 5]. However, these approaches often neglect specialized
mathematical techniques utilized in traditional TS models, such as Fourier Transform for periodic
patterns [66]. Balancing the strengths of LLMs with traditional TS models can enhance predictive per-
formance. To this end, we propose LLM-TS Integrator, a framework that integrates LLM capabilities
with traditional TS models.

At the core of our framework is a mutual information module, shown in Figure 1(a). We enhance
traditional models, primarily TimesNet [66], by integrating insights from LLMs. This enhancement
maximizes mutual information [55] between TS representations from traditional models and their
LLM-derived textual counterparts. Given that textual descriptions are often absent from TS data, we
generate them using a template enriched with background and statistical details relevant to the TS,
aiding LLMs in better understanding the context.
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Figure 1: Illustration of LLM-TS Integrator. Module (a) enhances the traditional TS model (TimesNet)
with LLM-derived insights by mutual information maximization. Module (b) optimizes sample
importance for both prediction loss and mutual information loss to improve information utilization.

Our dual loss framework handles traditional prediction and mutual information, acknowledging that
sample importance varies between the two. To address this, we introduce a sample reweighting module
using an MLP (Figure 1(b)). This module adjusts weights for prediction and mutual information
losses through bi-level optimization, enhancing information utilization.

Our primary contributions are as follows:

• Our method consists of mutual information and sample reweighting. The first module enhances
traditional TS modeling with capabilities from LLMs through mutual information maximization.

• The second module optimizes sample importance for both prediction loss and mutual information
loss, which improves information utilization.

• Extensive experiments across five TS tasks demonstrate the effectiveness of our framework.

2 Preliminaries

TimesNet. In this paper, we mainly choose TimesNet as the traditional predictive model due to
its exceptional performance [66] and also explore other additional traditional models including
ETSformer [65], Stationary [42], and FreTS [70] in Section A.9. Previous studies on modeling
temporal variations in 1D time series often struggle with complex temporal patterns. TimesNet
addresses this challenge by decomposing these complex variations into multiple intra-period and
inter-period variations.

For the time series x, we derive its representation hm
θ (x) using the TimesNet model parameterized

by θ where m represents the model.

Large Language Models. Language models are trained on extensive collections of natural language
sequences, with each sequence consisting of multiple tokens. Each language model uses a tokenizer
that breaks down an input string into a sequence of recognizable tokens. However, the training of
current large language models is solely focused on natural language, not encompassing time series
data. This limitation presents challenges for the direct application of LLMs to time series analysis.

3 Method
This section introduces the LLM-TS Integrator framework, whose overall process is in Algorithm 1.

3.1 Mutual Information

Previous studies [80, 34] often prioritize LLMs as the primary predictive tool in TS analysis, neglect-
ing the specialized mathematical modeling in traditional TS models, such as periodicity.

Our approach uses a traditional TS model, enhanced by LLMs, as the predictive backbone. In this
work, we use TimesNet (Section 2) and explore other models in Section A.9. This hybrid method

2



Algorithm 1 LLM-TS Integrator
Input: TS dataset D, number of training iterations T .
Output: Trained TS model parameterized by θ∗.

1: /* Mutual Information Module */
2: Train a traditional TS model (e.g., TimesNet) parameterized by θ using D.
3: Generate text description t for TS sample x via a designed template.
4: Derive hidden representations hm

θ (x) from the TS model and hl(t) from the LLM.
5: while τ ≤ T − 1 do
6: Sample x, t, y from D, where y are the labels.
7: Optimize a discriminator model Tβ to estimate mutual information.
8: /* Sample Reweighting Module */
9: Process sample loss lO with the weighting net to produce dual weights (Eq. 2, 3).

10: Apply bi-level optimization to update the weighting net (Eq. 8, 9).
11: Re-calculate dual weights using the updated weighting net (Eq. 2, 3).
12: Calculate the overall loss to update the TS model (Eq. 4).
13: end while
14: Return the trained TS model parameterized by θ∗.

combines traditional TS models’ strengths with modern LLMs via a mutual information module,
which maximizes the mutual information between TS representations from the traditional model and
their textual representations from LLMs.

Estimating mutual information between a TS sample x and its textual description t is crucial. We
derive hm

θ (x) using TimesNet, parameterized by θ, and hl(t) from a pre-trained LLM. We primarily
use the LLaMA-3b model [59], while also evaluating others (Section A.9). Mutual information is
estimated using the Jensen-Shannon MI estimator [55, 45], with further exploration of the MINE
estimator [27] (Appendix A.19). Given TS set S, mutual information is calculated as:

I(θ,β) = ES[−sp(−Tβ(h
m
θ (x),hl(t))]− ES×S̃[sp(Tβ(h

m
θ (x),hl(t̃))], (1)

where Tβ is the discriminator and sp is the softplus function. The mutual information estimation
alternates between optimizing β and refining θ to maximize mutual information.

We assume each TS sample x is paired with a corresponding textual description, t. Since textual de-
scriptions are often unavailable, we generate them using a template that captures essential background
and statistical details of the TS as detailed in Appendix A.1.

3.2 Sample Reweighting

Our mutual information module introduces two distinct loss functions: (1) the original sample
prediction loss, lO(x,y), hereafter referred to as lO, which corresponds to the prediction loss for a
TS sample x and its label y, and (2) the mutual information maximization loss, denoted as −I(θ,β).
We acknowledge that the significance of samples varies between these two losses. Specifically, a
large prediction loss lO indicates a sample’s substantial learning potential, thereby justifying a higher
weight ωO for its prediction loss. Conversely, this suggests that the sample’s representation may be
suboptimal for mutual information computation, warranting a lower weight ωI .

To address this disparity, we have developed a novel sample reweighting module. This module
employs a two-layer MLP weighting network parameterized by α, which processes the sample
prediction loss to produce a pair of weights:

ωO(α), ωI(α) = MLPα(lO) (2)

This process involves converting the sample loss lO into a latent code z through a hidden layer. The
network then outputs dual weights:

ωO(α), ωI(α) = σ(mO · z), σ(mI · z) (3)

where mO > 0, mI < 0 ensures a negative correlation between ωO and ωI . σ(·) denotes sigmoid.

For a batch of N samples, the weight vector ωO(α) ∈ RN is directly applied to the original prediction
loss vector lO ∈ RN , resulting in the weighted average loss calculated as mean(ωO(α) · lO).
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Similarly, the weight vector ωI(α) ∈ RN not only reflects the overall significance of the mutual
information but also each sample’s individual contribution to this metric. The mean of these weights
mean(ωI(α)) represents the overall importance. For mutual information computations, ωI(α) is
transformed into a probability distribution piI =

ωi
I∑N

i=1 ωi
I

. This adjustment affects the distribution
used in mutual information calculations, necessitating a recalculation of mutual information as
I(θ,β,α), with details provided in Appendix A.2. As a result, the overall loss is formulated as:

L(θ,α) = mean(ωO(α) · lO)mean(ωI(α)) · [−I(θ,β,ωI(α))] (4)

We optimize the weighting network α by leveraging the supervision signals from a small validation
dataset as detailed in Appendix A.3

4 Experimental Results

Baselines. Our evaluation employs a comprehensive array of baseline models across several ar-
chitectural designs (1) CNN-based models, specifically TimesNet [66]; (2) MLP-based models,
including LightTS [74] and DLinear [73]; (3) Transformer-based models, such as Reformer [36],
Informer [77], Autoformer [67], FEDformer [79], Nonstationary Transformer [42], ETSformer [65],
and PatchTST [44]; (4) LLM-based models, represented by GPT4TS [80].

Additional comparisons for forecasting tasks include LLM-based models like Time-LLM [34] and
TEST [54]. For short-term forecasting, models like N-HiTS [7] and N-BEATS [46] are included.
Anomaly detection tasks are assessed using Anomaly Transformer [68], and for classification tasks,
models such as XGBoost [16], Rocket [17], LSTNet [37], LSSL [26], Pyraformer [41], TCN [20],
and Flowformer [30] are considered.

Main Results. Figure 2 demonstrates that our LLM-TS Integrator consistently outperforms other

Short-term Forecasting

Long-term Forecasting

Imputation

Classification Anomaly Detection

LLM-TS
TimesNet
GPT4TS
PatchTST
FEDformer

Figure 2: Model performance across different tasks.

methods in various tasks, underscoring its efficacy. We will refer to our method as LLM-TS in the
tables for brevity. Unless otherwise indicated, we cite results from TimesNet [66]. We reproduce
TimesNet and GPT4TS [80] experiments for all tasks. All results are averages from three runs with
different seeds. Standard deviations for ablation studies are detailed in Appendix 8. The best results
are highlighted in bold, with the second-best underlined. Detailed results are in Appendix A.5, A.6,
A.7 and A.8 and we also conduct ablation studies in Appendix A.9. We also (1) present several
showcases of our method in Appendix A.11 and (2) discuss the model efficiency in Appendix A.13.
We detail the experimental setting in Appendix A.4.

5 Conclusion and Discussion

In conclusion, the LLM-TS Integrator offers a promising approach to integrating Large Language
Models (LLMs) with traditional TS methods. By encouraging high mutual information between
textual and TS data, our method aims to maintain the distinct characteristics of time series while
benefiting from the advanced pattern recognition capabilities of LLMs. We also discuss the related
work in Appendix A.20. Building on this workshop paper, we present an extended version in [10].
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A Appendix

A.1 Template

template = (
"{task_description}. The content is: {TS}. "
"Input statistics: min value {min(TS)}, max value {max(TS)}, "
"median value {median(TS)}, top 5 lags {compute_lags(TS)}."

)

A.2 Mutual Information Recalculation

Recall that mutual information can be calculated using the equation:

I(θ,β) = ES[−sp(−Tβ(h
m
θ (x),hl(t))]−

ES×S̃[sp(Tβ(h
m
θ (x),hl(t̃))] ,

(5)

where Tβ signifies the discriminator characterized by parameters β, and sp denotes the softplus
function. Notably, (x, t) symbolizes a sample from the dataset S, while (x̃, t̃) represents a different
sample from the dataset S̃ = S.

This formulation presumes a uniform distribution of samples. However, we have already computed
probabilities piI for each sample, which introduces a non-uniform distribution. For a batch of N
samples, the expected value is computed as

ES[−sp(−Tβ(h
m
θ (x),hl(t))] =

−
N∑
i=1

piIsp(−Tβ(h
m
θ (xi),hl(ti)).

(6)

ES×S̃[sp(Tβ(h
m
θ (x),hl(t̃))] =∑

i

∑
i ̸=j

p̂ijsp(Tβ(h
m
θ (xi),hl(t̃j)). (7)

Here, p̂ij is defined as pi
I ·p

j
I∑

i

∑
i̸=j pi

I ·p
j
I

, adjusting for the non-uniform distribution of sample probabili-

ties. As piI is produced from the weighting network α, we can also write I(θ,β) as I(θ,β,α).

A.3 Bi-level Optimization

The ensuing challenge is optimizing the weighting network α. We achieve this by leveraging the
supervision signals from a small validation dataset. If the weighting network is properly optimized,
the model trained with these weights is expected to show improved performance on the validation
dataset in terms of the validation loss LV (θ) =

1
M

∑M
j ljO(xj ,yj), where M denotes the size of the

validation set. This constitutes a bi-level optimization problem, which is widely used in machine
learning [29, 8, 40, 15, 9, 12, 14, 11]. At the inner level, model training is conducted through:

θ̂(α) = θ − η1 ·
∂L(θ,α)

∂θ
(8)

The objective is to ensure that the model performs optimally on the validation dataset:

α̂ = α− η2 ·
∂LV (θ(α))

∂α
(9)

Both η1 and η2 represent the learning rates for the respective optimization steps. Through the
minimization of the validation loss, we aim to optimize the weighting network α.

A.4 Experimental Settings

Following [50], the weighting network comprises a two-layer MLP with a hidden size of 100, and we
set the learning rate η2 for this network at 0.001. The learning rate η0 of the discriminator is set as
0.001 at the first epoch and then decreases to 0.0001 for the rest of epochs.

10



A.5 Short- and Long- Term Forecasting

Setup.

To comprehensively assess our framework’s forecasting capabilities, we engage it in both short- and
long-term forecasting settings. In the realm of short-term forecasting, we utilize the M4 dataset [52],
which aggregates univariate marketing data on a yearly, quarterly, and monthly basis. For long-term
forecasting, we examine five datasets following [80]: ETT [78], Electricity [60], Traffic [47], Weather
[64], and ILI [6]. We adhere to the TimesNet setting with an input length of 96. For LLM-based
methods like GPT4TS and Time-LLM, which use different input lengths, we rerun the experiments
using their code. For PatchTST, we cite the results from [61], as the original PatchTST uses an
input length of 512. Due to shorter input lengths in this study compared to the original, the reported
performance is lower.

Results.

As shown in Tables 1 and 2, our LLM-TS performs exceptionally well in both short- and long-term
settings. It consistently surpasses TimesNet, highlighting the effectiveness of incorporating
LLM-derived insights. Furthermore, it generally outperforms other LLM-based methods such as
GPT4TS, TIME-LLM, and TEST, underscoring the advantages of integrating traditional TS modeling.

Table 1: Short-term M4 forecasting. The prediction lengths are in [6, 48] and results are obtained by weighting
averages across multiple datasets with varying sampling intervals. Full results are in Appendix A.14.

Methods LLM-TS TimesNet GPT4TS TIME-LLM TEST PatchTST N-HiTS N-BEATS FEDformer Stationary Autoformer

SMAPE 11.819 11.908 11.991 11.983 11.927 12.059 11.927 11.851 12.840 12.780 12.909
MASE 1.588 1.612 1.600 1.595 1.613 1.623 1.613 1.599 1.701 1.756 1.771
OWA 0.851 0.860 0.861 0.859 0.861 0.869 0.861 0.855 0.918 0.930 0.939

Table 2: Long-term forecasting: Averages over 4 lengths: 24, 36, 48, 60 for ILI, and 96, 192, 336, 720 for
others. Full results in Appendix A.15.

Methods LLM-TS TimesNet TIME-LLM DLinear PatchTST GPT4TS FEDformer TEST Stationary ETSformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MAE MSE MAE MSE

Weather 0.257 0.285 0.265 0.290 0.279 0.296 0.265 0.317 0.265 0.285 0.275 0.292 0.309 0.360 0.291 0.315 0.288 0.314 0.271 0.334
ETTh1 0.454 0.451 0.470 0.462 0.474 0.459 0.456 0.452 0.516 0.484 0.473 0.451 0.440 0.460 0.440 0.460 0.570 0.537 0.542 0.510
ETTh2 0.396 0.413 0.413 0.426 0.398 0.415 0.559 0.515 0.391 0.411 0.383 0.410 0.437 0.449 0.414 0.432 0.526 0.516 0.439 0.452
ETTm1 0.401 0.409 0.414 0.418 0.437 0.421 0.403 0.407 0.406 0.407 0.408 0.400 0.448 0.452 0.402 0.411 0.481 0.456 0.429 0.425
ETTm2 0.295 0.331 0.294 0.331 0.298 0.342 0.350 0.401 0.290 0.334 0.290 0.335 0.305 0.349 0.323 0.359 0.306 0.347 0.293 0.342

ILI 1.973 0.894 2.266 0.974 2.726 1.098 2.616 1.090 2.184 0.906 5.117 1.650 2.847 1.144 3.324 1.232 2.077 0.914 2.497 1.004
ECL 0.194 0.299 0.198 0.298 0.229 0.315 0.212 0.300 0.216 0.318 0.206 0.285 0.214 0.327 0.237 0.324 0.193 0.296 0.208 0.323

Traffic 0.618 0.333 0.627 0.335 0.606 0.395 0.625 0.383 0.529 0.341 0.561 0.373 0.610 0.376 0.581 0.388 0.624 0.340 0.621 0.396

Average 0.574 0.427 0.618 0.442 0.681 0.468 0.686 0.483 0.600 0.436 0.964 0.525 0.701 0.489 0.756 0.491 0.633 0.465 0.662 0.473

A.6 Imputation

Setup.

To assess our method’s imputation capabilities, we employ three datasets: ETT [78], Electricity
[60], and Weather [64], serving as our benchmarks. To simulate various degrees of missing data, we
randomly obscure time points at proportions of {12.5%, 25%, 37.5%, 50%} following [66].

Results.

Table 3 illustrates that our method achieves performance comparable to GPT4TS and surpasses other
baselines, highlighting its effectiveness. We attribute the robust performance of GPT4TS primarily to
its backbone feature extractor: the pre-trained language model, which excels at capturing time series
patterns, enhancing its imputation proficiency.

A.7 Classification

Setup.

We focus on the application of our method to sequence-level time series classification tasks, a crucial
test of its ability to learn high-level representations from data. Specifically, we employ 10 diverse
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Table 3: Imputation task: Randomly masked {12.5%, 25%, 37.5%, 50%} of points in 96-length series, averaging
results over 4 mask ratios. Full results are in Appendix A.16.

Methods LLM-TS TimesNet GPT4TS PatchTST LightTS DLinear FEDformer Stationary Autoformer Reformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.025 0.103 0.028 0.109 0.028 0.108 0.047 0.140 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150 0.055 0.166
ETTm2 0.021 0.087 0.022 0.089 0.023 0.088 0.029 0.102 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105 0.157 0.280
ETTh1 0.087 0.198 0.090 0.199 0.069 0.174 0.115 0.224 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214 0.122 0.245
ETTh2 0.050 0.148 0.051 0.150 0.050 0.144 0.065 0.163 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156 0.234 0.352
ECL 0.094 0.211 0.095 0.212 0.091 0.207 0.072 0.183 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225 0.200 0.313

Weather 0.030 0.056 0.031 0.059 0.032 0.058 0.034 0.055 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057 0.038 0.087

Average 0.051 0.134 0.053 0.136 0.049 0.130 0.060 0.144 0.123 0.228 0.119 0.224 0.112 0.229 0.056 0.142 0.061 0.151 0.134 0.240

multivariate datasets sourced from the UEA Time Series Classification repository [2]. These datasets
encompass a wide range of real-world applications, including gesture and action recognition, audio
processing, medical diagnosis, among other practical domains. We reproduce the results of TEST
based on their code [54].

Results.

As depicted in Figure 3, our LLM-TS Integrator achieves superior performance with an average
accuracy of 73.4%. As detailed in Appendix A.17, it consistently outperforms other LLM-based
methods across most tasks, including GPT4TS and TEST. We attribute this enhanced capability to
the traditional TS modeling techniques in our framework, which effectively capture classification
characteristics more adeptly than LLMs.
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Figure 3: Model comparison in classification.
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A.8 Anomaly Detection

Setup.

Our study concentrates on unsupervised time series anomaly detection, aiming to identify aberrant
time points indicative of potential issues. We benchmark our method against five established anomaly
detection datasets: SMD [53], MSL [31], SMAP [31], SWaT [43], and PSM [1]. These datasets
span a variety of applications, including service monitoring, space and earth exploration, and water
treatment processes. For a consistent evaluation framework across all experiments, we employ the
classical reconstruction error metric to determine anomalies following [66].

Results.

As indicated in Table 4, our LLM-TS Integrator exhibits superior performance with an average
F1-score of 85.17%. This result underscores the versatility of LLM-TS, demonstrating its capability
not only in classifying complete sequences, as discussed previously, but also in effectively detecting
anomalies in time series data.
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Table 4: Anomaly detection task. F1-score (as %) is calculated per dataset. ∗. in the Transformers represents the
name of ∗former. Full results are in Appendix A.18.

Methods LLM-TS TimesNet GPT4TS PatchTS. ETS. FED. LightTS DLinear Stationary Auto. Pyra. Anomaly.** In. Re. Trans.

SMD 84.69 84.57 84.32 84.62 83.13 85.08 82.53 77.10 84.72 85.11 83.04 85.49 81.65 75.32 79.56
MSL 81.11 80.34 81.73 78.70 85.03 78.57 78.95 84.88 77.50 79.05 84.86 83.31 84.06 84.40 78.68

SMAP 69.41 69.18 68.86 68.82 69.50 70.76 69.21 69.26 71.09 71.12 71.09 71.18 69.92 70.40 69.70
SWaT 93.23 93.12 92.59 85.72 84.91 93.19 93.33 87.52 79.88 92.74 91.78 83.10 81.43 82.80 80.37
PSM 97.43 97.27 97.34 96.08 91.76 97.23 97.15 93.55 97.29 93.29 82.08 79.40 77.10 73.61 76.07

Average 85.17 84.90 84.97 82.79 82.87 84.97 84.23 82.46 82.08 84.26 82.57 80.50 78.83 77.31 76.88

Table 5: Results averaged over 4 prediction lengths.

Methods Ours w/o mutual w/o template w/o reweight TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.257 0.285 0.264 0.290 0.263 0.288 0.264 0.291 0.265 0.290
ETTh1 0.454 0.451 0.467 0.460 0.465 0.460 0.464 0.463 0.470 0.462
ETTm1 0.401 0.409 0.411 0.417 0.406 0.415 0.403 0.411 0.414 0.418

ILI 1.973 0.894 2.221 0.942 2.173 0.950 2.173 0.947 2.266 0.974

A.9 Ablations

In this section, we first verify the effectiveness of our framework by sequentially removing key
components: (1) mutual information module and (2) sample reweighting module. Additionally, for
mutual information, we explore the impact of removing the template while retaining the raw time
series data inputs to the LLM. We denote these variants as w/o mutual, w/o reweight and w/o template.
Our experiments span long-term forecasting tasks including Weather, ETTh1, ETTm1 and ILI. As
detailed in Table 5, the removal of any component leads to a decrease in performance, confirming the
value of each design element. Additionally, we explore the use of the MINE estimator [27] instead of
the Jensen-Shannon MI estimator in our main paper, with further details provided in Appendix A.19.
Lastly, we showcase various case studies to demonstrate the enhancements facilitated by our method
in Appendix A.11 and explore template variations in Appendix A.12.

Mutual Information.

We further explore the mutual information module from a representation learning perspective,
following the findings in [66]. They adopt a CKA (Centered Kernel Alignment) metric which
measures similarity between representations obtained from the first and last layer of a model and they
find that forecasting and anomaly detection benefits from high CKA similarity, contrasting with that
imputation and classification tasks benefits from lower CKA similarity.

Experiments are conducted using the MSL dataset for the anomaly detection task, the Weather dataset
for forecasting, the ETTh1 dataset for imputation, and the PEMS-SF dataset for classification. As
depicted in Figure 4, the removal of components in our method results in decreased CKA similarity
in anomaly detection and forecasting tasks, but an increase in imputation and classification tasks.
This observation further substantiates the effectiveness of our components.

Sample Reweighting.

Regarding the sample reweighting module, we illustrate the behavior of the learned weighting
network in Appendix A.19. The trend confirms our hypothesis: sample weight ωO increases with
the prediction loss lO, and weight ωI decreases as lO increases. This pattern validates our sample
reweighting module. Further discussion comparing this module to a fixed weight scheme are presented
in Appendix A.19.

To verify the effectiveness of our method, we conduct ablation studies focusing on (1) traditional
time series (TS) models and (2) language models.

Traditional Models.

Although we utilize TimesNet as our primary model, our framework is applicable to other traditional
models. We explored additional traditional models including ETSformer [65], Stationary [42], and
FreTS [70]. As shown in Table 6, integrating LLM-TS generally enhances performance across all
traditional models, underscoring the benefits of our method.
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Language Models.

In the main paper, the LLaMA-3b model [59] is used to generate embeddings for the TS language
description. We compare it with GPT2 [48] and BERT [18] to assess different embeddings’ perfor-
mance. Table 7 reveals that LLaMA-3b generally outperforms the alternatives, and all LMs improve
results compared to non-LLM approaches, validating the effectiveness of LLM-TS Integrator.

Table 6: Ablation results on different traditional models. Full results are in Appendix A.19.
Methods ETSformer ETS LLM-TS Stationary Stat LLM-TS FreTS FreTS LLM-TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.313 0.382 0.307 0.375 0.282 0.307 0.284 0.309 0.262 0.306 0.255 0.302
ETTh1 0.799 0.684 0.791 0.678 0.667 0.582 0.653 0.572 0.484 0.473 0.478 0.466
ETTm1 0.638 0.583 0.555 0.528 0.527 0.477 0.522 0.471 0.415 0.422 0.407 0.415
ILI 3.922 1.367 3.740 1.320 2.722 1.041 2.205 0.935 3.449 1.279 3.158 1.211

Table 7: Ablation results on different LLM embeddings. Full results are in Appendix A.19.
Methods LLM-TS (LLaMA) LLaMA w/o template GPT2 BERT No LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.257 0.285 0.263 0.288 0.261 0.287 0.260 0.287 0.264 0.290
ETTh1 0.454 0.451 0.465 0.460 0.464 0.458 0.467 0.460 0.467 0.460
ETTm1 0.401 0.409 0.406 0.415 0.406 0.413 0.406 0.412 0.411 0.417
ILI 1.973 0.894 2.173 0.950 2.169 0.936 2.193 0.952 2.221 0.942

A.10 Standard Deviation Results

Table 8 presents the results along with standard deviations to underscore the consistency and reliability
of our method’s performance.

Table 8: Ablation results with standard deviation.

Methods Ours w/o mutual w/o reweight TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.166± 0.002 0.217± 0.002 0.168± 0.003 0.218± 0.005 0.181± 0.003 0.232± 0.001 0.174± 0.003 0.224± 0.002

192 0.229± 0.003 0.269± 0.003 0.227± 0.004 0.268± 0.003 0.230± 0.002 0.270± 0.004 0.235± 0.001 0.272± 0.003
336 0.278± 0.002 0.302± 0.003 0.298± 0.004 0.318± 0.003 0.283± 0.004 0.306± 0.002 0.285± 0.002 0.307± 0.002
720 0.354± 0.001 0.351± 0.001 0.361± 0.002 0.356± 0.001 0.361± 0.002 0.355± 0.001 0.365± 0.001 0.358± 0.000

E
T
T
h
1 96 0.403± 0.005 0.420± 0.003 0.402± 0.004 0.422± 0.002 0.408± 0.003 0.428± 0.002 0.414± 0.006 0.431± 0.004

192 0.440± 0.009 0.441± 0.004 0.459± 0.006 0.455± 0.005 0.469± 0.005 0.460± 0.003 0.463± 0.010 0.456± 0.006
336 0.471± 0.006 0.457± 0.004 0.471± 0.005 0.457± 0.004 0.492± 0.004 0.474± 0.004 0.487± 0.007 0.466± 0.005
720 0.503± 0.005 0.487± 0.004 0.535± 0.003 0.507± 0.003 0.485± 0.006 0.478± 0.007 0.517± 0.004 0.494± 0.004

E
T
T
m
1 96 0.329± 0.014 0.371± 0.006 0.341± 0.010 0.377± 0.008 0.350± 0.011 0.387± 0.005 0.340± 0.011 0.377± 0.007

192 0.380± 0.009 0.398± 0.004 0.404± 0.010 0.413± 0.005 0.383± 0.010 0.397± 0.005 0.406± 0.012 0.408± 0.004
336 0.418± 0.004 0.425± 0.004 0.432± 0.005 0.428± 0.002 0.410± 0.004 0.411± 0.003 0.424± 0.006 0.425± 0.003
720 0.476± 0.008 0.440± 0.005 0.468± 0.009 0.449± 0.004 0.467± 0.007 0.448± 0.003 0.485± 0.010 0.461± 0.006

I
L
I

24 1.921± 0.201 0.898± 0.033 2.170± 0.174 0.947± 0.039 1.934± 0.170 0.925± 0.034 2.072± 0.211 0.948± 0.026
36 2.151± 0.061 0.933± 0.035 2.093± 0.119 0.889± 0.041 2.505± 0.179 1.020± 0.017 2.494± 0.125 1.019± 0.007
48 2.062± 0.090 0.892± 0.019 2.418± 0.058 0.959± 0.014 2.325± 0.201 0.948± 0.062 2.298± 0.066 0.964± 0.011
60 1.759± 0.214 0.853± 0.061 2.203± 0.181 0.971± 0.048 1.926± 0.152 0.896± 0.039 2.198± 0.070 0.963± 0.017

A.11 Showcases

To provide a clear comparison among different models, we showcase the forecasting task results
on ETTh1 (96-96) and ETTm1 (96-336) using three models: LLM-TS, TimesNet, and GPT4TS. As
shown in Figures 5 and 6, our LLM-TS model produces significantly more accurate predictions,
demonstrating its effectiveness.

To illustrate the performance improvements achieved by the LLM-TS Integrator framework, we
introduce a case study. We created a training set with a weighted sine function:

4∑
i=1

ωi sin(fit+ pi) + ϵN(0, 1) (10)

where w1 = 0.1, w2 = 0.2, w3 = 0.3, w4 = 0.4; f1 = 1
40 , f2 = 1

45 , f3 = 1
50 , f4 = 1

55 ; p1 = 0,
p2 = 1, p3 = 2, p4 = 3; and ϵ = 0.1 is the noise level. We generated a long sequence of length
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Figure 5: ETTh1
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Figure 6: ETTm1

10, 000 and then sampled a batch of size 64 with a sequence length of 96 and a prediction length
of 336 to train GPT4TS, TimesNet, and LLM-TS on this data for 1, 000 iterations. For testing, we
created a test set with frequency f = 1

20 , which is greater than max(f1, f2, f3, f4), and used p = 2.5,
w = 1 and ϵ = 0.1.

As shown in Figure 7, Figure 8 an Figure 9, we can know:

• GPT4TS fails to accurately capture periodic information as it relies solely on a language
model without incorporating traditional mathematical modelling.
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Figure 7: GPT4TS on synthetic data
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Figure 9: LLM-TS on synthetic data

• TimesNet generally captures periodic information due to the use of the FFT mathematical
operator, but it still does not perfectly match the ground truth.

• LLM-TS captures periodic information and better matches the ground truth by integrating
rich language model insights into the traditional TimesNet model.

This case study highlights how the LLM-TS Integrator framework benefits from both inherent
properties of traditional TS models and pattern recognition abilities of LLMs, demonstrating the
effectiveness of our approach.

A.12 Template Variation

We conducted additional experiments on the ETTh1 dataset for long-term forecasting with GPT2.
The original template achieves a Mean Squared Error (MSE) of 0.464 and a Mean Absolute Error
(MAE) of 0.458. We tested variations of the template by changing the original context from "The
Electricity Transformer Temperature is a crucial indicator in electric power long-term deployment."
to:

• Variation 1: "The temperature of the electricity transformer is a vital metric for long-term
electric power deployment."
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• Variation 2: "Monitoring the temperature of electricity transformers is essential for the
long-term deployment of electric power."

• Variation 3: "The temperature of electricity transformers serves as a key indicator in the
long-term deployment of electric power."

• Variation 4: No template.

Besides, we also consider the following changes:

• w/o Input Statistics: excluding input statistical data from our analysis.
• w/o Mean, Max, Median: remove mean, max and median informatino.
• w/o Lags: remove lags information.

The performance of these variations is summarized in Table 9. These results indicate that the
performance is quite similar across different variations, supporting the robustness of our approach
regardless of minor template modifications. For further details on the template implementation, refer
to our code repository at https://anonymous.4open.science/r/llm_ts_anonymous-F07D/
utils/tools.py.

Table 9: Performance across different template variations
Template Variation MSE MAE

Original Template 0.464± 0.004 0.458± 0.005

Variation 1 0.460± 0.005 0.456± 0.003
Variation 2 0.465± 0.006 0.460± 0.005
Variation 3 0.464± 0.004 0.459± 0.003
Variation 4 (No template) 0.466± 0.005 0.460± 0.005

w/o Input Statistics 0.468± 0.004 0.462± 0.004
w/o Mean/Max/Median 0.465± 0.004 0.459± 0.003
w/o Lags 0.467± 0.003 0.460± 0.005

A.13 Model Efficiency Analysis

Compared to TimesNet, our LLM-TS integrator introduces additional costs due to the mutual infor-
mation and sample weighting modules. However, after training, the inference cost of our method
is the same as TimesNet. We detail the time cost of each component for ETTh1 and ETTm1 tasks,
using a batch size of 32 on a 32G V100 GPU. As shown in Table 10, the training cost of our method
is reasonable, given that it achieves the best performance across most tasks.

It is important to note that we use the pre-trained LLM to obtain the text embeddings only once.
These embeddings can then be used throughout the training process. For instance, obtaining the
embeddings for the ETTh1 dataset using the llama-3b model on an A100 GPU takes approximately 1
hour. After this, the embeddings are utilized in our framework to train the model, and in the final
output of the TimesNet model. This ensures that the inference time of our method is identical to that
of the TimesNet model.

As detailed in the TimesNet paper, our backbone model TimesNet is relatively small with 0.067 MB
parameters. For comparison, other models have the following sizes: Non-stationary Transformer has
1.884 MB, Autoformer has 1.848 MB, FEDformer has 2.9 MB, LightTS has 0.163 MB, DLinear
has 0.296 MB, ETSformer has 1.123 MB, Informer has 1.903 MB, Reformer has 1.157 MB, and
Pyraformer has 1.308 MB. The introduced mutual information network consists of only two linear
layers of size 64x64 and 64x4096, which is negligible in terms of additional parameters. Similarly,
the introduced MLP network consists of four layers: 1 × 100, 100 × 1, 1 × 1, and 1 × 1, and the
number of parameters is also negligible.

Thus, our model remains very small and efficient, with inference time identical to TimesNet (as
the mutual information component is only used during training). Given that many TS models are
primarily used for inference, our approach offers effective performance gains with minimal additional
computational cost.
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Table 10: Cost Comparison per step(s).

Methods Overall TimesNet Mutual Information Sample Reweighting

ETTh1 3.177 0.126 0.577 2.474
Weather 5.563 0.436 1.094 4.033

A.14 Full Results of Short-term Forecasting

Table 11 displays the comprehensive results for short-term forecasting.
Table 11: Full results of short-term forecasting.

Methods LLM-TS TimesNet GPT4TS TIME-LLM PatchTST N-HiTS N-BEATS FEDformer Stationary Autoformer

Y
ea

rl
y SMAPE 13.369 13.512 13.531 13.419 13.477 13.418 13.436 13.728 13.717 13.974

MASE 3.021 3.065 3.015 3.0050 3.019 3.045 3.043 3.048 3.078 3.134

OWA 0.789 0.799 0.793 0.789 0.792 0.793 0.794 0.803 0.807 0.822

Q
u
a
rt
er
ly SMAPE 10.020 10.069 10.177 10.110 10.38 10.202 10.124 10.792 10.958 11.338

MASE 1.162 1.178 1.194 1.178 1.233 1.194 1.169 1.283 1.325 1.365

OWA 0.878 0.887 0.898 0.889 0.921 0.899 0.886 0.958 0.981 1.012

M
on

th
ly SMAPE 12.696 12.783 12.894 12.980 12.959 12.791 12.677 14.260 13.917 13.958

MASE 0.936 0.949 0.956 0.963 0.970 0.969 0.937 1.102 1.097 1.103

OWA 0.880 0.889 0.897 0.903 0.905 0.899 0.880 1.012 0.998 1.002

O
th
er
s SMAPE 4.916 4.954 4.940 4.795 4.952 5.061 4.925 4.954 6.302 5.485

MASE 3.310 3.364 3.228 3.178 3.347 3.216 3.391 3.264 4.064 3.865

OWA 1.039 1.052 1.029 1.006 1.049 1.040 1.053 1.036 1.304 1.187

A
v
er
a
g
e SMAPE 11.819 11.908 11.991 11.983 12.059 11.927 11.851 12.840 12.780 12.909

MASE 1.588 1.612 1.600 1.595 1.623 1.613 1.599 1.701 1.756 1.771

OWA 0.851 0.860 0.861 0.859 0.869 0.861 0.855 0.918 0.930 0.939

A.15 Full Results of Long-Term Forecasting

Full results for long-term forecasting are presented in Table 12.

A.16 Full Results of Imputation.

Table 13 contains the detailed results of our imputation tasks.

A.17 Full Results of Classification

Table 14 contains the comprehensive results for classification.

A.18 Full Results of Anamoly Detection

Full results for anamoly detection are detailed in Table 15.

A.19 Further Ablation Studies

Mutual Information Estimator. In the main paper, we utilize the Jensen-Shannon mutual informa-
tion (MI) estimator. Additionally, we explore the Mutual Information Neural Estimator (MINE) [27].
We evaluate both estimators on two tasks, ETTh1 and ETTm1, with results averaged over four
prediction lengths. For ETTh1, the MSE and MAE using the original Jensen-Shannon estimator
are 0.454 and 0.451, respectively, compared to 0.460 and 0.457 with MINE. For ETTm1, the MSE
and MAE are 0.401 and 0.409 with the original estimator, and 0.402 and 0.410 with MINE. These
comparisons highlight the robustness of our method across different mutual information estimators.

Sample Reweighting Illustration. Figures 11, 10, 12, and 13 display the learned weighting
network applied to various datasets: MSL for anomaly detection, Weather for forecasting, ETTh1
for imputation, and PEMS-SF for classification. These visualizations corroborate our hypothesis:
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Table 12: Full results for long-term forecasting. We use prediction length O ∈ {96, 192, 336, 720}
except for ILI and O ∈ {24, 36, 48, 60} for ILI. A lower MSE indicates better performance.

Methods LLM-TS TimesNet TIME-LLM DLinear PatchTST GPT4TS FEDformer TEST Stationary ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.166 0.217 0.174 0.224 0.202 0.239 0.196 0.255 0.186 0.227 0.196 0.234 0.217 0.296 0.214 0.264 0.173 0.223 0.197 0.281
192 0.229 0.269 0.235 0.272 0.245 0.277 0.237 0.296 0.234 0.265 0.241 0.271 0.276 0.336 0.262 0.298 0.245 0.285 0.237 0.312
336 0.278 0.302 0.235 0.272 0.300 0.313 0.283 0.335 0.284 0.301 0.296 0.308 0.339 0.380 0.310 0.329 0.321 0.338 0.298 0.353
720 0.354 0.351 0.365 0.358 0.369 0.356 0.345 0.381 0.356 0.349 0.367 0.354 0.403 0.428 0.378 0.370 0.414 0.410 0.352 0.288
Avg 0.257 0.285 0.265 0.290 0.279 0.296 0.265 0.317 0.265 0.285 0.275 0.292 0.309 0.360 0.291 0.315 0.288 0.314 0.271 0.334

E
T
T
h
1

96 0.403 0.420 0.414 0.431 0.414 0.422 0.386 0.400 0.460 0.447 0.409 0.415 0.376 0.419 0.411 0.426 0.513 0.491 0.494 0.479
192 0.440 0.441 0.463 0.456 0.466 0.450 0.437 0.432 0.512 0.477 0.468 0.446 0.420 0.448 0.475 0.461 0.534 0.504 0.538 0.504
336 0.471 0.457 0.487 0.466 0.515 0.475 0.481 0.459 0.546 0.496 0.503 0.461 0.459 0.465 0.508 0.482 0.588 0.535 0.574 0.521
720 0.503 0.487 0.517 0.494 0.503 0.487 0.519 0.516 0.544 0.517 0.510 0.482 0.506 0.507 0.504 0.494 0.643 0.616 0.562 0.535
Avg 0.454 0.451 0.470 0.462 0.474 0.459 0.456 0.452 0.516 0.484 0.473 0.451 0.440 0.460 0.475 0.466 0.570 0.537 0.542 0.510

E
T
T
h
2

96 0.322 0.366 0.340 0.374 0.306 0.353 0.333 0.387 0.308 0.355 0.298 0.350 0.358 0.397 0.328 0.374 0.476 0.458 0.340 0.391
192 0.400 0.409 0.399 0.410 0.386 0.399 0.477 0.476 0.393 0.405 0.376 0.399 0.429 0.439 0.403 0.418 0.512 0.493 0.430 0.439
336 0.432 0.435 0.452 0.452 0.460 0.458 0.594 0.541 0.427 0.436 0.430 0.439 0.496 0.487 0.455 0.458 0.552 0.551 0.485 0.479
720 0.430 0.442 0.462 0.468 0.442 0.451 0.831 0.657 0.436 0.450 0.428 0.451 0.463 0.474 0.470 0.477 0.562 0.560 0.500 0.497
Avg 0.396 0.413 0.413 0.426 0.398 0.415 0.559 0.515 0.391 0.411 0.383 0.410 0.437 0.449 0.414 0.432 0.526 0.516 0.439 0.452

E
T
T
m
1 96 0.329 0.371 0.340 0.377 0.393 0.398 0.345 0.372 0.352 0.374 0.350 0.369 0.379 0.419 0.336 0.373 0.386 0.398 0.375 0.398

192 0.380 0.398 0.406 0.408 0.412 0.405 0.380 0.389 0.390 0.393 0.387 0.387 0.426 0.441 0.381 0.399 0.459 0.444 0.408 0.410
336 0.418 0.425 0.424 0.425 0.442 0.425 0.413 0.413 0.421 0.414 0.418 0.407 0.445 0.459 0.411 0.418 0.495 0.464 0.435 0.428
720 0.476 0.440 0.485 0.461 0.502 0.457 0.474 0.453 0.462 0.449 0.477 0.437 0.543 0.490 0.478 0.454 0.585 0.516 0.499 0.462
Avg 0.401 0.409 0.414 0.418 0.437 0.421 0.403 0.407 0.406 0.407 0.408 0.400 0.448 0.452 0.402 0.411 0.481 0.456 0.429 0.425

E
T
T
m
2 96 0.189 0.266 0.185 0.264 0.193 0.281 0.193 0.292 0.183 0.270 0.185 0.271 0.203 0.287 0.230 0.307 0.192 0.274 0.189 0.280

192 0.253 0.307 0.252 0.306 0.254 0.315 0.284 0.363 0.255 0.314 0.250 0.312 0.269 0.328 0.284 0.338 0.280 0.339 0.253 0.319
336 0.315 0.345 0.323 0.350 0.320 0.355 0.369 0.427 0.309 0.347 0.314 0.351 0.325 0.366 0.340 0.370 0.334 0.361 0.314 0.357
720 0.421 0.408 0.415 0.403 0.426 0.416 0.554 0.522 0.412 0.404 0.410 0.408 0.421 0.415 0.436 0.420 0.417 0.413 0.414 0.413
Avg 0.295 0.331 0.294 0.331 0.298 0.342 0.350 0.401 0.290 0.334 0.290 0.335 0.305 0.349 0.323 0.359 0.306 0.347 0.293 0.342

I
L
I

24 1.921 0.898 2.072 0.948 2.589 1.054 2.398 1.040 2.229 0.894 5.259 1.689 3.228 1.260 3.371 1.231 2.294 0.945 2.527 1.020
36 2.151 0.933 2.494 1.019 2.996 1.194 2.646 1.088 2.330 0.925 6.136 1.831 2.679 1.080 3.725 1.322 1.825 0.848 2.615 1.007
48 2.062 0.892 2.298 0.964 2.714 1.095 2.614 1.086 2.140 0.894 4.670 1.562 2.622 1.078 3.291 1.237 2.010 0.900 2.359 0.972
60 1.759 0.853 2.198 0.963 2.605 1.050 2.804 1.146 2.037 0.912 4.402 1.517 2.857 1.157 2.907 1.136 2.178 0.963 2.487 1.016
Avg 1.973 0.894 2.266 0.974 2.726 1.098 2.616 1.090 2.184 0.906 5.117 1.650 2.847 1.144 3.324 1.232 2.077 0.914 2.497 1.004

E
C
L

96 0.167 0.271 0.169 0.273 0.207 0.292 0.197 0.282 0.190 0.296 0.186 0.273 0.193 0.308 0.218 0.309 0.169 0.273 0.187 0.304
192 0.178 0.280 0.186 0.288 0.209 0.297 0.196 0.285 0.199 0.304 0.190 0.278 0.201 0.315 0.220 0.311 0.182 0.286 0.199 0.315
336 0.198 0.302 0.206 0.305 0.224 0.312 0.209 0.301 0.217 0.319 0.204 0.291 0.214 0.329 0.234 0.323 0.200 0.304 0.212 0.329
720 0.233 0.344 0.231 0.327 0.277 0.359 0.245 0.333 0.258 0.352 0.245 0.297 0.325 0.355 0.276 0.354 0.222 0.321 0.233 0.345
Avg 0.194 0.299 0.198 0.298 0.229 0.315 0.212 0.300 0.216 0.318 0.206 0.285 0.214 0.327 0.237 0.324 0.193 0.296 0.208 0.323

T
ra

f
f
ic

96 0.587 0.315 0.589 0.313 0.609 0.402 0.650 0.396 0.526 0.347 0.563 0.378 0.587 0.366 0.589 0.390 0.612 0.338 0.607 0.392
192 0.612 0.326 0.627 0.337 0.586 0.382 0.598 0.370 0.522 0.332 0.549 0.367 0.604 0.373 0.567 0.380 0.613 0.340 0.621 0.399
336 0.634 0.338 0.635 0.341 0.593 0.390 0.605 0.373 0.517 0.334 0.566 0.376 0.621 0.383 0.583 0.389 0.618 0.328 0.622 0.396
720 0.640 0.351 0.658 0.349 0.636 0.405 0.645 0.394 0.552 0.352 0.567 0.372 0.626 0.382 0.585 0.391 0.653 0.355 0.632 0.396
Avg 0.618 0.333 0.627 0.335 0.606 0.395 0.625 0.383 0.529 0.341 0.561 0.373 0.610 0.376 0.581 0.388 0.624 0.340 0.621 0.396

Average 0.574 0.427 0.618 0.442 0.681 0.468 0.686 0.483 0.600 0.436 0.964 0.525 0.701 0.489 0.756 0.491 0.633 0.465 0.662 0.473

the sample weight ωO increases with the prediction loss lO, while the weight ωI decreases as lO
increases. This observed pattern supports the efficacy of our reweighting strategy.
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Figure 10: Forecasting.
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Figure 11: Anomaly detection

Static Weighting Scheme. We also explore a static weighting scheme as a contrast to the dynamic
weighting used in our sample reweighting module. This scheme balances the prediction loss and
mutual information loss, with a ratio of 0.0 representing pure prediction loss and 1.0 representing
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Table 13: Full results for the imputation task. Randomly masked {12.5%, 25%, 37.5%, 50%} of
points in 96-length series, averaging results over 4 mask ratios.

Methods LLM-TS TimesNet GPT4TS PatchTST LightTS DLinear FEDformer Stationary Autoformer Reformer
Mask Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
1 12.5% 0.018 0.088 0.023 0.101 0.018 0.089 0.041 0.130 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144 0.042 0.146

25% 0.022 0.097 0.023 0.101 0.023 0.099 0.044 0.135 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144 0.042 0.146
37.5% 0.027 0.108 0.029 0.112 0.030 0.112 0.049 0.143 0.113 0.231 0.103 0.219 0.069 0.191 0.039 0.131 0.057 0.161 0.063 0.182
50% 0.033 0.120 0.035 0.123 0.042 0.131 0.055 0.151 0.134 0.255 0.132 0.248 0.089 0.218 0.047 0.145 0.067 0.174 0.082 0.208
Avg 0.025 0.103 0.028 0.109 0.028 0.108 0.047 0.140 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150 0.055 0.166

E
T
T
m
2 12.5% 0.018 0.079 0.019 0.081 0.019 0.078 0.108 0.239 0.034 0.127 0.062 0.166 0.056 0.159 0.021 0.088 0.023 0.092 0.108 0.228

25% 0.020 0.085 0.021 0.087 0.021 0.084 0.028 0.099 0.042 0.143 0.085 0.196 0.080 0.195 0.024 0.096 0.026 0.101 0.136 0.262
37.5% 0.022 0.089 0.023 0.092 0.024 0.090 0.030 0.104 0.051 0.159 0.106 0.222 0.110 0.231 0.027 0.103 0.030 0.108 0.175 0.300
50% 0.025 0.096 0.025 0.097 0.027 0.098 0.034 0.110 0.059 0.174 0.131 0.247 0.156 0.276 0.030 0.108 0.035 0.119 0.211 0.329
Avg 0.021 0.087 0.022 0.089 0.023 0.088 0.029 0.102 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105 0.157 0.280

E
T
T
h
1

12.5% 0.058 0.165 0.064 0.170 0.043 0.141 0.093 0.201 0.240 0.345 0.151 0.267 0.070 0.190 0.060 0.165 0.074 0.182 0.074 0.194
25% 0.077 0.189 0.082 0.192 0.056 0.159 0.107 0.217 0.265 0.364 0.180 0.292 0.106 0.236 0.080 0.189 0.090 0.203 0.102 0.227
37.5% 0.096 0.209 0.098 0.209 0.074 0.182 0.120 0.230 0.296 0.382 0.215 0.318 0.124 0.258 0.102 0.212 0.109 0.222 0.135 0.261
50% 0.118 0.228 0.116 0.226 0.104 0.214 0.141 0.248 0.334 0.404 0.257 0.347 0.165 0.299 0.133 0.240 0.137 0.248 0.179 0.298
Avg 0.087 0.198 0.090 0.199 0.069 0.174 0.115 0.224 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214 0.122 0.245

E
T
T
h
2

12.5% 0.039 0.131 0.040 0.132 0.041 0.129 0.057 0.152 0.101 0.231 0.100 0.216 0.095 0.212 0.042 0.133 0.044 0.138 0.163 0.289
25% 0.046 0.143 0.048 0.146 0.046 0.137 0.061 0.158 0.115 0.246 0.127 0.247 0.137 0.258 0.049 0.147 0.050 0.149 0.206 0.331
37.5% 0.053 0.154 0.055 0.156 0.053 0.148 0.067 0.166 0.126 0.257 0.158 0.276 0.187 0.304 0.056 0.158 0.060 0.163 0.252 0.370
50% 0.061 0.165 0.061 0.165 0.060 0.160 0.073 0.174 0.136 0.268 0.183 0.299 0.232 0.341 0.065 0.170 0.068 0.173 0.316 0.419
Avg 0.050 0.148 0.051 0.150 0.050 0.144 0.065 0.163 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156 0.234 0.352

E
C
L

12.5% 0.087 0.203 0.090 0.204 0.080 0.194 0.055 0.160 0.102 0.229 0.092 0.214 0.107 0.237 0.093 0.210 0.089 0.210 0.190 0.308
25% 0.091 0.207 0.092 0.209 0.087 0.203 0.065 0.175 0.121 0.252 0.118 0.247 0.120 0.251 0.097 0.214 0.096 0.220 0.197 0.312
37.5% 0.095 0.213 0.096 0.213 0.094 0.211 0.076 0.344 0.141 0.273 0.144 0.276 0.136 0.266 0.102 0.220 0.104 0.229 0.203 0.315
50% 0.101 0.220 0.102 0.221 0.101 0.220 0.091 0.208 0.160 0.293 0.175 0.305 0.158 0.284 0.108 0.228 0.113 0.239 0.210 0.319
Avg 0.094 0.211 0.095 0.212 0.091 0.207 0.072 0.183 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225 0.200 0.313

W
ea

th
er

12.5% 0.026 0.048 0.025 0.047 0.027 0.049 0.029 0.049 0.047 0.101 0.039 0.084 0.041 0.107 0.027 0.051 0.026 0.047 0.031 0.076
25% 0.029 0.055 0.031 0.062 0.030 0.054 0.031 0.053 0.052 0.111 0.048 0.103 0.064 0.163 0.029 0.056 0.030 0.054 0.035 0.082
37.5% 0.032 0.059 0.034 0.064 0.034 0.062 0.035 0.058 0.058 0.121 0.057 0.117 0.107 0.229 0.033 0.062 0.032 0.060 0.040 0.091
50% 0.033 0.061 0.035 0.062 0.037 0.066 0.038 0.063 0.065 0.133 0.066 0.134 0.183 0.312 0.037 0.068 0.037 0.067 0.046 0.099
Avg 0.030 0.056 0.031 0.059 0.032 0.058 0.060 0.144 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057 0.038 0.087

Table 14: Complete classification task results. ∗. in the Transformers indicates the name of ∗former.

Methods Classical RNN TCN Transformers MLP TimesNet LLM LLM-TSXGB Roc LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. ETS. Flow. DL LTS. GPT4TS TEST

Ethanol 43.7 45.2 39.9 31.1 28.9 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 29.7 30.4 26.2 25.1 31.9
FaceD 63.3 64.7 65.7 66.7 52.8 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5 68.6 67.8 50.1 68.9

HandW 15.8 58.8 25.8 24.6 53.3 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 28.9 20.1 32.7
HeartB 73.2 75.6 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1 77.6 72.2 73.7 77.1
JapanV 86.5 96.2 98.1 98.4 98.9 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.2 96.2 97.2 98.4 78.4 98.1
PEMS 98.3 75.1 86.7 86.1 68.8 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 75.1 88.4 89.6 79.2 59.5 90.8
SCP1 84.6 90.8 84.0 90.8 84.6 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 87.3 89.8 90.4 90.1 84.0 91.8
SCP2 48.9 53.3 52.8 52.2 55.6 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 50.5 51.1 57.1 50.0 54.4 57.8

SpokenA 69.6 71.2 100.0 100.0 95.6 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 81.4 100.0 98.6 97.9 82.1 98.6
UWave 75.9 94.4 87.8 85.9 88.4 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 82.1 80.3 85.5 85.6 84.4 86.6

Avg 66.0 72.5 71.8 70.9 70.3 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 70.4 72.7 69.5 61.2 73.4

pure mutual information loss. As shown in Table 18, the static approach underperforms relative to
our dynamic sample weighting module, demonstrating the superior effectiveness of our method.

Comprehensive Results.

The detailed performance of various traditional TS models and LLMs is presented in Table 16 and
Table 17.

A.20 Related Work

LLM for TS Modeling. FPT [80] suggests utilizing pre-trained language models to extract features
from time series for improved predictions. TIME-LLM [35] and TEST [54] adapt LLMs for general
time series forecasting by maintaining the original language model structure while reprogramming
the input to fit time series data [76]. LLMTIME [24] interprets time series as sequences of numbers,
treating forecasting as a next-token prediction task akin to text processing, applying pre-trained
LLMs for this purpose. Given that it is not a state-of-the-art method and primarily targets zero-shot
forecasting, it has not been incorporated into our experimental framework. TEMPO [5] utilizes
essential inductive biases of the TS task for generative pre-trained transformer models.
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Table 15: Full results for the anomaly detection.

Methods SMD MSL SMAP SWaT PSM Avg F1
Metrics P R F1 P R F1 P R F1 P R F1 P R F1 %

LLM-TS 88.09 81.54 84.69 89.04 74.49 81.11 89.95 56.51 69.41 91.16 95.40 93.23 98.44 96.45 97.43 85.17
TimesNet 87.93 81.45 84.57 88.62 73.48 80.34 89.59 56.35 69.18 91.00 95.33 93.12 98.40 96.18 97.27 84.90
GPT4TS 87.70 81.19 84.32 82.15 81.32 81.73 90.04 55.75 68.86 92.12 93.06 92.59 98.37 96.34 97.34 84.97
PatchTST 87.26 82.14 84.62 88.34 70.96 78.70 90.64 55.46 68.82 91.10 80.94 85.72 98.84 93.47 96.08 82.79

ETSformer 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
FEDformer 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97

LightTS 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
DLinear 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46

Stationary 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
Autoformer 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
Pyraformer 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57

Anomaly Transformer 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Informer 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Reformer 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31

Transformer 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88

Table 16: Different traditional models. We use prediction length O ∈ {96, 192, 336, 720} for ILI and
O ∈ {24, 36, 48, 60} for others.

Methods PatchTST PatchTST INT ETSformer ETS INT Stationary Stat INT FreTS FreTS INT

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.174 0.216 0.172 0.214 0.196 0.282 0.200 0.285 0.178 0.226 0.201 0.246 0.187 0.243 0.179 0.235
192 0.222 0.258 0.219 0.255 0.282 0.364 0.278 0.361 0.235 0.278 0.238 0.280 0.227 0.274 0.221 0.278
336 0.280 0.298 0.279 0.298 0.344 0.409 0.322 0.382 0.327 0.339 0.312 0.329 0.281 0.325 0.276 0.320
720 0.356 0.349 0.356 0.348 0.430 0.472 0.427 0.470 0.387 0.383 0.386 0.383 0.352 0.382 0.344 0.376
Avg 0.258 0.280 0.257 0.279 0.313 0.382 0.307 0.375 0.282 0.307 0.284 0.309 0.262 0.306 0.255 0.302

E
T
T
h
1

96 0.381 0.398 0.382 0.401 0.554 0.536 0.550 0.532 0.534 0.499 0.523 0.486 0.398 0.412 0.395 0.409
192 0.421 0.426 0.422 0.428 0.686 0.619 0.690 0.621 0.639 0.560 0.609 0.560 0.454 0.449 0.455 0.451
336 0.464 0.449 0.460 0.441 0.869 0.730 0.868 0.728 0.790 0.648 0.780 0.634 0.512 0.483 0.502 0.474
720 0.527 0.500 0.510 0.496 1.085 0.849 1.054 0.830 0.706 0.620 0.701 0.606 0.572 0.547 0.560 0.530
Avg 0.448 0.443 0.444 0.442 0.799 0.684 0.791 0.678 0.667 0.582 0.653 0.572 0.484 0.473 0.478 0.466

E
T
T
m
1 96 0.332 0.368 0.332 0.372 0.526 0.495 0.424 0.434 0.417 0.417 0.412 0.410 0.340 0.375 0.339 0.374

192 0.368 0.388 0.367 0.388 0.565 0.538 0.458 0.461 0.446 0.437 0.445 0.435 0.395 0.408 0.384 0.399
336 0.397 0.405 0.396 0.405 0.658 0.603 0.537 0.519 0.582 0.507 0.570 0.491 0.431 0.433 0.420 0.423
720 0.457 0.445 0.460 0.446 0.801 0.696 0.802 0.696 0.661 0.546 0.660 0.546 0.494 0.470 0.484 0.462
Avg 0.389 0.402 0.389 0.403 0.638 0.583 0.555 0.528 0.527 0.477 0.522 0.471 0.415 0.422 0.407 0.415

I
L
I

24 2.229 0.894 2.172 0.856 4.043 1.410 3.607 1.305 2.722 1.024 1.905 0.872 3.226 1.231 3.202 1.213
36 2.330 0.925 2.347 0.978 3.809 1.358 3.705 1.315 3.026 1.071 2.790 1.068 3.363 1.259 3.000 1.173
48 2.140 0.894 1.984 0.869 3.851 1.351 3.714 1.309 2.622 1.032 2.132 0.900 3.456 1.285 3.132 1.213
60 2.037 0.912 1.770 0.831 3.983 1.349 3.935 1.350 2.520 1.035 1.991 0.901 3.749 1.340 3.298 1.243

Avg 2.184 0.906 2.068 0.884 3.922 1.367 3.740 1.320 2.722 1.041 2.205 0.935 3.449 1.279 3.158 1.211

Time Series to Text. PromptCast [69] proposes to transform the numerical input and output into
prompts, which enables forecasting in a sentence-to-sentence manner. Time-LLM [35] incorporates
background, instruction and statistical information of the time series data via natural language to
facilitate time series forecasting in LLM. LLMTIME [25] converts time series data into a string of
numbers and predicts future values as if completing a text.
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Figure 12: imputation.
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Figure 13: classification
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Table 17: Different LLM embeddings. We use prediction length O ∈ {96, 192, 336, 720} for ILI and
O ∈ {24, 36, 48, 60} for others.

Methods LLM-TS (LLaMA) LLaMA w/o text GPT2 BERT No LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.166 0.217 0.170 0.218 0.168 0.218 0.167 0.217 0.168 0.218
192 0.229 0.269 0.227 0.266 0.226 0.267 0.229 0.270 0.227 0.268
336 0.278 0.302 0.295 0.314 0.292 0.310 0.283 0.305 0.298 0.318
720 0.354 0.351 0.360 0.354 0.359 0.354 0.360 0.354 0.361 0.356
Avg 0.257 0.285 0.263 0.288 0.261 0.287 0.260 0.287 0.264 0.290

E
T
T
h
1

96 0.403 0.420 0.409 0.427 0.408 0.426 0.402 0.421 0.402 0.422
192 0.440 0.441 0.445 0.445 0.442 0.444 0.452 0.450 0.459 0.455
336 0.471 0.457 0.490 0.472 0.487 0.467 0.494 0.472 0.471 0.457
720 0.503 0.487 0.518 0.496 0.517 0.494 0.520 0.497 0.535 0.507
Avg 0.454 0.451 0.465 0.460 0.464 0.458 0.467 0.460 0.467 0.460

E
T
T
m
1 96 0.329 0.371 0.350 0.387 0.338 0.370 0.340 0.375 0.341 0.377

192 0.380 0.398 0.383 0.398 0.392 0.404 0.401 0.408 0.404 0.413
336 0.418 0.425 0.423 0.426 0.416 0.423 0.414 0.421 0.432 0.428
720 0.476 0.440 0.467 0.449 0.477 0.454 0.470 0.445 0.468 0.449
Avg 0.401 0.409 0.406 0.415 0.406 0.413 0.406 0.412 0.411 0.417

I
L
I

24 1.921 0.898 1.998 0.929 1.997 0.929 1.917 0.915 2.170 0.947
36 2.151 0.933 2.422 0.957 2.333 0.958 2.431 1.004 2.093 0.889
48 2.062 0.892 2.198 0.964 2.269 0.937 2.333 0.961 2.418 0.959
60 1.759 0.853 2.072 0.948 2.077 0.921 2.089 0.926 2.203 0.971

Avg 1.973 0.894 2.173 0.950 2.169 0.936 2.193 0.952 2.221 0.942

Table 18: Static Weighting Scheme with Different ratios.

Ratio 0.0 0.2 0.4 0.6 0.8 1.0 Ours

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.478 0.468 0.471 0.459 0.465 0.462 0.470 0.463 0.473 0.450 0.471 0.463 0.454 0.451

ETTm1 0.415 0.417 0.408 0.414 0.405 0.412 0.406 0.412 0.417 0.419 0.416 0.419 0.401 0.409

Mutual Information The Infomax principle [39, 4], applied in the context of neural networks, advo-
cates for maximizing mutual information between the inputs and outputs of a network. Traditionally,
quantifying mutual information was challenging outside a few specific probability distributions, as dis-
cussed in [51]. This complexity led to the development of various heuristics and approximations [58].
More recently, a breakthrough came with MINE [3], which introduced a neural estimator capable of
assessing mutual information between two arbitrary quantities with a precision that depends on the
capacity of the encoding network. This innovative approach has spearheaded advancements in the
field of representation learning [28, 57]. The estimator we utilize is based on the Jensen-Shannon
divergence variant of the MINE mutual information estimator.

Sample Reweighting. Sample reweighting is commonly used to improve training efficacy [19, 62,
71, 75, 72, 13]. Traditional approaches [21, 56] assign larger weights to samples with higher loss
values, as these hard samples have greater learning potential. Recent studies [49] suggest using a
validation set to guide the learning of sample weights, which can enhance model training. Notably,
meta-weight-net [50] proposes learning a mapping from sample loss to sample weight. In this work,
we adopt an MLP network that takes sample prediction loss as input and outputs dual weights for
prediction loss and mutual information loss.
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