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ABSTRACT

UV unwrapping is an essential task in computer graphics, enabling various vi-
sual editing operations in rendering pipelines. However, existing UV unwrapping
methods struggle with time-consuming, fragmentation, lack of semanticity, and
irregular UV islands, limiting their practical use. An artist-style UV map must
not only satisfy fundamental criteria, such as overlap-free mapping and minimal
distortion, but also uphold higher-level standards, including clean boundaries, ef-
ficient space utilization, and semantic coherence. We introduce ArtUV, a fully
automated, end-to-end method for generating artist-style UV unwrapping. We
simulates the professional UV mapping process by dividing it into two stages:
surface seam prediction and artist-style UV parameterization. In the seam predic-
tion stage, SeamGPT is used to generate semantically meaningful cutting seams.
Then, in the parameterization stage, a rough UV obtained from an optimization-
based method, along with the mesh, is fed into an Auto-Encoder, which refines
it into an artist-style UV map. Our method ensures semantic consistency and
preserves topological structure, making the UV map ready for 2D editing. We
evaluate ArtUV across multiple benchmarks and show that it serves as a versa-
tile solution, functioning seamlessly as either a plug-in for professional rendering
tools or as a standalone system for rapid, high-quality UV generation.

1 INTRODUCTION

S
ea

m
G

PT

Input Mesh Surface Cut Init Map ArtUV Map

M
in

is
tr

et
ch

un
w

ra
p

A
rt

U
V 

Pa
ra

m
et

er
iz

at
io

n

Figure 1: ArtUV pipeline: First, SeamGPT is used to predict the semantically meaningful seams
on the input mesh surface. Based on these cutting line, the mesh is segmented into charts. For
each chart, Ministretch-Unwrap (Rabinovich et al., 2017; Jiang et al., 2017; Lévy et al., 2023) is
used to quickly generate the initial UV map. This initial UV map is then input into the ArtUV
parameterization module to Optimize the artist-style UV map.

UV parameterization (Floater & Hormann, 2005; Sheffer et al., 2007), also known as UV unwrap-
ping, is a fundamental task in computer graphics that plays an essential role in modern rendering
pipelines. This process serves as the foundation for numerous downstream applications, includ-
ing texture editing and lightmap generation. UV unwrapping specifically involves establishing a
mapping from each 3D vertex (x, y, z) of a mesh to corresponding 2D coordinates (u, v) in UV
space while maintaining the topological connectivity between vertices. To be effective in practice, a
high-quality UV unwrapping requires both basic criteria such as low distortion and no overlaps, and
higher-level criteria including clean boundaries, space efficiency, and semantic coherence.

UV unwrapping methods can typically be categorized into three types: top-down, bottom-
up (Sorkine et al., 2002; Li et al., 2018), and learning-based (Srinivasan et al., 2024; Zhang et al.,
2024). The top-down method begins by identifying seams on the 3D object to partition the surface
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into separate charts. These individual charts are then unwrapped with careful attention to minimiz-
ing distortion while preserving neat boundaries. The process concludes by efficiently packing these
UV islands into a cohesive, complete UV map. Conversely, the bottom-up approach starts with the
entire object surface as discrete elements, then progressively merges these triangles by optimizing
an energy function until convergence produces the final UV map. Learning-based methods employ
unsupervised training through a cyclic mapping network. This architecture projects the 3D object
into UV space and reconstructs it back to 3D coordinates, forming a complete round-trip transfor-
mation. During this process, physical constraints such as mapping bijectivity guide the network
optimization. Once trained, the forward 3D-to-2D pathway directly generates the UV unwrapping.

Traditional top-down methods demand considerable time and expertise, requiring experienced artists
to determine optimal cutting locations and manually adjust UV islands after unwrapping. This re-
liance on manual intervention makes it challenging to achieve the optimal balance between distortion
and neatness. Bottom-up methods face a different issue: their discretization and re-clustering pro-
cesses often produce fragmented UV maps that compromise the neatness of individual UV islands.
Meanwhile, current learning-based methods require extensive training time for each 3D model and
typically rely on point cloud inputs to handle diverse formats. This approach destroys the topo-
logical relationships between points, creating chaotic UV mappings with significant overlap that
severely limits practical usability. More fundamentally, both bottom-up and learning-based meth-
ods lack semantic awareness. For character models, artists prefer semantically meaningful divisions
where limbs and torso are unwrapped separately, as this greatly facilitates subsequent texture editing
tasks. Without this semantic understanding, these automated methods fail to produce the intuitive,
artist-friendly results that practical workflows demand.

In this paper, we introduce a learning-based top-down method for UV unwrapping, decomposing
the task into surface seam prediction and UV parameterization. For seam prediction, we leverage
SeamGPT (Li et al., 2025) to semantically segment the original mesh surface. Then, in the UV
parameterization component, we employ an Auto-Encoder model to simulate the manual adjust-
ment process of UV mapping. Specifically, we encode the original mesh information and constrain
the output UV map in terms of its neatness, overlap, and distortion. After extensive training with
carefully curated data, we obtain a general UV unwrapping method capable of optimizing the ini-
tial UV map from traditional modeling software into one that aligns with artist-style UV mapping.
Ultimately, we present a fully automated, end-to-end UV unwrapping method that generates high-
quality, artist-style UV maps with semantic information in seconds.

Extensive experiments demonstrate that our method outperforms traditional and learning-based UV
unwrapping methods. Our main contributions are as follows:

• We propose ArtUV, a novel learning-based framework that automatically generates artist-style UV
maps from 3D meshes with semantic awareness and professional quality standards.

• We present ArtUV-200K, a high-quality dataset comprising 200K artist-style UV maps, filling the
gap in datasets specifically focused on high-quality UV maps.

• Comprehensive evaluations demonstrate that ArtUV significantly outperforms state-of-the-art UV
unwrapping methods across distortion, utilization, and processing speed metrics.

2 RELATED WORK

2.1 OPTIMIZATION BASED UV UNWRAPPING METHOD

Traditional UV unwrapping methods primarily rely on numerical optimization techniques that aim
to minimize specific energy functions when mapping 3D mesh surfaces to 2D parameter domains,
forming the core of both early and many contemporary unwrapping tools. These methods can
be classified into two categories based on whether surface seams are pre-defined: For methods
with given seams that partition the mesh into separate charts, LSCM (Lévy et al., 2023) and
ABF++ (Sheffer et al., 2005) optimize angles in the 2D domain to approximate their 3D coun-
terparts, theoretically achieving conformal mapping with minimal angular distortion, though often
struggling to guarantee global bijectivity. Conversely, approaches such as SLIM (Rabinovich et al.,
2017), SCAF (Jiang et al., 2017), and Smith & Schaefer (2015) initialize UV maps as bijective map-
pings and explicitly incorporate local/global overlap constraints during optimization to maintain bi-
jectivity. While these methods typically produce low-distortion results, they face inherent challenges
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in simultaneously optimizing for both boundary regularity and distortion minimization. For methods
without pre-defined seams that jointly optimize surface cutting and parameterization, (Sorkine et al.,
2002) discretizes surfaces into compact triangular patches that iteratively grow around seed triangles
until meeting termination criteria, while OptCuts (Li et al., 2018) proposes a joint energy function
minimizing both seam length and distortion for synchronous optimization. However, such joint op-
timization algorithms often yield impractical UV maps due to excessive fragmentation or lack of
semantic coherence. Consequently, current production pipelines still require substantial manual in-
tervention, including hand-placed seams and manual UV island adjustments, to meet professional
rendering requirements.

2.2 LEARNING BASED UV UNWRAPPING METHOD

With the advancement of deep learning techniques, learning-based UV unwrapping methods have
emerged as a research focus. Nuvo (Srinivasan et al., 2024) employs a multi-category neural net-
work architecture to separately handle mesh segmentation and parameterization, utilizing multiple
loss functions to enforce bijectivity and minimize distortion. FAM (Zhang et al., 2024) introduces
a physically-inspired framework comprising sub-networks for surface cutting, UV deformation, un-
wrapping, and packing, achieving point-to-point mapping for arbitrary 3D representations through
a bidirectional cyclic mapping mechanism. However, these methods exhibit notable limitations:
the absence of semantic and requiring time-consuming per-scene optimization. Particularly, FAM’s
point-cloud-based approach disrupts topological structures and generates irreparable overlapping
artifacts. Most critically, these algorithms struggle to achieve the neatness and aesthetic quality of
artist-style unwrapping, resulting in suboptimal UV utilization. As a result, they are impractical for
use in professional rendering pipelines.

2.3 CUTTING-SEAM PREDICTION METHOD

The UV unwrapping process typically involves surface cutting and parameter mapping. Recent ad-
vances in deep learning have inspired several works (Wang et al., 2020; Bazazian & Parés, 2021;
Himeur et al., 2021) that employ neural networks for edge point detection, framing it as a per-point
classification task. EC-Net (Yu et al., 2018) reformulates this approach as a regression problem by
learning residual point coordinates and point-to-edge distances to identify edge points more pre-
cisely. Building upon these developments, SeamGPT (Li et al., 2025) innovatively simulates pro-
fessional workflows by utilizing an autoregressive network to model surface cutting as a next-cut-
point prediction task, enabling semantically meaningful cuts for both artist-created and AI-generated
meshes.

3 DATA PREPARATION

Figure 2: Distribution of vertex count in
ArtUV-200K.

We collected UV-mapped mesh models from mul-
tiple open-source 3D datasets, including Obja-
verse (Deitke et al., 2022), Objaverse-XL (Deitke
et al., 2023), and 3D-FUTURE (Fu et al., 2021),
focusing on artist-style UV maps. To ensure high-
quality training data, we implemented a rigorous fil-
tering process. From an initial collection of approx-
imately 350,000 textured mesh models, we first de-
composed the complete models into individual UV
islands and then filtered out cases with overlapping
UV maps or excessive fragmentation (fewer than
5 vertices per island), yielding a refined subset of
around 300,000 independent UV islands. As illus-
trated in Figure 2, vertex count distribution analysis
indicated that over 97% of these islands contained
fewer than 500 vertices; larger islands were excluded
to enhance training stability and mitigate memory
overhead. We then manually selected UV islands with meaningful semantic information and well-
organized layouts. Each candidate was processed using Ministretch-Unwrap method and evaluated
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against the original UV maps using SSIM (Sara et al., 2019), with islands scoring between 0.5 and
0.8 selected as high-quality, manually adjusted cases.

Ultimately, we construct ArtUV-200K, a high-quality benchmark dataset for artist-style UV unwrap-
ping, containing approximately 15,000 objects and 200k UV islands.

4 METHOD
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Figure 3: ArtUV parameterization architecture. Res-M MLP: Performs importance-based di-
mension mapping of input parameters; SAGEConv: Fuses local features between adjacent vertices
via graph convolution; Pyramid ED: Enables global vertex interaction through attention encoder and
coarse-to-fine decoder; Output: Combines predicted offsets with initial map for final UV parameter-
ization.

We present ArtUV, a novel automatic artist-style UV unwrapping approach that incorporates both
surface cutting and UV parameterization. For the surface cutting, we replicate SeamGPT, an ad-
vanced auto-regressive (Lütkepohl, 2013) seam prediction model. For UV parameterization, we
propose a groundbreaking artist-style UV parameterization model based on an Auto-Encoder.

In the following sections, Sec. 4.1 will first provide a concise overview of SeamGPT. Next, in
Sec. 4.2, we present our artist-style UV parameterization method, where we formulate the artist-
style UV unwrapping task as learning the discrepancy between traditional software-generated UV
maps and artist-optimized UV maps. Finally, in Sec. 4.3, we will focus on the loss function in
parameterization module, which enables the model to generate UV maps that are as neat and low-
distortion as those created by artists.

4.1 PRELIMINARIES

Given a 3D mesh model M , which includes a vertex set V ∈ RN×3 and a triangle face set
F ∈ RM×3, the surface cutting task is identify cut vertices Vc ⊆ V that form connected seams
along mesh edges, partitioning the surface into discrete charts. SeamGPT formulates surface cutting
as a sequence prediction problem by spatially sorting and quantizing cut vertices, where each token
represents a coordinate value and six consecutive tokens define a seam segment. Specifically, for
an input 3D mesh, SeamGPT first samples point clouds on vertices and edges and compresses them
into a latent shape condition using a point cloud encoder from Zhao et al. (2025). Next, follow-
ing Hao et al. (2024), SeamGPT builds an hourglass-like autoregressive decoder with multiple Trans-
former (Vaswani et al., 2017) stacks at each level, which bridges these hierarchical stages through
causality-preserving downsampling and upsampling layers. The decoder autoregressively generates
coordinate tokens starting from SOS until EOS, with final seam vertices obtained by nearest-point
projection of discrete tokens onto the mesh surface.

4.2 ARTUV PARAMETERIZATION

Modeling. UV parameterization aims to establish a continuous bijective mapping from a 3D mesh
M to a 2D plane P ∈ [0, 1]. The corresponding point set on the plane is represented as Q ∈
RN×2. The most straightforward approach would be to directly use all mesh information (IM =
{V, F,N,C,D}), including vertices V , faces F , normals N , degrees C and curvature D, as input
and we could then train a powerful model to learn the 3D-to-2D mapping. However, extensive
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empirical evidence has shown that despite having groundtruth, directly learning the mapping process
is a challenging task. Moreover, a simple projection is not our goal; our ultimate aim is to obtain a
neat and low distorted artist-style UV map. Therefore, inspired by traditional top-down modeling
process, we utilize the UV map Qi obtained through an optimization-based unwrapping method as
initialization, enabling the parameterization model to learn how to adjust Qi into an artist-style UV
map. We additionally include Qi as part of the input and the final input represented as I = IM ∪Qi.
Next, we use the model to predict the offset Qo required for each vertex in the initial UV map during
the manual adjustment process. By adding the predicted offset Qo to Qi, we obtain the final UV
map Qpred = Qi +Qo, which satisfies the artist’s standards.

Architecture. The architecture of our parameterization model is illustrated in Figure 3. First, we
devise a residual MLP module (Res-M MLP) with adaptive dimension mapping, which dynamically
adjusts feature dimensions according to their empirically observed importance in UV unwarpping
tasks (Qi > V > C = N = D), where the residual structure effectively preserve essential in-
put information while enhancing feature representation. To maintain topological consistency, we
construct a graph structure with vertices as nodes and face adjacency as edges, employing SAGE-
Conv (Hamilton et al., 2017) for local feature propagation among neighboring nodes. The processed
features are then fed into a Pyramid ED module, where stacked attention layers in the encoder en-
able global vertex feature interaction, followed by a coarse-to-fine decoder that concurrently extracts
coarse-grained global structure and fine-grained local details to predict UV space offsets Qo. This
predicted offset is then added to the initial UV coordinates Qi, resulting in the final predicted UV
map Qpred.

4.3 LOSSES

To generate UV maps that align with the artist’s design standards—namely neatness, minimal dis-
tortion, and free overlap, we optimize the UV parameterization model’s performance through a
multi-term weighted loss function.

Rotation

Qi

Qgt

𝐴𝑙𝑖𝑔𝑛𝑒𝑑 Qi

Loss

Figure 4: UV map alignment.

The fundamental component is the UV reconstruc-
tion loss, which directly measures the positional dis-
crepancy between predicted UV coordinates Qpred and
groundtruth coordinates Qgt. Before computing this loss,
a critical preprocessing step is performed to align the ini-
tial UV coordinates Qi with the groundtruth Qgt in ro-
tation space. As in Figure 4, this alignment is achieved
using Horn’s method (Horn, 1987), which computes an
optimal rotation matrix R to align the two sets of coordi-
nates by minimizing their rotational discrepancy. Specif-
ically, The covariance matrix W between Qi and Qgt is
computed as:

W =

N∑
i=1

(qi − q̄) · (pi − p̄) (1)

where q and p are the corresponding points in Qi and Qgt and q̄ and p̄ are their mean values.

Then, Singular Value Decomposition(SVD) is applied to W to obtain the optimal rotation matrix R:

W = UΣV T (2)

S =

[
1 0
0 sign(det(U) · det(V T ))

]
(3)

R = USV T (4)

This rotation matrix R is used to align the initial coordinates Qi with the ground truth coordinates
Qgt. After the alignment, the reconstruction loss is computed as the pointwise L1 distance between
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the predicted and ground truth coordinates:

Lrecon = ∥Qgt −Qpred∥1 (5)

To further enhance the structural regularity of predicted UV maps to match manually unwrapped
results, we introduce an edge-preserving silhouette loss. This is implemented through differentiable
rendering of UV map silhouette as in Figure 5. By computing the L2 distance between silhouette
maps of predicted and ground truth UV map, the model is guided to focus on boundary information
that significantly reflects the neatness of UV islands, expressed as:

Lsilhouette = ∥Rendergt −Renderpred∥2 (6)

𝑅𝑒𝑛𝑑𝑒𝑟𝑝𝑟𝑒𝑑 𝑅𝑒𝑛𝑑𝑒𝑟𝑔𝑡

Figure 5: UV map silhouette.

Subsequently, we optimize the distortion of the
predicted UV map by adding a distortion loss
term. Specifically, for each triangular facef , we
compute the Jacobian matrix of its 3D-to-2D
mapping, and after performing Singular Value
Decomposition, we obtain the singular values
σ1 and σ2, which characterize the stretching
intensity. The distortion loss function is de-
fined as the mean of the absolute differences of
the singular values across all faces, which ap-
proaches zero in the case of an ideal conformal
mapping.

Ldistortion =
1∑

f∈F |Af |
∑
f∈F

|Af |
∥∥σ1

f − σ2
f

∥∥
1
, (7)

where F is the set of all triangles on the input surface and |Af | is the area of f .

Finally, to prevent UV map overlaps that would adversely affect subsequent texture mapping pro-
cesses, we implement an overlap penalty based on normal direction. The key observation is that
overlapping triangular faces in the UV domain exhibit flipped normal directions. We formulate this
constraint by introducing a penalty term proportional to the count of faces with negative normal
directions:

Loverlap =
∑
f∈F

(nf · z⃗ < 0) (8)

where F represents faces in the UV map, nf is the normal vector of face f in the UV map, and z⃗ is
the reference viewing direction.

Consequently, The complete objective function combines these loss terms through a weighted linear
combination:

Ltotal = ωrLrecon + ωsLsilhouette + ωdLdistortion + ωoLoverlap (9)

where ωi, (i = r, s, d, o) represents the weight for each corresponding loss component.

5 EXPERIMENT

We conduct both qualitative and quantitative evaluations of our model on the ArtUV-200K and
the FAM benchmark. First, we compare the UV unwrapping performance of our parameterization
model with that of mainstream professional modeling software. Next, we compare our complete Ar-
tUV method with some advanced algorithms, covering the entire process from surface segmentation
to UV parameterization. Finally, we perform ablation studies to assess the rationale and effective-
ness of our loss function design from multiple perspectives.

5.1 IMPLEMENTATION DETAILS

SeamGPT. We consulted the authors of SeamGPT for detailed dataset and model implementation
specifics, and successfully reproduced the complete SeamGPT model. For additional details, please
refer to Supplementary Materials.

6
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ArtUV parameterization. We use Blender’s ministretch algorithm as the initialization method for
the UV parameterization module. The Res-M MLP module map the feature dimensions of the input
UV, vertices, normals, curve, and degree to 128, 62, 32, 32, and 32. These features then passed
through 5 SageConv layers, resulting in a 512 dimensional graph feature. The extracted features
are processed by an attention encoder with 512 dimensions, 8 heads, and 8 layers. The coarse-to-
fine decoder then down-samples the features by factors of 1/2 and 1/4. Finally, the output mapping
layer predicts the UV coordinates (dimensionality 2) using a Tanh activation function, ensuring the
predictions remain within the range [−1, 1]. The model is trained on 24 H20 GPUs (96 GB) for
700K steps with a batch size of 32. In the loss function, the weights ωr, ωs, ωd and ωo are set as
1.0, 1.0, 0.0001 and 0.01. Inference can be performed on most consumer-grade GPUs, with memory
usage not exceeding 10 GB when the model contains fewer than 1000 faces.

5.2 COMPARED WITH PROFESSIONAL SOFTWARE

(b) Ours (c) Blender (d) Maya (e) 3DsMax(a) Input

80.13% 71.65% 71.98% 71.16%

16.69% 16.70% 16.73%53.81%

77.64% 76.79% 76.64%82.66%

Figure 6: Qualitative Result on ArtUV-200K. (a) The input mesh and reference texture image. (b)-
(e) Results of our method, along with Blender, Maya, and 3DsMax. For each method, the upper-left
image shows the UV unwrapping visualized using normal directions, the lower-left image displays
the texture map based on the reference texture, with the value below the texture map representing
the UV utilization rate, and the right image presents the 3D model with a checkerboard texture.

Method Distortion↓ Utilization(%)↑ Artist-Level↑
Blender 9.85 62.74 3.34
Maya 9.66 67.53 1.32
3DsMax 11.88 67.01 1.53
Artist-manual 10.90 70.08 4.12
Ours 9.52 72.57 4.22

Table 1: Quantitative results on ArtUV-200K benchmark.

We first compare our UV pa-
rameterization model with cur-
rent professional modeling soft-
ware in the ArtUV-200K, which
contains 100 diverse 3D mod-
els, each with artist-manually
marked seams. This allows us to
eliminate any interference from
seams quality and directly com-
pare the unwrapping results. We
conduct quantitative evaluations
in terms of mesh distortion and
UV utilization. Specifically, the mesh distortion is computed as the average conformal energy over
all triangular faces of the mesh. For UV utilization, we apply the UVPackMaster plugin for layout
optimization in all unwrapping algorithms.

7
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The metrics are presented in Table 1, where our algorithm outperforms in all evaluated criteria.
Compared to professional modeling software, our algorithm significantly improves UV utilization
while maintaining low distortion. Even when compared to artist-manually unwrapping results, our
approach exhibits better performance in both distortion and utilization, indicating that our algorithm
achieves a level of perfect balance between distortion and neatness that is difficult for conventional
algorithms or manual to attain. Furthermore, using the same texture reference, we apply the texture
generation method (Zhao et al., 2025) to UV maps produced by different approaches. The visual-
izations in Figure 6 show that our unwrapping method produces more Horizontal and vertical UV
maps. This not only leads to a substantial increase in UV utilization, but also makes the texture map
clearer, providing significant convenience for subsequent tasks such as texture editing.

Moreover, because the quality of artistic style is inherently subjective, we conducted a user study to
further evaluate the Artist-Level of our results. We randomly selected 10 representative cases from
the ArtUV-200K and invited 30 professional 3D artists to score the artistic style of the generated
UV maps on a five-point Likert scale, where 5 indicates results most similar to artist-created UV
maps and 0 represents no resemblance to artistic style. As shown in the last column of Table 1, our
method even slightly surpass those produced by manual artist adjustments, demonstrating its strong
capability to capture the intended artistic style in UV unwrapping.

5.3 COMPARED WITH SOT ALGORITHM

(b) Ours (c) Xatlas (d) Nuvo (e) FAM

Spot

Arm

Homer

(a) Input

Figure 7: Qualitative Result on FAM benchmark(Spot, Arm, and Homer). (a) shows the input mesh
from the FAM benchmark, while (b) to (e) present the UV unwrapping results for our method,
XAtlas, Nuvo, and FAM, respectively. It is clear that our algorithm directly produces elegant and
high-quality UV maps. In contrast, XAtlas results in overly fragmented and semantically weak UV
maps, while Nuvo and FAM generate disordered and unusable UV maps.

Method Distortion↓ Runtime(s)↓ Fragments↓
XAtlas 9.44 80.4 1292
Nuvo 32.24 2925.8 1
FAM 76.28 5656.3 1
Ours 8.91 36 14

Table 2: Quantitative results on FAM benchmark.

We then evaluate our fully automated ArtUV
method using the FAM benchmark (which
lacks seam information), comparing it with
three algorithms: XAtlas, Nuvo, and FAM.
The comparison covers the entire UV un-
wrapping process, including surface segmen-
tation and UV parameterization. Quantitative
evaluations in Table 2 based on mesh distor-
tion, computational runtime and UV islands
count demonstrated that our algorithm out-
performed the others. It is evident that XAtlas
produces overly fragmented and semantically poor segments, while Nuvo and FAM suffered from
prolonged computation times due to requiring per-model training. Furthermore, as shown in Fig-
ure 7, the UV unwrapping results from Nuvo and FAM, characterized by disorganized topology,

8
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are impractical for professional rendering pipelines, making a comparison of UV utilization unnec-
essary as well. In contrast, our ArtUV method demonstrates outstanding performance, providing
an end-to-end solution that directly generates UV maps with low distortion, organized layout, and
semantic information, fully meeting the design standards of artists.

5.4 ABLATION STUDIES

Input Oursw/o silhouette loss w/o overlap loss

w/ distortion lossw/o distortion loss

(a)

(b)

Figure 8: Qualitative ablation results.

We conducted several ablation stud-
ies to evaluate the contributions of
our designed loss functions.

Silhouette Loss. As shown in Fig-
ure 8 (a) and Table 3, when the sil-
houette loss is omitted, the model
fails to optimize the boundaries, re-
sulting in less aligned and struc-
tured UV maps, which in turn leads
to lower UV utilization and reduced
Artist-Level scores.

Overlap Loss. Including the overlap
loss suppresses the model’s tendency
to generate overlapping UV faces. As
shown in Figure 8 (a), the UV maps
are more orderly with this loss. Ta-
ble 3 further shows a significant reduction in overlapping face when the overlap loss is applied.

Distortion Loss. Figure 8 (b) visualizes UV distortion using a color-coded scheme, where brighter
yellow regions indicate higher distortion. Quantitative results in Table 3 demonstrate that adding the
distortion loss adjusts internal UV coordinates to more reasonable positions, effectively reducing
distortion.

Loss Distortion ↓ Loss Overlap (%) ↓ Loss Utilization (%) ↑ Artist-Level ↑

w/o Dist. 10.56 w/o Ovlp. 29.0 w/o Sil. 64.33 3.67
w/ Dist. 9.52 w/ Ovlp. 0.0 w/ Sil. 72.57 4.12

Table 3: Quantitative ablation results.

6 CONCLUSION

In this paper, we propose ArtUV, an end-to-end method for generating artist-style UV maps. We de-
compose the problem into surface segmentation using SeamGPT and UV parameterization that pre-
dicts offsets from initial UV maps to artist-style results. Our method generates neat, well-organized
UV maps with low distortion in seconds, addressing current issues of long processing times and
lack of semanticity in professional workflows. Extensive experiments demonstrate that ArtUV out-
performs existing approaches across multiple metrics, holding significant potential for efficiency
improvements in downstream applications.

Limitation. Our current approach exhibits two key limitations. First, the method’s performance is
highly sensitive to the quality of surface cutting. Incomplete or inaccurate seams may cause severe
distortions during UV initialization, resulting in significant internal deformation despite the output
maintaining clean edges. Second, our pipeline does not yet support UV island reuse, since imperfect
alignment of reused islands might cause serious overlapping artifacts. Additionally, island reuse
may introduce additional complexity to model training. Future work will focus on: (1) enhancing
the quality and stability of seams (e.g., applying secondary segmentation to high-distortion areas),
and (2) integrating UV island reuse into the pipeline (e.g., via similarity-based merging of optimized
islands).
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A APPENDIX

A.1 MORE RESULTS

A.1.1 QUANTITATIVE RESULTS ON FAM BENCHMARK.

As shown in Table 4, we provide a detailed comparison of our method with XAtlas, Nuvo, and FAM
in terms of the distortion metrics for each category in the FAM-benchmark.

Method XAtlas Nuvo FAM Ours
Bimba 15.44 19.12 12.10 20.02
Lucy 0.011 57.894 35.13 0.043
Ogre 0.66 26.22 11.55 0.75
Armadillo 0.17 114.21 59.87 0.3492
Bunny 61.83 16.84 7.33 58.19
Nefertiti 0.026 20.92 11.2 0.23
Dragon 0.22 61.02 904.89 0.12
Planck 0.14 11.09 4.67 0.062
Homer 7.51 21.92 14.19 19.20
Teapot 2.42 17.56 8.77 3.06
Cheburashka 8.41 19.75 12.21 10.86
Spot 12.77 12.93 9.37 8.73
Arm 29.98 37.34 20.98 8.54
Beast 0.062 34.19 23.54 1.38
Cow 1.94 12.70 8.49 1.52
Avg. 9.44 32.24 76.28 8.91

Table 4: Quantitative results on FAM benchmark using the face distortion metric.
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(b) Ours (c) Blender (d) Maya (e) 3DsMax(a) Input

Figure 9: More Qualitative Results on ArtUV-200K.

A.1.2 QUALITATIVE RESULT ON ARTUV-200K BENCHMARK.

As shown in the Figure 9, we present more UV unwrapping results from the ArtUV-200K bench-
mark. It is evident that the UV maps obtained using our method are more elegant and well-organized.

A.1.3 RESULTS OF DIFFERENT INITIALIZATION METHODS.

Our ArtUV parameterization module can be seamlessly integrated as a plugin with various pro-
fessional modeling software. To demonstrate its robustness, we replaced Blender’s initial UV un-
wrapping results with Maya and 3DsMax based initialization. As shown in Figure 10, our method
consistently produces high-quality, artist-style UV maps regardless of the initialization approach
used.
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(a) Input (c) 3DsMax based(b) Maya based

Figure 10: Results of different initialization methods.(a) Input original mesh; (b) and (c) display
unwrapping results based on Maya initialization and 3DsMax initialization, respectively. For each
method, the left sub-figure shows the initial unwrapping result, while the right sub-figure presents
the optimized output after processing through our ArtUV parameterization module.

A.2 MORE IMPLEMENTION DETAILS OF SEAMGPT

We consulted the authors of SeamGPT for detailed dataset and model implementation specifics,
and successfully reproduced the complete SeamGPT model. Begin with a targeted point sampling
strategy that collects a total of 61,440 points—evenly split between 30,720 points on vertices and
30,720 points along edges. Then, we implement a hierarchical hourglass-style decoder defined by
a three-level abstraction structure with depth configuration (2, (4, 12, 4), 2), where each number
represents the number of transformer blocks at that level. Each block has 1,536 dimensions and
16 attention heads, incorporating 10-bit quantized positional encoding for sequences up to 36,864
tokens. The model is trained on 64 H20 GPUs(96GB) for 200k steps with a fixed learning rate
of 1e-4, gradient clipping at 0.5 and a batch size of 128. Data augmentation techniques including
random scaling with [0.95, 1.05], random vertex jitter with noise level 0.01, and random rotation are
implemented to improve model robustness during the training process.

A.3 CODE

We provide our demo inference and model code as part of our supplementary materials. All source
code and pretrained models will be made publicly available upon acceptance.
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A.4 DATASET

ArtUV-200K benchmark is tentatively planned for public release upon paper acceptance. At the
same time, we will release our data processing scripts including UV island segmentation and data
filtering to assist researchers in curating high-quality UV data from proprietary datasets.

14


	Introduction
	Related work
	Optimization based UV unwrapping Method
	Learning based UV unwrapping Method
	Cutting-seam Prediction Method

	Data Preparation
	Method
	Preliminaries
	ArtUV parameterization
	Losses

	Experiment
	Implementation Details
	Compared with Professional Software
	Compared with SOT Algorithm
	Ablation Studies

	Conclusion
	Appendix
	More Results
	Quantitative results on FAM benchmark.
	Qualitative Result on ArtUV-200K benchmark.
	Results of different initialization methods.

	More Implemention Details of SeamGPT
	Code
	Dataset


