

# 000 ARTUV: ARTIST-STYLE UV UNWRAPPING

001  
002  
003 **Anonymous authors**

004 Paper under double-blind review

## 005 006 007 ABSTRACT

008  
009 UV unwrapping is an essential task in computer graphics, enabling various vi-  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
054  
055  
056  
057  
058  
059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
19

054 into separate charts. These individual charts are then unwrapped with careful attention to minimizing distortion while preserving neat boundaries. The process concludes by efficiently packing these  
 055 UV islands into a cohesive, complete UV map. Conversely, the bottom-up approach starts with the  
 056 entire object surface as discrete elements, then progressively merges these triangles by optimizing  
 057 an energy function until convergence produces the final UV map. Learning-based methods employ  
 058 unsupervised training through a cyclic mapping network. This architecture projects the 3D object  
 059 into UV space and reconstructs it back to 3D coordinates, forming a complete round-trip transfor-  
 060 mation. During this process, physical constraints such as mapping bijectivity guide the network  
 061 optimization. Once trained, the forward 3D-to-2D pathway directly generates the UV unwrapping.  
 062

063 Traditional top-down methods demand considerable time and expertise, requiring experienced artists  
 064 to determine optimal cutting locations and manually adjust UV islands after unwrapping. This re-  
 065 liance on manual intervention makes it challenging to achieve the optimal balance between distortion  
 066 and neatness. Bottom-up methods face a different issue: their discretization and re-clustering pro-  
 067 cesses often produce fragmented UV maps that compromise the neatness of individual UV islands.  
 068 Meanwhile, current learning-based methods require extensive training time for each 3D model and  
 069 typically rely on point cloud inputs to handle diverse formats. This approach destroys the topo-  
 070 logical relationships between points, creating chaotic UV mappings with significant overlap that  
 071 severely limits practical usability. More fundamentally, both bottom-up and learning-based meth-  
 072 ods lack semantic awareness. For character models, artists prefer semantically meaningful divisions  
 073 where limbs and torso are unwrapped separately, as this greatly facilitates subsequent texture editing  
 074 tasks. Without this semantic understanding, these automated methods fail to produce the intuitive,  
 075 artist-friendly results that practical workflows demand.

076 In this paper, we introduce a learning-based top-down method for UV unwrapping, decomposing  
 077 the task into surface seam prediction and UV parameterization. For seam prediction, we leverage  
 078 SeamGPT (Li et al., 2025) to semantically segment the original mesh surface. Then, in the UV  
 079 parameterization component, we employ an Auto-Encoder model to simulate the manual adjust-  
 080 ment process of UV mapping. Specifically, we encode the original mesh information and constrain  
 081 the output UV map in terms of its neatness, overlap, and distortion. After extensive training with  
 082 carefully curated data, we obtain a general UV unwrapping method capable of optimizing the ini-  
 083 tial UV map from traditional modeling software into one that aligns with artist-style UV mapping.  
 084 Ultimately, we present a fully automated, end-to-end UV unwrapping method that generates high-  
 085 quality, artist-style UV maps with semantic information in seconds.

086 Extensive experiments demonstrate that our method outperforms traditional and learning-based UV  
 087 unwrapping methods. Our main contributions are as follows:

- 088 • We propose ArtUV, a novel learning-based framework that automatically generates artist-style UV  
 089 maps from 3D meshes with semantic awareness and professional quality standards.
- 090 • We present ArtUV-200K, a high-quality dataset comprising 200K artist-style UV maps, filling the  
 091 gap in datasets specifically focused on high-quality UV maps.
- 092 • Comprehensive evaluations demonstrate that ArtUV significantly outperforms state-of-the-art UV  
 093 unwrapping methods across distortion, utilization, and processing speed metrics.

## 094 2 RELATED WORK

### 095 2.1 OPTIMIZATION BASED UV UNWRAPPING METHOD

096 Traditional UV unwrapping methods primarily rely on numerical optimization techniques that aim  
 097 to minimize specific energy functions when mapping 3D mesh surfaces to 2D parameter domains,  
 098 forming the core of both early and many contemporary unwrapping tools. These methods can  
 099 be classified into two categories based on whether surface seams are pre-defined: For methods  
 100 with given seams that partition the mesh into separate charts, LSCM (Lévy et al., 2023) and  
 101 ABF++ (Sheffer et al., 2005) optimize angles in the 2D domain to approximate their 3D coun-  
 102 terparts, theoretically achieving conformal mapping with minimal angular distortion, though often  
 103 struggling to guarantee global bijectivity. Conversely, approaches such as SLIM (Rabinovich et al.,  
 104 2017), SCAF (Jiang et al., 2017), and Smith & Schaefer (2015) initialize UV maps as bijective map-  
 105 pings and explicitly incorporate local/global overlap constraints during optimization to maintain bi-  
 106 jectivity. While these methods typically produce low-distortion results, they face inherent challenges  
 107

108 in simultaneously optimizing for both boundary regularity and distortion minimization. For methods  
 109 without pre-defined seams that jointly optimize surface cutting and parameterization, (Sorkine et al.,  
 110 2002) discretizes surfaces into compact triangular patches that iteratively grow around seed triangles  
 111 until meeting termination criteria, while OptCuts (Li et al., 2018) proposes a joint energy function  
 112 minimizing both seam length and distortion for synchronous optimization. However, such joint op-  
 113 timization algorithms often yield impractical UV maps due to excessive fragmentation or lack of  
 114 semantic coherence. Consequently, current production pipelines still require substantial manual in-  
 115 tervention, including hand-placed seams and manual UV island adjustments, to meet professional  
 116 rendering requirements.

## 117 2.2 LEARNING BASED UV UNWRAPPING METHOD

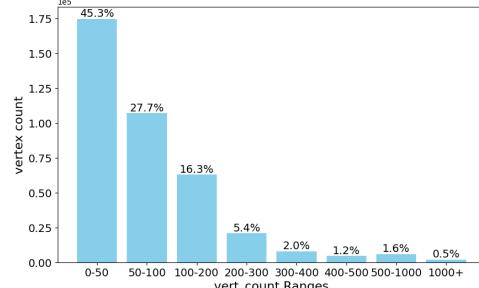
118 With the advancement of deep learning techniques, learning-based UV unwrapping methods have  
 119 emerged as a research focus. Nuvo (Srinivasan et al., 2024) employs a multi-category neural net-  
 120 work architecture to separately handle mesh segmentation and parameterization, utilizing multiple  
 121 loss functions to enforce bijectivity and minimize distortion. FAM (Zhang et al., 2024) introduces  
 122 a physically-inspired framework comprising sub-networks for surface cutting, UV deformation, un-  
 123 wrapping, and packing, achieving point-to-point mapping for arbitrary 3D representations through  
 124 a bidirectional cyclic mapping mechanism. However, these methods exhibit notable limitations:  
 125 the absence of semantic and requiring time-consuming per-scene optimization. Particularly, FAM’s  
 126 point-cloud-based approach disrupts topological structures and generates irreparable overlapping  
 127 artifacts. Most critically, these algorithms struggle to achieve the neatness and aesthetic quality of  
 128 artist-style unwrapping, resulting in suboptimal UV utilization. As a result, they are impractical for  
 129 use in professional rendering pipelines.

## 131 2.3 CUTTING-SEAM PREDICTION METHOD

132 The UV unwrapping process typically involves surface cutting and parameter mapping. Recent ad-  
 133 vances in deep learning have inspired several works (Wang et al., 2020; Bazazian & Parés, 2021;  
 134 Himeur et al., 2021) that employ neural networks for edge point detection, framing it as a per-point  
 135 classification task. EC-Net (Yu et al., 2018) reformulates this approach as a regression problem by  
 136 learning residual point coordinates and point-to-edge distances to identify edge points more pre-  
 137 cisely. Building upon these developments, SeamGPT (Li et al., 2025) innovatively simulates pro-  
 138 fessional workflows by utilizing an autoregressive network to model surface cutting as a next-cut-  
 139 point prediction task, enabling semantically meaningful cuts for both artist-created and AI-generated  
 140 meshes.

## 142 3 DATA PREPARATION

143 We collected UV-mapped mesh models from mul-  
 144 tiple open-source 3D datasets, including Obj-  
 145 averse (Deitke et al., 2022), Objaverse-XL (Deitke  
 146 et al., 2023), and 3D-FUTURE (Fu et al., 2021),  
 147 focusing on artist-style UV maps. To ensure high-  
 148 quality training data, we implemented a rigorous fil-  
 149 tering process. From an initial collection of approxi-  
 150 mately 350,000 textured mesh models, we first de-  
 151 composed the complete models into individual UV  
 152 islands and then filtered out cases with overlapping  
 153 UV maps or excessive fragmentation (fewer than  
 154 5 vertices per island), yielding a refined subset of  
 155 around 300,000 independent UV islands. As illus-  
 156 trated in Figure 2, vertex count distribution analysis  
 157 indicated that over 97% of these islands contained  
 158 fewer than 500 vertices; larger islands were excluded  
 159 to enhance training stability and mitigate memory  
 160 overhead. We then manually selected UV islands with meaningful semantic information and well-  
 161 organized layouts. Each candidate was processed using Ministretch-Unwrap method and evaluated

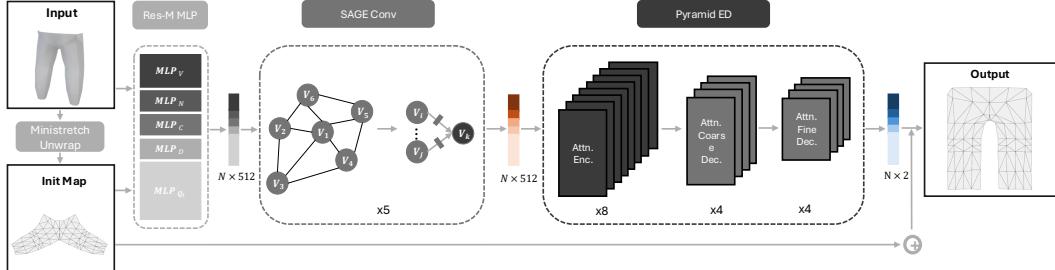


162 Figure 2: Distribution of vertex count in  
 163 ArtUV-200K.

162 against the original UV maps using SSIM (Sara et al., 2019), with islands scoring between 0.5 and  
 163 0.8 selected as high-quality, manually adjusted cases.

164 Ultimately, we construct ArtUV-200K, a high-quality benchmark dataset for artist-style UV unwrapping-  
 165 ping, containing approximately 15,000 objects and 200k UV islands.

## 167 4 METHOD



180 **Figure 3: ArtUV parameterization architecture.** Res-M MLP: Performs importance-based  
 181 dimension mapping of input parameters; SAGEConv: Fuses local features between adjacent vertices  
 182 via graph convolution; Pyramid ED: Enables global vertex interaction through attention encoder and  
 183 coarse-to-fine decoder; Output: Combines predicted offsets with initial map for final UV parameter-  
 184 ization.

185 We present ArtUV, a novel automatic artist-style UV unwrapping approach that incorporates both  
 186 surface cutting and UV parameterization. For the surface cutting, we replicate SeamGPT, an ad-  
 187 vanced auto-regressive (Lütkepohl, 2013) seam prediction model. For UV parameterization, we  
 188 propose a groundbreaking artist-style UV parameterization model based on an Auto-Encoder.  
 189

190 In the following sections, Sec. 4.1 will first provide a concise overview of SeamGPT. Next, in  
 191 Sec. 4.2, we present our artist-style UV parameterization method, where we formulate the artist-  
 192 style UV unwrapping task as learning the discrepancy between traditional software-generated UV  
 193 maps and artist-optimized UV maps. Finally, in Sec. 4.3, we will focus on the loss function in  
 194 parameterization module, which enables the model to generate UV maps that are as neat and low-  
 195 distortion as those created by artists.

### 196 4.1 PRELIMINARIES

197 Given a 3D mesh model  $M$ , which includes a vertex set  $V \in R^{N \times 3}$  and a triangle face set  
 198  $F \in R^{M \times 3}$ , the surface cutting task is identify cut vertices  $V_c \subseteq V$  that form connected seams  
 199 along mesh edges, partitioning the surface into discrete charts. SeamGPT formulates surface cutting  
 200 as a sequence prediction problem by spatially sorting and quantizing cut vertices, where each token  
 201 represents a coordinate value and six consecutive tokens define a seam segment. Specifically, for  
 202 an input 3D mesh, SeamGPT first samples point clouds on vertices and edges and compresses them  
 203 into a latent shape condition using a point cloud encoder from Zhao et al. (2025). Next, following  
 204 Hao et al. (2024), SeamGPT builds an hourglass-like autoregressive decoder with multiple Trans-  
 205 former (Vaswani et al., 2017) stacks at each level, which bridges these hierarchical stages through  
 206 causality-preserving downsampling and upsampling layers. The decoder autoregressively generates  
 207 coordinate tokens starting from SOS until EOS, with final seam vertices obtained by nearest-point  
 208 projection of discrete tokens onto the mesh surface.

### 210 4.2 ARTUV PARAMETERIZATION

211 **Modeling.** UV parameterization aims to establish a continuous bijective mapping from a 3D mesh  
 212  $M$  to a 2D plane  $P \in [0, 1]$ . The corresponding point set on the plane is represented as  $Q \in R^{N \times 2}$ . The most straightforward approach would be to directly use all mesh information ( $I_M =$   
 213  $\{V, F, N, C, D\}$ ), including vertices  $V$ , faces  $F$ , normals  $N$ , degrees  $C$  and curvature  $D$ , as input  
 214 and we could then train a powerful model to learn the 3D-to-2D mapping. However, extensive

216 empirical evidence has shown that despite having groundtruth, directly learning the mapping process  
 217 is a challenging task. Moreover, a simple projection is not our goal; our ultimate aim is to obtain a  
 218 neat and low distorted artist-style UV map. Therefore, inspired by traditional top-down modeling  
 219 process, we utilize the UV map  $Q_i$  obtained through an optimization-based unwrapping method as  
 220 initialization, enabling the parameterization model to learn how to adjust  $Q_i$  into an artist-style UV  
 221 map. We additionally include  $Q_i$  as part of the input and the final input represented as  $I = I_M \cup Q_i$ .  
 222 Next, we use the model to predict the offset  $Q_o$  required for each vertex in the initial UV map during  
 223 the manual adjustment process. By adding the predicted offset  $Q_o$  to  $Q_i$ , we obtain the final UV  
 224 map  $Q_{pred} = Q_i + Q_o$ , which satisfies the artist’s standards.

225 **Architecture.** The architecture of our parameterization model is illustrated in Figure 3. First, we  
 226 devise a residual MLP module (Res-M MLP) with adaptive dimension mapping, which dynamically  
 227 adjusts feature dimensions according to their empirically observed importance in UV unwrapping  
 228 tasks ( $Q_i > V > C = N = D$ ), where the residual structure effectively preserve essential input  
 229 information while enhancing feature representation. To maintain topological consistency, we  
 230 construct a graph structure with vertices as nodes and face adjacency as edges, employing SAGE-  
 231 Conv (Hamilton et al., 2017) for local feature propagation among neighboring nodes. The processed  
 232 features are then fed into a Pyramid ED module, where stacked attention layers in the encoder enable  
 233 global vertex feature interaction, followed by a coarse-to-fine decoder that concurrently extracts  
 234 coarse-grained global structure and fine-grained local details to predict UV space offsets  $Q_o$ . This  
 235 predicted offset is then added to the initial UV coordinates  $Q_i$ , resulting in the final predicted UV  
 236 map  $Q_{pred}$ .

### 237 4.3 LOSSES

239 To generate UV maps that align with the artist’s design standards—namely neatness, minimal dis-  
 240 tortion, and free overlap, we optimize the UV parameterization model’s performance through a  
 241 multi-term weighted loss function.

242 The fundamental component is the UV reconstruc-  
 243 tion loss, which directly measures the positional dis-  
 244 crepancy between predicted UV coordinates  $Q_{pred}$  and  
 245 groundtruth coordinates  $Q_{gt}$ . Before computing this loss,  
 246 a critical preprocessing step is performed to align the ini-  
 247 tial UV coordinates  $Q_i$  with the groundtruth  $Q_{gt}$  in ro-  
 248 tation space. As in Figure 4, this alignment is achieved  
 249 using Horn’s method (Horn, 1987), which computes an  
 250 optimal rotation matrix  $R$  to align the two sets of coordi-  
 251 nates by minimizing their rotational discrepancy. Specif-  
 252 ically, The covariance matrix  $W$  between  $Q_i$  and  $Q_{gt}$  is  
 253 computed as:

$$254 \quad W = \sum_{i=1}^N (q_i - \bar{q}) \cdot (p_i - \bar{p}) \quad (1)$$

257 where  $q$  and  $p$  are the corresponding points in  $Q_i$  and  $Q_{gt}$  and  $\bar{q}$  and  $\bar{p}$  are their mean values.

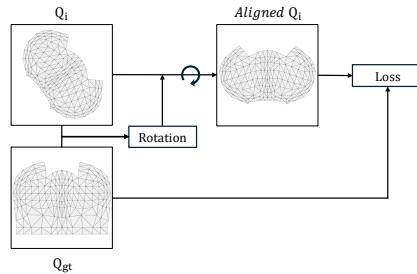
258 Then, Singular Value Decomposition(SVD) is applied to  $W$  to obtain the optimal rotation matrix  $R$ :

$$261 \quad W = U \Sigma V^T \quad (2)$$

$$263 \quad S = \begin{bmatrix} 1 & 0 \\ 0 & sign(\det(U) \cdot \det(V^T)) \end{bmatrix} \quad (3)$$

$$267 \quad R = U S V^T \quad (4)$$

268 This rotation matrix  $R$  is used to align the initial coordinates  $Q_i$  with the ground truth coordinates  
 269  $Q_{gt}$ . After the alignment, the reconstruction loss is computed as the pointwise  $L_1$  distance between



259 Figure 4: UV map alignment.

270 the predicted and ground truth coordinates:  
 271

$$272 \quad L_{recon} = \|Q_{gt} - Q_{pred}\|_1 \quad (5)$$

274 To further enhance the structural regularity of predicted UV maps to match manually unwrapped  
 275 results, we introduce an edge-preserving silhouette loss. This is implemented through differentiable  
 276 rendering of UV map silhouette as in Figure 5. By computing the  $L_2$  distance between silhouette  
 277 maps of predicted and ground truth UV map, the model is guided to focus on boundary information  
 278 that significantly reflects the neatness of UV islands, expressed as:  
 279

$$280 \quad L_{silhouette} = \|Render_{gt} - Render_{pred}\|_2 \quad (6)$$

281 Subsequently, we optimize the distortion of the  
 282 predicted UV map by adding a distortion loss  
 283 term. Specifically, for each triangular face  $f$ , we  
 284 compute the Jacobian matrix of its 3D-to-2D  
 285 mapping, and after performing Singular Value  
 286 Decomposition, we obtain the singular values  
 287  $\sigma^1$  and  $\sigma^2$ , which characterize the stretching  
 288 intensity. The distortion loss function is de-  
 289 fined as the mean of the absolute differences of  
 290 the singular values across all faces, which ap-  
 291 proaches zero in the case of an ideal conformal  
 292 mapping.

$$293 \quad L_{distortion} = \frac{1}{\sum_{f \in \mathcal{F}} |A_f|} \sum_{f \in \mathcal{F}} |A_f| \|\sigma_f^1 - \sigma_f^2\|_1, \quad (7)$$

295 where  $\mathcal{F}$  is the set of all triangles on the input surface and  $|A_f|$  is the area of  $f$ .

296 Finally, to prevent UV map overlaps that would adversely affect subsequent texture mapping pro-  
 297 cesses, we implement an overlap penalty based on normal direction. The key observation is that  
 298 overlapping triangular faces in the UV domain exhibit flipped normal directions. We formulate this  
 299 constraint by introducing a penalty term proportional to the count of faces with negative normal  
 300 directions:

$$301 \quad L_{overlap} = \sum_{f \in F} (n_f \cdot \vec{z} < 0) \quad (8)$$

303 where  $F$  represents faces in the UV map,  $n_f$  is the normal vector of face  $f$  in the UV map, and  $\vec{z}$  is  
 304 the reference viewing direction.

305 Consequently, The complete objective function combines these loss terms through a weighted linear  
 306 combination:

$$307 \quad L_{total} = \omega_r L_{recon} + \omega_s L_{silhouette} + \omega_d L_{distortion} + \omega_o L_{overlap} \quad (9)$$

309 where  $\omega_i$ , ( $i = r, s, d, o$ ) represents the weight for each corresponding loss component.

## 311 5 EXPERIMENT

313 We conduct both qualitative and quantitative evaluations of our model on the ArtUV-200K and  
 314 the FAM benchmark. First, we compare the UV unwrapping performance of our parameterization  
 315 model with that of mainstream professional modeling software. Next, we compare our complete Ar-  
 316 tUV method with some advanced algorithms, covering the entire process from surface segmentation  
 317 to UV parameterization. Finally, we perform ablation studies to assess the rationale and effective-  
 318 ness of our loss function design from multiple perspectives.

### 320 5.1 IMPLEMENTATION DETAILS

322 **SeamGPT.** We consulted the authors of SeamGPT for detailed dataset and model implementa-  
 323 tion specifics, and successfully reproduced the complete SeamGPT model. For additional details, please  
 refer to Supplementary Materials.

**ArtUV parameterization.** We use Blender’s ministretch algorithm as the initialization method for the UV parameterization module. The Res-M MLP module map the feature dimensions of the input UV, vertices, normals, curve, and degree to 128, 62, 32, 32, and 32. These features then passed through 5 SageConv layers, resulting in a 512 dimensional graph feature. The extracted features are processed by an attention encoder with 512 dimensions, 8 heads, and 8 layers. The coarse-to-fine decoder then down-samples the features by factors of 1/2 and 1/4. Finally, the output mapping layer predicts the UV coordinates (dimensionality 2) using a Tanh activation function, ensuring the predictions remain within the range  $[-1, 1]$ . The model is trained on 24 H20 GPUs (96 GB) for 700K steps with a batch size of 32. In the loss function, the weights  $\omega_r$ ,  $\omega_s$ ,  $\omega_d$  and  $\omega_o$  are set as 1.0, 1.0, 0.0001 and 0.01. Inference can be performed on most consumer-grade GPUs, with memory usage not exceeding 10 GB when the model contains fewer than 1000 faces.

## 5.2 COMPARED WITH PROFESSIONAL SOFTWARE



Figure 6: Qualitative Result on ArtUV-200K. (a) The input mesh and reference texture image. (b)-(e) Results of our method, along with Blender, Maya, and 3DsMax. For each method, the upper-left image shows the UV unwrapping visualized using normal directions, the lower-left image displays the texture map based on the reference texture, with the value below the texture map representing the UV utilization rate, and the right image presents the 3D model with a checkerboard texture.

We first compare our UV parameterization model with current professional modeling software in the ArtUV-200K, which contains 100 diverse 3D models, each with artist-manually marked seams. This allows us to eliminate any interference from seams quality and directly compare the unwrapping results. We conduct quantitative evaluations in terms of mesh distortion and UV utilization. Specifically, the mesh distortion is computed as the average conformal energy over all triangular faces of the mesh. For UV utilization, we apply the UVPackMaster plugin for layout optimization in all unwrapping algorithms.

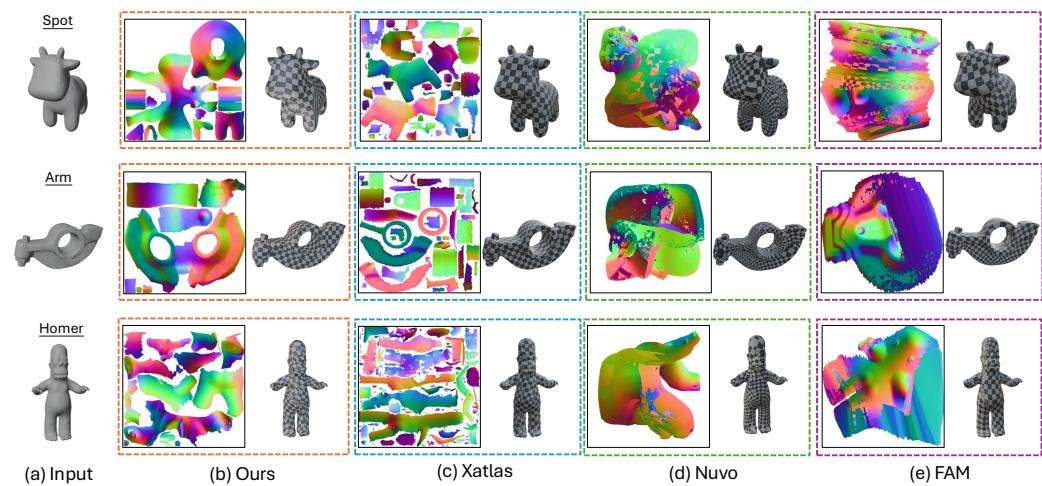
| Method        | Distortion $\downarrow$ | Utilization(%) $\uparrow$ | Artist-Level $\uparrow$ |
|---------------|-------------------------|---------------------------|-------------------------|
| Blender       | 9.85                    | 62.74                     | 3.34                    |
| Maya          | 9.66                    | 67.53                     | 1.32                    |
| 3DsMax        | 11.88                   | 67.01                     | 1.53                    |
| Artist-manual | 10.90                   | 70.08                     | 4.12                    |
| <b>Ours</b>   | <b>9.52</b>             | <b>72.57</b>              | <b>4.22</b>             |

Table 1: Quantitative results on ArtUV-200K benchmark.

378 The metrics are presented in Table 1, where our algorithm outperforms in all evaluated criteria.  
 379 Compared to professional modeling software, our algorithm significantly improves UV utilization  
 380 while maintaining low distortion. Even when compared to artist-manually unwrapping results, our  
 381 approach exhibits better performance in both distortion and utilization, indicating that our algorithm  
 382 achieves a level of perfect balance between distortion and neatness that is difficult for conventional  
 383 algorithms or manual to attain. Furthermore, using the same texture reference, we apply the texture  
 384 generation method (Zhao et al., 2025) to UV maps produced by different approaches. The visual-  
 385 izations in Figure 6 show that our unwrapping method produces more Horizontal and vertical UV  
 386 maps. This not only leads to a substantial increase in UV utilization, but also makes the texture map  
 387 clearer, providing significant convenience for subsequent tasks such as texture editing.

388 Moreover, because the quality of artistic style is inherently subjective, we conducted a user study to  
 389 further evaluate the Artist-Level of our results. We randomly selected 10 representative cases from  
 390 the ArtUV-200K and invited 30 professional 3D artists to score the artistic style of the generated  
 391 UV maps on a five-point Likert scale, where 5 indicates results most similar to artist-created UV  
 392 maps and 0 represents no resemblance to artistic style. As shown in the last column of Table 1, our  
 393 method even slightly surpass those produced by manual artist adjustments, demonstrating its strong  
 394 capability to capture the intended artistic style in UV unwrapping.

### 395 5.3 COMPARED WITH SOT ALGORITHM



414 Figure 7: Qualitative Result on FAM benchmark(Spot, Arm, and Homer). (a) shows the input mesh  
 415 from the FAM benchmark, while (b) to (e) present the UV unwrapping results for our method,  
 416 XAtlas, Nuvo, and FAM, respectively. It is clear that our algorithm directly produces elegant and  
 417 high-quality UV maps. In contrast, XAtlas results in overly fragmented and semantically weak UV  
 418 maps, while Nuvo and FAM generate disordered and unusable UV maps.

419  
 420 We then evaluate our fully automated ArtUV  
 421 method using the FAM benchmark (which  
 422 lacks seam information), comparing it with  
 423 three algorithms: XAtlas, Nuvo, and FAM.  
 424 The comparison covers the entire UV un-  
 425 wrapping process, including surface seg-  
 426 mentation and UV parameterization. Quantitative  
 427 evaluations in Table 2 based on mesh distor-  
 428 tion, computational runtime and UV islands  
 429 count demonstrated that our algorithm out-  
 430 performed the others. It is evident that XAtlas  
 431 produces overly fragmented and semantically poor segments, while Nuvo and FAM suffered from  
 prolonged computation times due to requiring per-model training. Furthermore, as shown in Figure 7, the UV unwrapping results from Nuvo and FAM, characterized by disorganized topology,

| Method      | Distortion $\downarrow$ | Runtime(s) $\downarrow$ | Fragments $\downarrow$ |
|-------------|-------------------------|-------------------------|------------------------|
| XAtlas      | 9.44                    | 80.4                    | 1292                   |
| Nuvo        | 32.24                   | 2925.8                  | 1                      |
| FAM         | 76.28                   | 5656.3                  | 1                      |
| <b>Ours</b> | <b>8.91</b>             | <b>36</b>               | 14                     |

Table 2: Quantitative results on FAM benchmark.

432 are impractical for professional rendering pipelines, making a comparison of UV utilization unnecessary as well. In contrast, our ArtUV method demonstrates outstanding performance, providing 433 an end-to-end solution that directly generates UV maps with low distortion, organized layout, and 434 semantic information, fully meeting the design standards of artists. 435

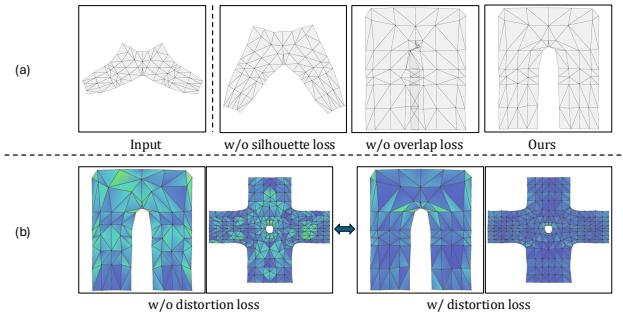
#### 437 5.4 ABLATION STUDIES

439 We conducted several ablation studies 440 to evaluate the contributions of 441 our designed loss functions.

442 **Silhouette Loss.** As shown in Figure 443 8 (a) and Table 3, when the silhouette 444 loss is omitted, the model 445 fails to optimize the boundaries, 446 resulting in less aligned and 447 structured UV maps, which in turn 448 leads to lower UV utilization and 449 reduced Artist-Level scores.

450 **Overlap Loss.** Including the overlap 451 loss suppresses the model’s tendency 452 to generate overlapping UV faces. As 453 shown in Figure 8 (a), the UV maps 454 are more orderly with this loss. Ta- 455 ble 3 further shows a significant reduction in overlapping face when the overlap loss is applied.

456 **Distortion Loss.** Figure 8 (b) visualizes UV distortion using a color-coded scheme, where 457 brighter yellow regions indicate higher distortion. Quantitative results in Table 3 demonstrate that 458 adding the distortion loss adjusts internal UV coordinates to more reasonable positions, effectively 459 reducing distortion.



460 Figure 8: Qualitative ablation results.

| 461 Loss  | 462 Distortion ↓ | 463 Loss  | 464 Overlap (%) ↓ | 465 Loss | 466 Utilization (%) ↑ | 467 Artist-Level ↑ |
|-----------|------------------|-----------|-------------------|----------|-----------------------|--------------------|
| w/o Dist. | 10.56            | w/o Ovlp. | 29.0              | w/o Sil. | 64.33                 | 3.67               |
| w/ Dist.  | <b>9.52</b>      | w/ Ovlp.  | <b>0.0</b>        | w/ Sil.  | <b>72.57</b>          | <b>4.12</b>        |

468 Table 3: Quantitative ablation results.

## 469 6 CONCLUSION

471 In this paper, we propose ArtUV, an end-to-end method for generating artist-style UV maps. We 472 decompose the problem into surface segmentation using SeamGPT and UV parameterization that 473 predicts offsets from initial UV maps to artist-style results. Our method generates neat, well-organized 474 UV maps with low distortion in seconds, addressing current issues of long processing times and 475 lack of semanticity in professional workflows. Extensive experiments demonstrate that ArtUV out- 476 performs existing approaches across multiple metrics, holding significant potential for efficiency 477 improvements in downstream applications.

478 **Limitation.** Our current approach exhibits two key limitations. First, the method’s performance is 479 highly sensitive to the quality of surface cutting. Incomplete or inaccurate seams may cause severe 480 distortions during UV initialization, resulting in significant internal deformation despite the output 481 maintaining clean edges. Second, our pipeline does not yet support UV island reuse, since imperfect 482 alignment of reused islands might cause serious overlapping artifacts. Additionally, island reuse 483 may introduce additional complexity to model training. Future work will focus on: (1) enhancing 484 the quality and stability of seams (e.g., applying secondary segmentation to high-distortion areas), 485 and (2) integrating UV island reuse into the pipeline (e.g., via similarity-based merging of optimized 486 islands).

486 REFERENCES  
487

488 Dena Bazazian and M Eulalia Parés. Edc-net: Edge detection capsule network for 3d point clouds.  
489 *Applied Sciences*, 11(4):1833, 2021.

490 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig  
491 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-  
492 tated 3d objects. *arXiv preprint arXiv:2212.08051*, 2022.

493 Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,  
494 Alan Fan, Christian Laforet, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha  
495 Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.  
496 Objaverse-xl: A universe of 10m+ 3d objects. *arXiv preprint arXiv:2307.05663*, 2023.

497 Michael S Floater and Kai Hormann. Surface parameterization: a tutorial and survey. *Advances in  
498 multiresolution for geometric modelling*, pp. 157–186, 2005.

499 Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng  
500 Tao. 3d-future: 3d furniture shape with texture. *International Journal of Computer Vision*, pp.  
501 1–25, 2021.

502 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.  
503 *Advances in neural information processing systems*, 30, 2017.

504 Zekun Hao, David W Romero, Tsung-Yi Lin, and Ming-Yu Liu. Meshtron: High-fidelity, artist-like  
505 3d mesh generation at scale. *arXiv preprint arXiv:2412.09548*, 2024.

506 Chems-Eddine Himeur, Thibault Lejemble, Thomas Pellegrini, Mathias Paulin, Loic Barthe, and  
507 Nicolas Mellado. Pcednet: A lightweight neural network for fast and interactive edge detection  
508 in 3d point clouds. *ACM Transactions on Graphics (TOG)*, 41(1):1–21, 2021.

509 Berthold KP Horn. Closed-form solution of absolute orientation using unit quaternions. *Journal of  
510 the optical society of America A*, 4(4):629–642, 1987.

511 Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. Simplicial complex augmentation framework  
512 for bijective maps. *ACM Transactions on Graphics*, 36(6), 2017.

513 Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérôme Maillot. Least squares conformal maps for  
514 automatic texture atlas generation. In *Seminal Graphics Papers: Pushing the Boundaries, Volume  
515 2*, pp. 193–202. Arxiv, 2023.

516 Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla Sheffer. Optcuts: Joint  
517 optimization of surface cuts and parameterization. *ACM transactions on graphics (TOG)*, 37(6):  
518 1–13, 2018.

519 Yang Li, Victor Cheung, Xinhai Liu, Yuguang Chen, Zhongjin Luo, Biwen Lei, Haohan Weng,  
520 Zibo Zhao, Jingwei Huang, Zhuo Chen, et al. Auto-regressive surface cutting. *arXiv preprint  
521 arXiv:2506.18017*, 2025.

522 Helmut Lütkepohl. Vector autoregressive models. In *Handbook of research methods and applica-  
523 tions in empirical macroeconomics*, pp. 139–164. Edward Elgar Publishing, 2013.

524 Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. Scalable locally  
525 injective mappings. *ACM Transactions on Graphics (TOG)*, 36(4):1, 2017.

526 Umme Sara, Morium Akter, and Mohammad Shorif Uddin. Image quality assessment through fsim,  
527 ssim, mse and psnr—a comparative study. *Journal of Computer and Communications*, 7(3):8–18,  
528 2019.

529 Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bogomyakov. Abf++: fast and robust  
530 angle based flattening. *ACM Transactions on Graphics (TOG)*, 24(2):311–330, 2005.

531 Alla Sheffer, Emil Praun, Kenneth Rose, et al. Mesh parameterization methods and their applica-  
532 tions. *Foundations and Trends® in Computer Graphics and Vision*, 2(2):105–171, 2007.

540 Jason Smith and Scott Schaefer. Bijective parameterization with free boundaries. *ACM Transactions*  
 541 *on Graphics (TOG)*, 34(4):1–9, 2015.

542

543 Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. Bounded-distortion piece-  
 544 wise mesh parameterization. In *IEEE Visualization, 2002. VIS 2002.*, pp. 355–362. IEEE, 2002.

545 Pratul P Srinivasan, Stephan J Garbin, Dor Verbin, Jonathan T Barron, and Ben Mildenhall. Nuvo:  
 546 Neural uv mapping for unruly 3d representations. In *European Conference on Computer Vision*,  
 547 pp. 18–34. Springer, 2024.

548

549 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 550 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*  
 551 *tion processing systems*, 30, 2017.

552 Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-Amiri, and  
 553 Hao Zhang. Pie-net: Parametric inference of point cloud edges. *Advances in neural information*  
 554 *processing systems*, 33:20167–20178, 2020.

555

556 Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Ec-net: an edge-  
 557 aware point set consolidation network. In *Proceedings of the European conference on computer*  
 558 *vision (ECCV)*, pp. 386–402, 2018.

559

560 Qijian Zhang, Junhui Hou, Wenping Wang, and Ying He. Flatten anything: unsupervised neural  
 561 surface parameterization. *Advances in Neural Information Processing Systems*, 37:2830–2850,  
 562 2024.

563

564 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,  
 565 Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for  
 566 high resolution textured 3d assets generation. *arXiv preprint arXiv:2501.12202*, 2025.

567

## A APPENDIX

### A.1 MORE RESULTS

#### A.1.1 QUANTITATIVE RESULTS ON FAM BENCHMARK.

572 As shown in Table 4, we provide a detailed comparison of our method with XAtlas, Nuvo, and FAM  
 573 in terms of the distortion metrics for each category in the FAM-benchmark.

| Method      | XAtlas       | Nuvo   | FAM          | Ours         |
|-------------|--------------|--------|--------------|--------------|
| Bimba       | 15.44        | 19.12  | <b>12.10</b> | 20.02        |
| Lucy        | <b>0.011</b> | 57.894 | 35.13        | 0.043        |
| Ogre        | <b>0.66</b>  | 26.22  | 11.55        | 0.75         |
| Armadillo   | <b>0.17</b>  | 114.21 | 59.87        | 0.3492       |
| Bunny       | 61.83        | 16.84  | <b>7.33</b>  | 58.19        |
| Nefertiti   | <b>0.026</b> | 20.92  | 11.2         | 0.23         |
| Dragon      | 0.22         | 61.02  | 904.89       | <b>0.12</b>  |
| Planck      | 0.14         | 11.09  | 4.67         | <b>0.062</b> |
| Homer       | <b>7.51</b>  | 21.92  | 14.19        | 19.20        |
| Teapot      | <b>2.42</b>  | 17.56  | 8.77         | 3.06         |
| Cheburashka | <b>8.41</b>  | 19.75  | 12.21        | 10.86        |
| Spot        | 12.77        | 12.93  | 9.37         | <b>8.73</b>  |
| Arm         | 29.98        | 37.34  | 20.98        | <b>8.54</b>  |
| Beast       | <b>0.062</b> | 34.19  | 23.54        | 1.38         |
| Cow         | 1.94         | 12.70  | 8.49         | <b>1.52</b>  |
| Avg.        | 9.44         | 32.24  | 76.28        | <b>8.91</b>  |

592 Table 4: Quantitative results on FAM benchmark using the face distortion metric.  
 593

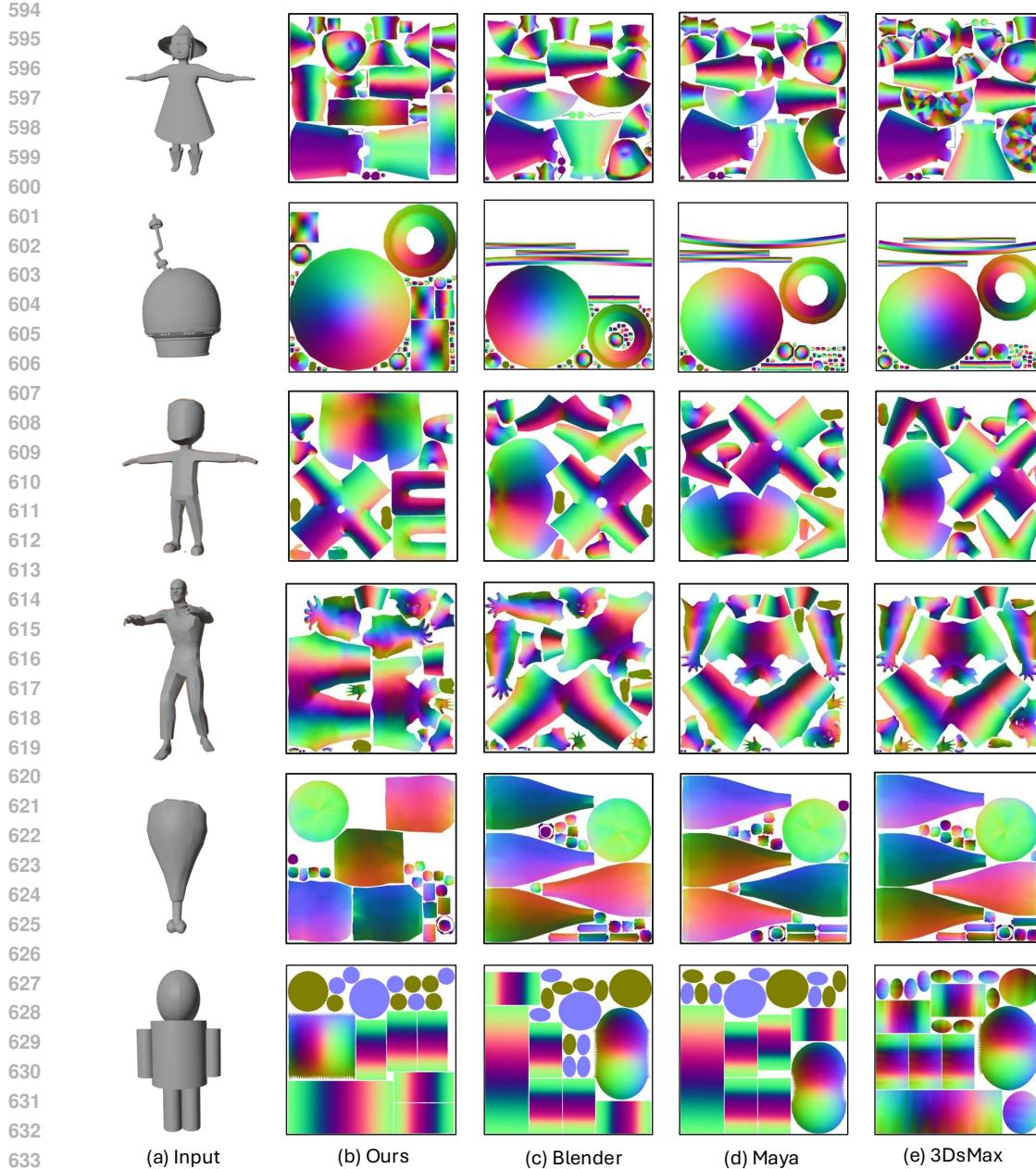


Figure 9: More Qualitative Results on ArtUV-200K.

## A.1.2 QUALITATIVE RESULT ON ARTUV-200K BENCHMARK.

As shown in the Figure 9, we present more UV unwrapping results from the ArtUV-200K benchmark. It is evident that the UV maps obtained using our method are more elegant and well-organized.

## A.1.3 RESULTS OF DIFFERENT INITIALIZATION METHODS.

Our ArtUV parameterization module can be seamlessly integrated as a plugin with various professional modeling software. To demonstrate its robustness, we replaced Blender’s initial UV unwrapping results with Maya and 3DsMax based initialization. As shown in Figure 10, our method consistently produces high-quality, artist-style UV maps regardless of the initialization approach used.

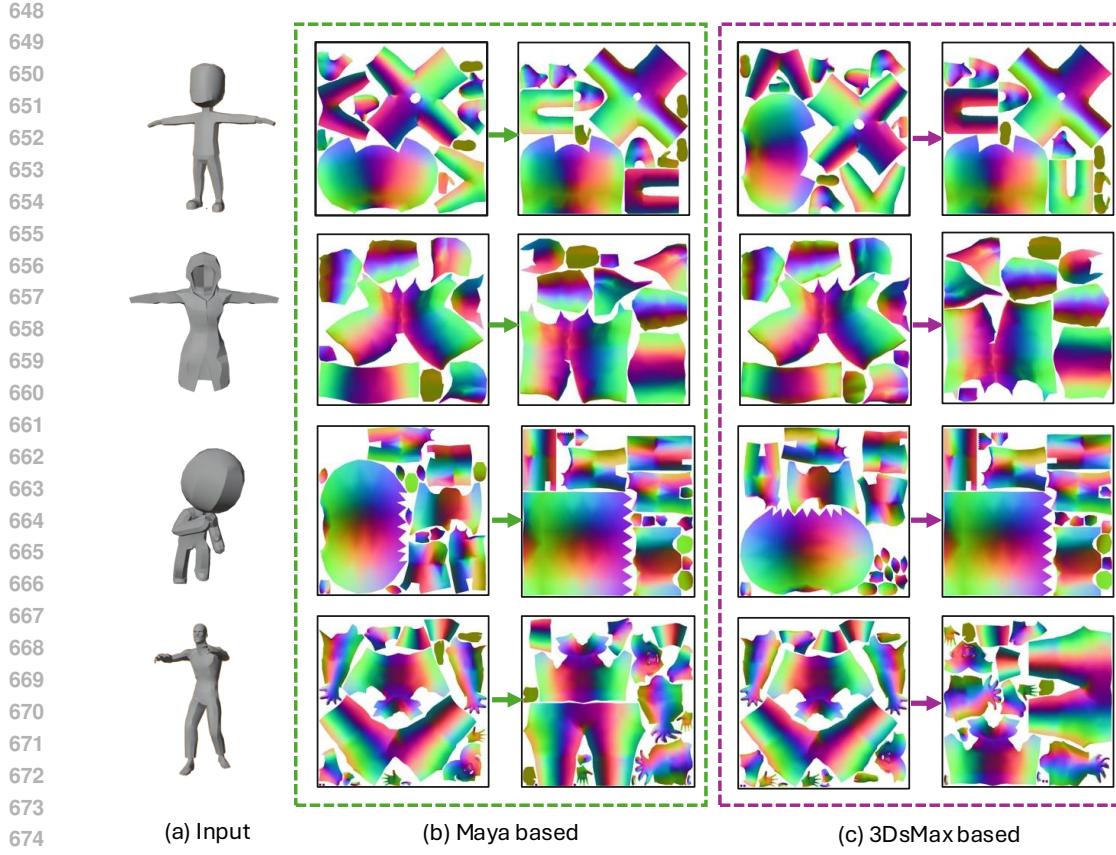


Figure 10: Results of different initialization methods.(a) Input original mesh; (b) and (c) display unwrapping results based on Maya initialization and 3DsMax initialization, respectively. For each method, the left sub-figure shows the initial unwrapping result, while the right sub-figure presents the optimized output after processing through our ArtUV parameterization module.

## A.2 MORE IMPLEMENTATION DETAILS OF SEAMGPT

We consulted the authors of SeamGPT for detailed dataset and model implementation specifics, and successfully reproduced the complete SeamGPT model. Begin with a targeted point sampling strategy that collects a total of 61,440 points—evenly split between 30,720 points on vertices and 30,720 points along edges. Then, we implement a hierarchical hourglass-style decoder defined by a three-level abstraction structure with depth configuration (2, (4, 12, 4), 2), where each number represents the number of transformer blocks at that level. Each block has 1,536 dimensions and 16 attention heads, incorporating 10-bit quantized positional encoding for sequences up to 36,864 tokens. The model is trained on 64 H20 GPUs(96GB) for 200k steps with a fixed learning rate of 1e-4, gradient clipping at 0.5 and a batch size of 128. Data augmentation techniques including random scaling with [0.95, 1.05], random vertex jitter with noise level 0.01, and random rotation are implemented to improve model robustness during the training process.

## A.3 CODE

We provide our demo inference and model code as part of our supplementary materials. All source code and pretrained models will be made publicly available upon acceptance.

702 A.4 DATASET  
703704 ArtUV-200K benchmark is tentatively planned for public release upon paper acceptance. At the  
705 same time, we will release our data processing scripts including UV island segmentation and data  
706 filtering to assist researchers in curating high-quality UV data from proprietary datasets.  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755