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Abstract

Evolving relations in real-world networks are of-
ten modelled by temporal graphs. Graph rewiring
techniques have been utilised on Graph Neural
Networks (GNNs) to improve expressiveness and
increase model performance. In this work, we pro-
pose Temporal Graph Rewiring (TGR), the first
approach for graph rewiring on temporal graphs.
TGR enables communication between temporally
distant nodes in a continuous time dynamic graph
by utilising expander graph propagation to con-
struct a message passing highway for message
passing between distant nodes. Expander graphs
are suitable candidates for rewiring as they help
overcome the oversquashing problem often ob-
served in GNNs. On the public tgbl-wiki
benchmark, we show that TGR improves the per-
formance of a widely used TGN model by a sig-
nificant margin, our code repository is accessible
at: https://github.com/kpetrovicc/
TGR.

1. Introduction

Graph representation learning (Hamilton, 2020) aims to
learn node representations on graph structured data to solve
tasks such as node property prediction (Hamilton et al.,
2017), link prediction (Ying et al., 2018) and graph property
prediction (Gilmer et al., 2017). Graph neural networks
(GNN) (Kipf & Welling, 2016; Velickovic et al., 2017; Xu
et al., 2018) capture relationships between nodes follow-
ing message passing paradigm (Veli¢kovi¢, 2022). GNNs
have been successfully applied to model many real-world
networks such as biological networks (Johnson et al., 2023;
Zitnik et al., 2018) and social networks (Ying et al., 2018).
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Oversquashing in GNNs. GNNs operate through message
passing mechanism which aggregates information over a
node’s direct neighbourhood at each GNN layer. Hence,
propagating information between nodes that are at k-hop
distance requires k¥ GNN layers. This leads to information
bottleneck, since the node’s receptive field in most underly-
ing graph topologies grows exponentially with an increase
of number of GNN layers. This information is further stored
in fixed length embedding vectors, leading to a phenomena
called oversquashing, causing a severe loss of informa-
tion. In static GNNSs, bottlenecks and oversquashing are
addressed using graph rewiring, where underlying graph
topology is altered such that it connects distant nodes. There
are several methods applied to rewire static GNNs such as
diffusion-based graph rewiring (Gasteiger et al., 2019) or
reducing negative Ricci curvature (Topping et al., 2021),
leading to an impressive boost in performance.

Temporal graph learning (TGL) (Kazemi et al., 2020)
emerged from graph representation learning to study evolv-
ing relationships in temporal graph data. Given the dynamic
nature of temporal graphs, temporal graph neural networks
(TGNNs) (Longa et al., 2023) are developed to capture the
evolution of graph topology introducing novel components
such as temporal memory (Kazemi et al., 2020) and time-
encoding (Xu et al., 2020). We provide related work on
TGNNSs in appendix A.2. TGNNs are underpinned by a
static GNN message passing mechanism, meaning they are
vulnerable to bottlenecks and oversquashing. Given addi-
tional temporal dimension, receptive field of a node in a
temporal graph grows faster than in static graphs, leading to
a higher presence of oversquashing and bottlenecks in the
structure. A natural question arises: Can we improve TGNN
performance by introducing temporal graph rewiring aimed
to relieve oversquashing and ensure global propagation
between temporally distant nodes?

Why rewiring on temporal graphs? Rewiring fundamen-
tally calls for a dynamic nature of how the data exists in
the real world. There might be a process different from the
input graph structure that governs the message passing and
information exchange in a temporal graph. Additionally,
temporal graph rewiring can be seen as a way to resolve so-
called memory staleness problem (Kazemi et al., 2020). By
memory staleness we refer to a process occurring in TGNN
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Figure 1: Node Bank stores all nodes observed up until
batch ¢. In figure, timestamp ¢~ represents timestamp be-
fore ¢t. Temporal memory stores observed node states mixed
through expander message passing layer to generate ex-
pander embeddings H(¢~). TGNN input features are con-
structed by combining expander embeddings H(¢ ™) for pre-
viously observed nodes and temporal memory node states
S(t~) for unobserved nodes. The green node is a node of
interest shown alongside its 1-hop neighbourhood.

temporal memory. Temporal memory is only updated if
a node of interest interacts with another node in a graph,
causing inactive nodes to appear as stale. This set-up poses
significant issues in e.g social networks where if a user or a
node is inactive for a period of time, it loses connections to
its active neighbours. We propose temporal graph rewiring
to add connections between temporally distant nodes, allow-
ing information flow between nodes that might be inactive
for a longer period of time.

In this work, we propose a novel TGR framework for Tem-
poral Graph Rewiring with expander graphs. We leverage
recent work by Deac et al. (2022) on expander graph propa-
gation in combination with a TGNN base model to ensure
global message passing between temporally distant nodes. It
is shown that expander graphs satisfy four desirable criteria
for graph rewiring: 1). the ability to propagate information
globally within the input graph, 2). relieving bottlenecks
and oversquashing, 3). subquadratic space and time com-
plexity and 4). no additional pre-processing of the input
graph (Deac et al., 2022).

Main Paper Contributions.
tions include:

Our main paper contribu-

¢ First Rewiring Method on Temporal Graphs. In this
work, we propose Temporal Graph Rewiring or TGR.
To the best of our knowledge, TGR is the first approach

which applies graph rewiring techniques on temporal
graphs. TGR combines expander graph propagation
(Deac et al., 2022) to rewire a base TGNN such as
TGN (Rossi et al., 2020), while operating with minimal
computational overhead.

* Model-agnostic. TGR is agnostic to the chosen ex-
pander message passing layer and helps alleviate the
over-squashing and memory staleness problems in
TGNNs. TGR is also agnostic to the base TGNN model
as TGR provides dynamic node features thus has the
potential to be applied to a wide range of TGL models.

e Improved Performance. We test TGR on a tempo-
ral link prediction task using tgbl-wiki data taken
from a publicly available Temporal Graph Benchmark
(TGB) (Huang et al., 2023). In section 4 we show
that using TGR across four different expander message
passing layers outperforms the base TGNN model.

2. Background
2.1. Static Graph Rewiring

In static GNNs, bottlenecks and oversquashing have been ad-
dressed with graph rewiring leading to an impressive boost
in performance. There has been an extensive work done
on applying graph rewiring to static graphs. For example
diffusion-based graph rewiring (Gasteiger et al., 2019) dif-
fuses additional edges in the graph with use of kernels such
as PageRank (Brin, 1998). However as stated in (Topping
et al., 2021), these models generally fail to reduce bottle-
necks in the input graph. (Topping et al., 2021) introduces a
method to modify a portion of edges with negative Ricci cur-
vature to reduce oversquashing. However, this is shown to
come with higher pre-processing cost and it is sub-optimal
for analysing large graphs such as continuous time dynamic
graphs which are the focus of our paper.

Rewiring with expander graphs. In this work we opt to
work with expander graph propagation (Deac et al., 2022)
as a starting point. Unlike other rewiring methods, expander
graph propagation involves propagating messages over a
graph that is independent of the input graph topology, by
replacing input graph with an expander graph. In section
2.3, we describe in detail set-up by Deac et al. (2022), where
expander and input graph GNN layers are alternated to com-
pute node embeddings. In recent work by Giovanni et al.
(2024), it is formally validated that such approach is effec-
tive in relieving oversquashing by decreasing overall effec-
tive resistance or commute time (Chandra et al., 1989). In
fact, commute time is shown to be closely aligned with over-
squashing, and it is stated that commute time in expander
graphs grows linearly with the number of edges. In sec-
tion 2.2, we provide further information on expander graph
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properties, showing they have high spectral gap while main-
taining high sparsity making them an ideal candidate for
graph rewiring. We are aware that expander graph propaga-
tion may not be the only way to do temporal graph rewiring.
In this work, we aim to bring perspective of using expander
graph propagation in combination with a temporal graph
learning model and create pathway for further avenues to be
explored in future work.

2.2. Expander Graphs

Following terminology laid out in (Deac et al., 2022), we
provide a non-exhaustive list of most important expander
graph topological properties in relation to temporal graph
rewiring. Expander graphs are a fundamentally sparse fam-
ily of graphs with number of edges scaling linearly with
number of nodes (|E| = O(n)). They are characterised
by two main properties: (P1) they have no bottlenecks and
maintain high connectivity or spectral gap and (P2) they are
efficiently precomputable through use of group operators
and act as an independent graph topology over which input
graph is rewired. Furthermore, their commute time or ef-
fective resistance scales linearly with the number of edges
as stated in (Giovanni et al., 2024) showing that expander
graphs are effective in reducing oversquashing.

Expander graphs have no bottlenecks. Spectral gap of
the graph G with n nodes is related to the connectivity and
existence of bottlenecks within its structure. We observe the
eigenvalues of a graph-Laplacian L given as:

Ao <A S A< < Ay, ey

where the first eigenvalue A, is referred to as spectral gap or
measure of connectivity. From Cheeger constant, it follows
that a larger A\ leads to a better connectivity within graph
G. Expander graph eigenvalues are extensively discussed in
(Alon & Milman, 1985; Alon, 1986; Dodziuk, 1984; Tanner,
1984). From (Deac et al., 2022) it is known that Cheeger
constant of expander graph families {G;} is lower-bounded
by a positive constant € > 0, leading to high connectivity.

Expander graphs are efficiently precomputable. We
follow construction given in (Deac et al., 2022) and we con-
sider Cayley graph expander family. Cayley graphs are con-
structed through a use of the special linear group SL(2, Z,,)
as a generating set. Full details on pre-computing Cayley
graphs can be found in the work done by (Deac et al., 2022;
Kowalski, 2019; Selberg, 1965; Davidoff et al., 2003). It is
known that a lower bound on the first eigenvalue of Cayley
graph Laplacian is at least 3/16 with full proofs given in
(Kowalski, 2019; Davidoff et al., 2003). This means that
Cayley graphs do not exhibit bottlenecks in their structure
(satisfying P1).

Computing Cayley graphs comes with a low computational
cost and no additional pre-processing of the input. It is
shown in (Deac et al., 2022) that for an expander family
{G;} of finite graphs with uniform upper bound on their
vertex degree, the following inequality holds:

where constant £ > 0 and diam(G; ) is the diameter of graph
G, yielding subquadratic time complexity. Due to their low-
diameter, two expander nodes can reach each other within
a small number of hops, relieving bottlenecks and offering
efficient structure for global information propagation.

It is also important to note that the number of nodes in
Cayley graphs grows cubically. As shown in (Deac et al.,
2022), the number of nodes is computed as:

[V (Cay(SL(2,Zy); Sn))| =n* ]

prime p|n

2.3. Expander Graph Propagation

Expander Graph Propagation (EGP) framework is simplistic
in nature and shows incredibly favourable properties for
rewiring on static graphs: relieving information bottleneck
and oversquashing, while maintaining low computational
cost and subquadratic time. For a set of input node features
X"*d where n is the number of nodes and d is the feature
vector size, EGP operates by alternating GNN layers and
propagating them over the adjacency matrix of the input
graph and Cayley graph in a following manner:

H = GNN(GNN(X, A), A9%), )

Here, H represents node embedding vector generated after
EGP forward pass, and A and A““Y are the adjacency ma-
trices for the input and Cayley graph respectively. A GNN
can be any classical GNN layer, such as graph attentional
network (GAT) (Velickovi¢ et al., 2017):

K

hy= || o| Y alWhx; |. 5)

JEN;

k=1

In the equation above for multi-head-attention layer, 7 is a
node of interest and NV; is its direct neighbourhood, afj are
the attention weights of the k-th attention head and W* is

corresponding input linear transformation’s weight matrix.
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Figure 2: TGR batch processing. Green nodes are nodes that have been previously observed and blue nodes are the new
nodes. Input node features X(¢) are constructed by concatenating expander embeddings H(¢ ™) (for previously observed
nodes), and node states S(¢~) (for new nodes). After computing temporal embeddings Z(t), temporal memory is updated
and mixed with other previously observed node states to compute expander embeddings H'(¢) and update expander memory.

3. Temporal Graph Rewiring

TGR combines expander graph propagation with use of
memory module to reduce memory staleness and alleviate
oversquashing in a base TGNN model. A detailed mech-
anism behind our framework is given in Figure 2 and al-
gorithm in appendix A.4. During training, TGR stores ob-
served nodes in Node Bank. After TGNN forward pass,
TGR extracts observed node states from TGNN temporal
memory and passes them to the expander message pass-
ing layer, which can be any classic static GNN layer. This
process is called memory mixing and it is used to reduce
memory staleness. Expander graphs introduce edges be-
tween temporally distant nodes in TGNN temporal memory,
regardless whether they interacted with other nodes in the
batch. Embeddings generated through memory mixing are
then passed as input features to the base TGNN model.

As TGR essentially provides dynamic node features, it is
agnostic to the underlying TGNN architecture thus it can
be easily extended to other TGL models. In this work, we
demonstrate how TGR integrates with a widely used TGN
architecture (further described in appendix A.3). It is impor-
tant to note that in our method, TGNN construction remains
intact. We add memory mixing as a separate process to
TGNN after TGNN temporal memory has been updated.
This a difference to most graph rewiring set-ups, where
rewiring alters individual GNN layers in the architecture.

Node Bank. Node Bank stores all nodes observed up to
a temporal batch ¢. We define two classes of nodes in the
batch: previously observed and unobserved nodes depend-
ing whether they have been observed by the TGNN model.
Node Bank module is dynamically updated with new nodes
at every temporal batch.

Memory Mixing. TGR introduces expander graph propa-
gation through memory mixing to reduce memory staleness.
After TGNN forward pass, TGNN temporal memory mod-
ule is updated with new node states. Consider S’(¢) which
consists of updated node states for all nodes in the Node
Bank. Expander embeddings H'(¢) are generated through
an expander message passing layer:

H'(t) = GNN(S'(t), ACw). (6)

Here, AC% is the expander graph adjacency matrix. In our
set-up, we pre-compute a large expander graph from Cayley
graph family with N nodes, where N is the number of
nodes in the training dataset. We use entire expander graph
for passing messages in the expander message passing layer.
When expander graph is smaller than number of nodes in
the node bank, we compute a new expander graph of size
(1+m)N, where m < 1.

Expander Memory. Expander memory H' () stores com-
puted expander embeddings and provides input features for
previously observed nodes for TGNN forward pass.

Input Features for TGNN. The input feature vector X ()
for TGNN forward pass is constructed through a concate-
nation (||) of expander embeddings H(¢~) (for previously
observed nodes) from expander memory and TGNN node
states S(¢) (for new nodes) from temporal memory:

X(t) =H{E)IS(™). ©)

TGNN Embedding. TGNN embedding module generates
temporal embeddings Z(t) by aggregating information from
node’s direct temporal neighbourhood:
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Table 1: Results for dynamic link property prediction on tgbl-wiki.

Method MRR (%) Improvement (%) | Compute Time (Sec)
Val. Test Val. Test Val. Test

TGN 51.5429 46.8+22 | - - | 87 86

TGR-GCN 56.5+12 50.3+12 | 5.0 3.6 92 94

TGR-GAT 57.7+12 53.1+11 | 6.3 6.3 95 99

TGR-GIN 55.9+15 51.3x19 | 45 4.5 93 94

TGR-GATV2 | 54.6+09 46.7+34 | 3.2 -0.1 96 97

Z(t) = TGNN(X(t), A(t)). ®)
We define temporal neighbourhood N/, of node i at time ¢
as a set of temporal events where every edge (i, j) € Nf. In
this work we opt for a widely used TGN (Rossi et al., 2020)
for a choice of a TGNN embedding. For node 7 its TGN
embedding z;(t) is computed as:

z;(t) = MLP(x;(t)]|2:(t)), ©)
z;(t) = MultiHeadAttention(q(¢), K(¢), V(t)), (10)
a(t) = xi(t)[|¢(0), (11)

K(t) = V(t) = C(1), (12)
C(t) = [x1lleall¢(t —t1), ... xnleinllo(t —tn)] (13)

MultiHeadAttention represents multi-head-attention layer
(Vaswani et al., 2023), and ¢ is the generic time encoding
(Xu et al., 2020). Query q(t) relates to node of interest
and the keys K (¢) and values V() relate to its direct neigh-
bours.

4. Experiments

Evaluation Setting. In this section, we evaluate TGR
framework on the dynamic link property prediction task
from TGB (Huang et al., 2023) on the t gb1-wiki dataset.
Predicting links in continuous time dynamic graphs consists
of computing temporal node embeddings and predicting a
probability of an edge formation and associated edge fea-
tures. We compare TGR performance to that of the TGN
base model using four different baselines: TGR-GCN (Kipf
& Welling, 2016), TGR-GAT (Veli¢kovic et al., 2017), TGR-
GIN (Xu et al., 2018) and TGR-GATv2 (Brody et al., 2022).

TGR Implementation. We implement TGR on top of
the TGN base model used in TGB (Huang et al., 2023) to
include memory mixing, expander memory and node bank
module. Expander memory is initialised as an empty tensor
which matches temporal memory size in (Rossi et al., 2020)
set-up. We also initialise node bank and expander graph of
size equal to the size of training dataset. In all experiments
we set learning rate [r = 5 - 10~* and run models with a

tolerance of 50 epochs for a maximum of 100 epochs during
training, test and validation. We maintain same batch size as
in (Rossi et al., 2020) which contains 200 temporal events.

Results. We show that TGR significantly outperforms
TGN on a temporal link prediction task. The best perform-
ing result is achieved using TGR-GAT showing 6% improve-
ment across Validation and Test MRR comparison to TGN
trained with our hyperparameters. Full table of results is
given in table 1. Best results using GAT reiterate impor-
tance of prioritising most important neighbours in random
selection of expander edges between observed nodes.

5. Conclusion

In this work, we proposed TGR to address gaps in TGNNs:
bottlenecks, oversquashing and memory staleness. We show
that using expander graphs to rewire temporal graphs is an
optimal method to relieve oversquahsing while adding mini-
mal cost overhead. We are aware that expander graph prop-
agation may not be the best way of doing temporal graph
rewiring. The purpose of this work is to conceptually pro-
pose temporal graph rewiring as a solution to oversquashing
using method we know is efficient in relieving oversquash-
ing in static GNNs. In future work, we hope to explore other
graph rewiring methods and compare their performance to
TGR. We have empirically tested TGR on tgbl-wiki
dataset and shown that TGR significantly outperforms base
TGN model. In future work, we intend to test TGR on tasks
such as node and and graph property prediction and larger
datasets available on TGB Benchmark.
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A. Appendix
A.1. Temporal Graphs

Temporal graphs are characterised by an evolving underlying graph topology, thus making them suitable for modelling
complex dynamic networks and evolving interactions between nodes. In this work we focus on continuous time dynamic
graphs as they model events which can occur at any point in time, thus making them suitable for modelling a majority of
real-world networks. Continuous time dynamic graphs (CTDGs) are defined as a sequence of chronologically sorted events
that can be split into node-wise or edge-wise events. Node-wise events v;(¢) include addition and deletion of node i as well
as change in node features at time ¢. Edge-wise events e; ;(t) relate to an edge 75 with endpoint nodes 4 and j and include
formation and deletion of edges in a graph at time ¢.

A.2. Temporal Graph Neural Networks

TGL has been a popular topic in graph machine learning community focusing on modelling evolutionary behaviour of
complex dynamic interaction networks and leading to development of temporal graph neural network (TGNN) architectures
(Longa et al., 2023). Following terminology introduced in (Longa et al., 2023) TGNNs can be classified into snapshot-based
architectures operating over discrete time dynamic graphs (DTDGs) and event-based architectures operating over continuous
time dynamic graphs (CTDGs). CTDGs capture events that can happen at any time, while DTDGs capture events that
happen in discrete time intervals. In this work we focus on CTDGs, as most real-world networks operate over a continuous
time domain.

Event-based TGNNs such as Neighborhood-aware Scalable Temporal Network (NAT) (Johnson et al., 2023) or Temporal
Graph Network (TGN) (Rossi et al., 2020) are characterised by use of graph-based operators in combination with novel
model components such as temporal memory (Kazemi et al., 2020) and time-encoding (Xu et al., 2020). TGNNSs use temporal
memory to store long-standing relationships between observed node states used to generate dynamic node embeddings.
Similarly to static GNNs, TGNNs operate through aggregating information from a local temporal neighbourhood to generate
temporal embeddings following a message passing paradigm.

A.3. Temporal Graph Network

Temporal Graph Network (TGN) (Rossi et al., 2020) serves as a base model to TGR framework to generate temporal
embeddings Z(t). TGN proposes a combination of temporal memory and graph-based operators for learning on continuous
time dynamic graphs represented as chronologically sorted sequences of time-based events.

A unique advantage of TGN is use of temporal memory to store and update node states. TGN memory module S(¢) stores
memory state s;(¢) for each node 4 in the graph. When a node interacts with another node through a node-wise or edge-wise
event, node states of the nodes involved in the event are updated in the memory through a recurrent neural network such as
LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Cho et al., 2014). The purpose of a memory module is to store historical
information and long-term dependencies of a node in a compressed format.

A.4. TGR: Algorithm

This section provides full algorithm for TGR batch processing.

Get new and observed node IDs. At the beginning of batch processing, we extract 200 node IDs and store them in n;4.

We then compare n;4 to node bank node IDs nfgs and extract nJ$°" where we store previously observed nodes and n;;*

where we store unobserved nodes. After extracting n;°" and n[';"", we update node bank nfgs to use in the next batch.

Compute input node features X (¢). We compute input node features X (t) as previously discussed in section 3 through

concatenating node n;5°" features from expander memory and n}.* from TGNN temporal memory.

TGNN Forward Pass. In TGN implementation X () includes node states for all node IDs in n;4. The main difference
between TGN implementation and ours is a different set of input node features X (¢). After forward pass, TGN temporal
memory is updated with new node states.
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Extract node states from Temporal Memory. We extract updated node states S’(¢) for node IDs n$5° from node bank.
We pad S’(t) to match expander graph size. Note that A“?¥ remains the same throughout batch processing unless the node
bank size grows larger than the size of expander graph, as previously described in section 3.

Memory Mixing Memory mixing module computes expander embeddings H'(¢) by passing S’(¢) through an expander
message passing layer. After memory mixing expander memory is updated to include new expander embeddings.

Algorithm 1 TGR Batch Processing

Require: ExpanderMemory, TemporalMemory, Node Bank
1. Get new and observed node IDs
N < niq \ n2%® {Identify new nodes.}

n3sem < niq N o {Identify observed nodes. }
n%s « ngbs Untew {Update the Node Bank.}
2. Compute input node features X(¢)
X(t)[ns*"]: S(t~) + TemporalMemory(n/'s*)
X(t)[ni5"]: H(t™) < ExpanderMemory(n5°")
3. TGNN Forward Pass

Z(t) < TGNN(X(t), A(1))

4. Extract node states from Temporal Memory
S'(t) < TemporalMemory(n¢5?)

Pad S’(t) to match A€ size: S/(t) + Pad(S'(t))
5. Memory Mixing

H'(t) < GNN(S'(t), A°w)

Update ExpanderMemory < H'(¢)

A.5. Experiments
A.5.1. DATASETS

We leverage availability of temporal graph data in the TGB Benchmark (Huang et al., 2023) to validate TGR performance.
TGB Benchmark collects a variety of real-world dynamic datasets which contain temporal interactions in many real-world
networks such as flights, transactions and beyond.

tgbl-wiki. In this work we explore t gb1-wiki dataset which stores dynamic information about a co-editing network on
Wikipedia pages over a span of one month. The data is stored in a bi-partite temporal graph where nodes represent either
editors or wiki-pages they interact with. An edge represents an action user takes when editing a Wikipedia page and edge
features contain textual information about a page of interest. The goal is to predict existence and nature of links between
editors and Wikipedia pages at a future timestamp.

A.5.2. MODEL PARAMETERS

We do not perform extensive hyperparameter tuning in comparison to TGN implementation (Huang et al., 2023) (see
reported table 2). We match expander memory and embedding dimension to temporal memory.



Temporal Graph Rewiring with Expander Graphs

Table 2: Model Hyperparameters.

Value

Temporal Memory Dimension 100
Node Embedding Dimension 100
Time Embedding Dimension 100
Expander Memory Dimension 100
Expander Embedding Dimension 100
# Attention Heads 2

Dropout 0.1

10



