RLJ | RLC 2024

Stabilizing Extreme Q-learning by Maclaurin
Expansion

Motoki Omura Takayuki Osa Yusuke Mukuta

omura@mi.t.u-tokyo.ac.jp osa@mi.t.u-tokyo.ac.jp mukuta@mi.t.u-tokyo.ac.jp

The University of Tokyo The University of Tokyo The University of Tokyo
RIKEN RIKEN

Tatsuya Harada
harada@mi.t.u-tokyo.ac.jp
The University of Tokyo
RIKEN

Abstract

In offline reinforcement learning, in-sample learning methods have been widely used
to prevent performance degradation caused by evaluating out-of-distribution actions
from the dataset. Extreme Q-learning (XQL) employs a loss function based on the
assumption that Bellman error follows a Gumbel distribution, enabling it to model
the soft optimal value function in an in-sample manner. It has demonstrated strong
performance in both offline and online reinforcement learning settings. However,
issues remain, such as the instability caused by the exponential term in the loss
function and the risk of the error distribution deviating from the Gumbel distribu-
tion. Therefore, we propose Maclaurin Expanded Extreme Q-learning to enhance
stability. In this method, applying Maclaurin expansion to the loss function in XQL
enhances stability against large errors. This approach involves adjusting the mod-
eled value function between the value function under the behavior policy and the
soft optimal value function, thus achieving a trade-off between stability and opti-
mality depending on the order of expansion. It also enables adjustment of the error
distribution assumption from a normal distribution to a Gumbel distribution. Our
method significantly stabilizes learning in online RL tasks from DM Control, where
XQL was previously unstable. Additionally, it improves performance in several
offline RL tasks from D4RL.

1 Introduction

Deep reinforcement learning has demonstrated good performance in many tasks, including robotics
(Schulman et al., 2017; Haarnoja et al., 2018) and games (Mnih et al., 2013; 2015; Silver et al.,
2016). During learning, the goal is to acquire the optimal policy by learning a value function, and
the learning of the value function involves the Bellman update. Recently, Garg et al. (2023) proposed
that based on the Extreme Value Theorem, the Bellman error follows a Gumbel distribution rather
than the normal distribution assumed by traditional least squares methods. Consequently, they
proposed an algorithm called Extreme Q-learning (XQL), which employs Gumbel Regression, a
maximum likelihood estimation assuming a Gumbel error distribution. This method demonstrated
excellent performance, primarily in offline RL. However, a significant issue with Gumbel Regression
is its instability. The loss function contains an exponential term that can lead to too large or too
small gradients, resulting in divergence or slow convergence. As a remedy, they used stabilization
measures such as clipping and the max-normalization trick, but it was still unstable, particularly
in online RL. Another problem is that the error distribution may not exactly match the Gumbel

RLJ | RLC 2024

distribution. Garg et al. (2023) demonstrated that based on the i.i.d. among state-action pairs and
time steps, it becomes a Gumbel distribution, but in reality, the independence is not guaranteed due
to the use of the same neural network for all states and actions. Additionally, in the actual Bellman
updates of algorithms, many elements such as entropy maximization, target networks, and Clipped
Double Q-learning are incorporated, which also affect the error distribution. As suggested in Garg
et al. (2023), the resulting distribution may resemble a mix of normal and Gumbel distributions.

Thus, in this study, we propose a both simple and practical algorithm, Maclaurin Expanded Extreme
Q-learning (MXQL), which not only stabilizes the Gumbel loss but also allows for the adjustment
of the error distribution assumption from normal to Gumbel. The proposed method uses Expanded
Gumbel loss, which is a Maclaurin expansion of the Gumbel loss. By reducing the order of expansion
n, this loss, as shown to the left of Figure 1, mitigates excessively large or small gradients compared
to the Gumbel loss.

As n increases, the loss function converges to the Gumbel loss, while for n = 2, it becomes the
L2 loss. With the Gumbel loss, the estimated value function becomes a soft optimal value, and
with the L2 loss, it becomes the value function under the behavior policy. These learning methods
correspond to soft Q-learning (Haarnoja et al., 2017) and SARSA, respectively. By adjusting n
between 2 and oo, the method of estimating the value function can be adjusted between soft Q-
learning and SARSA. In other words, a larger n leads to an unstable but optimal value function
estimation, while a smaller n results in a stable but non-maximizing estimation, offering a trade-off
between stability and optimality. This is analogous to adjusting the parameter 7 in IQL’s expectile
loss from 1 to a smaller value for stabilization. IQL adjusts between SARSA and Q-learning using
the parameter 7, while MXQL adjusts between SARSA and soft Q-learning using the parameter n.

The assumed error distribution follows a normal distribution when n = 2 because the loss is the
L2 loss. When n is large, it follows a Gumbel distribution. Therefore, by adjusting n between 2
and a larger value, the assumed error distribution can be adjusted between the normal and Gumbel
distributions. In practice, the Bellman error is influenced by various factors such as the target
network and double Q-learning, which suggests that, according to the central limit theorem, it may
approximate a normal distribution. The assumed error distribution is illustrated to the right of
Figure 1, showing that as n increases, the distribution transitions from normal to Gumbel.

In the experiments, similar to Garg et al. (2023), we compared performance using DM Control tasks
(Tassa et al., 2018; Tunyasuvunakool et al., 2020) for online RL and D4RL tasks (Fu et al., 2020)
for offline RL. In online RL scenarios, where XQL was previously unstable, we observed improved
stability. Furthermore, in offline RL, our method demonstrated superior performance compared to
existing methods, including XQL, across several tasks.

The contributions of this study are as follows:

e Verifying XQL’s instability through preliminary experiments and demonstrating its insta-
bility when the data distribution significantly deviates from the assumed error distribution.

e Proposing a novel loss function, the Expanded Gumbel loss, by applying a Maclaurin ex-
pansion to the Gumbel loss in XQL, aimed at stabilizing XQL.

e Demonstrating improved stability and performance by using Maclaurin Expanded Extreme
Q-learning, which incorporates the Expanded Gumbel loss into XQL, across numerous tasks
in both online RL and offline RL.

2 Background

2.1 Reinforcement Learning

We address the reinforcement learning (RL) problem within the framework of a Markov decision
process (MDP) represented by (S, A, P,r,~v,d). Here, S represents the state space, where s denotes

RLJ | RLC 2024

— Expanded (n=2, L2) 0.40 —— Expanded (n=2, Normal)
25— Expanded (n=4) 0.35 —— Expanded (n=4)

—— Expanded (n=6) —— Expanded (n=6)
20 —— Expanded (n=8) 0.30 —— Expanded (n=8)

—— Gumbel 0.25 Gumbel
0.15
0.10

0.05

0.00

-3 -2 —1 0 1
Residual x

(%)
w
|
[
[N
'

Figure 1: Left: Illustration of Gumbel loss (8 = 1) alongside Expanded Gumbel loss derived from it.
When n = 2, the loss aligns identically with the L2 loss. Right: Depiction of the error distribution
assumed by Gumbel loss and Expanded Gumbel loss. Specifically, when n = 2 (corresponding to L2
loss), a normal distribution is assumed.

a specific state. A represents the action space, with a denoting a specific action. P(s;41]8¢, ar)
defines the transition probability from one state to another given an action. r(s,a) is the reward
function, representing the reward received after taking action a in state s. -y represents the discount
rate. Lastly, d(so) represents the initial state’s probability density. The policy m(als) is defined as
the probability of taking a specific action given the state. The objective in RL is to discover the
policy that maximizes the expected sum of discounted rewards, denoted as E[Ry|xn]. The return R,
is calculated as R; = Zfzt v*=tr(sy, ay,), representing the total discounted rewards from time ¢.

2.2 Extreme Q-learning

In this section, we explain XQL, which forms the foundation of this research. First, based on the
Gumbel Error Model, we explain how the Bellman error follows the Gumbel distribution. Then,
we outline the Gumbel Regression for learning the value function, effective for addressing the error
distribution of the Gumbel distribution. Subsequently, we examine the role of the hyperparameter
8 and discuss the inherent limitations of XQL.

2.2.1 Gumbel Error Model

The Gumbel Error Model suggests that the Bellman error follows a Gumbel distribution. Given
multiple instances of @), each representing a different simulation of the model, the target defined by
the Bellman optimal operator is given as:

B*Qr=r+ 7 max Qi(s',d) =1+ ’YH}?X(Qt(S/, a)+e(s',a")) (1)

Here, Qy(s,a) = Qi(s,a) +€(s,a). The error €, an i.i.d. variable with zero mean, is combined with
the mean value @;. Thus, the mean value Q¢4 for the estimated value (Q;41 is given by:

Qr41(5,0) =7+ VB s a[Ee, [max(Qu(s',a') + ex(s',)] (2)

Despite €; having a zero mean, the maximization operation introduces a positive expectation bias into
Qy+41, resulting in an overestimation bias in Q-learning, specifically when using function approxima-
tors. Furthermore, if €; is uncorrelated with s, a;, and across different time steps, according to the
Extreme Value Theorem, €; will converge to a Gumbel distribution over time. The error distribution
violates the least squares method’s assumption that the error follows a normal distribution.

RLJ | RLC 2024

2.2.2 Gumbel Regression

Based on the properties of the Gumbel Error Model, they proposed Gumbel Regression, a maximum
likelihood estimation assuming a Gumbel distribution as the error distribution. The loss function
in Gumbel Regression is as follows:

L(h) = Eq,np[e ™ ™/P — (2, — 1)/ — 1] 3)

where x; is the samples and h is the parameter to be estimated. By minimizing this loss function,
the estimated parameters h are found as h = SlogE;,.p [e“/ B]. This expression is analogous to the
log-partition function (LogSumExp), where the summation is replaced by an expectation.

In XQL, this property is applied to Q-learning, directly estimating the soft-value function (V*(s) =
Blogy", nla | s)exp(Q(s,a)/B)) in maximum entropy RL. The loss function becomes:

L(V) = Esanule @7V —(Q(s,0) ~ V(s))/8 — 1] (4)

where p is the behavior policy that generated the sampled state-action pairs. As the estimation of
the value function eliminates the need for samples from the current policy, it avoids the computation
of Q-values using out-of-distribution actions, thereby enhancing performance, particularly in offline
RL scenarios. In practical online RL applications, the last policy is used for y, and a trust region
update (Schulman et al., 2015) is performed.

The Q-function is learned using the least squares method as follows:

L(Q) = Esa,s~pl(r(s,a) + 1V (s') = Q(s,a))?] ()

2.2.3 Role of g

The soft optimal value estimated in Eq. (4) is derived from the following objective function in
Maximum Entropy RL.

J(7) = Es anr [Q(s, 0)] = SDx (]| 1) (6)

Here, 8Dk, (||p) serves as a conservative term against deviations from the behavior policy, with g
modulating the level of conservatism. As can be seen from Eq. (4), this parameter, 3, also impacts
learning stability: small 8 values can increase gradients, risking divergence, while large 3 values may
reduce gradient magnitudes, decelerating convergence. Therefore, while § modifies conservatism, it
does not ensure stability across all values.

2.2.4 Limitations

The first limitation concerns instability, which complicates the adjustment of conservatism through
the parameter 8. Techniques such as clipping and max normalization were employed to achieve
stabilization:

def gumbel_loss (pred, label, beta, clip):
z = (label - pred)/beta

z = torch.clamp(z, -clip, clip)

max_z = torch.max(z)

max_z = torch.where(max_z < -1.0, torch.tensor(-1.0), max_z)

max_z = max_z.detach ()

loss = torch.exp(z - max_z) - z*torch.exp(-max_z) - torch.exp(-max_z)

return loss.mean ()

RLJ | RLC 2024

Nevertheless, instability persists, and in certain tasks, learning can collapse, necessitating a restart
(Garg et al., 2023). This instability is demonstrated in the following section through preliminary
experiments.

The second limitation is that the error distribution may not be a Gumbel distribution. The Gumbel
Error Model assumes independence between state-action pairs and steps; however, maintaining
this independence becomes challenging when the same network is utilized for all training samples.
Moreover, practical algorithms integrate techniques such as target networks and Clipped Double
Q-learning, which additionally influence the error distribution. Plots in the appendix of Garg et al.
(2023) demonstrate distributions that deviate from the Gumbel distribution. They also suggest that
the error distribution might combine normal and Gumbel elements. We hypothesize that this mixed
distribution, influenced by various factors and the Central Limit Theorem, resembles an intermediate
between normal and Gumbel distributions.

3 Maclaurin Expanded Extreme Q-learning

As mentioned above, XQL has limitations; it can be unstable, and its assumptions regarding the
error distribution may not be met. Therefore, we propose a method named Maclaurin Expanded
Extreme Q-learning (MXQL), which stabilizes XQL and facilitates adjustment between normal and
Gumbel distributions in the error distribution assumption.

3.1 Instability related to

In Extreme Q-learning, 8 was adjusted for conservatism, learning efficiency, and stability. In other
words, even if one aims to adjust the level of conservatism using 3, certain 3 values may prove
unstable and unusable depending on the data. To illustrate this, we conducted a simple preliminary
experiment.

For scalar data represented as x;, parameter h, and Gumbel noise ¢;, we perform Gumbel Regression
using Eq. (3) as o; = h + ¢; where ¢; ~ —G(0, fBreg), i ~ —G(0, Bdata). This implies that when S,¢4
and B4qtq are equal, the assumptions concerning the error distribution in Gumbel Regression are fully
met. We varied the 8 of the data (B4qtq) and the B used in Gumbel Regression (8,e4) respectively,
estimated them, and analyzed how differences between Byqtq and Breq affected the estimation results.
The estimated h was assessed based on its deviation from the true value (log 3" e*i/Pres). The results
are presented in Figure 2.

When Bgqtq and fBre4 are equal, that is, when the distribution of the data assumed in Gumbel
Regression is the same as the distribution of the data used for estimation, the accurate estimation
can be achieved with fewer updates. When Bgq1, and frey are different, the required number of
updates increases. Furthermore, if 8¢y is too small relative to S4ata, the gradient diverges and
learning collapses. Similar outcomes have been noted in higher-dimensional and online RL tasks,
demonstrated by Garg et al. (2023), with learning collapse requiring restarts in specific scenarios.

These results suggest that in Gumbel Regression, it is necessary to choose a 3 that approximates the
distribution of the learning data closely, thereby narrowing the range within which conservativity
can be adjusted. Therefore, we propose a method to stabilize Gumbel Regression adaptable to
diverse (3 values.

3.2 Expanded Gumbel Loss

We introduce the Expanded Gumbel loss, which applies a Taylor (Maclaurin) expansion to the
Gumbel loss at the point where the residual (z; — h) equals zero.

("Ei - h)j

n
M
PSRV LeE

L(h) = Eq, 1

RLJ | RLC 2024

Biata = 0.5 Biata =2 Bitata = 10 x10M

—— Breg =05

breg=2 === By = 0.5 (right axis)
Breg = 2 10 £reg
—— Buy=10

= | |
0.0 \—

—0.5

1.0

Absolute Error
Absolute Error
Absolute Error

-0.0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Num Updates Num Updates Num Updates

Figure 2: Results of Gumbel Regression with varying parameters Bgqtq and Breq set to (0.5, 2, 10).
The absolute error refers to the absolute difference between the estimated parameter h and the
true value, defined as logZe’”/ﬂTﬁg. This error was measured at update counts of [10, 100, 500,
1000 2000]. The experiment was conducted 100 times to obtain average values, and the standard
deviation is depicted as shaded areas.

where n is the order of expansion. As shown on the left side of Figure 1, the Expanded Gumbel loss
exhibits a less steep gradient on the right side and a steeper gradient on the left side compared to
the traditional Gumbel loss. This modification resolves issues such as the collapse of learning and
slow convergence observed in the preliminary experiments. Moreover, by adjusting the expansion
order n, the degree of stabilization can be altered: smaller values of n lead to greater deviation from
the Gumbel loss but enhance stability. It should be noted that n is selected from even numbers to
ensure the loss remains positive. In MXQL, similar to XQL, the Expanded Gumbel loss is employed
for estimating the value function, and the loss function is defined as follows:

L(V) —]Es,awp Z (Q(S’a])'ﬁ_]V(S))] (8)

=2

Learning the Q-function uses Eq. (5) in the same manner as in XQL.

As shown in Eq. (8), when n = 2, the loss function becomes the L2 loss. The V-function represents
the expected value of Q for actions taken under the behavior policy. In other words, the learning
of the value function follows a SARSA-based approach, and the estimated value function is the
value under the behavior policy rather than the optimal policy. When n approaches co, Eq. (8)
transforms into the Gumbel loss. The value function estimated by the Gumbel loss corresponds to
the soft optimal value in maximum entropy RL. Thus, the learning of the value function follows a
soft Q-learning-based approach. This indicates a trade-off between stability and optimality: when
n is large, the estimated value function is more optimal but less stable, whereas when n is small,
the value function is more stable but but does not fully maximize.

This trade-off is similar to the parameter 7 in IQL (Kostrikov et al., 2022), which adjusts the expectile
loss. In IQL, when 7 = 0.5, the loss becomes the L2 loss, corresponding to n = 2 in MXQL, while
7 =1 in IQL corresponds to n = oo in MXQL. IQL adjusts between SARSA and Q-learning using
the parameter 7, while MXQL adjusts between SARSA and soft Q-learning using the parameter n.
Since IQL typically uses values of 7 less than 1, such as 0.7 or 0.9, this suggests the necessity of
stabilizing the loss in XQL towards the L2 loss.

In the following section, we present the analysis of the error distribution from the perspective of the
Expanded Gumbel loss.

3.3 Perspective of Error Distribution

The Gumbel loss was derived from the maximum likelihood estimation that assumes a Gumbel
distribution for the error distribution. Next, we consider the error distribution assumed by the

RLJ | RLC 2024

proposed Expanded Gumbel loss. The error distribution for each n is shown on the right side of
Figure 1. When n is large, the Expanded Gumbel loss approaches the Gumbel loss due to the
nature of the Taylor expansion, and consequently, the assumed error distribution also approaches
the Gumbel distribution. When n = 2, which is the smallest value, the Expanded Gumbel loss takes
a form equivalent to L2 loss. This loss corresponds to the least squares method, which assumes a
normal distribution for the error distribution. As n increases, the error distribution shifts from a
normal to a Gumbel distribution. In other words, by adjusting the expansion order, it is possible to
modulate the error distribution between a normal and a Gumbel distribution. It is conceivable that
error distributions influenced by various factors tend to have properties close to a normal distribution
due to the Central Limit Theorem. Moreover, preliminary experiments confirmed the importance
of the closeness between the assumed error distribution and the data distribution, suggesting that
adjusting the distribution using n is likely to be effective.

We name our method, which substitutes XQL’s Gumbel loss with Expanded Gumbel loss, Maclaurin
Expanded Extreme Q-learning (MXQL). Our approach is based on XQL, simply changing the loss
function for V-function. The implementation details are provided in the appendix. In MXQL, the
expansion order n is a hyperparameter. However, it should be noted that the clipping size is also a
hyperparameter in XQL, and the number of hyperparameters has not changed compared to XQL.

4 Experiments

In our experiments, we assessed the stability and performance of Maclaurin Expanded Extreme Q-
learning (MXQL) in comparison with Extreme Q-learning (XQL) across both online RL and offline
RL scenarios for various [values. The implementation is based on the official XQL framework,
and we adhered to the same hyperparameters as those used in the XQL setup. Further details are
provided in the appendix.

4.1 Online RL

In online RL, experiments were conducted using five tasks from the DM control suite. These tasks in-
clude Quadruped-run, Hopper-hop, Walker-run, Cheetah-run, as experimented in Garg et al. (2023),
in addition to Humanoid-walk. Both XQL and MXQL used SAC (Haarnoja et al., 2018) as the base
algorithm. Experiments were conducted with a range of 3 values ([0.1, 0.5, 1, 2, 5]), which includes
additional smaller values ([0.1, 0.5]) not used in the experiments by Garg et al. (2023) ([1, 2, 5]).
In Garg et al. (2023), when XQL became unstable, it was restarted, but in this study, no restarts
were performed for a fair comparison. The plot of average returns when the expansion order is 8 is
shown in Figure 3.

In most tasks, MXQL demonstrated superior performance compared to XQL. Particularly in cases
of small 8, XQL often failed to learn adequately. This implies that XQL could not learn with a small
trust region, whereas MXQL was able to stabilize learning even for small 5. In other words, MXQL
allows for a wider range of 8 selections. The scores averaged across all tasks are shown in Table 2.
Experiments were conducted with n = 4,8,12, and stable learning was achieved across all values.
The final average scores and standard deviations for each task when using the best 8 in XQL and
MXQL (n = 8) are shown in Table 3, demonstrating improved performance with the tuned 3.

4.2 Offline RL

To ensure a fair comparison with XQL, experiments were conducted on the same Gym locomotion,
AntMaze, and Franka Kitchen tasks as those reported in Garg et al. (2023). The scores are displayed
in Table 1 and are compared with those from Brandfonbrener et al. (2021); Fujimoto & Gu (2021);
Kumar et al. (2020); Kostrikov et al. (2022); Garg et al. (2023). The proposed method, MXQL,
demonstrated the best scores in several tasks compared to the scores of existing methods reported in
Kostrikov et al. (2022); Sikchi et al. (2024), and outperformed XQL in most tasks. In the AntMaze

RLJ | RLC 2024

QuadrupedRun-v0 HopperHop-v0 HumanoidWalk-v0

2
1200 500 800

1000

100 600

800
300 100
600
200

100 200

Average Return
Average Return

Average Return

100

200 0

0.0 05 1.0 L5 2.0 0.0 0.5 L0 5 0.0 05 10 L5 2.0
Steps x100 Steps x10° Steps x100

WalkerRun-v0

o

CheetahRun-v0

0
£ A
&2 E 00 — MXQL (3=0.1) == XQL (8=0.1)
%00 S 0 —— MXQL (8=0.5) == XQL (8 =0.5)
g j: i, — MXQL(B=1) == XQL(8=1)
20 — MXQL(8=2) == XQL(8=2)
0 —— MXQL (8=5) == XQL (8=05)
0

0.0 05 10 L5 2.0 0.0 0.5 10 L5 2.0
Steps x10° Steps x10°0

Figure 3: Performance comparison of MXQL (n=8) and XQL on DM Control tasks for online RL.

medium and large tasks, MXQL underperforms compared to IQL, suggesting that the soft optimal
value estimated in both XQL and MXQL may not be well-suited for these particular tasks.

Dataset BC Onestep RL TD3+BC CQL IQL XQL MXQL
halfcheetah-med 42.6 48.4 48.3 440 474 474 46.5 + 0.3
hopper-med 52.9 59.6 59.3 58.5 66.3 68.5 68.3 £ 7.3
walker2d-med 75.3 81.8 83.7 725 783 814 71.9 £ 3.9
halfcheetah-med-rep 36.6 38.1 44.6 45.5 442 44.1 44.1 £ 0.3
hopper-med-rep 18.1 97.5 60.9 95.0 947 951 98.2 + 3.2
walker2d-med-rep 26.0 49.5 81.8 77.2 73.9 58.0 57.9 £ 8.8
halfcheetah-med-exp 55.2 93.4 90.7 91.6 86.7 90.8 88.2 £4.4
hopper-med-exp 52.5 103.3 98.0 105.4 91.5 94.0 | 105.1 + 10.1
walker2d-med-exp 107.5 113.0 110.1 108.8 109.6 110.1 109.9 £ 0.1
antmaze-umaze 54.6 64.3 78.6 74.0 87.5 47.7 88.3 £ 2.1
antmaze-umaze-div 45.6 60.7 71.4 84.0 62.2 51.7 53.2 £ 9.7
antmaze-med-play 0.0 0.3 10.6 61.2 71.2 312 50.8 £ 2.7
antmaze-med-div 0.0 0.0 3.0 53.7 70.0 0.0 52.2 £+ 6.6
antmagze-large-play 0.0 0.0 0.2 15.8 39.6 10.7 18.7 £ 5.9
antmagze-large-div 0.0 0.0 0.0 149 47.5 313 14.3 £ 64
kitchen-complete 65.0 - - 43.8 62,5 56.7 64.2 + 10.3
kitchen-partial 38.0 - - 49.8 46.3 48.6 47.1 £ 8.7
kitchen-mixed 51.5 - - 51.0 51.0 404 71.9 £ 3.6

Table 1: Average normalized scores on Gym locomotion, AntMaze and Kitchen tasks. Highlighted
results are within one performance point of those achieved by the best-performing algorithm, and
the standard deviation across six seeds is displayed as + for MXQL.

5 Related Work

XQL (Garg et al., 2023) has evolved based on MaxEnt RL (Bloem & Bambos, 2014; Haarnoja et al.,
2017; 2018) and allowed for the estimation of soft-values through Gumbel loss without access to
entropy, similar to Heess et al. (2015); Haarnoja et al. (2017). XQL has been successfully combined

RLJ | RLC 2024

B XQL n=4 n=8 n=12

0.1 389 6190 6430 642.9
0.5 || 319.2 6654 6348 598.9
1| 4321 653.9 669.9 62238
2 || 4741 6265 6433 6436
5 || 6387 6543 6747 642.0

Table 2: Average scores of XQL and MXQL with various n
values for five tasks from DM Control in online RL. Scores
underlined with dashes represent significant differences be-
tween XQL and MXQL, as determined by a t-test with a
significance level of 0.05.

with existing methods widely used in online RL, such as Fujimoto et al. (2018); Haarnoja et al. (2018).
However, its instability and sensitivity to the value of 8 necessitate careful tuning. In MXQL, the
loss function has been stabilized through Maclaurin expansion. Bas-Serrano et al. (2021); Hui et al.
(2023) have also used loss functions different from L2.

In offline RL, some methods regularize through conservatism (Wu et al., 2019; Kumar et al., 2019;
Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021; Nair et al., 2021) and others
that directly model the greedy policy (Peng et al., 2019; Brandfonbrener et al., 2021; Chen et al.,
2021). XQL was able to learn without direct access to the current policy, similar to Kostrikov
et al. (2022); Xu et al. (2023), while introducing conservatism. Similar to online RL, methods
for stabilization have been employed in offline RL; notably, the stabilization in MXQL has shown
performance improvements in certain offline RL tasks. Recently, there have been methods that have
led to performance improvements by using Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) as the policy (Wang et al., 2023; Hansen-Estruch et al., 2023), and applying
this approach in MXQL could be a future direction.

6 Conclusion

A recent study (Garg et al., 2023) suggested that the Bellman error might follow a Gumbel distribu-
tion, challenging traditional least squares methods. In response, XQL, utilizing Gumbel Regression,
was proposed but encountered stability issues in online RL due to extreme gradient values and
the often incorrect assumption that state-action pairs are i.i.d.. The study introduces Maclaurin
Expanded Extreme Q-learning (MXQL), stabilizing Gumbel loss and allowing adjustment between
normal and Gumbel error distributions using Expanded Gumbel loss. This modification offers a
practical solution to the instability and error distribution assumption issues seen in XQL, showing
improved performance and stability in both online and offline RL scenarios.

Acknowledgments

This work was partially supported by JST Moonshot R&D Grant Number JPMJPS2011, CREST
Grant Number JPMJCR2015 and Basic Research Grant (Super AI) of Institute for AT and Beyond
of the University of Tokyo. T.O. was partially supported by JSPS KAKENHI Grant Number
JP23K18476.

References

Joan Bas-Serrano, Sebastian Curi, Andreas Krause, and Gergely Neu. Logistic g-learning. In
Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research,
pp. 3610-3618. PMLR, 13-15 Apr 2021.

RLJ | RLC 2024

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse rein-
forcement learning. In 53rd IEEE Conference on Decision and Control, pp. 4911-4916, 2014. doi:
10.1109/CDC.2014.7040156.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 4933-4946.
Curran Associates, Inc., 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 15084-15097. Curran
Associates, Inc., 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.

1587-1596. PMLR, 10-15 Jul 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052-2062. PMLR, 09-15 Jun 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent RL
without entropy. In International Conference on Learning Representations, 2023.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 1352-1361. PMLR, 06-11 Aug 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1861-1870. PMLR, 10-15 Jul 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies, 2023.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc., 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 6840-6851. Curran Associates, Inc., 2020.

David Yu-Tung Hui, Aaron Courville, and Pierre-Luc Bacon. Double gumbel g-learning. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

RLJ | RLC 2024

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1179-1191. Curran
Associates, Inc., 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets, 2021.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
1889-1897, Lille, France, 07-09 Jul 2015. PMLR.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Harshit Sikchi, Qinging Zheng, Amy Zhang, and Scott Niekum. Dual RL: Unification and new
methods for reinforcement and imitation learning. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=xt9Bu66rqv.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256-2265, Lille, France, 0709 Jul 2015. PMLR.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
Deepmind control suite, 2018.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_ control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.org/10.
1016/j.simpa.2020.100022.

https://openreview.net/forum?id=xt9Bu66rqv

RLJ | RLC 2024

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261-272, 2020. doi: 10.1038/s41592-019-0686-2.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The FEleventh International Conference on Learning
Representations, 2023.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2019.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and
Xianyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regu-
larization. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=ueYYgo2pSsuU.

A Experiments

A.1 Online RL

In the experiments of MXQL and XQL, the implementation is based on the official implementation
of (Garg et al., 2023), with only the loss function changed. The hyperparameters are the same as
in (Garg et al., 2023). In all experiments on online RL, 5 seeds are used, and the 95% confidence
interval is shown as a shaded area. The results of changing the order n of expansion in MXQL are
shown in Figure 4 and Figure 5.

QuadrupedRun-v0 HopperHop-v0 HumanoidWalk-v0
400 800

600
100

200

Average Return
Average Return

- w
Average Return

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0

Steps 100 Steps x10° Steps 100
WalkerRun-v0 CheetahRun-v0
500 1000
£ 600 £ 800 — MXQL (B = 01)
2 k3
L — MXQL (8 = 0.5)
2 g — MXQL (8 =1)
200
200
— MXQL (3 = 2)
0 0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 — MXQL (/3 = 5)

Steps x10° Steps <108

Figure 4: Performance of MXQL (n=4) in the online RL tasks from DM Control.

https://openreview.net/forum?id=ueYYgo2pSSU

RLJ | RLC 2024

QuadrupedRun-v0 HopperHop-v0 HumanoidWalk-v0
400 800
1000
300
800

600 200

100

Average Return
Average Return
Average Return
v

100

200

0
0.0 05 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 10 L5 2.0
Steps x10° Steps %106 Steps x108

WalkerRun-v0 CheetahRun-v0
1200

800 —
1000

600 800

600
100

Average Return
Average Return

100

200
200

0 0
0.0 05 10 15 2.0 0.0 0.5 1.0 15 2.0
Steps x10° Steps %10

Figure 5: Performance of MXQL (n=12) in the online RL tasks from DM Control.

XQL MXQL
Task B Score | 8 Score
QuadrupedRun-v0 5 730.2 43038 | 1 896.0 + 51.4
HopperHop-v0 2 2874 +9.1 | 1 3627 4+ 115.7
HumanoidWalk-v0 5 487.1 £ 60.3 | 5 546.1 £+ 45.0
WalkerRun-v0 0.5 826.0 +19.4 | 1 837.2 + 5.3
CheetahRun-v0 5 890.0+16.9 | 1 887.6 + 7.6

Table 3: The final average score and standard deviation when using the best 8 in XQL and MXQL
(n=8).

A.2 Offline RL

In offline RL, the official implementation is also used, and the hyperparameters are the same as in
Garg et al. (2023). In Gym tasks, "-v2" was used, while in AntMaze and Kitchen tasks, "-v0" was
employed. The batch size and the update frequency of the V-function, which were tuned in (Garg
et al., 2023), are not tuned. In XQL, the 8 and the size of clipping, and in MXQL, the § and the
order n of expansion have been tuned, and a common value for each domain has been used. The
range for tuning S is the same as for Garg et al. (2023), which is [0.6, 0.8, 1, 2, 5]. The n was selected
from [4,8,12,16,20]. These values are shown in Table 4. In Garg et al. (2023), the evaluation was
based on the best score during the learning process rather than the final score, and therefore, the
XQL scores in Table 1 are cited from Sikchi et al. (2024). The experiments are conducted using 6
random seeds.

XQL MXQL
Dataset 3 Clip | 8 n
Gym 2 712 20
AntMaze || 0.6 711 8
Kitchen 5 711 4

Table 4: Hyperparameters in offline RL tasks from D4RL. The hyperparameters for XQL are the
same as those used in (Garg et al., 2023).

RLJ | RLC 2024

B Details of the Figures

In the calculation of the error distribution in the right of Figure 1, the loss function, which is the log-
likelihood, is applied with "-exp", and a coefficient for normalization is multiplied. This coefficient
is calculated to ensure that the integral of the distribution equals one, using "scipy.integrate.quad"
(Virtanen et al., 2020).

In the preliminary experiments of Gumbel Regression in Figure 2, the estimation was performed
using stochastic gradient descent with 10,000 data. The learning rate was set at 0.02, and the batch
size was 32. The mean and standard deviation were calculated across 100 experiments.

