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Abstract

Predicting human daily behavior is challenging001
due to the complexity of routine patterns and002
short-term fluctuations. While data-driven mod-003
els have improved behavior prediction by lever-004
aging empirical data from various platforms005
and devices, the reliance on sensitive, large-006
scale user data raises privacy concerns and lim-007
its data availability. Synthetic data generation008
has emerged as a promising solution, though009
existing methods are often limited to specific010
applications. In this work, we introduce Be-011
haviorGen, a framework that uses large lan-012
guage models (LLMs) to generate high-quality013
synthetic behavior data. By simulating user014
behavior based on profiles and real events, Be-015
haviorGen supports data augmentation and re-016
placement in behavior prediction models. We017
evaluate its performance in scenarios such as018
pertaining augmentation, fine-tuning replace-019
ment, and fine-tuning augmentation, achieving020
significant improvements in human mobility021
and smartphone usage predictions, with gains022
of up to 18.9%. Our results demonstrate the023
potential of BehaviorGen to enhance user be-024
havior modeling through flexible and privacy-025
preserving synthetic data generation.026

1 Introduction027

Predicting human behavior is challenging due to a028

mix of habitual patterns and context-driven fluctua-029

tions (Nadkarni, 2016). With the growing availabil-030

ity of user behavior data from web platforms and031

smart devices, data-driven models have advanced032

significantly, enabling intelligent systems to sup-033

port daily activities (Zhang and Dai, 2018; Zhang034

et al., 2019; Li et al., 2022; Chung and Lee, 2018;035

Tulshan and Dhage, 2019; Savcisens et al., 2023).036

However, privacy concerns and difficulties in col-037

lecting large-scale, high-quality data have hindered038

the development of behavior modeling applications.039

Synthetic data generation has emerged as a promis-040

ing solution, with deep generative models already041

employed in varied domains (Shi et al., 2019; Liu 042

et al., 2022; Luo et al., 2022; Feng et al., 2020; 043

Yuan et al., 2024). Despite these advancements, ex- 044

isting approaches lack generalization across diverse 045

scenarios. 046

Large language models (LLMs) (Zhao et al., 047

2023; Brown, 2020; Long et al., 2024) offer a new 048

avenue for generating synthetic behavior data, as 049

they have demonstrated capabilities in simulating 050

human behaviors (Shao et al., 2024; Wang et al., 051

2024; Li et al., 2024). These models not only cap- 052

ture population-level diversity but can also generate 053

highly personalized synthetic data. 054

Therefore, we introduce the BehaviorGen frame- 055

work, which prompts LLMs to simulate a specific 056

user’s behavior based on a provided profile and a 057

few real behavior events. This approach enables the 058

flexible generation of high-quality synthetic user 059

behavior data. 060

We evaluate BehaviorGen’s data generation ca- 061

pabilities across various usage scenarios, including: 062

(1) pretraining data augmentation, enhancing gen- 063

eralist models with diverse behavior data; (2) fine- 064

tuning data replacement, generating personalized 065

data to replace real data; (3) fine-tuning data aug- 066

mentation, supplementing limited real data with 067

synthetic personalized data. 068

Surprisingly, we find that BehaviorGen enables 069

LLMs to generate user behaviors that reflect both 070

population diversity and individual personality. Be- 071

haviorGen demonstrates strong performance met- 072

rics across all three scenarios. 073

2 Preliminary 074

2.1 Behavior Data Generation Problem 075

Now, we give a formal definition of our research 076

problem: PROBLEM (User behavior generation). 077

The user behavior can be represented as 078

xi = (di, ti, li, bi, pi) 079
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where bi denotes a specific behavior occurring at080

location li during time slot ti on day di. Here, di,081

ti, li, and bi are the weekday, time slot, location,082

and behavior IDs, respectively. We denote the sets083

of weekdays, time slots, locations, and behaviors084

as D, T , L, and B, with sizes ND, NT , NL, and085

NB .086

Furthermore, pi represents the user profile,087

which consists of five key attributes: age, education,088

gender, consumption, and occupation.089

The user behavior sequences can be represented090

as091

xi = [x1, x2, x3, ..., xI ]092

Our goal is to generate the user behavior sequence,093

which can be formulated as:094

[x̂1, x̂2, x̂3, ..., x̂O] = G([x1, x2, x3, ..., xI ]) (1)095

By incorporating user profiles P into the behav-096

ior generation process, our method ensures that the097

generated behavior sequences align with realistic098

user characteristics, leading to more accurate and099

personalized synthetic data.100

2.2 Behavior Prediction Problem101

To demonstrate the effectiveness of the generated102

sequence, we design the user behavior prediction103

experiment. User behavior prediction aims to fore-104

cast future user behavior based on its past I event105

series, which can be formed as,106

b̂t = f(xt−I , xt−I+1, ..., xt−1) (2)107

3 BehaviorGen Framework108

3.1 Data Generation Procedure109

3.1.1 Data generation Process110

Role Setting: In this stage, the Large Language111

Model (LLM) is assigned the role of "Generator."112

We choose gpt-4o-2024-0806 model as our gener-113

ator. As shown in Figure 1, by explicitly defining114

the role, the LLM is better equipped to understand115

the task structure and objectives, leading to more116

coherent and contextually appropriate output.117

Format Restrictions: In order to ensure that the118

generated data adheres to a consistent and inter-119

pretable structure, we impose strict formatting re-120

quirements, where the output is specified as [week-121

day, timestamp, location, intent]. Additionally, we122

limit the value and scope of the generated data to123

ensure the validity of generated data, reducing the124

subsequent steps in data processing.125

Segmented Generation: Given the complexity 126

of generating long sequences of behavioral data, 127

we utilize a segmented approach, where the user’s 128

behavior is divided into weekly segments. This 129

reduces the risk of context drift and helps maintain 130

consistency throughout the generation process.We 131

give detailed experiments and explanations in the 132

Appendix A.10. as to why we chose weekly seg- 133

ments. 134

3.2 Usage Scenarios 135

3.2.1 Pretraining Augmentation 136

In real-world scenarios, application service 137

providers can only collect a limited amount of 138

user data, which is insufficient to support the 139

training of a population-level behavior prediction 140

model. Therefore, it is necessary to synthesize ad- 141

ditional data to enhance population diversity. This 142

need arises from the challenges of establishing a 143

population-level model capable of capturing com- 144

mon behavioral patterns. 145

Building upon this foundational training, we in- 146

corporate behavioral data generated by the LLM as 147

a means of data augmentation. 148

3.2.2 Finetuning Replacement 149

Post pre-training, the fine-tuning phase serves as a 150

pivotal step in enhancing the personalization and 151

accuracy of recommendation systems. However, 152

leveraging real user behavioral data in this phase 153

poses significant privacy and security concerns. To 154

mitigate these risks, we propose using behavioral 155

data generated by the LLM as a replacement for 156

real user data during fine-tuning 157

This approach enables the fine-tuning of the pre- 158

trained model while preserving user privacy. 159

3.2.3 Finetuning Augmentation 160

Accurate prediction of long-tail user behavior 161

within recommendation systems poses a signifi- 162

cant challenge due to the infrequency of such data 163

and the inherent difficulties in its collection. In re- 164

sponse to this challenge, we advocate for a strategy 165

that involves the synthesis of behavioral data using 166

a limited amount of real user behavior data as a 167

base data. By combining LLM-generated user data 168

with this small set of authentic user data, we aim 169

to enrich the training dataset for fine-tuning. This 170

approach enhances the model’s capacity to predict 171

long-tail user behaviors, ensuring that even less 172

common patterns can be adequately represented. 173
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Figure 1: The Framework of BehaviorGen.
Category Tencent Dataset Smartphone Dataset

Backbone
Bert4Rec PITuning Bert4Rec PITuning

Pre Rec N@3 N@5 Pre Rec N@3 N@5 Pre Rec N@3 N@5 Pre Rec N@3 N@5
Real Data Pretrained 0.427 0.466 0.666 0.663 0.418 0.449 0.667 0.661 0.149 0.280 0.515 0.551 0.123 0.168 0.435 0.468

Real Data +
Synthetic Data

SeqGAN 0.417 0.452 0.682 0.676 0.401 0.429 0.638 0.630 0.150 0.259 0.524 0.554 0.134 0.162 0.435 0.463
DiffuSeq 0.436 0.471 0.684 0.685 0.281 0.366 0.624 0.620 0.167 0.283 0.524 0.557 0.136 0.174 0.433 0.467

UPC_SDG 0.424 0.457 0.676 0.670 0.384 0.417 0.630 0.632 0.188 0.295 0.528 0.558 0.130 0.169 0.438 0.472
Ours 0.447 0.480 0.702 0.694 0.426 0.450 0.655 0.659 0.213 0.315 0.543 0.570 0.201 0.186 0.454 0.479

Improvement 2.5% 1.9% 2.6% 1.3% 1.9% 0.2% -1.8% -0.3% 13.3% 6.8% 2.8% 2.2% 4.8% 6.9% 3.7% 1.5%

Table 1: Overall prediction performance Pretrain Augmentation compared with baselines on Tencent and Smartphone
datasets. The improvement here is calculated using the formula: (ours - the best result from pretrained and baseline)
/ the best result from pretrained and baseline.

4 Experiment174

4.1 Experiment Settings175

4.1.1 Datasets176

We evaluate the performance of our model on two177

large-scale real-world activity datasets.Details of178

the two datasets can be found in the appendix A.5.179

4.1.2 Metrics180

To assess model performance, we employ four181

widely used metrics: precision (Pre), recall (Rec),182

and NDCG(N). NDCG gauge classification accu-183

racy and ranking quality, respectively, while Pre184

and Rec evaluate the average prediction accuracy185

for each intent, indicating the model’s predictive186

quality across intents. Refer to Appendix A.6 for187

metric calculations.188

4.1.3 Baselines189

We carefully select the following three represen-190

tative methods to compare with our proposed191

algorithm, which include generative methods192

for sequence data (SeqGAN (Yu et al., 2017)),193

diffusion-based sequence generation models (Dif-194

fuSeq (Gong et al., 2022)), and a synthetic data195

generation method (UPC_SDG (Liu et al., 2022)). 196

We provide the details of baselines in Appendix 197

A.7. 198

4.1.4 Evaluation Backbones. 199

We choose PITuning (Gong et al., 2024) and 200

Bert4Rec (Sun et al., 2019) as the evaluation back- 201

bone. 202

• PITuning PITuning is a Population-Individual 203

Tuning framework that enhances common pattern 204

extraction through dynamic event-to-intent tran- 205

sition modeling and addresses long-tailed prefer- 206

ences via adaptive unlearning strategies. 207

• Bert4Rec Bert4Rec, a bidirectional encoder 208

representation from Transformers, enhances the 209

power of the historical sequence representations by 210

jointly conditioning the left and right context. 211

4.2 Overall Performance Analysis 212

We report experiments on three usage scenarios 213

for two prediction applications (Table 1-3). Across 214

all experiments, our framework demonstrates clear 215

superiority over baseline methods, both in terms 216

of performance metrics and its ability to produce 217
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Category Tencent Dataset Smartphone Dataset

Backbone
Bert4Rec PITuning Bert4Rec PITuning

Pre Rec N@3 N@5 Pre Rec N@3 N@5 Pre Rec N@3 N@5 Pre Rec N@3 N@5

Real Data
Pretrained 0.447 0.474 0.693 0.691 0.422 0.454 0.684 0.678 0.207 0.340 0.542 0.568 0.126 0.178 0.440 0.478
Finetuned 0.597 0.614 0.790 0.791 0.583 0.604 0.780 0.774 0.322 0.366 0.594 0.614 0.306 0.355 0.627 0.668

Synthetic Data

SeqGAN 0.185 0.221 0.381 0.375 0.194 0.228 0.394 0.392 0.288 0.309 0.542 0.577 0.227 0.296 0.576 0.616
DiffuSeq 0.152 0.223 0.409 0.409 0.161 0.234 0.417 0.425 0.233 0.340 0.550 0.589 0.228 0.301 0.591 0.628

UPC_SDG 0.172 0.148 0.229 0.223 0.170 0.159 0.236 0.234 0.280 0.315 0.543 0.569 0.260 0.317 0.562 0.585
Ours 0.540 0.539 0.746 0.734 0.516 0.529 0.733 0.724 0.308 0.334 0.568 0.593 0.270 0.333 0.602 0.643

Replacement 62.0% 46.4% 54.4% 43.0% 58.4% 50.0% 51.0% 47.9% 87.8% -23.1% 50.0% 54.3% 80.0% 87.6% 86.6% 86.8%

Table 2: Overall prediction performance Finetuning Replacement compared with baselines on Tencent and Smart-
phone datasets. The replacement here is calculated using the formula: (ours - pretrained) / (real data finetuned -
pretrained).

Category Tencent Dataset Smartphone Dataset

Backbone
Bert4Rec PITuning Bert4Rec PITuning

Pre Rec N@3 N@5 Pre Rec N@3 N@5 Pre Rec N@3 N@5 Pre Rec N@3 N@5
Limited Real Data Finetuned 0.495 0.528 0.709 0.715 0.455 0.493 0.697 0.695 0.322 0.366 0.594 0.614 0.306 0.355 0.627 0.668

Limited Real Data +
Synthetic Data

SeqGAN 0.261 0.297 0.494 0.496 0.251 0.287 0.488 0.493 0.331 0.377 0.600 0.621 0.315 0.343 0.624 0.675
DiffuSeq 0.219 0.298 0.494 0.501 0.207 0.282 0.504 0.503 0.333 0.376 0.596 0.621 0.316 0.356 0.628 0.674

UPC_SDG 0.309 0.277 0.407 0.419 0.277 0.278 0.435 0.439 0.339 0.378 0.600 0.621 0.308 0.354 0.635 0.672
Ours 0.545 0.547 0.708 0.709 0.541 0.541 0.728 0.722 0.345 0.398 0.612 0.635 0.328 0.364 0.643 0.682

Improvement 10.1% 3.5% -0.1% -0.8% 18.9% 9.7% 4.4% 3.9% 1.8% 5.3% 2% 2.3% 3.8% 2.2% 1.3% 1.0%

Table 3: Overall prediction performance Finetuning Augmentation compared with baselines on Tencent and
Smartphone datasets. The improvement here is calculated using the formula: (ours - the best result from pretrained
and baseline) / the best result from pretrained and baseline.

high-quality synthetic data. The fine balance be-218

tween diversity and faithfulness achieved by our219

framework not only leads to enhanced model per-220

formance but also offers a scalable solution for221

privacy-preserving data generation.222

• Our method demonstrates minimal discrep-223

ancies compared to fine-tuning with real data.224

Specifically, the proposed framework effectively225

generates personalized synthetic data, crucial for226

maintaining performance levels that closely resem-227

ble those achieved through fine-tuning on real data,228

all while ensuring user privacy. As evidenced in229

Table 2, models fine-tuned using synthetic data ex-230

hibit a performance gap of merely 5.7% and 1.4%231

in average precision, achieving scores of 0.540 on232

the Tencent dataset and 0.308 on the Smartphone233

dataset, respectively. Furthermore, the average re-234

placement rate of 57.6% highlights the equilibrium235

our framework achieves between privacy preserva-236

tion and model efficacy.237

• Population-Level Analysis In the pre-training238

phase, as shown in Figure 1, we performed data239

augmentation using population-level data com-240

bined with synthetic data. The emphasis during this241

phase was on extracting common features across242

the population. The introduction of synthetic data243

not only enriched the diversity of user behavior244

patterns but also maintained a high level of faith-245

fulness to real user data. As presented in Table246

1, models pre-trained with a mix of real and syn-247

thetic data exhibited significant improvements in248

accuracy and recall, indicating that synthetic data249

introduces sufficient variability without compro-250

mising the coherence of user trajectories. 251

• Individual-Level Analysis In the fine-tuning 252

phase, we synthesized a personalized dataset de- 253

rived from individual user data to replace real user 254

data. This approach not only ensures privacy but 255

also faithfully captures individualized behavior pat- 256

terns critical for intent prediction and behavior 257

modeling tasks. At the individual level, our syn- 258

thetic data remains faithful to real user behaviors 259

while introducing subtle variations that better cap- 260

ture users’ distinct decision-making processes. 261

As shown in Tables 2 and 3, models fine-tuned 262

with synthetic data significantly outperformed 263

those fine-tuned solely on real data, particularly 264

in metrics such as NDCG@3 and NDCG@5. The 265

higher NDCG scores highlight that synthetic data 266

more effectively mirrors individual users’ prefer- 267

ences, improving the model’s performance in rec- 268

ommendation tasks. 269

5 Conclusion 270

This preliminary study explores the potential of 271

large language models (LLMs) for generating syn- 272

thetic user behavior data. Experimental results 273

across three synthetic data usage scenarios show 274

promising performance in enhancing two down- 275

stream behavior prediction applications. These 276

findings suggest that the generated synthetic behav- 277

ior data effectively captures both population-level 278

diversity and individual-level specificity, reflecting 279

the complexity of human daily behavioral patterns. 280
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A Appendix441

A.1 Related Work442

A.1.1 Synthetic Data Generation with LLMs443

Synthetic data generation has gained significant444

momentum with the advent of large language mod-445

els (LLMs) (Guo and Chen, 2024). The data gen-446

erated by LLMs closely approximates real-world447

data, making this approach a powerful solution to448

addressing the challenges of resource scarcity.449

Designing an informative prompt is key to ef-450

fective data generation with LLMs. Yu et al.451

(2023) explore synthetic data generation using di-452

versely attributed prompts, which have the poten-453

tial to produce diverse and richly attributed syn-454

thetic data. Reynolds and McDonell (2021) pro-455

pose MetaPrompt, a method where an expanded456

prompt is first generated by ChatGPT, then used to457

further prompt LLMs for data generation. Another458

promising approach for task-specific data gener-459

ation is to aggregate a few-shot dataset and per-460

form parameter-efficient adaptation on the LLM461

(Guo et al., 2022). Chen et al. (2023) train a set of462

soft prompt embeddings on few-shot, task-specific463

training data to condition the LLM for more effec-464

tive text generation. He et al. (2023) AnnoLLM, an465

LLM-powered annotation system. It first prompts466

LLMs to explain the reasoning behind a ground467

truth label, then uses these explanations to create468

a few-shot chain-of-thought prompt for annotating469

unlabeled data.470

However, existing work has not adequately ad-471

dressed the balance between population diversity472

and individual preference, a crucial consideration473

in user behavior generation.474

A.1.2 Synthetic Data for User Behavior475

Modeling476

Due to user privacy concerns and the difficulty477

of data collection, it is difficult to collect a large478

amount of data for model training in some user be-479

havior domains. synthetic data generation provides480

a promising way.481

Park et al. (2023) instantiate generative agents482

to populate an interactive sandbox environment in-483

spired by The Sims, where end users can guide484

the generation of behaviors of agents using natural485

language. Zherdeva et al. (2021) use the generated486

synthetic data to train the Mask R-CNN frame-487

work, which is used for digital human interaction488

with the 3D environment. Liu et al. (2022) present489

UPC-SDG, a User Privacy Controllable Synthetic490

Data, which generates synthetic interaction data 491

for users based on their privacy preferences to im- 492

prove the performance of recommendations. Chen 493

et al. (2021) leverage a small set of uniform syn- 494

thetic data to optimize the debiasing parameters by 495

solving the bi-level optimization problem in rec- 496

ommendations. Provalov et al. (2021) propose a 497

novel method for evaluating and comparing rec- 498

ommender systems using synthetic user and item 499

data and parametric synthetic user-item response 500

functions. 501

However, current work focuses on a specific do- 502

main of user behavior and lacks work on generating 503

user behavior in all scenarios and around the clock. 504

A.2 Ablation Study 505

In this study, we conducted a comprehensive eval- 506

uation of our proposed method through a series 507

of ablation experiments, which were designed to 508

assess the impact of various components on the 509

quality of the generated behavioral data. The re- 510

sults of these experiments are summarized in Table 511

4 and include several key performance indicators 512

that are critical for evaluating the efficacy of our 513

approach. 514

Method KS_P↑ BLEU↑ BD↓ JSD↓ Pass@1
no_profile 0.231 0.444 0.068 0.053 100%

no_role 0.213 0.449 0.066 0.053 97%
our 0.327 0.512 0.050 0.029 100%

no_segment 0.489 0.492 0.035 0.041 22.5%
no_format nan nan nan nan 0%

Table 4: The table presents the results comparing var-
ious methods in data generation based on several eval-
uation metrics: KS_P, BLEU, BD, JSD, and Pass@1.
The highest value for KSP and BLEU and the lowest
value for BD and JSD are highlighted.

We use following metrics: KS_P measures the 515

discrepancy between the distributions of generated 516

and real data, with higher values indicating bet- 517

ter alignment. BLEU assesses the n-gram over- 518

lap between generated and reference text, where a 519

higher score signifies greater textual similarity. BD 520

quantifies the similarity between two probability 521

distributions, with lower values indicating greater 522

similarity. JSD evaluates the similarity between 523

distributions, ranging from 0 to 1, where lower 524

scores denote closer alignment. Finally, Pass@1 525

reflects the proportion of instances where the model 526

successfully predicts user behavior. 527

Profile information: As shown in Table 4, pro- 528

file information significantly improves model per- 529
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formance, with KS_P increasing from 0.231 to530

0.327 and JSD decreasing from 0.053 to 0.029, in-531

dicating better distribution alignment and enhanced532

generation quality.533

Role setting: The "no_role" method shows mod-534

erate performance in KS_P and BLEU, indicating535

that including role information positively impacts536

the diversity and coherence of the generated output.537

The relatively low BD and JSD values suggest that538

this method produces a more faithful representation539

of the target distribution. The high Pass@1 score540

indicates that users could successfully identify cor-541

rect outputs in 97% of cases, which is commend-542

able.543

Format restrictions: The "no_format" method544

shows NaN values across all metrics, indicating545

that this setting was unable to produce outputs in546

the correct format, resulting in a complete loss of547

data usability. The 0% Pass@1 further emphasizes548

that the outputs were entirely unusable, underscor-549

ing the critical role of format restrictions in generat-550

ing coherent and interpretable results. This implies551

that neglecting format considerations severely ham-552

pers the model’s ability to produce valid outputs.553

Segmented generation: The "no_segment"554

method achieves the highest KS_P score and a com-555

petitive BLEU score, suggesting that segmenting556

the data enhances diversity and textual coherence557

significantly. The low BD and JSD values indicate558

that this method produces outputs that are closely559

aligned with the intended data distribution, improv-560

ing the quality of the generated content. However,561

the low Pass@1 score (22.5%) implies that while562

the outputs are diverse and coherent, they may not563

be entirely aligned with user expectations or spe-564

cific intents, leading to a lower success rate in iden-565

tifying correct outputs. Therefore, we adopt a seg-566

mented generation approach combined with Role567

setting and Format restrictions, ensuring the gen-568

erated data maintains both diversity and fidelity569

while consistently producing effective and usable570

outputs.The prompt used in our method can be571

found in Appendix A.8.572

A.3 Case Study: Intent Distribution Analysis573

In this case study, we analyze the intent distribution574

at both the population level and individual user575

level to demonstrate the necessity and effectiveness576

of the fine-tuning phase in our model. Specifically,577

we examine how well the synthetic data captures578

individual users’ intent distributions compared to579

the population-level distribution.580

(a) User A

(b) User B

Figure 2: population and individual intent distribution.

We selected two users, User A and User B, for 581

a comparative analysis of their intent distributions. 582

Figure 2(a) and Figure 2(b) present the real intent 583

distributions of these users alongside the intent dis- 584

tributions generated from synthetic data. And the 585

population level intent distribution is shown in grey. 586

For both User A and User B, the real intent distri- 587

bution (shown in blue) demonstrates a pronounced 588

deviation from the population-level distribution. In 589

contrast, the synthetic data (shown in orange) re- 590

flects a strong alignment with the real intent distri- 591

bution, validating the hypothesis that synthetic data 592

can faithfully represent individual user behaviors. 593

The discrepancies between the population-level 594

intent distribution and the individual user intent 595

distributions emphasize the necessity of the fine- 596

tuning phase. By utilizing synthetic data tailored to 597

reflect individual users’ intents, we can enhance the 598

model’s performance in personalized recommenda- 599

tion tasks. The findings from this analysis confirm 600

that the fidelity of synthetic data is crucial, as it 601

ensures that the model not only generalizes well 602

across the population but also effectively adapts to 603

the unique preferences of individual users. 604

A.4 Limitations 605

Ethical Considerations. The ethical implications 606

of using real behavior data in this study are of 607

utmost importance. While the data we used is 608

anonymized and preprocessed by our providers us- 609

ing privacy-preserving techniques, including dif- 610

ferential privacy, to prevent any risk of personal 611

identification, it is still necessary to address poten- 612
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tial concerns around privacy. The use of differential613

privacy ensures that individual-level data cannot614

be reconstructed from aggregated information, fur-615

ther strengthening data security. We have signed616

non-disclosure agreements (NDAs) with our data617

providers and work under their supervision to en-618

sure responsible data handling and analysis.619

Bias. Since our work uses real user data to620

prompt LLMs in generating synthetic behavior621

data, there are two potential sources of bias. The622

first source is the empirical data provided, which623

may not equally represent all user groups, poten-624

tially leading to biases in how certain behaviors or625

demographics are modeled. The second source of626

bias stems from the LLMs themselves, which may627

exhibit biases based on the composition of their628

pretraining corpus, reflecting imbalances or stereo-629

types present in the data they were trained on. To630

address these concerns, we plan to implement sev-631

eral mitigation strategies. This includes applying632

fairness-aware techniques during both data prepro-633

cessing and model prompting to ensure diverse and634

equitable representation across user groups.635

Future Directions. There are several areas636

where our work can be further enhanced. First,637

developing more data-efficient generation methods638

is crucial, as behavior prediction scenarios typically639

involve large volumes of training data. Reducing640

the dependency on massive datasets without com-641

promising model performance would significantly642

improve scalability and practicality. Second, im-643

proving the underlying LLMs to better understand644

and model human daily activities will be key to645

generating higher-quality synthetic data.646

A.5 Details of Datasets.647

• Tencent Dataset. The Tencent Dataset con-648

sists of anonymous user trajectory data col-649

lected from October to the end of December.650

The dataset includes a total of 667 users and651

189,954 behavioral data entries. At the popu-652

lation level, we select 466 users for training,653

while at the individual level, we use the re-654

maining 201 users. In this dataset, we utilize655

location categories to represent user activities656

and intents.657

• Smartphone Dataset. The Smartphone658

Dataset is sampled from the usage log of the659

mobile phones. When a user uses mobile660

phones, various types of logs are generated,661

desensitized and reported (with user consent).662

We selected 114 types of events that are com-663

monly monitored in most mobile applications 664

and classified them into 18 intents, which cover 665

the aspects of news, study, work, entertainment, 666

sports, etc. We sampled two datasets between 667

June 1st and August 22nd, 2023 (the first) and 668

August 22nd and September 10th, 2023 (the 669

second) which in total contain 4,500 and 5,000 670

anonymous users. 671

A.6 Details of Metrics 672

we employ four widely used metrics:precision 673

(Pre), recall (Rec), and NDCG(N). The calcula- 674

tion of each metric is as follows. The formula for 675

Pre : 676

Pre ==
1

|C|
∑
c∈C

TPc

TPc + FPc
(3) 677

The formula for Rec : 678

Rec =
1

|C|
∑
c∈C

TPc

TPc + FNc
(4) 679

Where |C| represents the total number of classes, 680

True Positives (TP c) denotes the number of sam- 681

ples correctly classified as class c, False Positives 682

(FP c) represents the number of samples incor- 683

rectly classified as class c, and False Negatives 684

(FN c) stands for the number of samples incor- 685

rectly classified as other classes instead of class c. 686

And Precision and Recall respectively refer to the 687

precision and recall of class c. 688

The formula for N@k : 689

N@k =

∑K
i=1

2reli−1
log2(i+1)∑|RELK |

j=1
relj−1

log2(j+1)

(5) 690

where reli means the graded relevance of the re- 691

sult at position i, and |RELK | means the list of 692

predictions in the result ranking list up to position 693

K. 694

A.7 Details of Baselines 695

Here we introduce the details of each baseline. 696

• SeqGAN (Yu et al., 2017). SeqGAN is a 697

sequence generative adversarial network that 698

models sequence data generation as a reinforce- 699

ment learning task, utilizing a GAN structure 700

to capture the sequential dependencies in data 701

generation. 702

• DiffuSeq (Gong et al., 2022). DiffuSeq is 703

a diffusion-based sequence generation model 704
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that adapts the diffusion process for text and705

sequence data generation, offering state-of-the-706

art performance on various generative tasks by707

leveraging noise-perturbed transitions during708

generation.709

• UPC_SDG (Liu et al., 2022). UPC_SDG is a710

user trajectory synthetic data generation model,711

which focuses on preserving the statistical char-712

acteristics of the original data. It generates plau-713

sible user trajectories by maintaining important714

spatiotemporal relationships and is particularly715

effective for data privacy scenarios.716

A.8 Used Prompts717

The prompts we used are shown in 3718

1 messages = [
2 {
3 "role": "system",
4 "content": """
5 You are an assistant generating

behavioral data based on given
user behavior and profile data. I
will provide you with a subset of
real behavioral data in the format
[weekday , timestamp , loc , intent

].
6

7 Your task:
8 1. Generate behavioral data for one

month (minimum 90 lines) in the
exact format: "weekday ,timestamp ,
loc ,intent".

9 2. Make sure to mimic realistic
patterns of the given person , such
as daily routines , work hours ,

and leisure activities , while
ensuring diversity in location (
loc) and intent. Don't have
repetitive generation.

10 3. Ensure the weekdays values are
within the range of 0-6, and
timestamp values are within the
range of 0-95.

11 4. Ensure that generated data has
more than 100 lines and is in the
correct format.

12 },
13 {
14 "role": "user",
15 "content": f"Profile :\n{json.

dumps(user_profile)}\
nBehavior data:\n{
behavior_part.to_string(
index=False)}"

16 }
17 ]

Figure 3: Prompt for generating behavioral data.

Figure 4: segment study

A.9 Costs of synthetic data 719

We used the gpt-4o-2024-0806 model 720

to generate synthetic data using the 721

CloseAI(https://www.closeai-asia.com/) API, 722

priced at 1.5 times the official OpenAI pricing. For 723

the Tencent dataset, synthetic data of 200 users 724

were generated, totaling 61,308 data logs, and 725

80 RMB was spent. For the Smartphone dataset, 726

synthetic data of 1000 users were generated, 727

totaling 565664 data logs, and 638 RMB was 728

spent. 729

A.10 Study of segment 730

We did experiments on segments on a small scale 731

before generating synthetic data for all users of 732

the dataset. We randomly select a batch of users 733

(20), and give LLM users’ 1 piece, 1 day, 3 days, 7 734

days, 10 days......of real data and then fine-tuned on 735

the pre-trained model with the generated synthetic 736

data to see how the metrics change, as shown in Fig- 737

ure4.It can be seen that when 7 days of data are pro- 738

vided to LLM, the effect of synthetic data is close 739

to convergence.The line charts of the other metrics 740

except Rec also show this trend. Although more 741

data is provided, weekly segment is considered as 742

the best choice for cost and benefit considerations. 743

A.11 Study of privacy analysis 744

To prove that the synthetic data generated by our 745

framework does not leak individual privacy, we 746

perform experiments from three aspects. 747

• Uniqueness testing (DeMontjoye, 2013). This 748

measure evaluates whether the generated data 749

is completely identical to the original data. It 750

highlights the extent to which the model di- 751

rectly generates copies instead of brand-new 752
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data.753

To prove that the realistic generated mobility754

trajectory is not a simple copy of the real tra-755

jectory but a brand-new trajectory, we perform756

a uniqueness testing of it by comparing it with757

the real data. We randomly select generated758

trajectories and compare them with all the real759

trajectories from the training set. The two tra-760

jectories are aligned in the time dimension one761

by one and determine whether the locations at762

the corresponding time points are exactly the763

same. The overlapping ratio is defined as the764

ratio of the number of identical locations to the765

total trajectory length. Next, we choose The766

real trajectory that is most similar to the gener-767

ated one is defined as the one with the highest768

overlapping ratio. We calculate the overlapping769

ratio distribution of all the generated trajecto-770

ries with the most similar real trajectories men-771

tioned before. The results can also be extended772

by considering more similar trajectories, e.g.,773

the top-3 and top-5 most similar real trajecto-774

ries.775

As shown in Supplementary Figure5, for the776

Smartphone datasets, more than 80% of the777

generated mobility trajectories cannot find any778

real trajectories that have more than a 30%779

overlapping ratio with them. For the Tencent780

dataset, more than 80% of the generated mo-781

bility trajectories overlap with real trajectories782

with an overlapping ratio of less than 50%.783

These results demonstrate that, while capturing784

mobility patterns, our framework indeed learns785

to generate brand-new and unique trajectories786

rather than simply copying.787

• Membership inference attack (Shokri et al.,788

2017). If the generated data does not reveal789

the identities of users from the original data, it790

should not be possible to use the generated data791

to reidentify users in the training set.For this792

purpose,we use the framework of membership793

inference attack (Shokri et al., 2017). Stronger794

privacy protection leads to a lower attack suc-795

cessrate.796

Given a deep learning model and an individual797

record, the goal of the attack is to determine798

whether this record was included in the train-799

ing set or not. We follow the attack settings800

as described in (Shokri et al., 2017), where801

the attacker’s access to the deep learning model802

allows them to obtain the model’s output. To803

improve the attack performance, we estimate804

(a) Smartphone

(b) Tencent

Figure 5: Privacy evaluation in terms of uniqueness
testing.

individual information leakage using power- 805

ful machine learning models trained to predict 806

whether an individual is in the training set. To 807

control the impact of classification methods, 808

we include four commonly used classification 809

algorithms: Logistic Regression (LR), Support 810

Vector Machine (SVM), K-Nearest Neighbors 811

(KNN), and Random Forest (RF). The positive 812

samples are those individuals in the training 813

data, while the negative samples are not. The 814

input feature is the overlapping ratio of multiple 815

runs. The evaluation metric is the success rate, 816

defined as the percentage of successful trials in 817

determining whether a sample is in the train- 818

ing set. Stronger privacy protection leads to a 819

lower success rate. As shown in Supplementary 820

Figure6, on the Smartphone datasets the attack 821

success rate is less than 0.55, and the Tencent 822
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(a) Smartphone

(b) Tencent

Figure 6: Privacy evaluation in terms of Membership
inference attack.

dataset is less than 0.74. This result indicates823

that attackers can hardly infer whether individu-824

als are in the training set based solely on the in-825

formation of the generated urban mobility data.826

Thus, our framework demonstrates robustness827

against membership inference attacks.828

Differential privacy (Abadi et al., 2016). A829

model is dierentially private if for any pair of830

training datasets and that differ in the record831

of a single user, it holds that:M(z;D) ≤832

eϵM(z;D′) + δ which means one can hardly833

distinguish whether any individual is included834

in the original dataset or not by looking at the835

output. It is a rigorous mathematical definition836

of privacy837

For the output z, M(z,D) denotes the probabil-838

ity distribution of z with the data D as the input.839

Smaller values of ϵ and δ provide stronger pri-840

vacy guarantees. In our experiment, we exam-841

ine the privacy budget of our proposed model842

from the perspective of changes in the overlap-843

ping ratio. Specifically, the overlapping ratio844

of each individual, under the conditions that845

this individual is included in the training set846

or not, is modeled by two Gaussian distribu-847

tions, which are then regarded as M(z,D) and848

M(z,D′) to calculate the privacy budget ϵ. For849

each user, we compute ϵ using TensorFlow Pri-850

(a) Smartphone

(b) Tencent

Figure 7: Privacy evaluation in terms of Differential
privacy.

vacy (Abadi et al., 2016). The cumulative distri- 851

bution of ϵ is illustrated in Supplementary Fig- 852

ure7. We observe that, without any additional 853

privacy-preserving mechanism, when CDF is 854

less than 0.9, our model achieves a maximum 855

privacy budget of ϵ < 4, which is typically con- 856

sidered a reasonable operating point for gen- 857

erative models. For example, Apple adopts a 858

privacy budget of ϵ = 4.0. The privacy bud- 859

get can be further improved by incorporating 860

DP-SGD or DP-GAN. 861
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