
Can recurrent models know more than we do?
Noah Lewis
Georgia Tech

TReNDS
Atlanta, GA, USA

Robyn Miller
TReNDS

Georgia State University
Atlanta, GA, USA

Harshvardhan Gazula
Princeton Neuroscience Institute

Princeton, NJ, USA

Md Mahfuzur Rahman
TReNDS

Georgia State University
Atlanta, GA, USA

Armin Iraji
Georgia State University

TReNDS
Atlanta, GA, USA

Vince. D. Calhoun
TReNDS

Georgia State University
Atlanta, GA, USA

Sergey Plis
TReNDS

Georgia State University
Atlanta, GA, USA

Abstract—Model interpretation is an active research area,
aiming to unravel the black box of deep learning models. One
common approach, saliency, leverages the gradients of the model
to produce a per-input map highlighting the features most impor-
tant for a correct prediction. However, saliency faces challenges
in recurrent models due to the “vanishing saliency” problem:
gradients decay significantly towards earlier time steps. We
alleviate this problem and improve the quality of saliency maps
by augmenting recurrent models with an attention mechanism.
We validate our methodology on synthetic data and compare
these results to previous work. This synthetic experiment quan-
titatively validates that our methodology effectively captures the
underlying signal of the input data. To show that our work is
valid in a real-world setting, we apply it to functional magnetic
resonance imaging (fMRI) data consisting of individuals with
and without a diagnosis of schizophrenia. fMRI is notoriously
complicated and a perfect candidate to show that our method
works even for complex, high-dimensional data. Specifically, we
use our methodology to find the relevant temporal information
of the subjects and connect our findings to current and past
research.

Index Terms—Machine Learning, Deep Learning, model inter-
pretability, neuroimaging

I. INTRODUCTION

Recurrent neural networks, more specifically long short-
term memory (LSTM) models are effective for capturing
dynamic information [1], which is a key aspect of medical
imaging. However, like all deep networks, they are far too
complex and opaque to be readily understood without the
post-hoc application of additional model introspection. One
popular model introspection method is saliency analysis [2]–
[4]. Saliency analysis calculates the change in the prediction
of the correct class label with respect to each feature of the
input ∂yc

∂x using backpropagation for efficiency [5]. These
gradients, or “saliency maps” highlight the input features the
model output is most sensitive to and what changes will have
the largest effect on prediction. Although saliency is one of
the oldest methods of neural network model introspection [6],
[7], it is an effective and intuitive way to understand neural
networks and have spurred recent research, including criti-
cisms and validation studies [8], [9]. Importantly, unlike the
alternatives, gradient-based saliency passes all validity checks

required for a good model introspection technique [8]. Given
effective ways of interpreting complex over-parameterized
models, understanding the nuances of why a model makes
certain decisions about the input data may improve our un-
derstanding of these data. This perspective may illuminate
subtleties of medical imaging data that linear models miss, and
gives researchers a broader insight into complex systems such
as the human brain. However, saliency is not a practical tool
for explaining dynamic models such as LSTM networks [10]
because of a phenomenon known as “vanishing saliency” [11],
[12], expressed as a drastic reduction of gradient magnitudes
towards the earlier time steps. We propose a way to bypass
this problem and leverage the power of saliency to properly
examine LSTM’s decisions. We show that attention, a powerful
technique [13] for sequence representation, can effectively
mitigate this problem in a minimally invasive way for the
original model. To the best of our knowledge, this approach
has not been used before to enhance LSTM introspection.

Like most model introspection techniques, our approach is
sensitive to random initialization [14] and we take advantage
of that sensitivity. To create robust and effective saliency
maps, we bootstrap a distribution of trained parameters, and
then select the resulting saliency maps that are closest to
the average of this distribution. In other words, we use the
same architecture with 300 random initializations to create
a bootstrapped distribution of the model. We compare our
approach to the only other research that we know studies
the problem of “vanishing saliency”, input-cell attention [10],
and show that our approach more accurately and effectively
captures the truly relevant information within the input data.

To validate our methodology, we perform an experiment
using a synthetic dataset, uniquely designed to reveal and
quantify the class discriminatory information. We also analyze
functional magnetic resonance imaging (fMRI) data from
individuals with and without a diagnosis of schizophrenia [15].
Specifically, we use independent component analysis (ICA) to
reduce the feature size of the fMRI data (which can include
10s of thousands of features per time step), input the ICA
timecourses into our model, and then compute the saliency
maps. These saliency maps are then analyzed to uncover group



differences that might otherwise be hidden. We study the group
differences based on the most salient temporal information. In
other words, we use our maps to find the most salient time
steps, and group these into blocks or windows of salient steps.
Finally, we find the group differences based on these blocks,
and then analyze the relationship between these block patterns
and the diagnostic scoring system known as the Positive and
Negative Syndrome Scale (PANSS) for schizophrenia [16].
PANSS, a quantifying metric for the disorder that includes
many distinct symptoms, each with a severity score. We use
our salient block information to find specific symptoms more
closely related to our salient information. These experiments
show that our method can be used on complicated and nuanced
real world data with scientifically relevant or even novel
results.

II. METHODS

A. Our Approach

To compensate for vanishing saliency, we insert an additive at-
tention mechanism [13] between the outputs of a bi-directional
LSTM (bi-LSTM) [17] and the final output layer, which
creates a direct gradient flow path from the classification to
the input via the attention parameters. A bi-directional LSTM
was chosen because we do not consider streaming data, the
additional parameters aid training, and the extra directional
flow for gradients may also improve the quality of the maps.

The attention mechanism [13] is a powerful way to amal-
gamate temporal information and “attend” only to the most
important steps in the LSTM output by assigning a weight
to each step. To parameterize the attention mechanism, at
each step, we pass the LSTM output through an attention
network of two feed-forward layers to create a single, per-
step weight value. The weight values from all time steps
are jointly softmaxed and used to adjust the LSTM output
at the individual time steps. As the model is bi-directional,
we use the output from both the forward and backward
directions concatenated into a single vector as our context
for the attention mechanism. In other words, h backwardT
is concatenated with h forwardT and passed through the
attention mechanism to give us the respective attention weight
for that time step. After weighting the hidden outputs by the
attention scalar, they are summed along the time dimension
and pushed through a linear transform for classification.

The saliency maps for each sample are calculated from the
trained models, and indicate which features are most relevant
to the model’s accurate predictions. However, we observe
that the maps are rarely stable, and vary widely with the
initial randomization. To correct this, we train multiple models
(keeping the same hyperparameters) with different random
initializations and calculate saliency maps from each model
(for all experiments, we train 300 total models). For each
input sample, we select the map that is closest to the average
map over all models for that sample, using Euclidean distance.
Figure 1 is a diagram of our procedure.

B. Input-Cell Attention

Input-cell attention [10] is the only other prior work for
mitigating vanishing saliency known to us, which leverages an
attention mechanism to weight the input before it is processed
by the LSTM. Each input step into the LSTM has its own
attention parameterization mechanism (i.e. weight matrices),
in which each time step (xt) is weighted by the matrix
At, where At = softmax(W2tanh(W1X

T
t )) and W1 and

W2 are learned matrices, giving us the input to the LSTM,
Mt = AtXt for each step, t. This method uses an input matrix
Xt of size N x t, where N is the number of features per
time step, and t is the number of time steps. The first trained
weight matrix, W1 is of size N x da, where N is the number
of features per time step and da is a hyper parameter. W2 is
a r x da matrix, where r is a window of input time steps that
the model attends to, making At (r x N size) the final input
to the LSTM. There are two issues with this method. Firstly, it
requires many more parameters than an LSTM with attention
on the output, where a static number of new parameters are
required for each step within a window (r steps), making it
slower and more memory intensive. Secondly, we show that
our work is quantitatively more effective at capturing the truly
relevant features, using the same metrics as in [10].

C. Synthetic Data

The synthetic data is specifically engineered so that the
relevant information within the data is quantifiable and in-
terpretable. In this dataset of 30,000 samples, each sample
is randomly generated as Gaussian noise (µ=0, σ=1) with
a sequence length of 200 and 30 features, then randomly
assigned a class label of either 0 or 1. As we want to show
that our method can capture complex dynamics, we devise
a method to perturb the inputs with hidden class-relevant
dynamic information. Vector autoregression (VAR) is used to
control the underlying dynamics of each sample. Rank p VAR
model explains the evolution of a variable over time with the
generalized equation: xt = c + A1xt−1 + A2xt−2 + ... +
Apxy−p+et. In our experiments we set p = 1, which resulted
in a single A matrix. For all samples, the VAR is computed
using a positive semi-definite matrix, A. Then, 15 successive
steps are randomly chosen to be perturbed with new dynamic
information. Or, two more positive semi-definite matrices, B
and C, are created and VAR is again used to compute 15
new steps using Gaussian noise and either matrix B or C,
depending on the class label of the sample. These new steps,
x′t:t+15 are added to the sample at a randomly selected interval
(xt:(t+15)), with an interpolation variable, α resulting in the
equation: αx′t:(t+15) + (1− α)xt:(t+15).

D. Saliency Accuracy Measures

Since the relevant information of the synthetic datasets is
easily quantifiable, we can use basic similarity scores between
the saliency maps and proper representations of the input to
understand the quality of the maps. To be fair to both our
method and input-cell attention, we only compare the samples
that were held out during model training. Firstly, as the input



Fig. 1. Flowchart describing our pipeline for analyzing the ICA timecourses. For all other datasets, we use only the first 4 steps to calculate the finalized
maps. Step 1: we train 300 separate models (each with the same architecture) using different random initializations for each model on the same set of ICA
timecourses. Step 2: we calculate the saliency maps for each sample from all 300 models. Step 3: We calculate the average saliency map for each sample
over all 300 models. Step 4: We select the per-model set of maps with the lowest Euclidean distance to the average over all models. Finally resulting in a
stable saliency map for each input sample.

data is noisy, we need a reasonable representation of each
sample. For the VAR experiment, we represent each sample
as a binary matrix in which only the elements within the
perturbed regions are ones, and all other elements are zero.
The 15x30 window perturbed with added dynamics is set
to all ones, leaving all other features as zero. Additionally,
for the saliency maps from both our method and input-cell
attention, we pass each sample through an absolute function
[18]. To conduct a fair comparison with [10], we use both of
the similarity metrics therein: Euclidean distance and weighted
Jaccard. We also evaluate the sum of all salient values within
the window over the sum of the entire map.

To ensure an unbiased sampling of the timecourses with
our model, we separate the data into 27000 training samples
and 3000 test samples. We train 300 models on the non-
holdout set and generate the maps for every sample, then
select the saliency maps using the selection criteria described
in our approach section and generate the saliency maps for
the holdout set as well. We chose 300 due to computational
restrictions, as each model can take some time to train. These
maps are then fed through either a rectified linear unit (ReLU)
function or absolute function (depending on the experiment) to
avoid relying on both positive and negative derivatives for the
relevant information. Recent research has shown that removing
negatives entirely from saliency can be beneficial [19].

E. Salient fMRI Time Courses

The fMRI data consists of 313 subjects, those with and without
a diagnosis of schizophrenia from The Function Biomedical
Informatics Research Network (FBIRN) data repository [20],
[21]. The data is encoded using ICA to create 47 timecourses
for each subject [22], [23]. Our goal is to find patterns within
these timecourses as identified by the saliency maps. For this
experiment, our architecture is a bi-LSTM with 50 hidden
units in each direction (100 total), and two linear layers to
parameterize the attention weights (the first linear weight has
50 hidden units, the second weight has 1 output node), and a
learning rate of .001. As this dataset is much smaller than
our synthetic data, we use 10-fold cross validation. Given
our methodology, we randomly generate 300 models for each
fold. Then, we select the models from the fold which have
the highest average holdout accuracy. Finally, we use our
methodology on the saliency maps from these 300 randomly
generated models to select the best per-subject map.

F. Finding Group Differences Between Patients and Controls

As an initial investigation of the saliency maps from ICA
timecourses, we evaluate the temporal aspects of the maps.
Because the maps have visually apparent blocks of salient
steps, we convert the maps into 1-dimensional vectors by
summing along the component axis, defining each time step
as either salient or non-salient. For each subject’s map, we
absolute the maps and sum them along the component axis.
We binarize each step as salient if it is above the subject-
wise mean and non-salient otherwise. Following this, we group
the time steps into blocks of either salient or non-salient.
We consider a block to be any number of sequential steps.
Since our goal is to better understand the differences between
patients and controls, we analyze the lengths of these blocks.
We suggest that each block has some pattern that is learned
by the model, and that the block length is the temporal aspect
of this pattern. In order to quantify these block lengths, we
find the median block length per subject, and then statistically
compare these median block sizes between the two groups.

G. PANSS Scores and Symptom Analysis

PANSS is a widely-used scale for measuring the symptom
intensity of patients with schizophrenia. As the name, Positive
and Negative Syndrome Scale suggests, it covers both positive
and negative syndromes of the disorder. Positive symptoms
are those symptoms that increase the severity or warp typical
functioning, such as hallucinations, grandiose thinking, and
hostility. Negative symptoms are those in which the typical
functioning is diminished, such as a reduction in abstract
thinking, poor rapport with others, and blunted affect. Along
with the schizophrenia specific symptoms, there are also
16 general psychological symptom scores, include anxiety,
depression, and motor retardation.

Our goal is to find the relationships between the salient
block sizes and both the positive and negative scores, exclud-
ing the general psychological scale. These positive symptoms
are: conceptual disorganization, delusions, manic-like excite-
ment, grandiose thinking, hallucinatory behavior, hostility, and
suspiciousness. In order to analyze these relationships, we
consider the median block size of each subject and compare
to all available scores. This entails using multiple regression
for all 7 positive scores and all 7 negative scores as our
independent variables, and the median block size as our depen-
dent variable. Along with these 14 symptom scores, we also



regress out four confounding variables: the average general
psychological symptom scores, age, gender, and head motion.
Head motion is a particularly important confounding variable
as it contributes noise to the MRI scan, and can, according to
previous research, correlate with a diagnosis of schizophrenia
[24]. After calculating the regression coefficients, we analyze
the statistical significance of the effect from each variable to
pinpoint and examine symptoms related to the block sizes. In
our case, 148 patients with schizophrenia had PANSS scores,
and there were no scores for typical controls. After computing
the multiple linear regression, we found the positive scores that
were most significantly effected by the median block size.

After finding any scores with a significant relationship to the
median block size, we fit our findings into current research and
evaluate the novelty of our findings.

TABLE I
Comparing the LSTM+attention with input-cell attention on the VAR

dataset. WITHIN EACH CELL IS THE AVERAGE AND STANDARD DEVIATION
OF THE METRIC OVER 3,000 TEST SAMPLES, AND THE p-VALUE

COMPARING THE TWO MODELS USING A 2-SAMPLE t-TEST.

VAR Dataset
Euclidean Overlapping Weighted
Distance Values Jaccard

LSTM + µ=4.57, µ=.56, µ=.10,
Attention σ=1.16, σ=.31, σ=.05,

p< .0001 p< .0001 p< .0001
Input-Cell µ=2.35, µ=.15, µ=.07,
Attention σ=.45, σ=.05, σ=.02,

p< .0001 p< .0001 p< .0001

Fig. 2. The results from the analysis of the VAR dataset. Several examples
of input samples matched with the saliency maps from the LSTM+attention
(a) and input-cell attention (b). c: The boxplots of the overlapping values
over all 3,000 holdout samples for both models. The overlap is defined as the
percentage of the total sum of the maps that is within the relevant area over
the total sum of the map. The green blocks in a and b highlight these relevant
regions. Each baseline image has a certain underlying transition matrix, as
computed by VAR, and each sample is interpolated with one of two different
transition matrices, depending on the class label (the label along the y axis)
within the highlighted relevant area. Notice the difficulty in which it can be
to visually determine where the relevant information occurs.

III. RESULTS

A. Synthetic Data

To ensure stability of the maps, we chose neural network
hyperparameters that lead to the highest accuracy for both the
LSTM+attention and cell-attention models. We found, after a
non-exhaustive search, that for both models, 50 hidden units
for the LSTM was the most appropriate number of hidden
units. We also found that the attention mechanism in the
LSTM+attention did well with two layers, with 50 hidden
units and 1 output unit, respectively. The input-cell attention
achieved a test accuracy of 0.90 on the VAR dataset. Over all
initializations of the LSTM+attention, the average accuracy
on the VAR test data was 96%. The statistical comparison
measurements of both our method and input-cell attention can
be found in table I. Several randomly selected examples of
the maps for both methods as well as a break down of the
saliency accuracy are in figure 2.

B. Group Difference Results

Visual inspection of the saliency maps show some temporal
“spotlights”, or temporal blocks of highly salient information
followed by blocks with little or no relevant information.
We then threshold each subject’s map, with the subject-wise
mean, to give a series of salient and non-salient temporal
blocks, identified as a binary vector (following a component-
wise absolute summation as described earlier). Each block of
continually salient steps (in the binary vector) is considered
to be one “block”. We find that contiguous temporal blocks
of median saliency levels are significantly shorter in patients:
patient average block length = 14.9 timepoints, while in
controls the average block length was 19.5 steps long. A two-
sample t-test showed that this difference is highly significant
(p<0.0004). We could speculate that this may relate to previ-
ous findings that patients exhibit shorter transient periods of
disrupted activity [25]–[27].

C. PANSS Analysis Results

Comparing the average block size of the 148 subjects with
available PANSS scores, we found a statistically significant
relationship between block size and one symptom, excitement.
Excitement is a positive symptom, and characterizes poor im-
pulse control, hyperactivity, hostility, and uncooperativeness.
With a p-value of .0297, our regression coefficient is -3.15.
The negative coefficient shows that smaller blocks are more
related to high excitement scores, indicating that the role of
shorter-duration sequential patterns in correctly classifying the
disorder is amplified in patients with high ”excitement” scores.

IV. DISCUSSION

Saliency can be noisy and sometimes unstable. We show
empirically that by building a distribution of possible initial-
izations, training each randomly initialized model, and then
selecting the saliency map (for each sample) from a given
model that is closest to the average maps, this issue can be
rectified. Our VAR dataset shows that, even with complex
and dynamic data, our method produces saliency maps that



quantifiably find the truly relevant information within the
dataset. Thorough analysis of the ICA saliency maps reveal
several interesting insights. When grouping the maps into
blocks of salient and non-salient information, we find that the
control group had significantly fewer blocks. This corresponds
to our finding that the controls also had significantly longer
blocks of salient information. This may have a wide array
of implications, however, we will point the reader towards
research on reduced connectivity in the brain of patients with
schizophrenia [28]–[30]. Essentially, it is possible that our
results relate to current research showing that fMRI data of
patients with schizophrenia is less cogent and stable.

Finally, we hypothesized that these blocks are somehow
related to specific symptoms of the disorder, and not just
the disorder itself. We found a clear relationship between the
median per-subject block sizes and the excitement symptom.
Research shows that excitement can be observed in fMRI
scans in both task-based experiments [31] and resting-state
experiments [32]. One important caveat is that as we do
not have an associated sub-scoring system, our results may
be associated with more specific aspects of excitement. In
summary, we highlight the significant challenges posed by
saliency maps owing to the vanishing saliency phenomenon
and propose the addition of attention mechanisms to mitigate
this drawback. Satisfactory results on both synthetic and real
data highlight the utility of this work in better understanding
the temporal patterns of fMRI. This work could easily be
expanded to different disorders and could have significant
implications in a clinical setting for diagnostic purposes.
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