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ABSTRACT

Recent advances in generative models like Stable Diffusion (Rombach et al., 2022)
enable the generation of highly photo-realistic images. Our objective in this paper
is to probe the diffusion network to determine to what extent it ‘understands’ dif-
ferent properties of the 3D scene depicted in an image. To this end, we make the
following contributions: (i) We introduce a protocol to evaluate whether a network
models a number of physical ‘properties’ of the 3D scene by probing for explicit
features that represent these properties. The probes are applied on datasets of real
images with annotations for the property. (ii) We apply this protocol to properties
covering scene geometry, scene material, support relations, lighting, and view de-
pendent measures. (iii) We find that Stable Diffusion is good at a number of prop-
erties including scene geometry, support relations, shadows and depth, but less
performant for occlusion. (iv) We also apply the probes to other models trained
at large-scale, including DINO, CLIP and VQGAN, and find their performance
inferior to that of Stable Diffusion.

1 INTRODUCTION

Image generation with diffusion models (Sohl-Dickstein et al., 2015), following on from earlier gen-
eration using GANs (Goodfellow et al., 2014), has achieved amazing results in terms of verisimil-
itude (Rombach et al., 2022). This naturally raises the question: to what extent does the diffusion
network ‘understand’ (or model) the 3D scene depicted in the image? For example, does the net-
work implicitly have an image rendering pathway that models 3D geometry and surfaces, and then
projects to generate an image taking account of occlusion and perspective? As an indication that the
diffusion network is 3D and physics aware, Figure 1 shows the result of the off-the-shelf Stable Dif-
fusion model (Rombach et al., 2022) inpainting masked regions in real images – it correctly predicts
shadows and supporting structures.

To answer this question, we propose an evaluation protocol to systematically ‘probe’ a diffusion
network on its ability to represent a number of ‘properties’ of the 3D scene and viewpoint. These
properties include: 3D structure and material of the scene, such as surface layout; lighting, such as
object-shadow relationships; and viewpoint dependent relations such as occlusion and depth.

The protocol involves three steps: First, a suitable image evaluation dataset is selected that contains
ground truth annotations for the property of interest, for example the SOBA dataset (Wang et al.,
2020) is used to probe the understanding of lighting, as it has annotations for object-shadow associ-
ations. This provides a train/val/test set for that property; Second, a grid search is carried out over
the layers and time steps of the diffusion model to select the optimal feature for determining that
property. The selection involves learning the weights of a simple linear classifier for that property
(e.g. ‘are these two regions in an object-shadow relationship or not’); Third, the selected feature
(layer, time step) and trained classifier are evaluated on a test set, and its performance answers the
question of how well the diffusion model ‘understands’ that property. This protocol could also be
equally applied to other pre-trained models.

Specifically, we train and evaluate on real images, inspired by (Tang et al., 2023), we add noise to
the input image in the latent space, and compute features from different layers and time steps with
an off-the-shelf Stable Diffusion model. While probing the properties, linear classifiers are used to
infer the relationships between regions, rather than points. The region representation is obtained by
a simple average pooling of the diffusion features over the annotated region or object.
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Figure 1: Motivation: What does Stable Diffusion know about the 3D scene? The Stable Diffu-
sion inpainting model is here tasked with inpainting the masked region of the real images. It correctly
predicts a shadow consistent with the lighting direction (top), and a supporting structure consistent
with the scene geometry (bottom). This indicates that the Stable Diffusion model generation is con-
sistent with the geometry (of the light source direction) and physical (support) properties. Note:
these examples are only for illustration and inpainting is not the objective of this paper. Rather, we
probe a general Stable Diffusion model to determine whether there are explicit features for such 3D
scene properties. The supplementary provides more examples of Stable Diffusion’s capability to
predict different physical properties of the scene.

From our investigation, we make two observations: First, the Stable Diffusion model has a good
understanding of the scene geometry, support relations, the lighting, and the depth of a scene. How-
ever, material and occlusion understanding is challenging for it; Second, Stable Diffusion generally
demonstrates better performance for 3D properties, than other strong self-supervised features, such
as OpenCLIP, DINOv1 and DINOv2, and other strong generative models, such as VQGAN. The
DINO model has been well known for being good at semantic image segmentation (Melas-Kyriazi
et al., 2022; Shin et al., 2022; Siméoni et al., 2021). Our findings open up the possibility of using
features from Stable Diffusion in downstream tasks where they are stronger than those of DINO.

We describe the properties explored, the protocol, datasets and classifiers in Section 3. Experimental
results of both Stable Diffusion and other pre-trained discriminative and generative models are given
in Section 4, and finally future work is discussed in Section 5.

2 RELATED WORK

2.1 GENERATIVE MODELS

Generative models have made significant achievements in advancing image quality and di-
versity in the recent literature. A series of generative models, such as Variational Autoen-
coders (VAEs) (Kingma & Welling, 2014), Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014), Flow-based Generators (Dinh et al., 2014), and Diffusion Probabilistic Mod-
els (DPMs) (Sohl-Dickstein et al., 2015), have been proposed. These models have contributed to
widespread tasks, including image completion (Pathak et al., 2016), composition (Lin et al., 2018),
interpolation (Karras et al., 2019) and editing (Chai et al., 2021), image-to-image translation (Isola
et al., 2017), multi-modalities translation (Hu et al., 2023), and numerous others. We build upon the
diffusion models (Rombach et al., 2022), which have shown state-of-the-art generation quality.
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2.2 EXPLORATION OF PRE-TRAINED MODELS

Building on the success of deep networks, there has been significant interest from the community
to understand what has been learnt by these complex models. On discriminative models, for exam-
ple, (Zeiler & Fergus, 2014; Mahendran & Vedaldi, 2015) propose inverse reconstruction to directly
visualize the acquired semantic information in various layers of a trained classification network;
(Zhou et al., 2016; Fong & Vedaldi, 2017; Fong et al., 2019) demonstrate that scene classification
networks have remarkable localization ability despite being trained on only image-level labels; and
(Erhan et al., 2009; Simonyan et al., 2014; Selvaraju et al., 2017) use the gradients of any target
concept, flowing into the final convolutional layer to produce a saliency map highlighting important
regions in the image for predicting the concept. In the more recent literature, (Chefer et al., 2021)
explores what has been learned in the powerful transformer model by visualizing the attention map.
On generative models, researchers have mainly investigated what has been learned in GANs, for
example, GAN dissection (Bau et al., 2019) presents an analytic framework to visualize and under-
stand GANs at the unit-, object-, and scene-level; (Wu et al., 2021) analyses the latent style space of
StyleGANs (Karras et al., 2019).

2.3 EXPLOITATION OF GENERATIVE MODELS

Apart from understanding the representation in pre-trained models, there has been a recent trend for
exploiting the learnt feature from generative models, to tackle a series of downstream discriminative
tasks. For example, leveraging generative models for data augmentation in recognition tasks (Jaha-
nian et al., 2022; He et al., 2023), semantic segmentation via generative models (Baranchuk et al.,
2022; Li et al., 2021; Xu et al., 2023), open-vocabulary segmentation with diffusion models (Li
et al., 2023), depth maps estimation based on RGB images (Shi et al., 2022; Noguchi & Harada,
2020). More recently, (Bhattad et al., 2023) search for intrinsic offsets in a pre-trained StyleGAN
for a range of downstream tasks, predicting normal maps, depth maps, segmentations, albedo maps,
and shading. In contrast to this work, we adopt annotations from different datasets for supervision,
rather than employing pre-trained prediction models for supervision. A closely related effort to ours
is DIffusion FeaTures (DIFT) (Tang et al., 2023), but it only focuses on computing correspondences
at the geometric or semantic level between images.

2.4 PHYSICAL SCENE UNDERSTANDING

There have been works studying different physical properties for scene understanding, including
shadows (Wang et al., 2020; 2021), material (Upchurch & Niu, 2022; Sharma et al., 2023), occlu-
sion (Zhan et al., 2022), scene geometry (Liu et al., 2019), support relations (Silberman et al., 2012)
and depth (Silberman et al., 2012). However, these works focus on one or two physical properties,
and most of them require training a model for the property in a supervised manner. In contrast, we
use a single model to predict multiple properties, and do not train the features.

3 METHOD – PROPERTIES, DATASETS, AND CLASSIFIERS

Our goal is to examine the ability of a diffusion model to understand different physical properties
of the 3D scene, including: scene geometry, material, support relations, shadows, occlusion and
depth. Specifically, we conduct linear probing of the features from different layers and time steps
of the Stable Diffusion model. First, we set up the questions for each property (Section 3.1); and
then select real image datasets with ground truth annotations for each property (Section 3.2). We
describe how a classifier is trained to answer the questions, and the grid search for the optimal time
step and layer to extract a feature for predicting the property in Section 3.3.

3.1 PROPERTIES AND QUESTIONS

Here, we study the diffusion model’s ability to predict different properties of the 3D scene; the
properties cover the 3D structure and material, the lighting, and the viewpoint. For each property,
we propose questions that classify the relationship between a pair of Regions, A and B, in the same
image, based on the features extracted from the diffusion model. The properties and questions are:
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Table 1: Overview of the datasets and training/evaluation statistics for the properties inves-
tigated. For each property, we list the image dataset used, and the number of images for the train,
val, and test set. 1000 images are used for testing if the original test set is larger than 1000 images.
Regions are selected in each image, and pairs of regions are used for all the probe questions.

Property: Same
Plane

Perpendicular
Plane Material Support

Relation Shadow Occlusion Depth

Dataset: ScanNetv2 ScanNetv2 DMS NYUv2 SOBA Sep. COCO NYUv2

Images
# Train 50 50 50 50 50 50 50

# Val 20 20 20 20 20 20 20
# Test 1000 1000 1000 654 160 820 654

Regions
# Train 855 489 641 1040 634 641 1074

# Val 390 223 238 440 180 247 457
# Test 14913 8310 11364 14008 1176 4011 14707

Pairs
# Train 2516 3104 2268 1616 1268 2220 3060

# Val 1172 1396 920 688 360 636 1282
# Test 45076 50216 41824 21768 2352 6292 42026

1. Same Plane: ‘Are Region A and Region B on the same plane?’

2. Perpendicular Plane: ‘Are Region A and Region B on perpendicular planes?’

3. Material: ‘Are Region A and Region B made of the same material?’

4. Support Relation: ‘Is Region A (object A) supported by Region B (object B)?’

5. Shadow: ‘Are Region A and Region B in an object-shadow relationship?’

6. Occlusion: ‘Are Region A and Region B part of the same object but, separated by occlusion?’

7. Depth: ‘Does Region A have a greater average depth than Region B?’

We choose these properties as they exemplify important aspects of the 3D physical scene: the Same
Plane and Perpendicular Plane questions probe the 3D scene geometry; the Material question
probes what the surface is made of, e.g., metal, wood, glass, or fabric, rather than its shape; the
Support Relation probes the physics of the forces in the 3D scene; the Shadow question probes the
lighting of the scene; the Occlusion and Depth questions depend on the viewpoint, and probe the
disentanglement of the 3D scene from its viewpoint.

3.2 DATASETS

To study the different properties, we adopt various off-the-shelf real image datasets with annotations
for the different properties, where the dataset used depends on the property. We repurpose each
dataset to support probe questions of the form: D = {(RA, RB , y)1, . . . , (RA, RB , y)n}, where
RA, RB denote a pair of regions, and y is the binary label indicating the answer to the considered
question of the probed property. For each property, we create a train/val/test split from those of
the original datasets, if all three splits are available. While for dataset with only train/test splits
available, we divide the original train split into our train/val splits. Table 1 summarises the datasets
used and the statistics of the splits used. We discuss each property and dataset in more detail next.

Same Plane. We use the ScanNetv2 dataset (Dai et al., 2017) with annotations for planes from (Liu
et al., 2019). Regions are obtained via splitting plane masks into several regions. A pair of regions
are positive if they are on the same plane, and negative if they are on different planes. First row of
Figure 2 is an example.

Perpendicular Plane. We use the ScanNetv2 dataset (Dai et al., 2017). We use the annotations
from (Liu et al., 2019) which provide segmentation masks as well as plane parameters for planes in
the image, so that we can obtain the normal of planes to judge whether they are perpendicular or
not. A pair of regions are positive if they are on perpendicular planes, and negative if they are not
on perpendicular planes. Second row of Figure 2 is an example.
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Original Image Region A Region CRegion B

negative pair

positive pair

Figure 2: Example images for probing scene geometry. The first row shows a sample annotation
for the same plane, and the second row is a sample annotation for perpendicular plane. Here, and in
the following figures, (A, B) are a positive pair, while (A, C) are negative. The images are from the
ScanNetv2 dataset (Dai et al., 2017) with annotations for planes from (Liu et al., 2019). In the first
row, the first piece of floor (A) is on the same plane as the second piece of floor (B), but is not on the
same plane as the surface of the drawers (C). In the second row, the table top (A) is perpendicular to
the wall (B), but is not perpendicular to the stool top (C).

Original Image Region A Region CRegion B

negative pair

positive pair

Figure 3: Example images for probing material, support relation and shadow. The first row is for
material, the second row for support relation, and the third row for shadow. First row: the material
images are from the DMS dataset (Upchurch & Niu, 2022). The paintings are both covered with
glass (A and B) whereas the curtain (C) is made of fabric. Second row: the support relation images
are from the NYUv2 dataset (Silberman et al., 2012). The paper (A) is supported by the table (B), but
it is not supported by the chair (C). Third row: the shadow images are from the SOBA dataset (Wang
et al., 2020). The person (A) has the shadow (B), not the shadow (C).

Material. We adopt the recent DMS dataset (Upchurch & Niu, 2022) to study the material prop-
erty, which provides dense annotations of material category for each pixel in the images. Therefore,
we can get the mask of each material via grouping pixels with the same material label together. In
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total, there are 46 pre-defined material categories. Regions are obtained by splitting the mask of
each material into different connected components, i.e., they are simply groups with same material
labels, yet not connected. A pair of regions are positive if they are of the same material category,
and negative if they are of different material categories. First row of Figure 3 is an example.

Support Relation. We use the NYUv2 dataset (Silberman et al., 2012) to probe the support rela-
tion. Segmentation annotations for different regions (objects or surfaces) are provided, as well as
their support relations. Support relation here means an object is physically supported by another
object, i.e., the second object will undertake the force to enable the first object to stay at its position.
Regions are directly obtained via the segmentation annotations. A pair of regions are positive if the
first region is supported by the second region, and negative if the first region is not supported by the
second region. Second row of Figure 3 is an example.

Shadow. We use the SOBA dataset (Wang et al., 2020; 2021) to study the shadows which depend
on the lighting of the scene. Segmentation masks for each object and shadow, as well as their asso-
ciations are provided in the dataset annotations. Regions are directly obtained from the annotated
object and shadow masks. In a region pair, there is one object mask and one shadow mask. A pair
of regions are positive if the shadow mask is the shadow of the object, and negative if the shadow
mask is the shadow of another object. Third row of Figure 3 is an example.

Original Image Region A Region CRegion B

negative pair

positive pair

Figure 4: Example images for probing viewpoint-dependent properties (occlusion & depth). The
first row is for occlusion and the second row is for depth. First row: the occlusion images are from
the Separated COCO dataset (Zhan et al., 2022). The sofa (A) and the sofa (B) are part of the same
object, whilst the monitor (C) is not part of the sofa. Second row: the depth images are from the
NYUv2 dataset (Silberman et al., 2012). The chair (A) is farther away than the object on the floor
(B), but it is closer than the cupboard (C).

Occlusion. We use the Seperated COCO dataset (Zhan et al., 2022) to study the occlusion (object
seperation) problem. Regions are different connected components of objects (and the object mask if
it is not separated), i.e., groups of connected pixels belonging to the same object. A pair of regions
are positive if they are different components of the same object separated due to occlusion, and
negative if they are not from the same object. First row of Figure 4 is an example.

Depth. We use the NYUv2 dataset (Silberman et al., 2012), that provides mask annotations for
different objects and regions, together with depth for each pixel. A pair of regions are positive if
the first region has a greater average depth than the second region, and negative if the first region
has a less average depth than the second region. The average depth of a region is calculated via the
average of depth value of each pixel the region contains. Second row of Figure 4 is an example.

3.3 PROPERTY PROBING

We aim to determine which Stable Diffusion features best represent different properties.

Extracting Stable Diffusion Features. Following DIFT (Tang et al., 2023), we add noise ϵ ∼
N (0, I) of time step t ∈ [0, T ] to the input image x0’s latent representation z0 encoded by the VAE

6



Under review as a conference paper at ICLR 2024

encoder:

zt =
√
αtz0 + (

√
1− αt)ϵ (1)

and then extract features from the immediate layers of a pre-trained diffusion model, fθ(·) after
feeding zt and t in fθ (fθ is a U-Net consisting of 4 downsampling layers and 4 upsampling layers):

Ft,l = fθl(zt, t) (2)

where fθl is the l-th U-Net layer. In this way, we can get the representation of an image Ft,l at
time step t and l-th U-Net layer for the probe. We upsample the obtained representation to the size
of original image with bi-linear, then use the region mask to get a region-wise feature vector, by
averaging the feature vectors of each pixel it contains, i.e., average pooling.

vk,t,l = avgpool(Rk ⊙ upsample(Ft,l)) (3)

where vk,t,l is the feature vector of the k-th region Rk. ⊙ here is a per-pixel product of the region
mask and the feature.

Linear Probing. After computing features from a diffusion model, we use a linear classifier (a
linear SVM) to examine how well these features can be used to answer questions to each of the
properties. Specifically, the input of the classifier is the difference or absolute difference between
the feature vectors of Region A and Region B, i.e., vA − vB or |vA − vB |, and the output is a
Yes/No answer to the question. Denoting the answer to the question as Q, then since the questions
about Same Plane, Perpendicular Plane, Material, Shadow and Occlusion are symmetric relations,
Q(vA, vB) = Q(vB , vA). However, the questions about Support Relation and Depth are not sym-
metric. Thus, we use |vA − vB | (a symmetric function) as input for the first group of questions, and
vA − vB (non-symmetric) for the rest of questions. We train the linear classifier on the train set via
the positive/negative samples of region pairs for each property; do a grid search on the validation set
to find (i) the optimal time step t, (ii) the U-Net layer l, and (iii) the SVM regularization parameter
C; and evaluate the performance on the test set.

Discussion. Some of the current symmetric questions can be reformulated in a non-symmetric
manner in order to obtain more information about the property. For example, the shadow question
could be formulated as ‘is region A the shadow of object B’ rather than the (symmetric) ‘are region
A and region B in an object-shadow relationship’. The non-symmetric version requires the classi-
fier to explicitly identify which region is the object, and which the shadow. Note, the protocol has
been explained for diffusion models, but can equally be applied to other pre-trained models. In
Section 4.3 and Section 4.4 we give results for its application to OpenCLIP (Radford et al., 2021; Il-
harco et al., 2021), DINOv1 (Caron et al., 2021), DINOv2 (Oquab et al., 2023), and VQGAN (Esser
et al., 2021).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAIL AND EVALUATION METRIC

Implementation Details. For each property, we sample the same number of positive / negative
pairs, to maintain a balanced evaluation set. In terms of the linear SVM, we tune the penalty pa-
rameter C on the val split to find the best C for each property. Therefore, we are grid searching 3
parameters on the val set, namely, Stable Diffusion Timestep t ranging from 0 to 1000, U-Net Layer
l covering the 4 downsampling and 4 upsampling layers, and the SVM penalty parameter C ranging
among 0.001, 0.01, 0.1, 1, 10, 100, 1000. The linear SVM is solved using the libsvm library (Chang
& Lin, 2011) with the SMO algorithm, to get the unique global optimal solution. Please refer to the
supplementary for more implementation details.

Evaluation Metric. All protocols are binary classification, therefore, we use ROC Area Under
the Curve (AUC Score) to evaluate the performance of the linear classifier, as it is not sensitive to
different decision thresholds.

4.2 RESULTS FOR STABLE DIFFUSION

The results for grid search are shown in Table 2. For Stable Diffusion U-Net Layer, Dl means
the l-th layer of the U-Net decoder, i.e., upsampling layer, from outside to inside, and we provide
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Figure 5: (a) Nomenclature for the U-Net Layers. We probe 4 downsampling encoder layers
E1-E4 and 4 upsampling decoder layers D1-D4 of the Stable Diffusion U-Net. (b) A prediction
failure for Material. In this example the model does not predict that the two regions are made of
the same material (fabric). (c) A prediction failure for Occlusion. In this example the model does
not predict that the two regions belong to the same object (the sofa).

an illustration of the layers in Figure 5(a). We can draw 3 observations: First, it can be observed
that the best time step for different properties are different, while the best U-Net layer is always
in the decoder rather than the encoder. Further explorations using Stable Diffusion features for
downstream tasks could thus start from the U-Net decoder layers, especially D3 and D2. Second,
for Material, it is more about low-level features so we can observe that the best layer (D2) is closer
to the output side, while for the rest of the properties that require reasoning about the whole image,
a more global feature is needed (D3). Third, in terms of the performance on the test set, we find
that Stable Diffusion can understand very well about scene geometry, support relations, shadows,
and depth, but it is less performant at predicting material and occlusion. Examples of its failure are
shown in Figure 5(b)(c). As noted in (Zhan et al., 2022) and (Kirillov et al., 2023), grouping all
separated parts of an object due to occlusion remains challenging even for state-of-the-art detection
and segmentation models.

Table 2: SVM grid search results. For each property, we train the linear SVM on the training set
and grid search the best combination of time step, layer, and C on the validation set. The ROC AUC
score is reported on the test set using the selected combination.

Property Time Step Layer C Val AUC

Same Plane 334 D3 1 97.2
Perpendicular Plane 126 D3 1 85.4
Material 339 D2 1 81.2
Support Relation 64 D3 1 95.2
Shadow 303 D3 1 96.1
Occlusion 181 D3 0.1 83.2
Depth 157 D3 1 99.5

4.3 RESULTS FOR OTHER FEATURES TRAINED AT LARGE SCALE

We have also applied our protocol to other models pre-trained on large scale image datasets, includ-
ing OpenCLIP (Radford et al., 2021; Ilharco et al., 2021) pre-trained on LAION dataset (Schuh-
mann et al., 2022), DINOv1 (Caron et al., 2021) pre-trained on ImageNet dataset (Deng et al.,
2009), DINOv2 (Oquab et al., 2023) pre-trained on LVD-142M dataset (Oquab et al., 2023), and
VQGAN Esser et al. (2021) pre-trained on ImageNet dataset (Deng et al., 2009). We use the best pre-
trained checkpoints available on their official GitHub – ViT-B for DINOv1, ViT-G for OpenCLIP
and DINOv2, and the 48-layer transformer checkpoint for VQGAN. Similar to Stable Diffusion, for
each of these models, we conduct a grid search on the validation set in terms of the ViT/Transformer
layer and C for SVM, and use the best combination of parameters for evaluation on the test set.

Performance on both val and test set in AUC score is reported in Table 3 for the task of material
and support. We also compare the performance of the best layer to that of the final layer. We can
observe that for both properties and for all four models, the test performance is lower than that of
Stable Diffusion by a margin. Results of other tasks are in the supplementary (again Stable Diffusion
is superior).
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Table 3: Performance of different layers for state-of-the-art pre-trained models. We train the
linear SVM on the training set, and grid search the best combination of ViT layer and C on the
validation set for the material and support relation properties. The ROC AUC is reported on the test
set using the selected combination. The test performance of the selected layer may be better than
the last layer, but is still considerably lower than that of the Stable Diffusion feature.

Layer Split Material Support Relation

OpenCLIP DINO
v1

DINO
v2 VQGAN Stable

Diffusion OpenCLIP DINO
v1

DINO
v2 VQGAN Stable

Diffusion

Last Val 58.5 55.3 59.3 56.8 - 82.2 82.4 82.9 70.9 -
Best Val 64.1 64.0 63.4 63.4 81.2 85.4 82.9 86.9 83.4 95.2

Last Test 60.4 62.1 63.8 53.3 - 84.7 84.3 88.3 71.5 -
Best Test 64.3 65.3 63.2 62.6 79.4 86.4 84.3 88.5 84.3 94.4

Table 4: Performance of Stable Diffusion features compared to state-of-the-art self-supervised
features. For each property, we use the best time step, layer and C found in the grid search in
Table 2 for Stable Diffusion, and the best layer and C found in the grid search for other features.
The performance is the ROC AUC on the test set, and ‘Random’ means a random classifier.

Property Random OpenCLIP DINOv1 DINOv2 VQGAN Stable Diffusion

Same Plane 50 84.3 82.9 84.5 78.4 95.0
Perpendicular Plane 50 61.1 58.6 66.2 54.9 83.9
Material 50 64.3 65.3 63.2 62.6 79.4
Support Relation 50 86.4 84.3 88.5 84.3 94.4
Shadow 50 92.0 86.9 87.0 85.9 94.5
Occlusion 50 65.6 62.0 67.1 60.4 75.6
Depth 50 97.7 94.4 98.4 90.5 99.3

4.4 COMPARISON OF DIFFERENT FEATURES TRAINED AT LARGE SCALE

We compare the state-of-the-art pre-trained large-scale models’ representations on various down-
stream tasks in Table 4. It can be observed that the Stable Diffusion representation outperforms all
the other models for all properties and achieves the best performance, indicating the potential of
utilizing Stable Diffusion representation for different downstream tasks with the optimal time steps
and layers found in Section 4.2.

5 DISCUSSION AND FUTURE WORK

In this paper, we have developed a protocol to examine whether the Stable Diffusion model has
explicit feature representations for different properties of the 3D scene. Our method, using off-the-
shelf annotated image datasets and a linear probe of the Stable Diffusion representation, can also be
applied to other models pre-trained on large scale image datasets, like CLIP and DINO.

It is interesting to find that different time steps and layers of Stable Diffusion representations can
handle several different physical properties at a state-of-the-art performance, indicating the potential
of utilising the Stable Diffusion model for different downstream tasks. However, some properties
such as material and occlusion as evaluated in (Upchurch & Niu, 2022) and (Zhan et al., 2022)
are still challenging for large scale pre-trained models such as Stable Diffusion, DINO, and CLIP.
Though occlusion is a challenge even for the powerful Segment Anything Model (SAM) (Kirillov
et al., 2023), where it is noted that the model ‘hallucinates small disconnected components at times’.

This paper has given some insight into answering the question: ‘What does Stable Diffusion know
about the 3D scene?’. Of course, there are more properties that could be investigated in the manner
proposed here. For example, contact relation (Fouhey et al., 2016) and object orientation (Xiang
et al., 2018), as well as the more nuanced non-symmetric formulations of the current questions.
Another direction would be to use the pixel-wise supervision method of (Bhattad et al., 2023) to
search for features that can predict depth maps, normal maps, etc. We leave these for the future.
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Reproducibility Statement. We discuss the datasets we used in Section 3.2 of the main paper,
provide implementation details in Section 4.1 of the main paper, and more implementation details
in the supplementary to ensure reproducibility. All datasets and code will be publicly released.
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SUPPLEMENTARY

A MORE IMPLEMENTATION DETAILS

Extracting Stable Diffusion Features. Following DIFT (Tang et al., 2023), when we extract Sta-
ble Diffusion features, we add a different random noise 8 times and then take the average of the
generated features. We use an empty prompt ‘’ as the text prompt.

Train/Val Partition. For the partition of train/val split, we select the train & val images from
different scenes for the NYUv2 (Silberman et al., 2012) and ScanNetv2 (Dai et al., 2017) dataset.

Sampling of Images. For the train/val/test splits, if the number of images used is less than the
original number of images in the datasets, we randomly sample our train/val/test images from the
original datasets.

Sampling of Positive/Negative Pairs. For each property, we try to obtain as many posi-
tive/negative region pairs as possible in every image. For each image, if the number of possible
negative pairs is larger than the number of possible positive pairs, we randomly sample from the
negative pairs to obtain an equal number of negative and positive pairs, and vice versa. In this way,
we keep a balanced sampling of positive and negative pairs for the binary linear classifier. As can
be observed in Table 1, the number of train/val pairs for different properties are different, although
we keep the same number of train/val images for different properties. This is because for different
properties the availability of positive/negative pairs are different. For depth, we select a pair only
if the average depth of one region is 1.2 times greater than the other because it is even challeng-
ing for humans to judge the depth order of two regions below this threshold. For perpendicular
plane, taking the potential annotation errors into account, we select a pair as perpendicular if the
angle between their normal vectors is greater than 85◦and smaller than 95◦, and select a pair as not
perpendicular if the angle between their normal vectors is smaller than 60◦or greater than 120◦.

Region Filtering. When selecting the regions, we filter out the small regions, e.g., regions smaller
than 1000 pixels, because regions that are too small are challenging even for humans to annotate.

Image Filtering. As there are some noisy annotations in the (Liu et al., 2019) dataset, we manually
filter the images whose annotations are inaccurate.

Linear SVM. The feature vectors are L2-normalised before inputting into the linear SVM. The
binary decision of the SVM is given by sign(wT v + b), where v is the input vector to SVM:

v = |vA − vB | (4)

for the Same Plane, Perpendicular Plane, Material, Shadow and Occlusion questions, and

v = vA − vB (5)

for the Support Relation and Depth questions.

Extension of Separated COCO. To study the occlusion problem, we utilise the Separated COCO
dataset (Zhan et al., 2022). The original dataset only collects separated objects due to occlusion in
the COCO 2017 val split, we further extend it to the COCO 2017 train split for more data using the
same method as in (Zhan et al., 2022).
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B ANALYSIS OF STABLE DIFFUSION GENERATED IMAGES

As Figure 1 shows, our motivation for the paper is that we observe that Stable Diffusion correctly
predicts different physical properties of the scene. The reason why we do not study the generated
images directly is that there are no annotations available on different properties for these synthetic
images, so it is expensive to get quantitative results. But in this section, we provide more qualitative
examples and analysis of Stable Diffusion generated images in terms of different physical properties.
The observations match our findings in the main paper – Stable Diffusion ‘knows’ about a number
of physical properties including scene geometry, material, support relations, shadows, occlusion and
depth, but may fail in some cases in terms of material and occlusion.

We show examples for: Scene Geometry in Figure 6; Material, Support Relations, and Shadows
in Figure 7; and Occlusion and Depth in Figure 8.
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Original Image Masked Image Inpainted ImageInpainting Mask

Figure 6: Stable Diffusion generated images testing scene geometry prediction. Here and for the
following figures, the model is tasked with inpainting the masked region of the real images. Stable
Diffusion ‘knows’ about same plane and perpendicular plane relations in the generation. When
the intersection of two sofa planes (first row), two walls (second and sixth row), two cabinet planes
(third row), two pillar planes (fourth row) or two fridge planes (fifth row) is masked out, Stable
Diffusion is able to generate the two perpendicular planes at the corner based on the unmasked parts
of the planes.
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Original Image Masked Image Inpainted ImageInpainting Mask

Figure 7: Stable Diffusion generated images testing material, support relation and shadow pre-
diction. Stable Diffusion ‘knows’ about support relations and shadows in the generation, but may
fail sometimes for material. Rows 1-2: Material; Rows 3-4: Support Relation; Rows 5-6: Shadow.
In the first row, the model distinguishes the two different materials clearly and there is clear bound-
ary between the generated pancake and plate; while in the second row, the model fails to distinguish
the two different materials clearly, generating a mixed boundary. In the third row and fourth rows,
the model does inpaint the supporting object for the stuff on the table and the machine. In the fifth
and sixth rows, the model manages to inpaint the shadow correctly. Better to zoom in for more
details.

17



Under review as a conference paper at ICLR 2024

Original Image Masked Image Inpainted ImageInpainting Mask

Figure 8: Stable Diffusion generated images testing occlusion and depth prediction. Stable
Diffusion ‘knows’ about depth in the generation, but may fail sometimes for occlusion. Rows 1-
3: Occlusion; Rows 4-6: Depth. In Row 1, the model fails to connect the tail with the cat body
and generates a new tail for the cat, while in Row 2, the model successfully connects the separated
people and generates their whole body, and in Row 3, the separated parts of oven are connected to
generate the entire oven. In Rows 4-6, the model correctly generates a car of the proper size based
on depth. The generated car is larger if it is closer, and smaller if it is farther away.
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C ADDITIONAL RESULTS FOR OTHER FEATURES TRAINED AT LARGE
SCALE

As mentioned in Section 4.3 of the main paper, we have conducted grid search for all the other large
pre-trained models, including OpenCLIP, DINOv1, DINOv2 and VQGAN for all tasks. Tables in
this section provide results for the Same Plane (Table 5), Perpendicular Plane (Table 6), Shadow
(Table 7), Occlusion (Table 8) and Depth (Table 9) tasks for these models. It can be observed that
for all tasks, the test performance of each model is improved if we take the best combination of layer
and C on the val split, but the performance is still lower than Stable Diffusion.

Table 5: Performance of different layers for state-of-the-art pre-trained models for the Same
Plane task.

Layer Split Same Plane

OpenCLIP DINO v1 DINO v2 VQGAN Stable Diffusion

Last Val 72.7 74.9 80.9 65.2 -
Best Val 84.4 81.7 82.1 77.5 97.2

Last Test 74.6 79.3 86.0 65.4 -
Best Test 84.3 82.9 84.5 78.4 95.0

Table 6: Performance of different layers for state-of-the-art pre-trained models for the Per-
pendicular Plane task.

Layer Split Perpendicular Plane

OpenCLIP DINO v1 DINO v2 VQGAN Stable Diffusion

Last Val 54.9 54.1 62.8 54.6 -
Best Val 62.6 58.9 68.5 61.3 85.4

Last Test 55.5 59.8 63.4 50.2 -
Best Test 61.1 58.6 66.2 54.9 83.9

Table 7: Performance of different layers for state-of-the-art pre-trained models for the Shadow
task.

Layer Split Shadow

OpenCLIP DINO v1 DINO v2 VQGAN Stable Diffusion

Last Val 78.1 85.4 88.5 50.0 -
Best Val 93.9 88.8 90.2 86.0 96.1

Last Test 75.5 84.3 86.8 50.8 -
Best Test 92.0 86.9 87.0 85.9 94.5
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Table 8: Performance of different layers for state-of-the-art pre-trained models for the Oc-
clusion task.

Layer Split Occlusion

OpenCLIP DINO v1 DINO v2 VQGAN Stable Diffusion

Last Val 61.5 65.3 65.8 49.7 -
Best Val 74.0 71.3 70.3 72.5 83.2

Last Test 63.8 60.0 67.9 53.9 -
Best Test 65.6 62.0 67.1 60.4 75.6

Table 9: Performance of different layers for state-of-the-art pre-trained models for the Depth
task.

Layer Split Depth

OpenCLIP DINO v1 DINO v2 VQGAN Stable Diffusion

Last Val 96.8 94.4 97.5 79.4 -
Best Val 98.4 95.5 98.4 90.9 99.5

Last Test 95.5 93.7 98.0 73.8 -
Best Test 97.7 94.4 98.4 90.5 99.3
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D VISUALISATION OF STABLE DIFFUSION FEATURE REPRESENTATIONS

In Figure 9 we visualise the vectors representing the positive/negative pairs in the Depth and Material
tasks using t-SNE. It is obvious that the vectors are easier to be separated for the Depth task than
the Material task, which confirms to the observation that we get a higher AUC when we apply linear
SVM to the depth task but lower AUC when we apply it to the material task. In the future, more
efforts should be put into training the Stable Diffusion model to have a better understanding of
Material and Occlusion, e.g., explicitly incorporate these tasks into training.

Depth Material

Figure 9: t-SNE Visualisation of Stable Diffusion feature space for the Depth and Material
tasks. It can be observed that the vectors for the depth task are more easy to separate than the
material, which confirms to the observation that we get a higher AUC when we apply linear SVM
to the depth task but lower AUC when we apply it to the material task.

21


	Introduction
	Related Work
	Generative Models
	Exploration of Pre-trained Models
	Exploitation of Generative Models
	Physical Scene Understanding

	Method – Properties, Datasets, and Classifiers
	Properties and Questions
	Datasets
	Property Probing

	Experiments
	Implementation Detail and Evaluation Metric
	Results for Stable Diffusion
	Results for Other Features Trained at Large Scale
	Comparison of Different Features Trained at Large Scale

	Discussion and Future Work
	More Implementation Details
	Analysis of Stable Diffusion Generated Images
	Additional Results for Other Features Trained at Large Scale
	Visualisation of Stable Diffusion Feature Representations

