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ABSTRACT

Transformer-based language models exhibit In-Context Learning (ICL), where
predictions are made adaptively based on context. While prior work links induction
heads to ICL through phase transitions, this can only account for ICL when the
answer is included within the context. However, an important property of practical
ICL in large language models is the ability to meta-learn how to solve tasks from
context, rather than just copying answers from context; how such an ability is
obtained during training is largely unexplored. In this paper, we experimentally
clarify how such meta-learning ability is acquired by analyzing the dynamics of the
model’s circuit during training. Specifically, we extend the copy task from previous
research into an In-Context Meta Learning setting, where models must infer a task
from examples to answer queries. Interestingly, in this setting, we find that there are
multiple phases in the process of acquiring such abilities, and that a unique circuit
emerges in each phase, contrasting with the single-phase transition in induction
heads. The emergence of such circuits can be related to several phenomena known
in large language models, and our analysis lead to a deeper understanding of the
source of the transformer’s ICL ability.

1 INTRODUCTION

Transformer-based language models (Vaswani et al., 2017) show an intriguing ability to perform
In-Context Learning (ICL) (Brown et al., 2020; Xie et al., 2021; Garg et al., 2022; Dong et al., 2024).
ICL is the ability to predict the response to a query based on context without any additional weight
updates. A widely adopted application of ICL is few-shot learning in which only a small number
of examples in the context guide the model’s response to a new query. Due to its unique capability,
ICL has gained a lot of attention in the research community, and there have been several approaches
such as Bayesian inference (Xie et al., 2021) and meta-gradient descent (Von Oswald et al., 2023) to
uncover its underlying mechanisms.

One of the popular approaches to understanding ICL is mechanistic interpretability: reverse-
engineering the computations performed by models (Elhage et al., 2021). A key focus within
this framework is the study of circuits, subgraphs with distinct functionality that serve as fundamental
building blocks of neural network behavior (Wang et al., 2022; Conmy et al., 2023a). Notably, Olsson
et al. (2022) uncovered induction heads, a specific circuit mechanism that plays a crucial role in
enabling ICL. Induction heads recognize the repeating pattern [A][B] . . . [A] within the context
and predict [B] as the next token through a match-and-copy operation (Figure 1-(a)). The existence
of induction heads is further investigated under more complex tasks, such as performing semantic
matching (Ren et al., 2024), serving as subcomponents of circuits for natural language tasks within
LLMs (Wang et al., 2022; Merullo et al., 2024), and engaging in intricate interactions with multi-head
attention (Singh et al., 2024).

However, the copy mechanism as described in the induction head explains only a fraction of the
few-shot ICL. Let us consider, for instance, the following ICL scenario in a Country-to-Capital task,
based on Hendel et al. (2023):
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Figure 1: (a) Task Structure: Previous studies focused on a copying-task setup, where the query’s answer
remains unchanged by context, allowing the model to either memorize pairs or match and copy from context. In
contrast, this work explores a more practical scenario where (x, ℓ) pairs vary by task, requiring the model to
infer the task from examples and predict the query’s answer. (b) Network Structure: we mainly use two layers
of attention followed by a token-wise MLP layer. The task is consistent within the context.

France → Paris, Spain → Madrid, Japan → ?

example query prediction

It is well known that ICL can enhance performance in this scenario however, this improvement cannot
be explained merely by retrieving similar examples through induction heads. A straightforward way
to explain this ability is to assume that the model infers the task from the examples and then uses this
inferred task to make predictions. For example, Hendel et al. (2023); Todd et al. (2024) demonstrates
that tasks are internally represented as vectors (i.e., task vectors) within the LLM. This task inference
ability is recognized as a form of meta-learning (Min et al., 2022a). However, it remains unclear
exactly what kind of circuit implements this meta-learning capability or how the circuit is acquired.

In this study, our goal is to elucidate how such meta-learning capability is acquired. To that end,
we extend the copy task from previous research (Reddy, 2023) to a problem setting, which we call
In-Context Meta-Learning (ICML) setting, that requires task inference. We then train a simplified
transformer on this extended setting, and analyze changes in its internal circuits during the training
process. In this setting, as shown in Figure 1-(a), there exists a set of multiple tasks, and the answers
differ from task to task, so the model needs to infer the task from the examples to answer the query.
Interestingly, we observe that learning dynamics emerge in this setting that differ significantly from
the case of simple copying tasks. First, as shown in Figure 2, we find that the model undergoes three
phase transitions while acquiring meta-learning capabilities, unlike the single transition typically
observed in copying tasks. More specifically, we find that in the first phase, a bigram-type circuit
emerges that focuses solely on the query, ignoring the context and relying only on the model’s weights.
In the second phase, a circuit emerges that pays attention only to the labels in the context. Finally, a
circuit emerges that chunks each example pair into a single token.

We introduce novel metrics to systematically measure these three circuits and show that the abrupt
change of these metrics aligns closely with the sudden jumps in accuracy. Notably, the label-focused
circuit that emerges in the second phase suggests that during acquiring meta-learning capabilities, the
model may initially learn to identify tasks by examining only the set of labels, without considering
the correspondence between classes and labels. The existence of the label-focused circuit also
corresponds to the phenomenon in previous studies (Min et al., 2022b) that LLMs maintain high ICL
performance even under random label assignments, which is one explanation for the unique nature of
LLMs.

We also examine the case of a multi-head model, which is a more practical setting; phase transitions
in accuracy become less apparent, and different heads can still specialize in parallel — for instance,
one head may converge on a particular circuit, while another becomes a different one. Although this
parallel specialization leads to smoother accuracy improvements, our circuit-level metrics uncover
hidden circuit emergence, revealing that even though phase transitions remain invisible in the accuracy
curve, the underlying circuits still change abruptly. This observation suggests that even when a clear
phase transition is not observed on the loss curve, as in the case of LLM training, phase transitions
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can occur on the circuits, which leads to bridging the gap between toy experiments in the study of
mechanistic interpretability and practical scenarios.

2 RELATED WORKS

2.1 IN-CONTEXT LEARNING

Brown et al. (2020) demonstrated with GPT-3 the remarkable ability of LLMs to perform a wide
range of tasks using only a few examples provided in the input prompt. Few-shot ICL is the ability of
large language models to solve new tasks by examining a sequence of (input, label) pairs that
share a common concept within the context. Rather than updating their internal parameters, these
models rely solely on the contextual examples to deduce the task’s rules.

In general, ability to learn from few-shot examples is associated with meta-learning (Wang et al.,
2020; Hospedales et al., 2021), and success of the ICL demonstrate the strong ability of LLM to
meta-learn. In effective ICL, the model infers the underlying task from the examples provided and
refines its predictions based on the inferred task. Although this meta-learning-based ability is widely
used, the underlying mechanisms enabling LLMs to perform these tasks remain poorly understood,
and some puzzling results have been observed. For example, Min et al. (2022b) demonstrated that
even when the labels in the examples are randomized, the accuracy improves. Additionally, Chan et al.
(2022) have demonstrated that data distributional properties significantly influence ICL performance.

To understand ICL, various approaches have been proposed. For example, Von Oswald et al. (2023);
Dai et al. (2023) demonstrated that transformers can solve linear regression problems within the
context by leveraging meta-gradients. Based on this, analytical methods have been applied to study
the ability of transformers to handle a range of tasks, including discrete functions (Bhattamishra et al.,
2023), nonlinear functions (Kim & Suzuki, 2024), and classification problems (von Oswald et al.,
2023).

2.2 MECHANISTIC INTERPRETABILITY

One promising approach to understanding ICL is mechanistic interpretability (MI), which seeks to
uncover the internal mechanisms of models (Olah et al., 2020; Elhage et al., 2021; Nanda et al., 2023).
A key focus of MI is the study of circuits, which are subgraphs with distinct functionality that serve
as fundamental building blocks of neural network behavior (Wang et al., 2022; Merullo et al., 2024;
Conmy et al., 2023b).

One such circuit studied in the context of ICL is the induction head (Olsson et al., 2022). The
induction heads are a two-layer structure; in particular, the latter layer is commonly called the
induction head, and the earlier layer is referred to as the previous token head. Previous token head
attends to and copies the preceding token into the current token. When few-shot examples are
present in the context, it chunks each (x, ℓ) pair into a single token. Induction heads then perform a
match-and-copy operation, matching a query derived from the current token with a key derived from
the previous token head’s output. For more details on the induction head, see Appendix A. Further
research has shown that induction heads can perform soft matching (Crosbie & Shutova, 2024),
emerge naturally in multi-head attention settings (Singh et al., 2024), and are present in LLMs (Cho
et al., 2024).

Despite these advancements of induction heads, these studies have primarily focused on tasks where
the context explicitly includes the label to be copied, such as direct copying tasks. Therefore,
induction heads alone cannot fully explain the meta-learning capabilities of ICL in more practical
scenarios.

3 EXPERIMENTAL SETUP

3.1 IN-CONTEXT META LEARNING

To analyze the meta-learning capabilities of ICL, building on prior works (Chan et al., 2022; Reddy,
2023), we design a simple experimental setting named the In-Context Meta-Learning (ICML)
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Figure 2: The left panel illustrates the changes in accuracy and loss across three distinct phases during training,
with lighter-shaded curves indicating different random seeds. Each phase is highlighted with a different
background color: Phase 1 (yellow), Phase 2 (orange), and Phase 3 (red). The right panels visualize the attention
maps (circuits) corresponding to each phase, showing the evolution of attention patterns in the two-layer model.
Specific attention types, such as Bigram, Label Attention, and Chunk Example, emerge at different phases,
reflecting the model’s adaptation to the task.

described in Figure 1-(a). Unlike previous approaches, where copying labels or memorizing (x, ℓ)
pairs was sufficient to predict the answer, our setting instead requires the model to meta-learn the
underlying task (τ ) from (x, ℓ) context pairs. The network is trained to predict the label of a target xq

given an alternating sequence of N items and N labels:

x1, ℓ
τ
1 , x2, ℓ

τ
2 , . . . , xN , ℓτN︸ ︷︷ ︸

examples

, xq︸︷︷︸
query

, ?︸︷︷︸
prediction

Here, τ represents the task, where each task defines a unique (x, ℓ) pair with labels ℓ randomly
assigned to items x. The total number of tasks is denoted as T , and the context presented to the model
consistently corresponds to the same task. Since the query xq may not be appeared the in-context
examples, the network needs to infer the task τ , instead of simply copying a label, from the context.

Following (Reddy, 2023), we represent each item x and label ℓ in a (P +D)-dimensional space. Of
these dimensions, P is dedicated to positional information via a one-hot encoding (with P = 65
across all experiments), while D captures the content. To encourage translation-invariant operations,
each input sequence is randomly placed within a window of size (2N + 1) spanning the range
[0, P − 1]. Each class k is associated with a D-dimensional mean vector µk, whose entries are drawn
independently from N (0, 1/D). For an item xi assigned to class k, we add noise η (sampled from
the same distribution) scaled by ϵ, giving xi =

µk+ϵ η√
1+ϵ2

, where ϵ governs within-class variation and
the denominator ensures ∥xi∥ ≈ 1. Finally, each class is linked to one of L labels, with L ≤ K. To
control the proportion to which a query can be solved by copying from the context, the same item as
the query is included in the context with probability pB . We use T = 3, K = 64, L = 32, N = 4,
D = 63, ϵ = 0.1, pB = 0, unless otherwise specified. In our ICML setup, we can reproduce the
standard match-and-copy induction head mechanism from Reddy (2023) by setting T = 1, pB = 1,.
For detailed results, see Appendix A.

3.2 NETWORK STRUCTURE

Following prior research (Reddy, 2023), we use a two-layer attention-only transformer shown in
Figure 1-(b), where each layer µ comprises m heads (indexed by h), and a causal mask ensures
position i attends only to positions j ≤ i. A two-layer MLP classifier then produces the label
probabilities. For the complete set of equations and hyperparameter details, see Appendix B. In this
architecture, each head h in layer µ computes attention weights {p(µ,h)ij }, quantifying how strongly
position i (query) attends to position j (key). These outputs are aggregated across heads and passed
to the MLP, which makes the final label predictions.

The classifier is a two-layer MLP with ReLU activations, followed by a softmax layer producing
probabilities over L labels. We train this network to classify the query item xq into one of the L
labels using cross-entropy loss. Both the query/key dimension and the MLP hidden layer dimension
are set to 128. We use a batch size of 128 and optimize with vanilla stochastic gradient descent at a
learning rate of 0.01.
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4 PHASE TRANSITIONS AND EMERGENT CIRCUITS

4.1 THREE-PHASE DYNAMICS AND CIRCUIT OVERVIEW
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Figure 3: Accuracy (blue) and ∆Accuracy
(green) as functions of the training step. Here,
∆Accuracy = Acc(t + ∆t) − Acc(t) with
∆t = 100. Vertical dashed lines indicate
where ∆Accuracy exceeds 0.025, marking
the transition points between the three ob-
served phases (Phase 1, Phase 2, Phase 3

We conducted experiments under the ICML setting with
three tasks (i.e., T = 3). As shown on the left side of
Figure 2, the results reveal three distinct phases of accuracy
changes, each accompanied by a corresponding drop in
loss. The observed dynamics are as follows: the first
accuracy plateau occurs at around 30–40%, the second at
approximately 75%, and the final phase reaches 100%. To
clearly these three phases, we define the following metric:

∆Accuracy = Accuracy
(
t+∆t

)
− Accuracy(t),

where t denotes the optimization step and we set ∆t =
100. In Figure 3, we plot this quantity along with the
model’s accuracy, marking vertical lines at steps where
∆Accuracy > 0.025. These lines serve as boundaries be-
tween the three observed phases. Based on this threshold,
we partition the model’s behavior into Phase 1, Phase 2,
and Phase 3 throughout the remainder of this paper.

On the right side of Figure 2, we visualize the attention maps from the two layers of the model during
each phase. The attention patterns emerging during the learning process can be categorized into the
following three types:

1. Bigram: Strong attention is focused on the token in the context that corresponds to the query
token (xq).

2. Label Attention: Strong attention is focused on the label tokens of the (x, ℓ) pair within the
context.

3. Chunk Example: Attention aggregates the (x, ℓ) token pair in the context into a single token,
similar to the induction head’s previous token head.

As visualized on the right side of Figure 2, the combinations of these attention types differ between
the first and second layers across the three phases:

Phase 1 (Non-Context Circuit; NCC): Both layers use bigram attention, ignoring the context and
relying solely on the model’s weights. At this stage, the model predict label base on only query,
limiting accuracy to around 1/T . In this case, with three tasks, the accuracy stagnates at around
30–40%.

Phase 2 (Semi-Context Circuit; SCC): The first layer exhibits label attention, while the second
layer focuses on the query token (bigram attention). The model not only leverages weights memory
but also attends to label tokens (i.e., half of the context), in the context to infer possible answers,
resulting in improved accuracy of approximately 75%. We delve into these details in subsection 4.3

Phase 3 (Full-Context Circuit; FCC): The first layer aggregates the (x, ℓ) pair into a single token
(chunk example), while the second layer focuses on these aggregated tokens (label attention) to
predict label, resulting in using the entire context. Through this abstraction of the pairwise relationship
(i.e., task inference), the model can produce correct answers for the query. Once the model learns this
circuit, it achieves 100% accuracy.

The relationship between each circuit and its corresponding attention pattern is summarized in Table 1.

4.2 QUANTIFYING CIRCUIT EMERGENCE

To quantitatively measure these circuits, we propose three metrics based on the attention maps of each
layer. Let pµ,hi,j represent the attention from token j to token i in the h-th head of the µ-th layer. Let
the context length be 2N + 1 (in this case, N = 4). We define three primary attention-based metrics,
with precise formulas provided in Table 2. Here, we briefly describe what each metric represents:
(1) Bigram Metrics capture the attention from the query token to itself; (2) Label Attention Metrics
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Table 1: Summary of circuits, accuracy, and layer-
wise attention.

Circuit Accuracy (T = 3) Layer 1 Layer 2
NCC 30–40% Bigram Bigram

SCC ≈75% Label Attention Bigram

FCC 100% Chunk Example Label Attention

Table 2: Formulas of the three attention metrics.

Metric Formula

Bigram pµ,h2N+1,2N+1

Label Attention
∑N

k=1 p
µ,h
2N+1,2k

Chunk Example 1
N

∑N
k=1 p

µ,h
2k,2k−1
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Figure 4: Evolution of the three attention metrics (Bigram, Label Attention, and Chunk Example) across
optimization steps for the first (green) and second (red) layers. The shaded regions represent the three learning
phases: Phase 1 (yellow), Phase 2 (orange), and Phase 3 (red), defined by ∆Accuracy (Figure 3). Each metric
shifts cleanly at the phase boundaries, demonstrating a close correspondence between accuracy improvements
and circuit-level transformations.

measure the total attention from the query token to the label tokens within the context; (3) Chunk
Example Metrics assess the attention from x to ℓ within each (x, ℓ) pair.

The plots in Figure 4 illustrate how these metrics evolve in the first and second layers across the three
phases. For the Bigram Metrics, both the first and second layers show high values at the moment
of the initial jump in accuracy, marking the formation of the NCC. Then, at the beginning of Phase
2, the bigram metrics in the first layer decrease significantly while those in the second layer remain
high, and label attention in the first layer rises — together leading to the formation of the SCC. At the
start of Phase 3, the chunk example metrics in the first layer increase, and the label attention metrics
in the second layer also become high, resulting in the formation of the FCC. Importantly, these metric
transitions align closely with the corresponding jumps in model accuracy, supporting the view that
these metrics provide a valid and quantitative perspective on the circuit changes observed during the
three phases, as depicted in the right side of Figure 2.

4.3 DEEPER LOOK AT THE SEMI-CONTEXT CIRCUIT

How SCC Drives Accuracy Gains In Phase 2, the model forms the SCC, using label information
from the context in addition to the query input (xq). We provide a theoretical analysis of why this
leads to improved accuracy and empirically validate our theory through controlled experiments. To
clarify SCC’s behavior, we tested the following simplified conditions:

1. The number of classes (K) equals the number of labels (L), with no duplication.

2. The input context (including the query) contains no duplicate classes.

3. The number of tasks (T ) is set to 2.

4. There are no common (x, ℓ) pairs shared across tasks.

5. To specifically focus on SCC, a mask is applied to circuits associated with SCC during training
(details are provided in the Appendix C).

In Phase 1, since there are two tasks, the model has a 50% chance of predicting correctly by random
guessing. In other words, the model’s prediction reduces to a binary choice for each input query (xq).

Once label information becomes usable, the binary choice can potentially be narrowed further. This
occurs when one of the labels corresponding to the two options is present in the context. In this
scenario, the label in the context is definitively not the correct answer for the query, as per the defined
conditions. Thus, the answer becomes uniquely determinable, increasing accuracy. Following the
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Figure 5: (a) Comparison of theoretical accuracy (dashed lines) and model accuracy for different class counts
(K). The close alignment between theoretical predictions and experimental results confirms the validity of
the theoretical analysis. (b) Comparison of training accuracy and random-label accuracy (RLA). The plot
demonstrates the rise in both metrics, with RLA following a trend similar to emergence Phase 2. This indicates
that SCC acquired in Phase 2 contributes to improved accuracy even with shuffled labels.

derivation in Appendix D, the probability of one of the labels appearing in the context is

p = 1−
(
K−2
4

)(
K−1
4

) .
Therefore, the theoretical accuracy achievable with SCC can be expressed as:

Theoretical Accuracy = p · 1 + (1− p) · 0.5.

Figure 5-(a) shows the theoretical accuracy alongside the accuracy achieved by a model trained with
only Phase 2 attention circuits remaining. The class/label counts were varied as K = {8, 16, 32}.
The near-perfect agreement between the theoretical and empirical results confirms both the validity
of our derivation and the role of SCC in boosting accuracy.

Random-Label Robustness of SCC We focus on the tendency of SCC to make predictions “based
solely on labels and query.” We hypothesize that this circuit explains the puzzling phenomenon that
the improvement in ICL performance observed even when using random labels, as noted in Min et al.
(2022b). Min et al. (2022b) has demonstrated that replacing labels randomly within examples results
in only a marginal performance drop, suggesting that ICL does not rely heavily on (x, ℓ) pairs. To
investigate this phenomenon, we define an Out-of-Distribution (OOD) evaluation where the labels in
each context pair are randomly permuted. Specifically, we consider:

x1, ℓ
τ
π(1), x2, ℓ

τ
π(2), . . . , xN , ℓτπ(N)︸ ︷︷ ︸

examples

, xq︸︷︷︸
query

, ?︸︷︷︸
prediction

Here, π is a random permutation on {1, 2, . . . , N}, meaning that ℓτπ(i) replaces the original label
ℓτi . By measuring the model’s accuracy under these shuffled labels, we obtain the Random-Label-
Accuracy (RLA). In the Figure 5-(b), we compare this RLA with the training accuracy. Similar to
the rise observed in Phase 2, when SCC is acquired, the RLA also increases. This suggests that
the reason for the improved performance with random labels, as seen in Min et al. (2022b), is the
existence of circuits similar to SCC within LLMs.

4.4 EFFECTS OF DATA PROPERTY ON CIRCUITS EMERGENCE

Previous studies have indicated that certain properties of the training data, such as burstiness, can
influence the emergence of ICL (Chan et al., 2022) and induction heads (Reddy, 2023). In this work,
we explore how these data properties affect the development of circuits in our ICML setting, with the
aim of advancing our understanding of the multi-phase emergence of these circuits. As mentioned
in section 3, the variables capturing the characteristics of the data include the number of tasks T ,
the number of classes K, the noise magnitude ϵ. In addition, and following Chan et al. (2022), we
adopt rank-frequency distributions over both classes and tasks: f(k) ∼ k−α and f(τ) ∼ τ−β , which
follow a power-law form commonly known as Zipf’s law Zipf (1949) (see Appendix E for details).
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Figure 6: The relationship between multi-phase transitions and data distribution properties is explored by varying
key parameters: the number of tasks (T ), the number of classes (K), the noise magnitude (ϵ), the sampling bias
for classes (k−α), and the sampling bias for tasks (τ−β). Default values are T = 3, K = 64, ϵ = 0.1, α = 0,
and β = 0. The plots show how these variations influence accuracy and the emergence of phase transitions.

The default values are T = 3, K = 64, ϵ = 0.1, α = 0, and β = 0. The results of varying these
parameters are shown in the Figure 6. For results obtained by varying pB , see Appendix F.

In Figure 6-(a), we present the results of varying the number of tasks T . As T increases, Phase 1
accuracy decreases (approximately proportional to 1/T ). When T = 1, the setup aligns with previous
studies (see Figure 1), where the model’s accuracy increases in a single phase rather than undergoing
multiple phases. Conversely, for T ≥ 2, the model consistently exhibits three distinct phases. This
indicates that the multi-phase phenomenon is robust to the number of tasks, and that introducing
additional tasks in the ICL setting can provide new empirical insights.

In Figure 6-(b), when K is small (e.g., K = 32), the model tends to skip Phase 1 and transition
directly to Phase 2. In contrast, when K is large (e.g., K = 128, 256), the model skips Phase 2 and
jumps directly from Phase 1 to Phase 3. This can be explained by the theoretical values derived in
subsection 4.3, where increasing the number of classes brings the accuracy in Phase 2 closer to that
in Phase 1, effectively making Phase 2 unobservable for large K.

In Figure 6-(c), increasing ϵ (the within-class variation) leads to skipping Phase 2. Moreover, when ϵ
is 1, Phase 1 is also skipped. Following the results of Chan et al. (2022), higher values of ϵ make it
more difficult for the model to memorize the (x, ℓ) pairs in its weights, and thus it shifts its focus
toward leveraging the context. The observation that NCC is skipped entirely when ϵ = 1 aligns with
this trend. Although SCC is a circuit that uses the context, it inherits the nature of NCC, causing it to
be skipped as ϵ increases. In Figure 6-(d), we see that increasing α likewise tends to skip Phase 1 or
Phase 2. The heightened sampling bias makes it more challenging to memorize pairs in the weights,
so the model more readily exploits context-based information. As a result, the NCC or SCC does
not emerge. In summary, the results suggest that when the model finds it difficult to memorize (x, ℓ)
pairs (larger ϵ or α) neither NCC nor SCC emerges.

In Figure 6-(e), we examine how varying the task sampling bias β affects both the average accuracy
across tasks and the accuracy of each individual task. While changing β leads to only minor
differences in the overall average trend, the accuracy on a per-task basis varies considerably with β.
In particular, when β is high (e.g., β = 1), the model tends to memorize the most frequent task (i.e.,
τ = 0) first, causing the remaining tasks to skip NCC and progress directly to forming FCC.

5 MULTI-HEAD ENHANCES CIRCUIT DISCOVERY

5.1 PARALLEL CIRCUIT EXPLORATION

To investigate a more practical scenario, we extend our analysis to multi-head attention. Figure 7-(a)
compares the accuracy changes for models with two heads and one head. In the left panel of Figure 7-
(a), we observe that phase transitions become less pronounced when using multi-head attention. A
closer examination of the attention maps for each head (as shown in the right panel of Figure 7-(a))
reveals that different heads specialize in distinct functions. Specifically, one head learns circuits
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Figure 7: (a) Comparison of accuracy dynamics between single-head (blue) and multi-head (orange) attention
models (left). The multi-head model exhibits smoother accuracy improvements, without the distinct phase
transitions observed in the single-head model. On the right, the attention maps for the two heads in the multi-head
model are visualized. Head 1 specializes in NCC, while Head 2 adopts circuits resembling FCC. These findings
indicate that multi-head attention allows parallel circuit discovery, enhancing the efficiency of the learning
process. (b) Circuit metrics (left) and attention maps (right) for Bigram (Head 2) and Label Attention (Head 2)
in multi head setting. The left plots depict the progression of Accuracy (blue), Layer 1 Metrics (green), and
Layer 2 Metrics (red) over training steps. The attention maps on the right correspond to the model’s behavior at
30,000 training steps, as indicated by the vertical dashed line.

resembling NCC, while another head becomes FCC. This parallel specialization provides a smoother
trajectory of accuracy improvement, in contrast to the multi-phase transitions observed in single-head
models.

These findings suggest that multi-head attention allows for parallel exploration of circuits, improving
the efficiency of circuit discovery. As a result, the multiple phase transitions characteristic of single-
head models are absent in multi-head configurations. This behavior aligns with observations in LLMs,
where multi-head attention enables different heads to serve distinct functions, leading to smoother
accuracy improvements, as seen in Figure 7. Results for a larger number of heads are provided in the
Appendix G.

5.2 HIDDEN CIRCUIT EMERGENCE

In Figure 7-(b), we observe multiple attention heads lead to smoothing the accuracy improvement.
To gain deeper insights into this phenomenon, we analyze how the internal circuits evolve by using
the circuit metrics summarized in Table 2. In Figure 7-(b) (left), we present the circuit metrics for
Bigram and Label Attention in Head 2. Notably, around the 30,000th training step, the Bigram metric
exhibits a pronounced increase in the second layer, whereas the Label Attention metric is notably
larger in the first layer. The right panel displays the corresponding attention maps, which clearly
demonstrate an SCC-like pattern, illustrating how the model’s attention shifts between bigram-driven
and label-focused mechanisms. The attention maps on the Figure 7-(b) correspond to the model’s
behavior at 30,000 training steps, as indicated by the vertical dashed line. A complete set of metrics
is provided in Appendix H.

These results suggest that, even though we do not observe multiple-phase transitions in accuracy
under the multi-head configuration, a hidden circuit emerge within the model’s internal mechanisms.
This hidden phenomenon implies that, in more practical scenarios (such as large-scale language
model where the loss typically decreases in a smooth fashion), the model’s internal circuits may still
undergo significant emergent shifts.

6 DISCUSSION

We introduced controlled experimental called In-Context Meta-Learning (ICML), designed to move
beyond simple copy tasks by requiring task inference. We then investigate how a 2-layer, attention-
only transformer acquires ICL abilities, inspired by induction head research (Olsson et al., 2022;
Reddy, 2023). Although our model is much smaller than those used in large-scale interpretability
research (Wang et al., 2022; Merullo et al., 2024; Templeton et al., 2024; Gao et al., 2024), this
controlled design revealed novel insights, including multi-phase transitions that illuminate how the
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model’s internal circuits evolve. Moreover, the observed random-label robustness (subsection 4.3)
and multi-head behaviors, where the loss decreases smoothly (section 5), both align with findings in
LLMs. These results connect small-scale experiments to practical LLMs, clarifying ICL mechanisms.

Relationship to Prior Internal-Circuit Research Previous investigations taking an internal-
circuit approach to ICL have largely focused on induction heads, which employ a match-and-copy
mechanism (Ren et al., 2024; Cho et al., 2024). In contrast, by adopting a more practical meta-
learning perspective, our study reveals multi-phase circuits that initially memorize examples and
then evolve to infer the underlying task, which differs from the single-phase transitions commonly
observed in induction heads. While both induction heads and our Full-Context Circuits (FCC) chunk
contextual (x, ℓ) pairs into a single token in the first layer, the second layer diverges: induction
heads retrieve only a label, whereas FCC further aggregates (Chunk Example → Label Attention in
Table 1). This shared mechanism in the first layer implies that even a simple copy task contributes to
meta-learning–like ICL capabilities. In addition, consistent with earlier findings (Chan et al., 2022;
Singh et al., 2023; Reddy, 2023), these results highlight the key role of dataset characteristics in
circuit formation and ICL

Implication for LLMs Our analysis links circuits to the established concept of task vectors (Hendel
et al., 2023; Todd et al., 2024). A task vector represents the abstracted representation a model forms
from examples, and although such vectors have been recognized, the internal circuit-based mecha-
nisms that produce them remain poorly understood. Our findings offers a step toward elucidating
these mechanisms. In addition, we examine multi-head attentions. Prior work (Singh et al., 2024) has
identified redundancy in induction heads under multi-head architectures. Our findings indicate that,
rather than mere redundancy, multiple distinct circuits emerge in parallel in the multi-head setting,
resulting in smoother performance gains. This observation bridges the discontinuous concept of
circuits with the continuous performance improvements seen in LLMs.
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A INDUCTION HEAD

Figure 8 illustrates an induction circuit consisting of a previous token head in Layer 1 and an induction
head in Layer 2. After Layer 1, the side-by-side x and ℓ tokens are chunked into a single token. In
Layer 2, two operations occur: matching of x via queries and keys (in purple) and copying of ℓ (in
red).

𝑥!" ℓ!" ℓ#" 𝑥#"

?

…
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ℓ!" 𝑥#" ℓ#" 𝑥#"
K K QVV

ℓ#"

MLP

match

copy

…

…

Figure 8: The circuit consists of a previous token head in Layer 1 and an induction head in Layer 2. After
Layer1, the side-by-side x and ℓ tokens are chunked into a single token. In Layer 2, we highlight two operations:
matching of x vai queries and keys (in purple), and copying of ℓ (in red).

When a sample is drawn with probability pB , the burstiness parameter B introduced by Chan et al.
(2022); Reddy (2023) becomes relevant, determining how many times items from the query class
appear in an input sequence (where N is a multiple of B). In our ICML setup, we specifically
examine the case with T = 1, pB = 1, and B = 1, as shown in Figure 9. We observe that the first
attention layer encodes each (x, ℓ) pair into a single token, while the second layer strongly attends
to one of these pairs, effectively implementing the match-and-copy mechanism characteristic of an
induction head. Notably, our setting thus subsumes the standard induction head experiments proposed
in Reddy (2023).

Layer2 Layer1
Figure 9: (left) The emergence of induction heads is observed as single-phase transition. (right) The attention
maps on the right illustrate the circuit mechanism, where Layer 1 groups (x, ℓ) pairs into single-token represen-
tations, and Layer 2 then copies this label.

14



Published at Building Trust Workshop at ICLR 2025

B MODEL DETAILS

B.1 NETWORK ARCHITECTURE

Our model features two layers of multi-head attention with a causal mask, followed by a two-layer
MLP classifier. Each attention layer µ ∈ {1, 2} has m heads, labeled by h. Let (u1, . . . , un) be the
input sequence (subject to a causal mask ensuring i can only attend to j ≤ i). The outputs of the first
layer are {vi}; those of the second layer are {wi}.

Attention Computation. Within layer µ, head h computes attention weights

p
(µ,h)
ij =

exp
((
K

(h)
µ uj

)⊤ (
Q

(h)
µ ui

))∑
k≤i exp

((
K

(h)
µ uk

)⊤ (
Q

(h)
µ ui

)) , (1)

where Q(h)
µ and K

(h)
µ are the learnable query and key matrices for head h in layer µ. Next, each head

outputs a weighted sum of the value-transformed inputs:

Head
(µ,h)
i =

∑
j≤i

p
(µ,h)
ij

(
V (h)
µ uj

)
, (2)

where V
(h)
µ is the corresponding value matrix.

Multi-Head Aggregation. The outputs of all m heads in layer µ are concatenated and projected by
a trainable matrix WOµ, yielding

vi = ui + W 1
O

[
Head

(1,1)
i ; . . . ; Head

(1,m)
i

]
, (3)

wi = vi + W 2
O

[
Head

(2,1)
i ; . . . ; Head

(2,m)
i

]
. (4)

Here, [. . . ] indicates concatenation over the head outputs, and each WOµ is a learnable linear
projection.

Classifier. The two-layer MLP receives the final attention outputs {wi} (e.g., specifically wn, if
n indexes the query token). A hidden layer with ReLU activation is followed by a softmax that
produces label probabilities.

B.2 TRAINING DETAILS

Table 3: Training and Model Configuration

Hyperparameter Value
Loss Function Cross-entropy
Optimizer Vanilla SGD
Learning Rate 0.01
Batch Size 128
Dimension of query/key/value 128
MLP Hidden Layer Dimension 128
Causal Mask Restrict sums to j ≤ i
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C CONTROLLED CIRCUIT PRUNING EXPERIMENTS

To validate the relationship between the identified circuits and model performance, we conducted
controlled pruning experiments. In these experiments, all components except the circuits correspond-
ing to a specific phase were pruned at initialization, isolating the contribution of each circuit. For
comparison, we also trained a fully trainable model, referred to as the full model, which could attend
to all identified attention patterns.

As shown in Figure 10, networks trained with only the circuits from a particular phase plateaued at
accuracies corresponding to that phase. This result provides strong evidence that the circuits identified
in each phase are directly responsible for the observed performance.

Interestingly, when the Phase 3 circuit was provided from the beginning (pink curve in Figure 10), the
model achieved 100% accuracy in single step. In contrast, the full model exhibited a more gradual
improvement, sequentially discovering and leveraging the circuits corresponding to each phase. This
highlights the dynamic nature of the full model’s training process, where it incrementally constructs
and refines the required circuits during training.
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Figure 10: Controlled pruning experiments to validate the relationship between identified circuits and model
performance. Networks trained with only the circuits from a specific phase plateaued at accuracies corresponding
to that phase (yellow: Phase 1, orange: Phase 2, pink: Phase 3). This demonstrates that the identified circuits are
directly responsible for the observed performance in each phase.

D DERIVATION OF THE THEORETICAL ACCURACY

In the main text, we define

p = 1 −
(
K−2
4

)(
K−1
4

) , (5)

and use it to obtain the “Theoretical Accuracy” as

Theoretical Accuracy = p · 1 +
(
1− p

)
· 0.5. (6)

This appendix provides a more detailed derivation of these formulas, along with the underlying
conditions.

Task Conditions.

1. The number of classes (K) equals the number of labels (L), with no duplication.

2. The input context (including the query) contains no duplicate classes.

3. Only two tasks are considered (T = 2).

4. There are no common (x, ℓ) pairs shared between different tasks.

5. To focus on SCC, a mask is applied to circuits associated with SCC during training.
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Excluding Both L1 and L2. We are interested in the probability that the context does not contain
L1 or L2.

• The total number of ways to choose 4 distinct classes from the K−1 classes (excluding the query’s
class) is

(
K−1
4

)
.

• To exclude both L1 and L2, we must choose all 4 classes from the remaining K−2 classes, leading
to

(
K−2
4

)
possible ways to form the context with neither L1 nor L2 present.

Hence, the probability that neither L1 nor L2 is in the context is(
K−2
4

)(
K−1
4

) .
Probability p and the Accuracy Calculation. We denote by p the probability that at least one of
L1 or L2 appears in the context:

p = 1 −
(
K−2
4

)(
K−1
4

) .
Under the task rules, if at least one of these two labels appears in the context, it cannot be the label for
the query, so the other one must be correct. This yields 100% accuracy in that scenario. Conversely,
if neither L1 nor L2 is found in the context (probability 1− p), the model is forced to guess between
two equally likely options, resulting in 50% accuracy. Therefore,

Theoretical Accuracy = p · 1 + (1− p) · 0.5,

as stated in the main text.
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E RANK-FREQUENCY

In natural language processing and other real-world domains, both data instances and task distributions
often follow a power-law structure, commonly referred to as Zipf’s law (Zipf, 1949). This law states
that the frequency of an item or task is inversely proportional to its rank, meaning that a small number
of elements occur frequently, while the majority appear rarely. Formally, this is expressed as:

f(k) ∝ k−α, (7)

where k denotes the rank of an item, and α controls the degree of skewness. Figure 11 illustrates
how increasing α leads to a more imbalanced distribution, with a steep drop in frequency beyond the
highest-ranked elements.
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Figure 11: Rank-frequency distributions for different values of the power-law exponent α, following the Zipfian
distribution f(k) = k−α. As α increases, the distribution becomes more skewed, with a few high-frequency
items dominating while the majority appear infrequently.

In our setting, not only data but also task sampling follows a similar Zipfian distribution:

f(τ) ∼ τ−β , (8)

where β determines the skewness of the task distribution.
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F EFFECTS OF BIRSTINESS ON CIRCUIT EMERGENCE

When a sample is drawn with probability pB , the burstiness parameter B introduced by Chan et al.
(2022); Reddy (2023) becomes relevant, determining how many times items from the query class
appear in an input sequence (where N is a multiple of B). Figure 12 examines the impact of burstiness
B and probability pB . The left panel shows accuracy curves for different values of B at a fixed
pB = 0.25. As B increases, Phase 1, where NCC memorizes pairs through weight updates — tends
to be skipped. The right panel presents accuracy curves for different values of pB while keeping
B = 1 fixed. As pB increases, the model’s accuracy improves more smoothly, and distinct phase
transitions become less pronounced. These results align with previous studies showing that increased
burstiness tends to shift the model away from weight-based solutions and toward context-dependent
reasoning (Chan et al., 2022; Reddy, 2023).
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Figure 12: (Left) Accuracy curves for different values of B at a fixed pB = 0.25. Increasing B tends to skip
Phase 1, where NCC memorizes pairs through weights. (Right) Accuracy curves for different values of pB with
B = 1. As pB increases, the learning process becomes smoother, reducing the occurrence of distinct phase
transitions.

G MULTIHEADS EXPERIMENTS

Figure 13 (Left) shows accuracy curves over training steps for different numbers of attention heads
(1, 2, 4, 8, and 16). Models with multiple heads exhibit a smooth increase in accuracy, whereas the
single-head configuration undergoes multi-phase transitions, where accuracy improves in distinct
jumps rather than gradually.

Figure 13 (Right) visualizes attention patterns in a 4-head attention model across two layers. The
four heads naturally divide into two functional roles: two heads focus on NCC, while the other two
heads focus on FCC.
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Figure 13: (Left) Accuracy curves over training steps for different numbers of attention heads (1, 2, 4, 8, and
16). Models with multiple heads exhibit a smooth increase in accuracy, whereas the single-head configuration
shows multi-phase transition. (Right) Visualization of attention patterns in a 4-head attention model, separated
by layer. Two heads focus on NCC, while the other two focus on FCC. Red squares highlight key attention
positions indicative of each role.
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H CIRCUIT METRICS IN MULTIHEAD ATTENTION

Figure 14 presents circuit metrics for each attention head, analyzed by layer in a two-head attention
model. Head 1 consistently maintains high bigram values across both Layer 1 and Layer 2. This
indicates that it primarily performs token-level copying operations, forming an NCC. In contrast,
Head 2 exhibits a different pattern. As training progresses, the chunk example metric increases in
Layer 1, while the label attention metric becomes dominant in Layer 2, forming an FCC.

These findings reinforce the idea that multi-head attention facilitates specialization, allowing different
heads to develop distinct computational circuits that enhance the model’s meta-learning capabilities.
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Figure 14: Circuit metrics for each attention head, analyzed by layer in two heads attentions. Head 1 maintains
high bigram values across both Layer 1 and Layer 2, indicating the formation of an NCC. In contrast, Head 2
exhibits increasing chunk example values in Layer 1 and high label attention values in Layer 2, suggesting the
formation of an FCC.
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