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Abstract

Common studies of gender bias in NLP focus001
either on extrinsic bias measured by model per-002
formance on a downstream task or on intrinsic003
bias found in models’ internal representations.004
However, the relationship between extrinsic005
and intrinsic bias is relatively unknown. In006
this work, we illuminate this relationship by007
measuring both quantities together: we debias008
a model during downstream fine-tuning, which009
reduces extrinsic bias, and measure the effect010
on intrinsic bias, which is operationalized as011
bias extractability with information-theoretic012
probing. Through experiments on two tasks013
and multiple bias metrics, we show that our014
intrinsic bias metric is a better indicator of de-015
biasing than (a contextual adaptation of) the016
standard WEAT metric, and can also expose017
cases of superficial debiasing. Our framework018
provides a comprehensive perspective on bias019
in NLP models, which can be applied to deploy020
NLP systems in a more informed manner. Our021
code will be made publicly available.022

1 Introduction023

Efforts to identify and mitigate gender bias in Nat-024

ural Language Processing (NLP) systems typically025

target one of two notions of bias. Extrinsic evalua-026

tion methods and debiasing techniques focus on the027

bias reflected in a downstream task (De-Arteaga028

et al., 2019; Zhao et al., 2018), while intrinsic029

methods focus on a model’s internal representa-030

tions, such as word or sentence embedding geom-031

etry (Caliskan et al., 2017; Bolukbasi et al., 2016;032

Guo and Caliskan, 2021). Despite an abundance033

of evidence pointing towards gender bias in pre-034

trained language models (LMs), the extent of harm035

caused by these biases is not clear when it is not036

reflected in a specific downstream task (Barocas037

et al., 2017; Kate Crawford, 2017; Blodgett et al.,038

2020; Bommasani et al., 2021). For instance, while039

the word embedding proximity of “doctor” to “man”040

and “nurse” to “woman” is intuitively normatively041
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dataset, and finally (c) measure intrinsic bias in both
models and compare.

wrong, it is not clear when such phenomena would 042

lead to downstream predictions manifesting in so- 043

cial biases. Recently, Goldfarb-Tarrant et al. (2021) 044

have shown that debiasing static embeddings in- 045

trinsically is not correlated with extrinsic gender 046

bias measures, but the nature of the reverse relation- 047

ship is unknown: how are extrinsic interventions 048

reflected in intrinsic representations? Furthermore, 049

Gonen and Goldberg (2019a) demonstrated that a 050

number of intrinsic debiasing methods applied to 051

static embeddings only partially remove the bias 052

and that most of it is still hidden within the embed- 053

ding. Complementing their view, we examine ex- 054

trinsic debiasing methods, as well as demonstrate 055

the possible harm this could cause. Contrary to 056

their conclusion, we do not claim that these debias- 057
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ing methods should not be trusted, as long as they058

are utilized with care.059

Our goal is to gain a better understanding of the060

relationship between a model’s internal represen-061

tations and its extrinsic gender bias by examining062

the effects of various debiasing methods on the063

model’s representations. Specifically, we fine-tune064

models with and without gender debiasing strate-065

gies, evaluate their external bias using various bias066

metrics, and measure intrinsic bias in the represen-067

tations. We operationalize intrinsic bias via two068

metrics: First, we use CEAT (Guo and Caliskan,069

2021), a contextual adaptation of the widely used070

intrinsic bias metric WEAT (Caliskan et al., 2017).071

Second, we propose to use an information-theoretic072

probe to quantify the degree to which gender can be073

extracted from the internal model representations.074

Then, we examine how these intrinsic metrics corre-075

late with a variety of extrinsic bias metrics that we076

measure on the model’s downstream performance.077

Our approach is visualised in Figure 1.078

We perform extensive experiments on two down-079

stream tasks (occupation prediction and corefer-080

ence resolution); several debiasing strategies that081

involve alterations to the training dataset (such as082

removing names and gender indicators, or balanc-083

ing the data by oversampling or downsampling);084

and a multitude of extrinsic bias metrics. Our anal-085

ysis reveals new insights into the way language086

models encode and use information on gender:087

• The effect of debiasing on internal represen-088

tations is reflected in gender extractability,089

while not always in CEAT.090

• In cases of high gender extractability but low091

extrinsic bias metrics, the debiasing is super-092

ficial, and the internal representations are a093

good indicator for this: The bias is still present094

in internal representations and can be restored095

by retraining the classification layer.096

• The two tasks show different patterns of cor-097

relation between intrinsic and extrinsic bias.098

The coreference task exhibits a high correla-099

tion. The occupation prediction task exhibits a100

lower correlation, but it increases after retrain-101

ing (a case of superficial debiasing). Gender102

extractability shows higher correlations to ex-103

trinsic metrics than CEAT.104

2 Methodology 105

In this study, we investigate the relationship be- 106

tween extrinsic bias metrics of a task and a model’s 107

internal representations, under various debiasing 108

conditions, for two datasets in English. We perform 109

extrinsic debiasing, evaluate various extrinsic and 110

intrinsic bias metrics before and after debiasing, 111

and examine correlations. 112

Dataset. Let D = {X ,Y,Z} be a dataset con- 113

sisting of input data X , labels Y and protected 114

attributes Z .1 This work focuses on gender as the 115

protected attribute Z. In all definitions, F and M 116

indicate female and male gender, respectively, as 117

the value of the protected attribute Z. 118

Trained Model. The model is optimized to solve 119

the downstream task posed by the dataset. It can 120

be formalized as f(g(x)) 7→ R|Y|, where g(·) is 121

the feature extractor, implemented by a language 122

model, e.g., RoBERTa (Liu et al., 2019), and f(·) 123

is the classification function. 124

2.1 Bias Metrics 125

Each bias evaluation method described in the liter- 126

ature can be categorized as extrinsic or intrinsic. In 127

all definitions, R indicates the model’s predictions. 128

2.1.1 Extrinsic Metrics 129

Extrinsic methods involve measuring the bias of a
model solving a downstream problem. The extrin-
sic metric is a mapping:

E(X ,Y,R,Z) 7→ R

The output represents the quantity of bias mea- 130

sured; the further from 0 the number is, the larger 131

the bias is. Our analysis comprises a wide range 132

of extrinsic metrics, including some that have been 133

measured in the past on the analyzed tasks (Zhao 134

et al., 2018; De-Arteaga et al., 2019; Ravfogel et al., 135

2020; Goldfarb-Tarrant et al., 2021) and some that 136

have never been measured before, and shows our 137

results apply to many of them. For illustration, 138

we will consider occupation prediction, a common 139

task in research on gender bias (De-Arteaga et al., 140

2019; Ravfogel et al., 2020; Romanov et al., 2019). 141

The input X is a biography and the prediction Y 142

is the profession of the person described in it. The 143

protected attribute Z is the gender of that person. 144
1Z is by convention used for attributes for which we want

to ensure fairness, such as gender, race, etc. It is purposefully
broad, and depending on the task and data could refer to the
gender of an entity in coreference, the subject of a text, the
demographics of the author of a text, etc.
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Performance gap. This is the difference in per-145

formance metric for two different groups, for in-146

stance two groups of binary genders, or a group of147

pro-stereotypical and a group of anti-stereotypical148

examples. We measure the following metrics: True149

Positive Rate (TPR), False Positive Rate (FPR), and150

Precision. In occupation prediction, for instance,151

the TPR gap for each profession y expresses the152

difference in the percentage of women and men153

whose profession is y and are correctly classified154

as such. We also measure F1 of three standard155

clustering metrics for coreference resolution.156

We compute two types of performance gap met-157

rics: (1) the sum of absolute gap values over all158

classes; (2) the Pearson correlation between the159

performance gap for a class and the percentage of160

women in that class. For instance, if y is a pro-161

fession, we measure the correlation between per-162

formance gaps and percentages of women in each163

profession.2 The two metrics are closely related but164

answer slightly different questions: the sum quanti-165

fies how a model behaves differently on different166

genders, and the correlation shows the relation of167

model behaviour to social biases (in the world or168

the data) without regard to actual gap size.169

Statistical metrics. For breadth of analysis, we170

examine three additional statistical metrics (Baro-171

cas et al., 2019), which correspond to different no-172

tions of bias. All three are measured as differences173

(d) between two probability distributions, and we174

then obtain a single bias quantity per metric by175

summing all computed distances.176

• Independence: d
(
P (R|Z = z), P (R)

)
∀z ∈177

{F,M}. For instance, we measure the difference178

between the distribution of model’s predictions179

on women and the distribution of all predictions.180

• Separation: d
(
P (R|Y = y, Z = z), P (R|Y =181

y)
)
∀y ∈ Y, z ∈ {F,M}. For instance, we mea-182

sure the difference between the distribution of a183

model’s predictions on women who are teachers184

and the distribution of predictions on all teachers.185

• Sufficiency: d
(
P (Y |R = r, Z = z), P (Y |R =186

r)
)
. For instance, we measure the difference be-187

tween the distribution of gold labels on women188

classified as teachers by the model and the distri-189

bution of gold labels on all individuals classified190

as teachers by the model.191

2Percentages for coreference resolution are taken from
labour statistics, following Zhao et al. (2018). For occupation
prediction we use training set statistics following De-Arteaga
et al. (2019), before balancing.

2.1.2 Intrinsic Metrics 192

Intrinsic methods are applied to the representation
obtained from the feature extractor. These meth-
ods are independent of any downstream task. The
intrinsic metric is a mapping:

I(g(X), Z) 7→ R

Compression. Our main intrinsic metric is the 193

compression of gender information evaluated by a 194

minimum description length (MDL) probing clas- 195

sifier (Voita and Titov, 2020), trained to predict 196

gender from the model’s representations. Probing 197

classifiers are widely used for predicting various 198

properties of interest from frozen model represen- 199

tations (Belinkov and Glass, 2019). MDL probes 200

were proposed because a probe’s accuracy may be 201

misleading due to memorization and other issues 202

(Hewitt and Liang, 2019; Belinkov, 2021). We use 203

the MDL online code, where the probe is trained in 204

timesteps, on increasing subsets of the training set, 205

then evaluated against the rest of it. Higher com- 206

pression indicates greater gender extractability. 207

CEAT. We also measure CEAT (Guo and 208

Caliskan, 2021), which is a contextualized version 209

of WEAT (Caliskan et al., 2017), a widely used bias 210

metric for static word embeddings. WEAT defines 211

sets X and Y of target words, and sets A and B of 212

attribute words. For instance, A, B contain males 213

and females names, while X , Y contain career and 214

family related words, respectively. The bias is op- 215

erationalized as the geometric proximity between 216

the target and attribute word embeddings, and is 217

quantified in CEAT by the Combined Effect Size 218

(CES) and a p-value for the null hypothesis of hav- 219

ing no biased associations. For more information 220

on CEAT refer to Appendix A.4.3. 221

2.2 Debiasing Techniques 222

We debias models by modifying the downstream 223

task’s training data before fine-tuning. Scrub- 224

bing (De-Arteaga et al., 2019) removes first names 225

and gender-specific terms (“he”, “she”, “husband”, 226

“wife”, “Mr”, “Mrs”, etc.). Balancing subsamples 227

or oversamples examples such that each gender is 228

equally represented in the resulting dataset w.r.t 229

each label. Anonymization (Zhao et al., 2018) re- 230

moves named entities. Counterfactual Augmenta- 231

tion (Zhao et al., 2018) involves replacing male 232

entities in an example with female entities, and 233

adding the modified example to the training set. 234
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As some of these are dataset/task-specific, we give235

more details in the following section.236

3 Experiments237

In each experiment, we fine-tune a model for a238

downstream task. For training, we use either the239

original dataset or a dataset debiased with one of240

the methods from Section 2.2. Figure 2 presents241

examples of debiasing methods for the two down-242

stream tasks. We measure two intrinsic metrics by243

probing that model’s inner representations for gen-244

der extractability (as measured by MDL) and by245

CEAT, and test various extrinsic metrics. The rela-246

tion between one intrinsic and one extrinsic metric247

becomes one data point, and we repeat over many248

random seeds (for both the model and the probe).249

Further implementation details are in appendix A.250

3.1 Occupation Prediction251

The task of occupation prediction is to predict a252

person’s occupations (from a closed set), based on253

their biography. We use the Bias in Bios dataset254

(De-Arteaga et al., 2019). Regardless of the train-255

ing method, the test set is subsampled such that256

each profession has equal gender representation.257

Model. Our model is a RoBERTa model (Liu258

et al., 2019) topped with a linear classifier, which259

receives the [CLS] token embedding as input and260

generates a probability distribution over the pro-261

fessions. In addition, we train a baseline classifier262

layer on top of a frozen, non-finetuned RoBERTa.263

Debiasing Techniques. Following De-Arteaga264

et al. (2019) we experiment with scrubbing the265

training dataset.Figure 2 shows an example biog-266

raphy snippet and its scrubbed version. We also267

conduct balancing (per profession, subsampling268

and oversampling to ensure an equal number of269

males and females per profession), which has not270

previously been used on this dataset and task.271

Metrics. We measure all bias metrics from Sec-272

tion 2.1 except for F1.273

Probing. The probing dataset for this task is the274

test set, and the gender label of a single biography275

is the gender of the person described in it. We probe276

the [CLS] token representation of the biography. In277

addition to the models described above, we mea-278

sure baseline extractability of gender information279

from a randomly initialized RoBERTa model.280

3.2 Coreference Resolution281

The task of coreference resolution is to find all tex-282

tual expressions referring to the same real-world283

Britney currently works on CNN’s 
newest primetime show. She has 

also written for the New York 
Times.

_ currently works on CNN’s 
newest primetime show. _ has 
also written for the New York 

Times.

Scrubbing

My sister is taking a painting 
class this summer, so she has 
been sharing the latest lesson 

with me.

My brother is taking a painting 
class this summer, so he has 

been sharing the latest lesson 
with me.

Counterfactual augmentation

Occupation Classification Coreference Resolution

Original dataset Original dataset

Figure 2: Examples of two debiasing methods per-
formed on the data.

entities. We train on Ontonotes 5.0 (Weischedel 284

et al., 2013) and test on the Winobias challenge 285

dataset (Zhao et al., 2018). Winobias consists of 286

sentence pairs, pro- and anti-stereotypical variants, 287

with individuals referred to by their profession. For 288

example, “The physician hired the secretary be- 289

cause he/she was busy.” is pro/anti-stereotypical, 290

based on US labor statistics. 3 A coreference sys- 291

tem is measured by the performance gap between 292

the pro- and anti-stereotypical subsets. 293

Model. We use the model presented in Lee et al. 294

(2018a) with RoBERTa as a feature extractor. 295

Debiasing Techniques. Following Zhao et al. 296

(2018), we apply anonymization (denoted as Anon) 297

and counterfactual augmentation (CA) on the train- 298

ing set. These techniques were used jointly in pre- 299

vious work; we examine each individually as well. 300

Metrics. Following Zhao et al. (2018), we mea- 301

sure the F1 difference between anti- and pro- 302

stereotypical examples.4 We also interpret the task 303

as a classification problem, and measure all met- 304

rics from Section 2.1. For more details refer to 305

Appendix A.4.2. 306

Probing. We probe the representation of a pro- 307

fession word as extracted from Winobias sentences, 308

after masking out the pronouns. We define a pro- 309

fession’s gender as the stereotypical gender for this 310

profession. To prevent memorization by the probe— 311

given the small number of professions—the dataset 312

is sorted so that professions are gradually added to 313

the training set, so a success on the validation set 314

is on previously unseen professions. 315

3Labor Force Statistics from the Current Population Sur-
vey, https://www.bls.gov/cps/cpsaat11.htm

4We combined the T1 and T2 datasets, as well as the dev
and test datasets, to create a single held-out challenge dataset.
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Extrinsic

Debiasing
Strategy

Intrinsic Before After

Compression CEAT TPR (P) FPR (S) Sep Suff TPR (P) FPR (S) Sep Suff

Random 5.61* 0.12† - - - - - - - -
Pre-trained 10.12 0.49* - - - - - - - -
None 4.12 0.22 0.76 0.08 0.33 9.45 0.78 0.073 0.33 9.70
Oversampling 8.52* 0.29 0.73 0.09* 0.31 8.32* 0.81* 0.068* 0.33 10.91*

Subsampling 3.57 0.22 0.32* 0.03* 0.20* 1.22* 8.37* 0.08* 0.30* 1.32*

Scrubbing 1.70* 0.23 0.70* 0.06* 0.30 4.93* 0.71* 0.06* 2.56* 0.81*

(a) Occupation classification: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer,
over 10 seeds per fine-tuned model and per retrained classification model.

Extrinsic

Debiasing
Strategy

Intrinsic Before After

Compression CEAT F1 diff FPR (S) Sep Suff F1 diff FPR (S) Sep

Random 0.83* 0.12† - - - - - - - -
Pre-trained 0.96 0.49* - - - - - - - -
None 1.98 0.35 6.63 0.12 1.25 8.69 6.07 0.11 1.19 7.35
Anon 2.07* 0.31* 7.26 0.13 1.34 8.82 7.42* 0.13* 1.34* 8.66*

CA 1.50* 0.27* 2.30* 0.05* 0.54* 1.67* 3.67* 0.06* 0.67* 2.40*

Anon + CA 1.54* 0.25* 2.42* 0.049* 0.56* 1.56* 2.86* 0.05* 0.59* 1.65*

(b) Coreference resolution: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer, over
10 seeds per fine-tuned model and 5 seeds per retrained classification model.

Table 1: Results on both tasks. * marks significant reduction or increase in bias (p < 0.05 on Pitman’s permutation
test), compared to the non-debiased model (debiasing strategy None). The lowest bias score in each column is
marked with bold. P = Pearson; S = Sum. † was computed only on 3 out of 10 tests for which CEAT’s p < 0.05.

4 Results316

Tables 1a and 1b present intrinsic and extrinsic317

metrics on the occupation prediction and corefer-318

ence resolution tasks, respectively. We present a319

representative subset of the measured metrics that320

demonstrate the observed phenomena; full results321

are found in Appendix B.322

4.1 Compression Reflects Debiasing Effects323

As shown in the tables, compression captures dif-324

ferences in models that were debiased differently.325

CEAT, however, cannot differentiate between oc-326

cupation prediction models. For example, in occu-327

pation prediction (Table 1a) the compression rate328

varies significantly between a non-debiased and a329

debiased model via scrubbing and oversampling,330

while CEAT detects no difference between the mod-331

els. In coreference resolution (Table 1b), both com-332

pression and CEAT are able to identify differences333

between the non-debiased model and the others,334

such as CA, which has both a lower compression335

and CEAT effect. But the CEAT effect sizes are336

small (below 0.5), which implies no bias in contrast337

to the extrinsic metrics.338

4.2 High Gender Extractability Implies 339

Superficial Debiasing 340

Extrinsic and intrinsic effects of debiasing. In 341

occupation classification (Table 1a), somewhat sur- 342

prisingly, subsampling the training data has the 343

strongest effect on extrinsic metrics, but not on 344

compression rate. Scrubbing reduces both intrinsic 345

and extrinsic metrics, although its effect on extrin- 346

sic metrics is limited compared to subsampling. 347

Training with oversampling caused less reduction 348

in extrinsic bias metrics. A consequence of over- 349

sampling is that some metrics are less biased, but 350

compression rates are increased, so gender infor- 351

mation is more accessible. The effectiveness of 352

subsampling over other metrics is further discussed 353

in appendix C. In coreference resolution (Table 1b), 354

while both CA and CA with anonymization reduced 355

gender extractability as well as external bias met- 356

rics, anonymization alone increased intrinsic bias 357

without affecting external bias metrics significantly. 358

Debiasing without fine-tuning. As the effect on 359

extrinsic bias did not match the effect on intrinsic 360

bias in several cases, we examined the role of the 361

classification layer. We trained a model for occupa- 362
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Occupation Classification Coreference Resolution
R2 Compression R2 CEAT R2 Compression R2 CEAT

Metric Before After Before After Before After Before After

F1 diff (pro− anti) - - - - 0.821 0.709 0.246 0.005
TPR gap (P) 0.046 0.304 0.042 0.049 0.222 0.006 0.008 0.012
TPR gap (S) 0.049 0.449 0.022 0.036 0.817 0.752 0.297 0.003
FPR gap (P) 0.001 0.120 0.008 0.002 0.021 0.054 0.002 0.000
FPR gap (S) 0.353 0.046 0.079 0.001 0.844 0.773 0.263 0.004
Precision gap (P) 0.004 0.063 0.006 0.002 0.223 0.008 0.009 0.013
Precision gap (S) 0.150 0.291 0.031 0.054 0.817 0.752 0.296 0.003
Independence gap (S) 0.251 0.382 0.050 0.005 0.778 0.732 0.355 0.001
Separation gap (S) 0.066 0.165 0.046 0.009 0.835 0.776 0.261 0.005
Sufficiency gap (S) 0.202 0.567 0.040 0.034 0.825 0.753 0.287 0.002

Table 2: Coefficient determination of the regression line taken on the compression rate and each metric, before and
after retraining of the classification layer. P = Pearson; S = Sum.

tion prediction without fine-tuning the underlying363

RoBERTa model. Training on a subsampled dataset364

also reduced the extrinsic metrics (0.15, 0.03, 0.20,365

and 0.31, respectively, on TPR gaps Pearson, FPR366

gaps sum, separation sum, and sufficiency sum).367

Detailed results of this experiment can be found in368

Appendix B. Since no updates were made to the369

LM, the internal representations could not be debi-370

ased, thus the debiasing observed in this model can371

only be superficial.372

Retraining the classification layer. Fine-tuning373

of both tasks revealed that lower extrinsic metrics374

did not always lead to lower compression. Does375

this indicate cases where the debiasing process is376

only superficial, and the internal representations377

remain biased? To test this hypothesis, we froze the378

previously fine-tuned LM’s weights, and retrained379

the classification layer. We used the original (non-380

debiased) training set for retraining.381

Tables 1a and 1b also compare extrinsic metrics382

before and after retraining. All models show bias383

restoration, due to the classification layer being384

trained on the biased dataset.5 The amount of bias385

restored varies between models in a way that is386

predictable by the compression metric.387

In the occupation prediction task, comparing Be-388

fore and After numbers in Table 1a, the model389

fine-tuned using a scrubbed dataset—which has the390

5The training datasets contain bias. The occupation pre-
diction set has an unbalanced amount of males and females
per profession (for example 15% of software engineers are
females). The coreference resolution training set has more
male than female pronouns, and males are more likely to be
referred to by their profession (Zhao et al., 2018).

lowest compression rate—displays the least bias 391

restoration, confirming that the LM absorbed the 392

process of debiasing. The model fine-tuned on sub- 393

sampled data has higher extrinsic bias after retrain- 394

ing. Hence, the debiasing was primarily cosmetic, 395

and the representations within the LM were not 396

debiased. The model fine-tuned on oversampled 397

data—which has the highest compression—has the 398

highest extrinsic bias (except for FPR), even though 399

this was not true before retraining. 400

In coreference resolution, comparing Before and 401

After numbers in Table 1b, models with the least 402

extrinsic bias (CA and CA+Anon) are also least 403

biased after retraining. Compression rate predicted 404

this; these models also had lower compression rates 405

than non-debiased models. Interestingly, the model 406

fine-tuned with an anonymized dataset is the most 407

biased after retraining, consistent with its high com- 408

pression rate relative to the other models. As with 409

subsampling and oversampling in occupation pre- 410

diction, anonymization’s (lack of) effect on extrin- 411

sic metrics was cosmetic (compare None and Anon 412

in Before block, Table 1b). Anonymization actually 413

had a biasing effect on the LM, which was realized 414

after retraining. We conclude that compression rate 415

is a useful indicator of superficial debiasing. 416

4.3 Correlation between Extrinsic and 417

Intrinsic Metrics 418

Table 2 shows correlations between compression 419

rate and various extrinsic metrics before and after 420

retraining. In occupation prediction, certain extrin- 421

sic metrics have a weak correlation with compres- 422
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(a) Fine-tuned models. Each point is a single seed for training
and testing the model.

(b) After retraining. Each box represents 10 runs of retraining
on the same fine-tuned feature extractor.

Figure 3: Occupation prediction: Compression vs. TPR-gap (Pearson) after various debiasing strategies.

(a) Fine-tuned models. Each point is a single seed for training
and testing the model.

(b) After retraining. Each box represents 5 runs of retraining
on the same fine-tuned feature extractor.

Figure 4: Coreference resolution: Compression vs. F1 difference after various debiasing strategies.

sion rate, while others do not. Except one metric423

(FPR gap sum), the compression rate and the extrin-424

sic metric correlate more after retraining. Figure 3425

illustrates this for TPR-gap (Pearson). The increase426

is due to superficial debiasing, especially by sub-427

sampling data, which prior to retraining had low428

extrinsic metrics and relatively high intrinsic met-429

rics. This shows that correlation between extrinsic430

metrics and compression rate for certain metrics431

is stronger than it appeared before retraining. It is432

unsurprising that CEAT does not correlate with any433

extrinsic metrics, since CEAT could not distinguish434

between different models.435

Coreference resolution shows stronger correla-436

tions between compression rate and extrinsic met-437

rics, but low correlations between Pearson metrics.438

We further discuss cases of no correlation in ap-439

pendix D. Correlations decrease after retraining,440

but metrics that were highly correlated remain so441

(> 0.7 after retraining). The correlations are visu-442

alized for F1 difference metrics in Figure 4. CEAT 443

and extrinsic metrics correlate much less than com- 444

pression rate (Table 2). Our results are in line with 445

those of Goldfarb-Tarrant et al. (2021), who found 446

a lack of correlation between extrinsic metrics and 447

WEAT, the static-embedded version of CEAT. 448

5 Related Work 449

There are few studies that examine both intrinsic 450

and extrinsic metrics. Previous work by Goldfarb- 451

Tarrant et al. (2021) showed that debiasing static 452

embeddings intrinsically is not correlated with ex- 453

trinsic bias, challenging the assumption that intrin- 454

sic metrics are predictive of bias. We examine the 455

other direction, exploring how extrinsic debiasing 456

affects intrinsic metrics. We also extend their work 457

to contextualized embeddings, a wider range of 458

extrinsic metrics, and a new, more effective intrin- 459

sic metric based on information-theoretic probing. 460

Studies that inspect extrinsic metrics include either 461

7



a challenge dataset curated to expose differences in462

model behavior by gender, or a test dataset labelled463

by gender. Among these datasets are Winobias464

(Zhao et al., 2018), Winogender (Rudinger et al.,465

2018) and GAP (Webster et al., 2018) for corefer-466

ence resolution, WinoMT (Stanovsky et al., 2019)467

for machine translation, EEC (Kiritchenko and468

Mohammad, 2018) for sentiment analysis, BOLD469

(Dhamala et al., 2021) for language generation,470

gendered NLI (Sharma et al., 2020) for natural lan-471

guage inference and Bias in Bios (De-Arteaga et al.,472

2019) for occupation prediction.473

Studies that measure gender bias intrinsically474

in static word or sentence embeddings measure475

characteristics of the geometry, such as the prox-476

imity between female- and male-related words to477

stereotypical words, or how embeddings cluster478

or relate to a gender subspace (Bolukbasi et al.,479

2016; Caliskan et al., 2017; Gonen and Goldberg,480

2019b; Ethayarajh et al., 2019). However, metrics481

and debiasing methods for static embeddings do482

not apply directly to contextualized ones. Several483

studies use sentence templates to adapt to contex-484

tual embeddings (May et al., 2019; Kurita et al.,485

2019; Tan and Celis, 2019). This templated ap-486

proach is difficult to scale, and lacks the range of487

representations that a contextual embedding offers.488

Other work extracts embedding representations of489

words from natural corpora (Zhao et al., 2019; Guo490

and Caliskan, 2021; Basta et al., 2019). These491

studies often adapt the WEAT method (Caliskan492

et al., 2017), which measures embedding geometry.493

None measure the effect of the presumably found494

“bias” on a downstream task.495

There is a growing conversation in the field496

(Barocas et al., 2017; Kate Crawford, 2017; Blod-497

gett et al., 2020; Bommasani et al., 2021) about the498

importance of articulating the harms of measured499

bias. In general, extrinsic metrics have clear, in-500

terpretable impacts for which harm can be defined.501

Intrinsic metrics have an unclear effect. Without502

evidence from a concrete downstream task, a found503

intrinsic bias is only theoretically harmful. Our504

work is a step towards understanding whether in-505

trinsic metrics provide valuable insights about bias506

in a model.507

6 Discussion and Conclusions508

This study examined whether bias in internal repre-509

sentations is related to extrinsic bias. We designed510

a new framework in which we debias a model on511

a downstream task, and measure its intrinsic bias. 512

We found that gender extractability from internal 513

representations, measured by compression rate via 514

MDL probing, reflects bias in a model. Compres- 515

sion was much more reliable than an alternative 516

intrinsic metric for contextualised representations, 517

CEAT. Compression correlated well—to varying 518

degrees—with many extrinsic metrics. 519

Our results show that when a debiasing method 520

reduces extrinsic metrics but not compression, it 521

indicates that the language model remains biased. 522

When such superficial debiasing occurs, the debi- 523

ased language model may be reapplied to another 524

task, as in Jin et al. (2021), resulting in unexpected 525

biases and nullifying the supposed debiasing. Our 526

findings suggest that practitioners of NLP should 527

take special care when adopting previously debi- 528

ased models and inspect them carefully, perhaps 529

using our framework. 530

Our work also highlighted the importance of the 531

classification layer. Using a debiased objective, 532

such as a balanced dataset, the classification layer 533

can provide significant debiasing. This holds even 534

if the internal representations are biased and the 535

classifier is a single linear layer, as shown in the 536

occupation prediction task. Bias stems in part from 537

internal LM bias and in part from classification 538

bias. Practitioners should focus their efforts on 539

both parts when attempting to debias a model. 540

We used a broader set of extrinsic metrics than 541

is typically used, and found that the bias metrics 542

behaved differently: some decreased more than oth- 543

ers after debiasing, and they correlated differently 544

with compression rate. Debiasing efforts may not 545

be fully understood by testing only a few extrinsic 546

metrics. MDL probing can indicate meaningful 547

debiasing of internal model representations even 548

when not all metrics are easily measurable, since it 549

correlates well with many extrinsic metrics. 550

A major limitation of this study is the use of gen- 551

der as a binary variable, which is trans-exclusive. 552

Cao and Daumé III (2020) made the first steps 553

towards inclusive gender bias evaluation in NLP, 554

revealing that coreference systems fail on gender- 555

inclusive text. Further work is required to adjust 556

our framework to non-binary genders, potentially 557

revealing insights about the poor performance of 558

NLP systems in that area. 559
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A Implementation Details813

We used RoBERTa in all models which has 120M814

parameters. We use following random seeds in all815

repeated experiments: 0, 5, 11, 26, 42, 46, 50, 63,816

83, 90.817

A.1 Occupation Clasification818

We fine-tuned a RoBERTa-base model with a lin-819

ear classification layer on top. Training was done820

for 10 epochs at a learning rate of 5e-5, batch size821

of 64. The input to RoBERTa was the biography822

tokens, which is limited to the first 128 tokens. The823

resulting [CLS] token embedding is fed to the clas-824

sifier to predict the occupation. The probing task825

involves using the same [CLS] token and training826

the probing classifier to predict the gender of the827

person in the biography. The experiments without828

fine-tuning included either a pre-trained or a pre-829

viously fine-tuned RoBERTa. We first extracted830

the pre-trained RoBERTa’s embeddings of tokens831

from the [CLS] and then trained a linear classi-832

fier on them. The learning rate was 0.001 and the833

batch size was 64. We trained the classification834

layer with pre-trained RoBERTa on 300 epochs,835

but with fine-tuned RoBERTa, 10 epochs were suf-836

ficient. For all training processes, the epoch with837

the greatest validation accuracy was saved. Fine-838

tuning took 7 hours on GeForce RTX 2080 Ti GPU.839

Bias in Bios contains almost 400k biographies, and840

we obtain validation (10%) and test set (25%) by841

splitting with Scikit-learn’s (Pedregosa et al., 2011)842

test_train_split with our random seeds.843

A.2 Coreference Resolution844

We use the implementation of Xu and Choi (2020),845

a model that was introduced by Lee et al. (2018b)846

and has been adopted by many coreference resolu-847

tion models. Coreference resolution is the process848

of clustering different mentions in a text that refer849

to the same real-world entities. The task is solved850

by detecting mentions through text spans and then851

predicting for each pair of spans if they represent852

the same entity. The span representations were853

extracted with a RoBERTa model, which is fine-854

tuned throughout the training process, except in the855

retraining experiment. Fine-tuning took 3 hours856

on NVIDIA RTX A6000 GPU. Ontonotes 5.0 has857

625k sentences and we use the standard validation858

and test splits.859

A.3 Probing Classifier 860

We use the MDL probe (Voita and Titov, 2020) im- 861

plementation by Mendelson and Belinkov (2021). 862

In all experiments, we use a linear probe and train 863

it with a batch size of 16 and a learning rate of 864

1e-3. The timestamps used, meaning the accumu- 865

lating fractions of data that the probe is trained on, 866

are 2.0%, 3.0%, 4.4%, 6.5%, 9.5%, 14.0%, 21.0%, 867

31.0%, 45.7%, 67.6%, 100%. 868

A.4 Metrics 869

A.4.1 Fairness-Based Metrics Implementation 870

All three statistical fairness metrics measure the 871

difference between two probability distributions, 872

where this difference describes a notion of bias. 873

We calculate Independence and Separation via 874

Kullback–Leibler (KL) divergence, using the Al- 875

lenNLP implementation (https://github.com/ 876

allenai/allennlp). We calculate Sufficiency via 877

Wasserstein distance instead, which is motivated 878

by Kwegyir-Aggrey et al. (2021). In this case, we 879

cannot use KL divergence, since there are some 880

classes that do not occur in model predictions for 881

both male and female genders. This causes the 882

probability distributions to not have the same sup- 883

port, and KL divergence is unbounded. Wasserstein 884

distance lacks the requirement for equal support. 885

A.4.2 Classification Metrics Interpretation in 886

Winobias 887

Winobias datasets contain pairs of stereotypical and 888

anti-stereotypical sentences. The stereotypes are 889

derived from the US labor statistics (for instance, a 890

profession with a majority of males is stereotypi- 891

cally male). Since coreference resolution is viewed 892

as a clustering problem, it is usually measured via 893

clustering evaluation metrics. Coreference resolu- 894

tion is commonly measured as the average F1 score 895

of these, and the same is true for Winobias. Nev- 896

ertheless, coreference resolution is accomplished 897

by making a prediction for each pair of mentions, 898

so it can be seen as a classification task. Wino- 899

bias can be viewed as a simpler task than general 900

coreference resolution, as it contains exactly two 901

mentions of professions and one pronoun, which 902

refers to exactly one profession. Therefore, we re- 903

frame it as a classification problem. In a Winobias 904

sentence with two professions x and y, as well as a 905

pronoun p, where p is referring to x, a true positive 906

would be to cluster x and p together, while a false 907

positive would be to cluster y and p together. Our 908
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classification metrics are derived based on these909

definitions. For instance, the TPR gap for pro-910

fession “teacher”, which is a stereotypical female911

occupation, is the TPR rate on pro-stereotypical912

sentences (with a female pronoun) minus the TPR913

rate on anti-stereotypical sentences (with a male914

pronoun).915

A.4.3 CEAT916

The Word Embedding Association Test (WEAT)917

developed by (Caliskan et al., 2017) is a method918

for evaluating bias in static word embeddings. The919

test is defined as follows: given two sets of target920

words X,Y (e.g., ’executive’, ’management’, ’pro-921

fessional’ and ’home’, ’parents’, ’children’) and922

two sets of attribute words (e.g., male names and923

female names), and using w⃗ to represent the word924

embedding for word w, the effect size is:925

ES = meanx∈Xs(x,A,B)− meany∈Y s(y,A,B)926

where927

s(x,A,B) =928

meana∈Acos(x⃗, a⃗)− meana∈Acos(x⃗, b⃗)
std-devw∈X

⋃
Y s(w,A,B)

929

In essence, the effect size measures how differ-930

ent are the distances between the embedding vec-931

tors of each target group and the attribute groups.932

Specifically, if s(x,A,B) > 0, x⃗ is more simi-933

lar to attribute words B and vice versa. For in-934

stance, a larger effect size is observed if target935

words X are more similar to attribute words A and936

target words Y are more similar to attribute words937

B. |ES| > 0.5 and |ES| > 0.8 are considered938

medium and large effect sizes, respectively (Rice939

and Harris, 2005). The null hypothesis holds that940

there is no difference between the two sets of target941

words in terms of their relative similarity to the942

two sets of attribute words, indicating that there are943

no biased associations. Statistical significance is944

defined by the p-value of WEAT, which reflects the945

probability of observing the effect size under the946

null hypothesis.947

Since a word can take on a great variety of vector948

representations in a contextual setting, ES varies949

according to the sentences used to extract word950

representation. Thus, to adopt WEAT to contextu-951

alized representations, the Combined Effect Size952

(CES) (Guo and Caliskan, 2021) is derived as the953

distribution of WEAT effect sizes over many possi- 954

ble contextual word representations: 955

CES(X,Y,A,B) =

∑N
i=1 viESi∑N

i=1 vi
956

where ESi denotes the WEAT effect size of the i’th 957

choice of word representations from a large corpus, 958

and vi is the inverse of the sum of in-sample vari- 959

ance Vi and between-sample variance in the distri- 960

bution of random-effects. As in Guo and Caliskan 961

(2021), the representation for each word is derived 962

from 10,000 random sentences extracted from a 963

corpus of Reddit comments. 964

The combined effect size of each of the models 965

is examined on WEAT stimulus 6, which contains 966

target words of career/family and attribute words 967

of male/female names. This was the only one that 968

detected bias on a pre-trained RoBERTa (CES close 969

to 0.5 and p < 0.05). The points that we kept in 970

our analysis are those where p < 0.05, which make 971

up 90% of the points in occupation prediction and 972

95% of the points in coreference resolution. 973

B Full Results 974

In this section we provide the full results of a 975

RoBERTa model trained on the downstream task. 976

The results for the occupation prediction task af- 977

ter fine-tuning are presented in Table 3 and Table 978

4 presents the retrained model results. Figure 5 979

illustrates the correlations between extrinsic met- 980

rics and compression rate before and after retrain- 981

ing. Table 5 presents the complete results of the 982

model trained without fine-tuning, meaning that 983

the RoBERTa model is the pretrained version from 984

Liu et al. (2019) and only the classification layer 985

was updated. Subsampling the dataset has signif- 986

icant debiasing effects, which suggests that this 987

debiasing method can achieve low extrinsic bias 988

even when internal bias exists. 989

Regarding the coreference resolution task, Table 990

6 displays the results on a finetuned model and 991

Table 7 displays the retraining results. Figure 6 992

shows the correlations between compression rate 993

and extrinsic metrics before and after the retraining. 994
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Debiasing Strategy

Metric None Oversampling Subsampling Scrubbing

Compression 4.121 ± 1.238 8.522* ± 2.354 3.568 ± 1.516 1.699* ± 0.138
Accuracy 0.861 ± 0.005 0.852* ± 0.004 0.861 ± 0.003 0.851* ± 0.003
TPR gap (P) 0.763 ± 0.071 0.729 ± 0.067 0.319* ± 0.114 0.704* ± 0.068
TPR gap (S) 2.391 ± 0.257 2.145* ± 0.220 1.598* ± 0.273 2.019* ± 0.262
FPR gap (P) 0.591 ± 0.052 0.491* ± 0.059 0.087* ± 0.094 0.552 ± 0.063
FPR gap (S) 0.075 ± 0.010 0.085* ± 0.011 0.030* ± 0.006 0.057* ± 0.007
Precision gap (P) 0.398 ± 0.053 0.327* ± 0.044 0.166* ± 0.055 0.347* ± 0.050
Precision gap (S) 0.015 ± 0.001 0.015 ± 0.001 0.011* ± 0.001 0.013* ± 0.001
Independence gap (S) 0.009 ± 0.002 0.008 ± 0.002 0.001* ± 0.000 0.005* ± 0.001
Separation gap (S) 0.327 ± 0.051 0.305 ± 0.030 0.204* ± 0.032 0.296 ± 0.053
Sufficiency gap (S) 9.451 ± 1.945 8.324* ± 1.537 1.218* ± 0.330 4.930* ± 0.927

Table 3: Occupation Prediction: Results on a RoBERTa-based model trained over 10 seeds. Significant reduction
or increase in a metric (p < 0.05 on Pitman’s permutation test), compared to the non-debiased model (debiasing
strategy is None), is marked with *. The lowest bias score or highest performance metric in each column is marked
with bold. P = Pearson; S = Sum.

Debiasing Strategy

Metric None Oversampling Subsampling Scrubbing

Compression 4.121 ± 1.238 8.522 ± 2.354 3.568 ± 1.516 1.699 ± 0.138
Accuracy 0.859 ± 0.004 0.856 ± 0.003 0.853 ± 0.003 0.854 ± 0.003
TPR gap (P) 0.777 ± 0.047 0.813* ± 0.040 0.704* ± 0.075 0.714* ± 0.068
TPR gap (S) 2.482 ± 0.238 2.593* ± 0.240 2.164* ± 0.284 1.989* ± 0.227
FPR gap (P) 0.596 ± 0.041 0.603 ± 0.047 0.602 ± 0.041 0.536* ± 0.038
FPR gap (S) 0.073 ± 0.008 0.068* ± 0.007 0.081* ± 0.012 0.059* ± 0.005
Precision gap (P) 0.373 ± 0.067 0.356* ± 0.070 0.338* ± 0.054 0.309* ± 0.053
Precision gap (S) 0.016 ± 0.002 0.017* ± 0.002 0.015* ± 0.002 0.014* ± 0.002
Independence gap (S) 0.009 ± 0.002 0.010* ± 0.002 0.009 ± 0.003 0.005* ± 0.001
Separation gap (S) 0.334 ± 0.050 0.328 ± 0.048 0.300* ± 0.049 0.274* ± 0.041
Sufficiency gap (S) 9.701 ± 1.305 10.908* ± 1.354 8.370* ± 2.558 5.239* ± 0.798

Table 4: Occupation Prediction after retraining: Results on a RoBERTa-based model after retraining of the
classification layer with 10 seeds for each pre-trained model. Significant reduction or increase in a metric (p < 0.05
on Pitman’s permutation test), compared to the non-debiased model (debiasing strategy is None), is marked with *.
The lowest bias score or highest performance metric in each column is marked with bold. P = Pearson; S = Sum.
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Debiasing Strategy

Metric None Oversampling Subsampling Scrubbing

Accuracy 0.824 ± 0.003 0.815* ± 0.005 0.831* ± 0.001 0.807* ± 0.003
TPR gap (P) 0.839 ± 0.011 0.443* ± 0.053 0.158* ± 0.156 0.814 ± 0.029
TPR gap (S) 3.088 ± 0.192 1.545* ± 0.177 1.621* ± 0.088 3.154 ± 0.332
FPR gap (P) 0.598 ± 0.016 0.369* ± 0.029 0.067* ± 0.050 0.550* ± 0.012
FPR gap (S) 0.087 ± 0.004 0.041* ± 0.004 0.027* ± 0.003 0.112* ± 0.005
Precision gap (P) 0.476 ± 0.027 0.163* ± 0.025 0.134* ± 0.065 0.479 ± 0.038
Precision gap (S) 0.017 ± 0.001 0.012* ± 0.001 0.010* ± 0.001 0.016* ± 0.002
Independence gap (S) 0.014* ± 0.002 0.001* ± 0.000 0.000* ± 0.000 0.022* ± 0.001
Separation gap (S) 0.336* ± 0.044 0.214* ± 0.038 0.203* ± 0.024 0.432* ± 0.048
Sufficiency gap (S) 12.019* ± 1.721 2.105* ± 0.576 1.478* ± 0.394 13.798* ± 0.966

Table 5: Occupation Prediction: Results on a RoBERTa-based model trained without fine-tuning, over 5 seeds.
The compression rate computed on a pre-trained RoBERTa model is 10.122. Significant reduction or increase in a
metric (p < 0.05 on Pitman’s permutation test), compared to the non-debiased model (debiasing strategy is None),
is marked with *. The lowest bias score or highest performance metric in each column is marked with bold. P =
Pearson; S = Sum.
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Figure 5: Occupation prediction: Before (left) and after (right) plots of compression rate versus and extrinsic metric.
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Figure 5: Occupation prediction: Before (left) and after (right) plots of compression rate versus and extrinsic metric.
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Figure 5: Occupation prediction: Before (left) and after (right) plots of compression rate versus and extrinsic metric.
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Debiasing Strategy

Metric None Anon CA Anon + CA

Compression 1.984 ± 0.101 2.073* ± 0.102 1.502* ± 0.075 1.540* ± 0.098
F1 (Ontonotes test) 76.406 ± 0.165 76.538 ± 0.176 77.187* ± 0.071 77.246* ± 0.230
F1 diff (pro− anti) 6.631 ± 1.013 7.256 ± 0.846 2.302* ± 0.466 2.422* ± 0.714
TPR gap (P) 0.654 ± 0.069 0.710* ± 0.047 0.607 0.082 ± 0.627 ± 0.100
TPR gap (S) 4.884 ± 0.698 4.870 ± 0.509 2.041* ± 0.228 2.014* ± 0.286
FPR gap (P) 0.602 ± 0.036 0.620 ± 0.056 0.572 ± 0.078 0.629 ± 0.107
FPR gap (S) 0.120 ± 0.015 0.128 ± 0.011 0.050* ± 0.006 0.049* ± 0.007
Precision gap (P) 0.654 ± 0.068 0.710* ± 0.048 0.607 ± 0.083 0.627 ± 0.099
Precision gap (S) 0.061 ± 0.009 0.061 ± 0.006 0.026* ± 0.003 0.025* ± 0.004
Independence gap (S) 0.027 ± 0.008 0.025 ± 0.004 0.004* ± 0.001 0.004* ± 0.001
Separation gap (S) 1.247 ± 0.150 1.344 ± 0.137 0.537* ± 0.061 0.557* ± 0.070
Sufficiency gap (S) 8.684 ± 1.883 8.816 ± 1.544 1.673* ± 0.354 1.557* ± 0.384

Table 6: Coreference resolution: results on Ontonotes test set and Winobias challenge set. Each model was trained
over 10 seeds. * Marks significant reduction or increase in bias (p < 0.05 on Pitman’s permutation test), compared
to the non-debiased model (debiasing strategy None). The lowest bias score or highest performance metric in each
column is in bold. P = Pearson; S = Sum.

Debiasing Strategy

Metric None Anon CA Anon + CA

Compression 1.984 ± 0.065 2.073* ± 0.104 1.502* ± 0.081 1.540* ± 0.079
F1 (Ontonotes test) 76.40* ± 0.16 76.48* ± 0.22 76.72* ± 0.15 76.91* ± 0.19
F1 diff (pro− anti) 6.072 ± 0.789 7.417* ± 1.280 3.674* ± 0.599 2.858* ± 0.382
TPR gap (P) 0.635 ± 0.053 0.688* ± 0.052 0.679* ± 0.062 0.654 ± 0.049
TPR gap (S) 4.561 ± 0.414 5.143* ± 0.713 2.590* ± 0.420 2.178* ± 0.201
FPR gap (P) 0.579 ± 0.046 0.637* ± 0.055 0.620* ± 0.070 0.692* ± 0.075
FPR gap (S) 0.113 ± 0.011 0.126* ± 0.016 0.063* ± 0.010 0.052* ± 0.004
Precision gap (P) 0.636 ± 0.052 0.690* ± 0.052 0.679* ± 0.062 0.652 ± 0.050
Precision gap (S) 0.057 ± 0.005 0.064* ± 0.009 0.032* ± 0.005 0.027* ± 0.003
Independence gap (S) 0.022 ± 0.003 0.026* ± 0.006 0.006* ± 0.002 0.004* ± 0.001
Separation gap (S) 1.188 ± 0.114 1.336* ± 0.175 0.670* ± 0.111 0.594* ± 0.057
Sufficiency gap (S) 7.350 ± 0.914 8.655* ± 1.726 0.2.401* ± 0.610 1.653* ± 0.294

Table 7: Coreference resolution after retraining: results on Ontonotes test set and extrinsic bias metrics on Winobias
challenge set. Each model finetuned over 10 seeds and re-trained over 5 seeds. * Marks significant reduction or
increase in bias (p < 0.05 on Pitman’s permutation test), compared to the non-debiased model (debiasing strategy
None). The lowest bias score or highest performance metric in each column is in bold. P = Pearson; S = Sum.
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Figure 6: Coreference resolution: Before (left) and after (right) plots of compression rate versus and extrinsic metric.

20



Figure 6: Coreference resolution: Before (left) and after (right) plots of compression rate versus and extrinsic metric.
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Figure 6: Coreference resolution: Before (left) and after (right) plots of compression rate versus and extrinsic metric.
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Female Male
Words Words

husband, women, chief, companies
gender, listed, computer,
practices, nurse, applications,
specializes, md, accepts,
children, known, doctors,
ba, child, npi, sports,
reading, families, philosoph’,
location, place, problems, rating,
affiliated, family, no, systems,
experiences, theory, practicing,
spanish, software,
love, justice security, major

Table 8: Top 20 significant words used to predict gender
on all biographies, as obtained from a logistic regres-
sion model trained on predicting the gender of a person
described in a biography. The words are sorted by im-
portance.

Female Male
Words Words

husband , women, holds , emergency,
midwife , providing vanderbilt, forces,
book , includes, registered, mental,
joining, faculty assistant, president

Table 9: Top 8 words used to predict gender of female
and male nurses, as obtained from a logistic regres-
sion model trained on predicting the gender of a person
described in a biography. The words are sorted by im-
portance.

C Why is scrubbing not as effective as995

subsampling?996

The debiasing method of subsampling significantly997

reduced external biases in the occupation predic-998

tion task. Although compression rates show that999

scrubbing reduced more gender information, sub-1000

sampling outperforms it as a debiasing method. We1001

find that in spite of the scrubbing, a probe is able1002

to correctly identify the gender from an internal1003

representation with 68.8% accuracy compared to1004

90.7% on the original, non-scrubbed data. This1005

means that although the scrubbing process reduces1006

extrinsic bias significantly, gender information is1007

still embedded in the [CLS] token embeddings.1008

To investigate the source of gender information1009

after scrubbing, we use logistic regression (LR)1010

model to predict the gender from the Bag-of-Words 1011

of the scrubbed biographies. We perform an itera- 1012

tive process for automatic extra scrubbing: in each 1013

iteration we (1) train a LR model for gender predic- 1014

tion (2) scrub the n most significant words for each 1015

gender according to the LR weights. The most rel- 1016

evant words among 5 seeds of training with n=10 1017

words scrubbed per iteration are displayed in Table 1018

8. The model learns indirect correlations to gender 1019

in the absence of explicit gendered words. Because 1020

the significant words are related to male- or female- 1021

dominated professions, we conducted the process 1022

on a specific profession. Table 9 presents the most 1023

significant words for biographies of nurses. There 1024

are differences in wording even between females 1025

and males in the same profession. The results of 1026

this study are in line with the results of other studies 1027

that have been conducted on the way biographies 1028

are written for men and women (Wagner et al., 1029

2016; Sun and Peng, 2021). 1030

Subsampling is therefore more effective even 1031

when gender information is present since it pre- 1032

vents the model from learning correlations between 1033

gender information and a profession whereas scrub- 1034

bing only attempts to remove gender indicators 1035

without removing correlations. On the other hand, 1036

it is possible that oversampling is less effective for 1037

debiasing since seeing more non-unique examples 1038

an unrepresented group encourages learning corre- 1039

lations. 1040

D A closer look into no-correlation cases 1041

D.1 Occupation Prediction 1042

Although compression has the ability to identify 1043

bias in most cases, some metrics still show little or 1044

no correlation with compression rate. These results 1045

suggest that gender information comprises only 1046

one facet of embedded bias in the representations. 1047

Other factors that may influence these metrics are 1048

not considered or measured, such as the connection 1049

between a name and a profession. 1050

For example, as can be see in Tables 3 and 4, 1051

LMs finetuned on subsampled data have the largest 1052

FPR gaps after retraining, despite being the least 1053

biased before retraining, while those finetuned on 1054

oversampled data have the next-to-lowest FPR gaps 1055

after retraining. The information encoded in the 1056

internal representations may have been encoded 1057

in a manner that allowed the classification layer 1058

to exhibit a smaller FPR gap when trained on a 1059

balanced dataset. However, when the classification 1060
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layer was retrained on biased training data, it used1061

the same features to make biased predictions.1062

D.2 Coreference Resolution1063

The cases where there is no correlation between1064

our intrinsic metric and an extrinsic metric are the1065

cases where the metric is based on Pearson corre-1066

lation. Unlike occupation prediction, coreference1067

resolution seems to exhibit no correlation between1068

those metrics and compression rate. These metrics1069

are computed as the Pearson correlation between a1070

performance gap for a specific profession and the1071

percentage of women in that profession, however1072

the percentages are computed differently in each1073

task: in occupation prediction, the percentages are1074

computed from the train set, focusing on the rep-1075

resentation each gender has in the data. In Wino-1076

bias, the percentages are taken from the US labor1077

statistics, and are unrelated to the training dataset1078

statistics. We note that the two statistics can be dif-1079

ferent - the real-world representation of women in a1080

profession does not have to be equal to their repre-1081

sentation in written text (Suresh and Guttag, 2021).1082

We thus decided to test what happens if we change1083

the statistics used in Winobias to dataset statistics,1084

but Ontonotes 5.0 has very little representation to1085

each profession and the statistics extracted from1086

it would not be reliable. We thus took a different1087

approach and computed the Pearson correlations1088

for occupation prediction with real world statistics1089

instead of dataset statistics. To do this, we mapped1090

the professions appearing in this dataset to pro-1091

fessions from the US labor statistics, and dropped1092

those who could no be mapped (6 out of 29 of the1093

professions which is 21.4%). We then repeated1094

all experiments on the Pearson metrics using these1095

statistics. Figure 7 shows the results. Correlations1096

are very different when computed with respect to1097

real-world statistics. TPR-gap has no correlation at1098

all although it had with training data statistics, the1099

correlation for FPR-gap after retraining exists but1100

is negative, and the correlation with precision-gap1101

does not exist after retraining. We thus conclude1102

that the Pearson metrics are less reliable as they are1103

heavily dependent on the statistics with respect to1104

which they are calculated.1105
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Figure 7: Occupation prediction: Before (left) and after (right) plots of compression rate versus and Pearson metrics
as computed from real-world statistics.
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