
Published as a conference paper at ICLR 2025

SVD-LLM: TRUNCATION-AWARE SINGULAR
VALUE DECOMPOSITION FOR LARGE LANGUAGE
MODEL COMPRESSION

Xin Wang1 Yu Zheng2 Zhongwei Wan1 Mi Zhang1

1The Ohio State University 2Michigan State University
https://github.com/AIoT-MLSys-Lab/SVD-LLM

ABSTRACT

The advancements in Large Language Models (LLMs) have been hindered by
their substantial sizes, which necessitates LLM compression methods for practical
deployment. Singular Value Decomposition (SVD) offers a promising solution for
LLM compression. However, state-of-the-art SVD-based LLM compression meth-
ods have two key limitations: truncating smaller singular values may lead to higher
compression loss, and the lack of update on the compressed weights after SVD
truncation. In this work, we propose SVD-LLM, a SVD-based post-training LLM
compression method that addresses the limitations of existing methods. SVD-LLM
incorporates a truncation-aware data whitening technique to ensure a direct map-
ping between singular values and compression loss. Moreover, SVD-LLM adopts
a parameter update with sequential low-rank approximation to compensate for
the accuracy degradation after SVD compression. We evaluate SVD-LLM on 10
datasets and seven models from three different LLM families at three different
scales. Our results demonstrate the superiority of SVD-LLM over state-of-the-arts,
especially at high model compression ratios.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in a wide range of
tasks such as natural language understanding and generation (Zhao et al., 2023; Gozalo-Brizuela
and Garrido-Merchán, 2023). Despite such capabilities, the democratization of LLMs is primarily
restricted by their substantial resource demands, which motivates the design of LLM compression
methods (Wan et al., 2024a; Wang et al., 2024; Zhu et al., 2024; Zhou et al., 2024). These methods
are often performed in a post-training manner without requiring retraining from scratch. Post-training
LLM compression methods based on quantization (Yuan et al., 2024; Huang et al., 2024), unstructured
pruning (Frantar and Alistarh, 2023), and structured pruning (Ma et al., 2023; Ashkboos et al., 2024;
Zhong et al., 2024) have been intensively studied. Despite their success, these methods have certain
limitations, such as dependence on specific hardware and low inference speedup. In contrast,
compression methods based on low-rank approximation, such as Singular Value Decomposition
(SVD) are not limited by those constraints. Moreover, the KV cache of LLMs compressed via SVD
at runtime can also be reduced.

Despite these advantages, the potential of SVD for LLM compression has not been fully explored.
Several SVD-based LLM compression methods, such as FWSVD (Hsu et al., 2022) and ASVD (Yuan
et al., 2023) have been proposed. However, these methods exhibit severe performance degradation
when model compression ratio1 increases. Such limitation can be attributed to two fundamental
issues involved in their approaches. ❶ Misalignment between SVD truncation and compression
loss: both FWSVD and ASVD fail to establish a direct relationship between singular values and
model compression loss. As a consequence, truncating smaller singular values in SVD could lead to
higher compression loss. ❷ Lack of model parameter update after SVD truncation: as model
compression ratio increases, the number of singular values that need to be truncated in SVD increases
as well. To compensate for the accuracy degradation caused by truncating a larger number of

1Model compression ratio refers to the percentage of parameter reduction achieved through compression.

1

https://github.com/AIoT-MLSys-Lab/SVD-LLM

Published as a conference paper at ICLR 2025

singular values, it becomes necessary to update the remaining parameters of the compressed model.
Unfortunately, existing SVD-based LLM compression methods do not incorporate such update in
their design, and thus fail to compensate for the accuracy degradation especially under high model
compression ratios.

In this paper, we propose a SVD-based post-training LLM compression method, SVD-LLM, which
effectively addresses the two fundamental issues of existing SVD-based LLM compression methods.
SVD-LLM differs from them in two key aspects. ❶ Truncation-Aware Data Whitening: supported
by theoretical proof, SVD-LLM incorporates a truncation-aware data whitening technique that ensures
a direct mapping between singular values and model compression loss. In doing so, the proposed
truncation-aware data whitening technique is able to identify which singular values should be trun-
cated to incur minimal model compression loss. ❷ Parameter Update with Sequential Low-rank
Approximation: to compensate for accuracy degradation after compression, SVD-LLM sequentially
fine-tunes the decomposed low-ranking matrices for a global accuracy recovery.

We compare SVD-LLM with both state-of-the-art SVD-based LLM compression methods as well
as pruning and quantization-based LLM compression methods. To demonstrate the generability of
SVD-LLM, we conduct our evaluation on a total of 10 datasets and seven models from three different
LLM families (LLaMA, OPT, and Mistral) at three different scales (7B, 13B, 30B), and evaluate the
performance of SVD-LLM on both GPU and CPU. We highlight three of our findings:

• SVD-LLM outperforms state-of-the-art SVD-based LLM compression methods FWSVD
and ASVD across all 10 datasets, three LLM families at three scales by a large margin.

• SVD-LLM also outperforms state-of-the-art structured pruning-based LLM compression
methods, including LLM-Pruner, SliceGPT, BlockPruner as well as state-of-the-art 1-
bit post-training quantization-based LLM compression methods, including PB-LLM and
BiLLM. More importantly, when combined with 2-bit post-training quantization, SVD-LLM
outperforms state-of-the-art 1-bit training-required quantization-based LLM compression
method OneBit, presenting a new way to achieve state-of-the-art compression performance
without incurring expensive retraining.

• LLMs compressed by SVD-LLM are able to achieve inference speedup and memory reduc-
tion when deployed on real hardware, including both GPU and CPU. At the same time,
SVD-LLM is able to reduce runtime KV cache memory without additional accuracy drop.

2 RELATED WORK

Large Language Model Compression: LLMs in general contain billion-scale parameters. Applying
conventional model compression methods for LLMs is unfeasible as they necessitate resource-
intensive retraining. Given that, post-training methods that avoid retraining in the compression process
have been proposed. In general, these methods can be grouped into four categories: unstructured
pruning, structured pruning, quantization, and low-rank approximation. Specifically, unstructured
pruning methods (Frantar and Alistarh, 2023) set the individual weights of an LLM to zero without
changing its shape. However, irregular sparsification of unstructured pruning is difficult to achieve
the desired speedup or memory saving. Unlike unstructured pruning, structured pruning methods (Ma
et al., 2023; Ashkboos et al., 2024; Zhong et al., 2024) remove entire channels or other structured
components from LLMs, making them easier to implement on hardware. One notable contribution is
LLM-Pruner (Ma et al., 2023), which groups weight matrices based on their dependency and assigns
the pruning ratio to each group based on the estimated importance. Quantization methods (Lin et al.,
2024) compress models by reducing the precision of weight matrices of the LLM. However, similar to
unstructured pruning, quantization is also difficult to achieve the desired inference speedup due to the
lack of hardware support and efficient kernels for low-precision computation (Lin et al., 2024). Recent
studies including PB-LLM (Yuan et al., 2024) and BiLLM (Huang et al., 2024) push the frontier to
1-bit quantization. Nevertheless, these approaches often lead to severe accuracy degradation.

SVD for Language Model Compression: Singular Value Decomposition (SVD) is a widely used
low-rank approximation technique to reduce matrix size by approximating a matrix with two smaller
low-ranking matrices (Golub et al., 1987). Given that, SVD is commonly used for model compression.
For instance, DRONE (Chen et al., 2021) achieves optimal SVD compression for small language
models such as BERT. However, during SVD compression, DRONE caches all the input activations,
making it challenging for LLM compression due to excessive memory usage. For LLMs, directly

2

Published as a conference paper at ICLR 2025

W'v

Cholesky decomposition

Original
LLM

Layer 1
Layer 2

Layer M Whitening Matrix S

Input Activation X

Compressed
LLM

Layer 1

Layer 2

Layer M
...

W'uWS
SVD

1 2
Truncation-Aware Data

Whitening
Parameter Update with Sequential

Low-rank Approximation

Calibration Data

Trunc.
W'v

W'u

W'u W'v

W'u W'v

Update W'u

Update W'v

Original
Weights W

Compressed
Weights W'

Figure 1: Overview of SVD-LLM.

applying SVD on the weight matrix without considering the importance of the weights leads to a
large compression loss. To address this issue, Hsu et al. (2022) propose FWSVD, which introduces
Fisher information to weigh the importance of parameters. However, FWSVD requires a complex
gradient calculation that demands substantial computing and memory resources for LLM compression.
Another issue of directly applying SVD is that the distribution of activation can affect the compression
loss. To address it, Yuan et al. (2023) propose ASVD, which scales the weight matrix by a diagonal
matrix that normalizes the impact of input channels on the weights. However, both FWSVD and
ASVD do not establish a direct relationship between singular values and compression loss. As a
consequence, truncating the smaller singular values may lead to higher compression loss. Moreover,
as compression ratio increases, it becomes necessary to update the compressed weights for accuracy
recovery. However, both FWSVD and ASVD do not take it into consideration, and thus incur severe
accuracy degradation under high compression ratios.

3 SVD-LLM

Figure 1 provides an overview of SVD-LLM. At a high level, SVD-LLM is a SVD-based post-training
LLM compression method. Specifically, following the standard procedure of post-training LLM
compression methods (Frantar and Alistarh, 2023; Yuan et al., 2023; Xiao et al., 2023), SVD-LLM
uses a random set of sentences as calibration data to generate activation for truncation-aware data
whitening. Given the generated activation, SVD-LLM derives the whitening matrix S through
Cholesky decomposition, and then performs SVD to truncate the multiplication of weight matrices
W and whitening matrix S to compress the LLM. After truncation, SVD-LLM updates the remaining
model parameters with sequential low-rank approximation to recover accuracy. In the following,
we describe both truncation-aware data whitening and parameter update with sequential low-rank
approximation in detail. The pseudocode of SVD-LLM is provided in Appendix A.1.

3.1 TRUNCATION-AWARE DATA WHITENING

Motivation: Due to high variance of input activation, simply applying vanilla SVD for LLM
compression leads to severe accuracy degradation (Yuan et al., 2023). To address this issue, existing
methods (Yuan et al., 2023; Hsu et al., 2022) formulate LLM compression as an optimization problem
with the following objective:

O = min(||WX −W ′X||F) (1)

where W is the weight matrix of the original LLM, X is the activation of W , W ′ is the compressed
weight matrix, and ||WX −W ′X||F is the compression loss in the form of Frobenius loss.

Although existing methods attempt to reduce this compression loss during their SVD truncation,
they all fail to establish a direct relationship between singular values and compression loss. As a
consequence, truncating smaller singular values in SVD could lead to significant compression loss.
Taking ASVD (Yuan et al., 2023) as an example, ASVD extracts a diagonal matrix S0 from X where
each element in the diagonal is the absolute mean value of each channel. It then uses S0 to normalize
X and converts WX into (WS0)(S

−1
0 X). Subsequently, SVD is performed on WS0 to obtain the

decomposed matrices U0, Σ0, and V0. Lastly, ASVD truncates the smallest singular values in Σ0 to
obtain the compressed weight matrix W ′

0 = U0 × Trunc.(Σ0)× V0 × S−1
0 .

3

Published as a conference paper at ICLR 2025

2.4 1.8 0.9 0.1

 One Singular Value Multiple Singular Values

Trunc.
1 2

Loss: 1.1 0.7

0.1 0.9

1.9 1.7

0.9 0.1 0.12.4

(a) Data Normalization (ASVD)

2.4 1.8 0.9 0.1

 One Singular Value Multiple Singular Values

Trunc.
1 2

Loss: 0.1 0.9

0.1 0.9 0.9 0.1 0.12.4

0.9 +
2 2

0.1 2.4 0.1+
2 2

(b) Truncation-Aware Data Whitening (SVD-LLM)

Figure 2: Compression loss (L = ||WX −W ′X||F) of different data preprocessing methods.

Although normalizing the activation improves performance, ASVD does not establish a direct rela-
tionship between singular values and compression loss (a detailed proof is included in Appendix A.2).
To better illustrate this point, we show two concrete examples in Figure 2(a). In example ❶ where
only one singular value is truncated, truncating the smallest singular value 0.1 results in a higher
compression loss (loss = 1.1) compared to truncating the second smallest singular value 0.9 (loss =
0.7). In example ❷ where multiple singular values are truncated, truncating the smallest two singular
values 0.9 and 0.1 also leads to a higher loss (loss = 1.9) than truncating 2.4 and 0.1 (loss = 1.7). As
such, truncating the smallest singular values does not lead to minimal loss.

Key Design: The key idea of SVD-LLM is to incorporate a truncation-aware data whitening tech-
nique that ensures a direct mapping between singular values and compression loss. To achieve
this, SVD-LLM enforces the whitened activation S−1X to be orthonormal such that each channel
is independent of each other, i.e., (S−1X)(S−1X)T = S−1XXT (S−1)T = I , where S is derived
through Cholesky decomposition (Meyer, 2000). SVD is then performed on WS to obtain the de-
composed matrices U,Σ, V , where U = [u1, u2, u3, ..., ur], Σ = diag(σ1, σ2, σ3, · · · , σr), and V =
[v1, v2, v3, ..., vr]. Lastly, the smallest singular values in Σ are truncated (denoted by Trunc.(Σ))
to obtain two low-ranking matrices W ′

u = U × [Trunc.(Σ)]
1
2 ,W ′

v = [Trunc.(Σ)]
1
2 × V T × S−1

and the compressed weight matrix W ′ = W ′
u ×W ′

v = U ×Trunc.(Σ)× V T × S−1.

Figure 2(b) illustrates the effect of the proposed truncation-aware data whitening method. In example
❶ where only one singular value is truncated, the compression loss equals to the truncated singular
value. In example ❷, the compression loss of truncating multiple singular values equals to the square
root of the sum of their squares. As such, under the proposed truncation-aware data whitening
technique, truncating the smallest singular values leads to minimal compression loss.

In the following, we provide a theoretical proof on why the proposed truncation-aware data whitening
technique ensures a direct mapping between singular values and compression loss in the case of one
singular value (Theorem 3.2) and multiple singular values (Corollary 3.3), respectively.
Lemma 3.1. The Frobenius norm of matrix A with dimension m× n can be deduced into the square
root of the trace of its gram matrix, which is:

∥A∥F ≜

 n∑
j=1

m∑
i=1

|aij |2
 1

2

=
[
Trace

(
ATA

)] 1
2 (2)

Let SVD(WS) denote SVD compression on matrix WS. The compressed weight matrix W ′ can be
expressed as W ′ = SVD(WS)S−1. Using Lemma 3.1, we obtain the compression loss Li when
truncating the ith singular value of WS to reduce its rank for compression:

Li = ∥WX −W ′X∥F =
∥∥WSS−1X − SVD(WS)S−1X

∥∥
F
=
∥∥(WS − SVD(WS))S−1X

∥∥
F

=
∥∥σiuiv

T
i S

−1X
∥∥
F
= σiTrace

(
uiv

T
i S

−1XXT
(
S−1

)T
viu

T
i

) 1
2

(3)

Since both U = [u1, u2, u3, ..., ur] and V = [v1, v2, v3, ..., vr] are orthonormal matrices, we have:

vTi vi = uT
i ui = 1; vTi vj = uT

i uj = 0,∀i ̸= j;Trace(viv
T
i) = Trace(uiu

T
i) = 1 (4)

Theorem 3.2. If S is the Cholesky decomposition of XXT , the compression loss Li equals to σi.

4

Published as a conference paper at ICLR 2025

Proof. Since the whitening matrix S is the Cholesky decomposition of XXT , we have SST = XXT .
We can further infer Equation (3) to obtain:

Li = σiTrace(uiv
T
i viu

T
i)

1
2 = σiTrace

(
ui

(
vTi vi

)
uT
i

) 1
2 = σiTrace

(
uiu

T
i

) 1
2 = σi (5)

Therefore, Li of truncating σi equals to the singular value σi itself.

Corollary 3.3. If S is the Cholesky decomposition of XXT , truncating the smallest singular values
leads to the lowest loss L compared to truncating others.

Proof. If we truncate σm+1, σm+2, σm+3, ..., σr in Σ for compression, the square of the loss L is:

L2 =

∣∣∣∣∣
∣∣∣∣∣

r∑
i=m+1

σiuiv
T
i S

−1X

∣∣∣∣∣
∣∣∣∣∣
2

F

=

r∑
j=m+1

r∑
i=m+1

σiσjTrace(uiv
T
i S

−1XXT (S−1)T vju
T
j)

=

r∑
i=m+1

σ2
iTrace(uiv

T
i S

−1XXT (S−1)T viu
T
i) =

r∑
i=m+1

(Li)
2 =

r∑
i=m+1

(σi)
2

(6)

The squared loss L2 equals to the sum of the squared singular values (More detailed derivation is in
Appendix A.3). Truncating the smallest singular values achieves the lowest compression loss.

Given that our proposed truncation-aware data whitening technique is built upon SVD, whose
applicability depends on certain singular value distribution, we further conduct a spectrum analysis
of the singular values obtained by our technique. We refer the readers to Appendix A.4 for details.

It should also be noted that our proposed truncation-aware data whitening technique not only ensures
a direct mapping between singular values and compression loss, but is also able to achieve the
same theoretical optimal compression loss as DRONE (Chen et al., 2021). However, during SVD
compression, DRONE stores all input activations in memory, which poses a challenge for LLM
compression due to high memory consumption. In contrast, SVD-LLM incrementally updates its
XXT matrix by adding the xxT of each new input x, which is considerably smaller than the full
input activation. In Appendix A.5, we provide our proof on SVD-LLM achieving the same theoretical
optimal compression loss as DRONE and discuss the advantages of SVD-LLM over DRONE in
memory saving, compression speed, and numerical stability in details.

3.2 PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION

Motivation: Although the proposed truncation-aware data whitening technique helps preserve the
accuracy during compression, as the compression ratio increases, the accuracy of the compressed
LLM may degrade given that more larger singular values will be truncated by SVD compression.
Therefore, it is necessary to update the remaining parameters in the compressed LLM.

Key Design: SVD-LLM proposes a variant of LoRA fine-tuning to update the remaining weight
parameters of the compressed LLM for accuracy recovery. Specifically, given the two low-ranking
matrices W ′

u,W
′
v generated by truncation-aware data whitening, instead of directly applying LoRA

fine-tuning to the compressed weight matrix W ′ = W ′
u ×W ′

v as standard LoRA does, we propose to
apply LoRA on top of W ′

u and W ′
v separately to preserve their low-rank structures as follows:

W ′
u ←W ′

u +BuAu,W
′
v ←W ′

v +BvAv (7)

where Au, Bu, Av , and Bv are matrices used for LoRA fine-tuning.

Simultaneously fine-tuning W ′
u and W ′

v will not guarantee a decrease in fine-tuning loss. This is
because the derivatives of W ′

u and W ′
v are interdependent during the fine-tuning process, where

optimization of one matrix may interfere with the optimization of the other. Therefore, as shown
in Figure 1, we propose a sequential low-rank approximation strategy to fine-tune W ′

u and W ′
v in a

sequential manner. Specifically, we first freeze matrix W ′
v and fine-tune W ′

u with LoRA. We then
perform the second-round LoRA fine-tuning on matrix W ′

v while freezing the updated weight matrix
W ′

u. Finally, we add Bu ×Au and Bv ×Av matrices to W ′
u and W ′

v to obtain the final compressed
weight matrices.

5

Published as a conference paper at ICLR 2025

Table 1: Performance of LLaMA-7B compressed by SVD-LLM, SVD-LLM (W), and baselines under
different compression ratio (corresponding weight memory is listed inside bracket) on two language
modeling datasets (measured by perplexity (↓)), eight common sense reasoning datasets (six measured
by both individual and average accuracy (↑), TruthfulQA measured by BLEU score (↑), and GSM8K
measured by Exact Match Accuracy (↑)). The best performance is marked in bold. The relative
performance gain compared to the best-performing baseline is marked in green inside bracket.

RATIO (MEM.) METHOD WikiText-2↓ C4↓ Openb. ARC_e WinoG. HellaS. PIQA MathQA Average↑ TruthfulQA↑ GSM8K↑
0% (13.5 GB) Original 5.68 7.34 0.34 0.75 0.70 0.57 0.79 0.27 0.57 0.30 0.09

20% (10.2 GB)

SVD 20061 18800 0.05 0.04 0.01 0.03 0.02 0.03 0.03 0.00 0.00
FWSVD 1727 1511 0.09 0.11 0.05 0.08 0.10 0.05 0.08 0.00 0.00
ASVD 11.14 15.93 0.29 0.53 0.64 0.41 0.68 0.17 0.45 0.21 0.04

SVD-LLM (W) 7.94 (↓29%) 15.84 (↓1%) 0.31 0.62 0.61 0.45 0.71 0.21 0.49 (↑9%) 0.26 (+0.05) 0.05 (+0.01)
SVD-LLM 7.73 (↓31%) 12.23 (↓23%) 0.33 0.67 0.69 0.55 0.79 0.26 0.55 (↑22%) 0.28 (+0.07) 0.08 (+0.04)

40% (7.76 GB)

SVD 52489 47774 0.04 0.04 0.05 0.01 0.03 0.02 0.03 0.00 0.00
FWSVD 18156 12847 0.06 0.05 0.02 0.00 0.05 0.03 0.04 0.00 0.00
ASVD 1407 1109 0.08 0.11 0.09 0.08 0.13 0.08 0.10 0.01 0.00

SVD-LLM (W) 13.73 (↓99%) 75.42 (↓93%) 0.25 0.33 0.55 0.40 0.63 0.12 0.38 (↑280%) 0.17 (+0.17) 0.02 (+0.02)
SVD-LLM 9.27 (↓99%) 15.63 (↓99%) 0.29 0.59 0.68 0.52 0.69 0.20 0.50 (↑400%) 0.24 (+0.23) 0.07 (+0.07)

60% (5.35 GB)

SVD 105474 106976 0.01 0.03 0.01 0.00 0.01 0.02 0.01 0.00 0.00
FWSVD 32194 29292 0.06 0.02 0.01 0.01 0.02 0.03 0.03 0.00 0.00
ASVD 57057 43036 0.05 0.04 0.06 0.09 0.08 0.05 0.06 0.00 0.00

SVD-LLM (W) 66.62 (↓99%) 471.83 (↓99%) 0.10 0.05 0.17 0.10 0.21 0.04 0.11 (↑83%) 0.01 (+0.01) 0.00 (+0.00)
SVD-LLM 15.00 (↓99%) 26.26 (↓99%) 0.18 0.42 0.44 0.31 0.35 0.12 0.30 (↑400%) 0.14 (+0.14) 0.04 (+0.04)

80% (2.58 GB)

SVD 687291 708243 0.00 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.00
FWSVD 96872 89243 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.00 0.00
ASVD 80425 67927 0.04 0.03 0.03 0.02 0.01 0.01 0.03 0.00 0.00

SVD-LLM (W) 1349 (↓98%) 6224 (↓91%) 0.07 0.03 0.04 0.02 0.07 0.01 0.04 (↑33%) 0.00 (+0.00) 0.00 (+0.00)
SVD-LLM 31.79 (↓99%) 43.71 (↓99%) 0.11 0.23 0.21 0.14 0.17 0.08 0.16 (↑433%) 0.04 (+0.04) 0.02 (+0.02)

4 EXPERIMENTS AND ANALYSIS

Baselines. We compare SVD-LLM against three groups of methods: (1) Vanilla SVD and state-of-
the-art SVD-based LLM compression methods: FWSVD (Hsu et al., 2022), ASVD (Yuan et al.,
2023) (Section 4.1) and FLAP (Appendix A.6). (2) Other types of LLM compression methods. These
include three state-of-the-art pruning-based LLM compression methods: LLM-Pruner (Ma et al.,
2023), SliceGPT (Ashkboos et al., 2024), and BlockPruner (Zhong et al., 2024), and three state-of-
the-art quantization-based LLM compression methods: PB-LLM (Yuan et al., 2024), BiLLM (Huang
et al., 2024), and OneBit (Xu et al., 2024) (Section 4.4). (3) Smaller LLM StableLM-3B (Tow et al.)
pre-trained from scratch (Appendix A.7).

Models and Datasets. To demonstrate the generability of SVD-LLM, we evaluate the performance of
SVD-LLM on seven models from three different LLM families at three different scales (LLaMA-7B,
13B, 30B, LLaMA2-7B (Touvron et al., 2023), OPT-6.7B (Zhang et al., 2022), Vicuna-7B (Chiang
et al., 2023) and Mistral-7B (Jiang et al., 2023)) and 10 datasets including two language modeling
datasets (WikiText-2 (Merity et al., 2017), and C4 (Raffel et al., 2020)), six classification datasets
(OpenbookQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al., 2020), HellaSwag (Zellers
et al., 2019), Arc_e (Clark et al., 2018), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019)), and
two generation datasets (TruthfulQA (Lin et al., 2022) and GSM8K (Cobbe et al., 2021)) with the
LM-Evaluation-Harness framework (Gao et al., 2023).

Implementation Details. To ensure a fair comparison, we followed ASVD (Yuan et al., 2023)
to randomly select 256 samples from WikiText-2 as the calibration data. We followed the same
configuration used in LLM-Pruner (Ma et al., 2023) to use Alpaca (Taori et al., 2023) dataset with
50K samples for parameter update in SVD-LLM. The inference efficiency experiment is conducted
on both NVIDIA A100 GPU and AMD EPYC 7643 CPU while the other experiments are conducted
on NVIDIA A100 GPUs.

4.1 COMPARISON WITH STATE-OF-THE-ART SVD-BASED LLM COMPRESSION METHODS

First, we compare the performance of SVD-LLM with state-of-the-art SVD-based LLM compression
methods from four aspects: (1) performance under different compression ratios, (2) performance
on different LLMs, (3) performance on LLMs with larger scales, and (4) compression speed (Ap-
pendix A.8). Given that all the SVD-based baselines do not incorporate LoRa fine-tuning, to ensure a
fair comparison, we also compare to SVD-LLM with truncation-aware data whitening only (denoted
as SVD-LLM (W)).

Performance under Different Compression Ratios. We first evaluate the performance of LLaMA-
7B compressed by SVD-LLM, SVD-LLM (W), and the SVD-based baselines under compression

6

Published as a conference paper at ICLR 2025

Table 2: Perplexity (↓) of SVD-LLM, SVD-LLM (W), and baselines on WikiText-2 and the average
accuracy (↑) of the six common sense reasoning datasets of four different LLMs – OPT-6.7B, LLaMA
2-7B, Mistral-7B, and Vicuna-7B – under 20% compression ratio. The relative performance gain
compared to the best-performing baseline is marked in green color inside bracket.

OPT-6.7B LLAMA 2-7B MISTRAL-7B VICUNA-7B

METHOD Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑
Original 10.86 0.52 5.47 0.57 5.25 0.61 6.78 0.56

SVD 66275 0.03 18192 0.09 159627 0.03 18644 0.05
FWSVD 14559 0.06 2360 0.12 6357 0.08 2758 0.09
ASVD 82.00 0.32 10.10 0.36 13.72 0.32 16.23 0.33

SVD-LLM (W) 16.04 (↓80%) 0.41 (↑28%) 8.50 (↓16%) 0.53 (↑47%) 10.21 (↓26%) 0.42 (↑24%) 8.41 (↓48%) 0.51 (↑55%)
SVD-LLM 14.47 (↓82%) 0.49 (↑53%) 7.73 (↓23%) 0.54 (↑50%) 7.47 (↓45%) 0.55 (↑72%) 7.43 (↓54%) 0.54 (↑64%)

ratios ranging from 20% to 80% on all 10 datasets. The results are summarized inTable 1. Both
SVD-LLM and SVD-LLM (W) consistently outperform vanilla SVD, FWSVD and ASVD across
all the compression ratios. In particular, when the compression ratio is 40% and above, SVD-LLM
reduces the perplexity by more than 99% on two language modeling datasets and achieves over 400%
higher average accuracy on six classification datasets. More importantly, the results on two generation
datasets (TruthfulQA, GSM8K) of all three baselines when compression ratios are 60% and above are
zero, meaning that the compressed LLMs totally lose their generation ability. In contrast, SVD-LLM
still outputs good generation even under 80% compression ratio. Example contents generated by the
compressed LLMs are included in Appendix A.9.

Table 3: Perplexity (↓) of SVD-LLM, SVD-LLM
(W), and baselines on WikiText-2 and the aver-
age accuracy (↑) of the six classification datasets
of LLaMA-13B and LLaMA-30B under 20%
compression ratio. The relative performance
gain compared to the best-performing baseline
is marked in green color inside bracket.

LLAMA-13B LLAMA-30B

METHOD Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑
Original 5.09 0.59 4.10 0.61

SVD 946.31 0.21 54.11 0.33
FWSVD 15.98 0.43 20.54 0.42
ASVD 6.74 0.54 22.71 0.44

SVD-LLM (W) 6.61 (↓2%) 0.54 (↑0%) 5.63 (↓73%) 0.57 (↑30%)
SVD-LLM 6.43 (↓5%) 0.55 (↑2%) 5.14 (↓75%) 0.59 (↑34%)

Performance on Different LLMs. To examine
the generability of SVD-LLM and SVD-LLM (W)
across different LLMs, we compare the perfor-
mance between SVD-LLM and the baselines on
four different models from three different LLM
families – OPT-6.7B (OPT family), LLaMA 2-7B
(LLaMA family), Mistral-7B (Mistral family), and
Vicuna-7B (LLaMA family) – under 20% com-
pression ratio on WikiText-2 and six classification
datasets. As shown in Table 2, both SVD-LLM
and SVD-LLM (W) consistently outperform base-
lines on all four LLMs, and exhibits more stable
performance across different LLMs, especially
compared to vanilla SVD and FWSVD.

Performance on LLMs with Larger Scales. To examine the generability of SVD-LLM and
SVD-LLM (W) on LLMs with larger scales, we compare the performance between SVD-LLM
and the baselines on LLaMA-13B and LLaMA-30B under 20% compression ratio. As shown in Ta-
ble 3, both SVD-LLM and SVD-LLM (W) consistently outperform vanilla SVD, FWSVD, and ASVD
on both model sizes.

4.2 INFERENCE EFFICIENCY OF SVD-LLM

Theoretical Analysis of Inference Efficiency. Assume SVD-LLM compresses the weight matrix
W ∈ Rd×n into two low-ranking matrices W ′

u ∈ Rd×r,W ′
v ∈ Rr×n. The compression ratio is then

calculated as Rw = 1− (d+n)r
dn

.

(1) Compute Complexity Analysis: Given input X ∈ Rn×d, instead of recalculating the full weight
matrix W ′ = W ′

u×W ′
v and then computing the output W ′×X, SVD-LLM calculates the intermediate

state M = W ′
v × X and then computes the output Y = W ′

u × M . In this way, the computation
complexity is reduced from O

(
d2n

)
to O

(
d2r + rnd

)
. Taking compression ratio Rw = 50% as

an example, since Rw = 1 − (d+n)r
dn

, we have r = dn
2(d+n)

. Then the computation complexity is

O
(
d2r + rnd

)
= O(rd(d + n)) = O

(
d2n
2

)
= 1

2
O
(
d2n

)
, which reduces 50%. In general, given any

compression ratio Rw, the computation complexity is reduced to 1−Rw times of the original.

(2) Inference Memory Analysis: Since SVD-LLM does not recalculate the full weight W ′ = W ′
u ×

W ′
v, the weight memory is reduced to 1 − Rw times of the original during inference. As another

7

Published as a conference paper at ICLR 2025

64 128 256 512
Batch Size

800
1600
2400
3200
4000

To
ke

ns
 /

se
c

2220

2925

3678
3983

1591
2041

2354
2707

1257
1606 1794 1886

1032
1303 1483 1524

1006 1190 1284 1280

Ratio=80% Ratio=60% Ratio=40% Ratio=20% Original

64 128 256 512
Batch Size

800
1600
2400
3200
4000

To
ke

ns
 /

se
c

(a) Varying Batch Size on GPU

32 64 128 256
Sequence Length

800
1200
1600
2000
2400

To
ke

ns
 /

se
c

(b) Varying Sequence Length on GPU

64 128 256 512
Batch Size

50
150
250
350

To
ke

ns
 /

se
c

(c) Varying Batch Size on CPU

32 64 128 256
Sequence Length

40

80

120

To
ke

ns
 /

se
c

(d) Varying Sequence Length on CPU

Figure 3: Throughput (tokens/sec) of LLaMA-7B and its compressed version by SVD-LLM under
different compression ratios on a single A100 GPU under different batch sizes (a) and different
sequence lengths (b) and on a single AMD EPYC 7643 CPU under different batch sizes (c) and
different sequence lengths (d). For (a) and (c), sequence length is 32. For (b) and (d), batch size is 64.

advantage, SVD-LLM is able to reduce the runtime KV cache memory as well (Wan et al., 2024b;
2025; Shen et al., 2024). Specifically, instead of keeping W ′

u ×W ′
v ×X in the KV cache, SVD-LLM

provides the option to store the intermediate result M = W ′
v ×X in the KV cache and recomputes

the original key and value states with the decomposed weight matrix W ′
u if required. As such, the

runtime KV cache is reduced to r
d
= (1− Rw)× d

n+d
times of the original. Moreover, since W ′

u is
already stored as the weight matrix in the decomposed LLM, the original intermediate state matrix
can still be recovered by W ′

u ×M without accuracy drop. Therefore, SVD-LLM provides a unified
solution that enables simultaneous model compression and KV cache compression.

Inference Speedup on Hardware. To quantify inference speedup achieved by SVD-LLM on
real hardware, we measure the numbers of tokens that LLaMA-7B and its compressed version by
SVD-LLM generate per second (i.e., throughput) under different batch sizes and sequence lengths
on a single NVIDIA A100 GPU and a single AMD EPYC 7643 CPU, respectively. The results are
shown in Figure 3. We have three observations. (1) Under a specific batch size or sequence length,
the speedup achieved by SVD-LLM related to the original model increases as the compression ratio
increases. (2) Under a specific compression ratio, the speedup achieved by SVD-LLM related to
the original model becomes more significant as the batch size increases or as the sequence length
decreases. (3) The above two observations are valid for both GPU and CPU.

Inference Memory Reduction on Hardware. Lastly, we evaluate the inference memory saving,
including both weight memory and runtime KV cache memory saving on a single A100 GPU.
Specifically, we measure the peak memory footprint during inference when generating 128 tokens
with batch size of 32 using LLaMA-7B compressed by SVD-LLM under different compression ratios
w/ and w/o considering KV cache reduction. The results are illustrated in Figure 4 where the memory
reduction from the dotted line to the blue bars comes mainly from model weight compression and the
memory reduction from the blue bars to the yellow bars comes mainly from KV cache compression.
As shown, both weight memory saving and runtime KV cache memory saving brought by SVD-LLM
are near linear to the compression ratio.

4.3 ABLATION STUDY

Modular Sensitivity Study. We conduct ablation studies to evaluate the separate contributions of
the two key components (i.e., truncation-aware data whitening and parameter update with sequential
low-rank approximation) of SVD-LLM. Let SVD-LLM (W) denote the version of SVD-LLM with
truncation-aware data whitening only; SVD-LLM (U) denote the version of SVD-LLM with normal

8

Published as a conference paper at ICLR 2025

Figure 4: Peak memory to generate 128 tokens
with batch size of 32 using LLaMA-7B com-
pressed by SVD-LLM w/ and w/o KV-cache reduc-
tion. The dotted line indicates the peak memory of
the original LLaMA-7B. The memory reduction
from the dotted line to the blue bars mainly comes
from the model compression. The memory reduc-
tion from the blue to the yellow bars mainly comes
from the reduced footprint of the KV cache.

Table 4: Perplexity (↓) of compressed LLaMA-
7B on WikiText-2 under different compression
ratios. SVD-LLM (W) denotes the version of
SVD-LLM with truncation-aware data whiten-
ing only; SVD-LLM (U) denotes the version of
SVD-LLM with parameter update with sequential
low-rank approximation only; The relative per-
formance gain compared to ASVD is marked in
green color inside bracket.

METHOD 20% 40% 60%

ASVD 11.14 1407 57057

SVD-LLM (W) 7.94 (↓29%) 13.11 (↓99%) 42.30 (↓99%)

SVD-LLM (U) 10.12 (↓9%) 19.28 (↓99%) 49.88 (↓99%)

SVD-LLM 7.73 (↓31%) 9.27 (↓99%) 15.00 (↓99%)

SVD truncation and parameter update with sequential low-rank approximation. As shown in Ta-
ble 4, we have three observations. (1) SVD-LLM (W), SVD-LLM (U) and SVD-LLM consistently
outperform ASVD across all the compression ratios. Notably, when the compression ratio is at and
above 40%, all of them reduce the perplexity by more than 99% compared to ASVD. (2) SVD-LLM
consistently outperforms both SVD-LLM (U) and SVD-LLM (W) across all compression ratios. This
result demonstrates the unique contribution from each of the two key components and the importance
of combining both components to achieve the best performance. (3) Comparing between SVD-LLM
(W) and SVD-LLM (U), SVD-LLM (W) achieves a lower perplexity compared to SVD-LLM (U)
across all compression ratios. This result indicates that truncation-aware data whitening plays a more
significant role than parameter update with sequential low-rank approximation.

Impact of Calibration Data. Next, we examine the impact of calibration data on SVD-LLM.
Figure 5 and Table 6 summarize the performance of compressed LLaMA-7B when changing three
key characteristics of the calibration data: (1) number of calibration data, (2) the seed used to
randomly sample the calibration data, and (3) dataset from which calibration data is sampled. As
shown, the changes of the three key characteristics on calibration data incur no more than 3% to the
final performance, indicating that the sensitivity of SVD-LLM on calibration data is limited.

Impact of Updating Order. Lastly, we examine the impact of updating order in the parameter update
with sequential low-rank approximation component to the final performance of the compressed LLM.
Table 5 shows the performance of compressed LLaMA-7B under 20% to 80% compression ratios on
WikiText-2 with different updating orders. As shown, there is only a small difference of the final
performance between updating matrix W ′

u first and updating matrix W ′
v first. This result indicates

SVD-LLM is not sensitive to the updating order.

More ablation studies are included in Appendix A.10.

4.4 COMPARISON WITH OTHER TYPES OF LLM COMPRESSION METHODS

SVD-LLM is orthogonal to other post-training LLM compression methods including pruning and
quantization (Wan et al., 2024a; Shen et al., 2025). Lastly, we compare the performance of SVD-LLM
with state-of-the-art structured pruning-based and quantization-based LLM compression methods.
As discussed in Section 2, since unstructured pruning methods are difficult to achieve its efficiency
on hardware, we do not make a comparison with them in this experiment.

Comparison with Structured Pruning. First, we compare SVD-LLM with three state-of-
the-art structured pruning-based LLM compression methods: LLM-Pruner (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024) and BlockPruner (Zhong et al., 2024) under the same mem-
ory budget, ranging from 10 GB to 7 GB on LLaMA-7B using WikiText-2 dataset. As shown in
Table 7, SVD-LLM outperforms all three structured pruning-based LLM compression methods. In
particular, SVD-LLM achieves up to 56% reduction in perplexity under 7G memory budget.

9

Published as a conference paper at ICLR 2025

32 64 128 256 512
Number of data (x2048 tokens)

6.70

6.78

6.93

Pe
rp

le
xi

ty

(a) Change of Number

3 10 42 57 100
Seed for Random Sampling

6.70

6.73

6.78

Pe
rp

le
xi

ty

(b) Change of Seed

Figure 5: Perplexity of LLaMA-7B under 20%
compression ratio using calibration data sampled
with different number or seeds from WikiText-2.

Table 5: Perplexity of LLaMA-7B compressed by
SVD-LLM under 20% to 80% compression ratio
on WikiText-2 with different updating orders.

UPDATING ORDER 20% 40% 60% 80%

W ′
u first, then W ′

v 7.85 9.32 13.20 (↓1%) 31.67(↓1%)

W ′
v first, then W ′

u 7.73 (↓2%) 9.27 (↓1%) 15.00 31.79

Table 6: Performance of LLaMA-7B compressed
by SVD-LLM under 20% compression ratio us-
ing calibration data sampled from WikiText-2
(by default in our paper) and C4 datasets. The
performance on WikiText-2 and C4 are reported
by perplexity (↓), while the performance on six
downstream datasets are reported by average ac-
curacy (↑). The performance on TruthfulQA and
GSM8K are reported by BLEU score(↑) and Ex-
act Match Accuracy (↑) respectively. The rela-
tive performance gain for data sampled from one
dataset compared to another is marked in green
color inside bracket.

WikiText-2↓ C4↓ Average↑ TruthfulQA↑ GSM8K↑
Calibration data sampled from WikiText-2

7.73 (↓1%) 12.23 0.55 (↑2%) 0.28 0.08

Calibration data sampled from C4

7.79 11.97 (↓1%) 0.54 0.28 0.08

Table 7: Perplexity (↓) of LLaMA-7B compressed
by structured pruning methods and SVD-LLM under
various memory budget on WikiText-2. The relative
performance gain compared to the best-performing
baseline is marked in green.

PERPLEXITY UNDER VARIOUS MEMORY BUDGET

METHOD 10 GB 9 GB 8 GB 7 GB

LLM-Pruner 9.88 12.21 18.94 21.68
SliceGPT 8.78 12.73 16.39 27.41

BlockPruner 9.40 12.76 19.78 43.05

SVD-LLM 7.92 (↓10%) 8.18 (↓33%) 8.33 (↓49%) 9.63 (↓56%)

Table 8: Perplexity (↓) of LLaMA-7B com-
pressed by 1-bit quantization methods and
SVD-LLM on WikiText-2. The relative perfor-
mance gain compared to the best-performing
baseline is marked in green.

METHOD TYPE MEMORY PERPLEXITY

PB-LLM Post-training 1.9 GB 104.83
BiLLM Post-training 1.5 GB 47.67

SVD-LLM Post-training 1.5 GB 47.21 (↓1%)

OneBit Training-required 1.3 GB 10.20

SVD-LLM (2-bit) Post-training 1.3 GB 9.83 (↓4%)

Comparison with Quantization. Finally, we compare SVD-LLM with three state-of-the-art
quantization-based LLM compression methods: BiLLM (Huang et al., 2024), PB-LLM (Yuan
et al., 2024), and OneBit (Xu et al., 2024), which push the frontier to 1-bit quantization. Among them,
both BiLLM and PB-LLM are post-training methods, and OneBit is training-required. The results on
LLaMA-7B using WikiText-2 dataset are shown in Table 8. We have three observations. (1) Com-
pared to post-training methods PB-LLM and BiLLM, SVD-LLM achieves the best performance. (2)
Training-required method OneBit outperforms SVD-LLM. This result is expected because OneBit in-
volves resource-intensive retraining using large-scale datasets to boost the accuracy after compression.
(3) Lastly, we combine SVD-LLM with a 2-bit quantization-based post-training LLM compression
method QuIP# (Tseng et al., 2024). This is achieved by first applying SVD-LLM to the LLM under
40% compression ratio, and then applying QuIP# for 2-bit quantization on the compressed model (W ′

u
and W ′

v) generated from SVD-LLM. As shown in Table 8, SVD-LLM outperforms state-of-the-art
1-bit training-required method OneBit without involving resource-intensive retraining. This result
demonstrates the potential of a hybrid approach – integrating SVD-based and quantization-based
compression techniques – to push the boundaries of post-training LLM compression.

5 CONCLUSION

In this work, we present SVD-LLM, a SVD-based post-training LLM compression method. SVD-LLM
proposes a truncation-aware data whitening technique to guide which singular values to be truncated
with minimal compression loss. It also introduces a sequential low-rank approximation strategy to
compensate for accuracy degradation caused by singular value truncation. We evaluate SVD-LLM on
10 datasets and seven models from three LLM families at three scales. Our results demonstrate the
superiority of SVD-LLM over state-of-the-arts, especially at high model compression ratios.

6 ACKNOWLEDGEMENT

This work is supported in part by NSF Award NeTS-2312675.

10

Published as a conference paper at ICLR 2025

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In NAACL-HLT (1), pages 2357–2367. Association for Computational Linguistics,
2019.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In AAAI, pages 10865–10873. AAAI Press, 2024.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In ICLR.
OpenReview.net, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In AAAI, pages 7432–7439. AAAI Press, 2020.

Patrick H. Chen, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui Hsieh. DRONE: data-aware low-rank
compression for large NLP models. In NeurIPS, pages 29321–29334, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-
shot. In ICML, volume 202 of Proceedings of Machine Learning Research, pages 10323–10337.
PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

G.H. Golub, Alan Hoffman, and G.W. Stewart. A generalization of the eckart-young-mirsky matrix ap-
proximation theorem. Linear Algebra and its Applications, 88-89:317–327, 1987. ISSN 0024-3795.
doi: https://doi.org/10.1016/0024-3795(87)90114-5. URL https://www.sciencedirect.
com/science/article/pii/0024379587901145.

Roberto Gozalo-Brizuela and Eduardo C. Garrido-Merchán. A survey of generative AI applications.
CoRR, abs/2306.02781, 2023.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR. OpenReview.net, 2022.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In ICML.
OpenReview.net, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://zenodo.org/records/10256836
https://www.sciencedirect.com/science/article/pii/0024379587901145
https://www.sciencedirect.com/science/article/pii/0024379587901145

Published as a conference paper at ICLR 2025

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In ACL (1), pages 3214–3252. Association for Computational Linguistics, 2022.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4A8KV4 quantization and system co-design for efficient LLM serving. CoRR,
abs/2405.04532, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurIPS, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR (Poster). OpenReview.net, 2017.

Carl Dean Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In EMNLP, pages 2381–2391.
Association for Computational Linguistics, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, pages 8732–8740. AAAI Press, 2020.

Hui Shen, Zhongwei Wan, Xin Wang, and Mi Zhang. Famba-v: Fast vision mamba with cross-layer
token fusion. CoRR, abs/2409.09808, 2024.

Hui Shen, Jingxuan Zhang, Boning Xiong, Rui Hu, Shoufa Chen, Zhongwei Wan, Xin Wang,
Yu Zhang, Zixuan Gong, Guangyin Bao, et al. Efficient diffusion models: A survey. arXiv preprint
arXiv:2502.06805, 2025.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023.

Jonathan Tow, Marco Bellagente, Dakota Mahan, and Carlos Riquelme. Stablelm 3b
4e1t. URL [https://huggingface.co/stabilityai/stablelm-3b-4e1t]
(https://huggingface.co/stabilityai/stablelm-3b-4e1t).

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. In ICML.
OpenReview.net, 2024.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models: A
survey. Trans. Mach. Learn. Res., 2024, 2024a.

12

https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/stabilityai/stablelm-3b-4e1t
https://huggingface.co/stabilityai/stablelm-3b-4e1t

Published as a conference paper at ICLR 2025

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing
Xiong, and Mi Zhang. D2O: dynamic discriminative operations for efficient generative inference
of large language models. CoRR, abs/2406.13035, 2024b.

Zhongwei Wan, Hui Shen, Xin Wang, Che Liu, Zheda Mai, and Mi Zhang. Meda: Dynamic kv cache
allocation for efficient multimodal long-context inference. arXiv preprint arXiv:2502.17599, 2025.

Xin Wang, Zhongwei Wan, Arvin Hekmati, Mingyu Zong, Samiul Alam, Mi Zhang, and Bhaskar
Krishnamachari. Iot in the era of generative AI: vision and challenges. CoRR, abs/2401.01923,
2024.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, volume 202
of Proceedings of Machine Learning Research, pages 38087–38099. PMLR, 2023.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. In NeurIPS, 2024.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
activation-aware singular value decomposition for compressing large language models. CoRR,
abs/2312.05821, 2023.

Zhihang Yuan, Yuzhang Shang, and Zhen Dong. PB-LLM: partially binarized large language models.
In ICLR. OpenReview.net, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In ACL (1), pages 4791–4800. Association for Computational
Linguistics, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. CoRR, abs/2406.10594, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
and Yu Wang. A survey on efficient inference for large language models. CoRR, abs/2404.14294,
2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. Trans. Assoc. Comput. Linguistics, 12:1556–1577, 2024.

13

Published as a conference paper at ICLR 2025

A APPENDIX.

A.1 PSEUDOCODE OF SVD-LLM

Algorithm 1 shows the pseudocode of SVD-LLM. Before compression, SVD-LLM randomly collects
a small amount of sentences as calibration data C, then runs the truncation-aware data whitening
process as shown in Algorithm 2 to obtain the set of whitening matrix SetS for the weight to
compress. After that, it runs the SVD and truncation with SetS on each weight matrix in the LLM.
Instead of directly finishing the whole compression, it stores the decomposed matrices and further
utilizes these matrices to run the parameter update with sequential low-rank approximation as shown
in Algorithm 3.

Algorithm 1 Pseudocode of SVD-LLM

1: Input: M : Original LLM
2: Output: M ′′: Compressed LLM by SVD-LLM
3: procedure SVD-LLM(M)
4: Randomly collect several sentences as the calibration data C
5: SetS ← TRUNCATION-AWARE DATA WHITENING(M,C)
6: SetW ←M ▷ Obtain the set of weights in M to compress
7: for W in SetW do
8: S ← SetS(W) ▷ Extract the whitening matrix of current weight W
9: U,Σ, V ← SVD(WS) ▷ Apply singular value decomposition on W

10: Σ1 ← Trunc.(Σ) ▷ Truncate the smallest singular values in Σ
11: W ′

u ← U(Σ1)
1/2,W ′

v ← (Σ1)
1/2V TS−1 ▷ Obtain two low-rank matrices

12: M ′(W)←W ′
u,W

′
v ▷ Replace W with W ′

u and W ′
v in L

13: end for
14: M ′′ ← PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION(M ′)
15: return M ′′

16: end procedure

Algorithm 2 Pseudocode of Truncation-Aware Data Whitening

1: Input: M : Original LLM
2: Input: C: Calibration Data
3: Output: SetS : Set of whitening matrices for the weight to compress in M
4: procedure TRUNCATION-AWARE DATA WHITENING(M,C)
5: SetS ← ∅ ▷ Initialize the set of whitening matrices
6: SetW ←M ▷ Obtain the set of weights in M to compress
7: for W in SetW do
8: X ←M(W,C) ▷ Obtain the input activation of the weight matrix W
9: S ← Cholesky_Decomposition(XXT) ▷ Apply cholesky decomposition on XXT

10: SetS ← S ∪ SetS ▷ Store the whitening weight matrix in the set
11: end for
12: return SetS
13: end procedure

Algorithm 3 Pseudocode of Parameter Update with Sequential Low-rank Approximation

1: Input: M ′: Compressed LLM by Truncation-aware Data Whitening
2: Output: M ′′: Compressed LLM with Parameter Update with Sequential Low-rank Approxima-

tion
3: procedure PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION(M ′)
4: M ′

u ← LoRAu(M
′) ▷ Fix all W ′

v , fine-tune all W ′
u

5: M ′′ ← LoRAv(M
′
u) ▷ Fix all W ′

u, fine-tune all W ′
v

6: return M ′′

7: end procedure

14

Published as a conference paper at ICLR 2025

A.2 COMPRESSION LOSS OF ASVD

ASVD introduces a diagonal scaling matrix S0 that modifies the weight matrix to reflect the varying
significance of different input channels. The linear layer is formulated as Y = (WS0)S

−1
0 X . The

compression is made by keeping the largest m singular value of WS0:

WS0 ≈
m∑
i=1

σ′
iu

′
iv

′T
i

The resulting activation is expressed as:

Y ≈
m∑
i=1

σ′
iu

′
iv

′T
i S

−1
0 X .

The compression error L = ||(WS0 −
∑m

i=1 σ
′
iu

′
iv

′T
i)S

−1
0 X||F is demonstrated below:

L2 =||(WS0 −
m∑
i=1

σ′
iu

′
iv

′T
i)S

−1
0 X||2F

=

∣∣∣∣∣
∣∣∣∣∣

r∑
i=m+1

σ′
iu

′
iv

′T
i S

−1
0 X

∣∣∣∣∣
∣∣∣∣∣
2

F

=

r∑
j=m+1

r∑
i=m+1

σ′
iσ

′
jTrace(u

′
iv

′T
i XXT v′ju

′T
j)

=

r∑
j=m+1

r∑
i=m+1

σ′
iσ

′
jTrace(u

′T
j u

′
iv

′T
i S

−1
0 XXT (S−1

0)T v′j)

=

r∑
i=m+1

σ′2
iTrace(v

′T
i S

−1
0 XXT (S−1

0)T v′i)

=

r∑
i=m+1

σ′2
i ||v′

T
i S

−1
0 X||2F ,

which is still a complex function that involves the activation X , the diagonal matrix S0, the singular
vector v′i and the singular value σ′

i. As a result, compression error is not directly related to the singular
value, and the conventional SVD compression by truncating the smallest singular values may lead to
suboptimal compression error.

A.3 COMPRESSION LOSS OF SVD-LLM

In SVD-LLM, we also formulate the linear layer as Y = (WS)S−1X , where S−1XXT
(
S−1

)T
= I .

The compression is made by keeping the largest m out of total r singular values of WS. The
compression loss L is demonstrated as:

15

Published as a conference paper at ICLR 2025

L2 = ∥WX −W ′X∥2F =
∥∥WSS−1X − SVD(WS)S−1X

∥∥2
F

=
∥∥(WS − SVD(WS))S−1X

∥∥2
F

=

∥∥∥∥∥
(
WS −

m∑
i=1

σiuiv
T
i

)
S−1X

∥∥∥∥∥
2

F

=

∥∥∥∥∥
r∑

i=m+1

σiuiv
T
i S

−1X

∥∥∥∥∥
2

F

=

r∑
j=m+1

r∑
i=m+1

σiσjTrace
(
uiv

T
i S

−1XXT
(
S−1

)T
vju

T
j

)
=

r∑
j=m+1

r∑
i=m+1

σiσjTrace
(
uiv

T
i

(
S−1XXT

(
S−1

)T)
vju

T
j

)
=

r∑
j=m+1

r∑
i=m+1

σiσjTrace
(
uiv

T
i vju

T
j

)

∵ vTi vi = uT
i ui = 1; vTi vj = uT

i uj = 0,Trace
(
viv

T
i

)
= Trace

(
uiu

T
i

)
= 1,∀i ̸= j

∴ L2 =

r∑
j=m+1

r∑
i=m+1

σiσjTrace
(
uiv

T
i vju

T
j

)
=

r∑
i=m+1

σ2
iTrace

(
uiv

T
i viu

T
i

)
=

r∑
i=m+1

σ2
i

Therefore, the squared loss L2 is equal to the sum of the squared singular values. Therefore, truncating
the smallest singular values achieves the lowest compression loss.

A.4 SPECTRUM ANALYSIS OF SINGULAR VALUES DECOMPOSED BY SVD-LLM

In general, SVD is useful for compression when the matrix to be compressed shows a sharp decay
of the singular values. Since SVD-LLM decomposes the multiplication of the weight matrix W and
its corresponding whitening matrix S instead of the original weight matrix W , which is different
from the weight decomposition in the previous work (Yuan et al., 2023; Hsu et al., 2022), to study
whether SVD compression is also applicable in SVD-LLM, we select the Query (WQ) and Key (WK)
weight matrices and show the spectrum of singular values of their multiplication with corresponding
whitening matrices SQ and SK . As shown in Figure 6, most of the single values are less than or
around 100 with only a few extremely large values, indicating that SVD is applicable in SVD-LLM.

A.5 COMPARISON WITH DRONE

Previous work DRONE (Chen et al., 2021) also proposes their data-aware method for SVD compres-
sion. They even provide a theoretical analysis to prove the optimal solution that their method achieves.
Specifically, DRONE represents the low-rank compressed weight matrix W ′ by WM . It performs
SVD on both weight matrix W = UwSwV

T
w and the transpose of input activation XT = UxSxV

T
x

and then split these decomposed matrices as follows:

UW =
[
UW,r ŪW,r

]
, SW =

[
SW,r 0
0 0

]
, VW =

[
VW,r V̄W,r

]
UX =

[
UX,t ŪX,t

]
, SX =

[
SX,t 0
0 0

]
, VX =

[
VX,t V̄X,t

]
.

where r and k are the rank of the W and X . UW,r, VW,r, UX,t, VX,t denote corresponding row
spaces and column spaces and ŪW,r, V̄W,r, ŪX,t, V̄X,t are null spaces. Through theoretical deduction,

16

Published as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer Index

10 4

10 2

100

102

104

Sp
ec

tru
m

 o
f S

in
gu

la
r V

al
ue

s

(a) WQ × SQ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer Index

10 4

10 2

100

102

104

Sp
ec

tru
m

 o
f S

in
gu

la
r V

al
ue

s

(b) WK × SK

Figure 6: The singular value spectrum of the decomposed matrices across layers in LLaMA-7B.

DRONE converts the minimization of compression loss ||WX −W ′X||F = ||WX −WMX||F to
the minimization of

∥∥SW,rV
T
W,rVX,tSX,t − SW,rV

T
W,rMVX,tSX,t

∥∥
F

, whose optimal value Lmin is
the rank-k truncated SVD of Z = SW,rV

T
W,rVX,tSX,t by the fundamental property of SVD decom-

position. To achieve the optimal value, DRONE formulates a solution M = VW,rS
−1
W,rZkS

−1
X,tV

T
X,t,

where Zk is the rank-k SVD truncation of Z.

In short, compared with DRONE, SVD-LLM is also optimal with the same theoretical compression
loss as DRONE. Moreover, SVD-LLM has three key advantages. Below is our detailed explanation.

SVD-LLM is also optimal with the same theoretical compression loss as DRONE. The theoretical
minimum compression loss Lmin is the F-norm loss of rank-k SVD truncation of WX , which has
also been achieved by DRONE in their paper. Unlike DRONE, SVD-LLM constructs the whitening
matrix S so that S−1X is orthonormal. Therefore, we have ||AS−1X||F = ||A||F . Suppose that we
decompose S with SVD to Us, Ss, Vs, we can have Ss = Sx, Us = Ux, Us = Ux, Vs = QVx, where
Q is an orthogonal matrix. The matrix WS to which SVD-LLM applies SVD could be represented

17

Published as a conference paper at ICLR 2025

Table 9: Compression loss of the randomly generated weight and activation matrices with different
shapes under 50% compression ratio using SVD-LLM, Drone, and the theoretical minimum.

LOSS [128× 128]× [128× 128] [2048× 2048]× [2048× 2048] [4096× 4096]× [4096× 4096]

MINIMUM 276.1130 17784.2637 50321.9141

DRONE 276.1130 17785.6992 50337.2148

SVD-LLM 276.1130 17784.2676 50321.9727

Table 10: Compression Time of the randomly generated weight and activation matrices with different
shapes using SVD-LLM and Drone. The compression time is measured for 5 times’ compression.

TIME [128× 128]× [128× 128] [2048× 2048]× [2048× 2048] [4096× 4096]× [4096× 4096]

DRONE 0.07 seconds 5.81 seconds 30.35 seconds

SVD-LLM 0.02 seconds 1.98 seconds 10.37 seconds

by UwSwV
T
w UsSsV

T
s . Suppose that we use Trunc.(C) to represent the rank-k truncation of the

matrix C during SVD compression, the compression loss L is derived as follows:

L = ||WX −W ′X||F = ||(WSS−1X − SVD(WS)S−1X)||F = ||(WS − SV D(WS))S−1X||F
= ||Trunc.(WS)S−1X||F = ||Trunc.(WS)||F
= ||Trunc.(UwSwV

T
w UsSsV

T
s)||F = ||Trunc.(WXQT)||F = Lmin

Therefore, SVD-LLM shares the same theoretical compression loss as DRONE.

Advantage #1: DRONE incurs out-of-memory when compressing LLMs due to its requirement
of storing the full large-scale activations, whereas SVD-LLM is feasible. To achieve data-awareness
during compression, DRONE caches all input activations X and spans them to calculate the corre-
sponding singular vectors and singular values. In the DRONE paper, the authors apply DRONE to
small LMs such as BERT. However, the activations generated by LLMs are often extremely large and
are much larger than BERT. For example, to compress LLaMA-7B with 5,000 calibration data by
DRONE, the total memory to cache the activation for a single weight matrix at a time is 5000 (data
number) × 256 (seq_len) × 11008 (dim) × 32 (fp32) ÷ 1024 ÷ 1024 ÷ 1024 = 419GB, which is
more than 5 times larger than the memory provided by the NVIDIA A100 GPU, which has 80GB
memory. Therefore, applying DRONE for LLM compression is infeasbile.

In contrast, SVD-LLM incrementally updates its XXT matrix by adding the xxT of each new input
x. As such, SVD-LLM eliminates the need to store the full activations, which requires only the
storage of the matrix XXT , which is considerably smaller than the full input activation. To compress
LLaMA-7B with 5,000 calibration data, SVD-LLM requires only 11008 × 11008 × 32 ÷ 1024
÷ 1024 ÷ 1024 = 3.6GB. Compared to DRONE, SVD-LLM achieves 116.38 times less memory
reduction than DRONE. In our paper, we use WikiText-2 as a dataset. If we use DRONE, the
total memory to cache the activation of a single weight matrix is larger than 24,600GB. In contrast,
SVD-LLM still requires 3.6GB of memory, which is more than 6,000 times less than DRONE. Due to
this advantage, SVD-LLM is much more practical to compress LLMs of size 7B or larger compared
to DRONE.

Advantage #2: SVD-LLM incurs much shorter compression time compared to DRONE. DRONE
involves more complex matrix operations, leading to longer compression time compared to SVD-LLM.
To illustrate this, we measured the time required by DRONE and SVD-LLM to compress randomly
generated weight and activation matrices of varying shapes under 50% compression ratio. The results
show that SVD-LLM is approximately three times faster than DRONE.

Advantage #3: SVD-LLM has better numerical stability, which leads to superior empirical
compression loss. While SVD-LLM shares the same theoretical compression loss as DRONE,
DRONE’s higher complexity—stemming from additional SVD operations and inverse calculations
on large-scale matrices—makes it less numerically stable compared to SVD-LLM. This often results
in higher empirical compression losses. To illustrate this, we compare SVD-LLM and DRONE in
terms of empirical compression losses for randomly generated matrices of various shapes. We also
include the theoretical minimum value, represented by the rank-k Frobenius norm loss of WX . The
results are summarized in the following table. As shown, we observe that SVD-LLM achieves lower
empirical compression losses than DRONE, underscoring its superior numerical stability.

18

Published as a conference paper at ICLR 2025

Table 11: Perplexity (↓) of SVD-LLM and FLAP on WikiText-2 to compress LLaMA-7B under
different compression ratios. The better performance is marked in bold. The relative performance
gain of SVD-LLM compared to FLAP is marked in green inside bracket.

RATIO (MEM.) 20% (10.2GB) 40% (7.76GB) 60% (5.35GB) 80% (2.58GB)

FLAP 7.99 14.43 106.87 15023

SVD-LLM 7.73 (↓3%) 9.27 (↓36%) 15.00 (↓86%) 31.79 (↓99%)

Table 12: Comparison of LLaMA-3B (compressed from LLaMA-7B by SVD-LLM) and original
StableLM-3B (Tow et al.) trained from scratch. Both the throughput and the peak memory footprint
during the inference are measured with batch size=32, sequence length = 128 on single A100 GPU.

MODEL Throughput Peak Mem. Openb. Arc_e WinoG. HellaS. PIQA MathQA Average↑ TruthfulQA↑ GSM8K↑
StableLM-3B 8463 Tokens/sec 9.41 GB 0.19 0.51 0.55 0.47 0.69 0.21 0.44 0.22 0.02

LLaMA-3B 9254 Tokens/sec 7.43 GB 0.27 0.54 0.60 0.49 0.68 0.19 0.46 (↑5%) 0.23 (+ 0.01) 0.04 (+ 0.02)

A.6 COMPARISON WITH FLAP

Recent work FLAP (An et al., 2024) is also a post-training structured-pruning method. Below we
compare the perplexity of SVD-LLM and FLAP on WikiText-2 under different compression ratios
when compressing LLaMA-7B. As shown in Table 11, SVD-LLM consistently outperforms FLAP,
especially under high compression ratios.

A.7 COMPARISON WITH SMALLER LLMS PRE-TRAINED FROM SCRATCH

To compare the performance between SVD-LLM and scratch training, following the previous ex-
perimental design (Ma et al., 2023), we compress LLaMA-7B to the size of the 3B parameter with
SVD-LLM and select StableLM-3B (Tow et al.) as the baseline for comparison. As shown in Table 12.
LLaMA-3B compressed from LLaMA-7B by SVD-LLM achieves better accuracy in all datasets,
indicating that SVD-LLM could even achieve better accuracy than some scratch training methods. Fur-
thermore, SVD-LLM ensures higher throughput and lower memory consumption than StableLM-3B
as shown in the table, which also meets our efficiency analysis and discussion in Section 4.2.

Table 13: Compression time of SVD-LLM and ASVD on LLaMA-7B under 20% compression ratio.
The relative speedup is marked in green color inside bracket.

SVD-LLM ASVD

Truncation-Aware
Data Whitening

Parameter Update with Sequential
Low-rank Approximation Total Normalize Search Total

10min 3.5h 3.5h (↓36%) 5min 5.5h 5.5h

A.8 COMPRESSION SPEED EVALUATION

In addition to compression performance, we also evaluate the compression speed of SVD-LLM
and the baselines. Specifically, we measured the GPU hours used for SVD-LLM and ASVD when
compressing LLaMA-7B under 20% compression ratio on an A100 GPU. The results are shown
in Table 13. As shown, ASVD takes about 5.5 hours, while SVD-LLM completes the compression
process in 3.5 hours, which is 36% times faster. When breaking down the time, most of the time
consumed by ASVD is dedicated to searching for the specific compression ratio for each weight
matrix based on its calculated importance score. In contrast, SVD-LLM maintains a consistent
compression ratio in all weight matrices and thus eliminates the time-consuming search process.

19

Published as a conference paper at ICLR 2025

A.9 CONTENTS GENERATED FROM LLMS COMPRESSED BY SVD-LLM AND ASVD

Some examples of sentences generated by LLaMA-7B compressed with SVD-LLM and ASVD
are shown in Table 14. The sentences generated by the model compressed by SVD-LLM exhibit
better fluency, relevance, and informativeness compared to those compressed by ASVD. More
importantly, when the compression ratio is increased to 40%, the previous state-of-the-art method
ASVD completely loses its generation ability. In contrast, even when the compression ratio is up to
80%, SVD-LLM is still capable of generating complete sentences.
Table 14: An example of contents generated by the fine-tuned LLaMA-7B with LoRA after being
compressed by SVD-LLM and ASVD under different compression ratios. The input is marked in
bold and the normal texts are the generated sentences.

RATIO SVD-LLM ASVD

Original What is the responsibility of the AI assistant? The responsibility of an AI assistant is to complete the job without any
hesitation. Also, the AI assistant has no problem with taking a decision and executing it. An AI assistant is responsible to
complete the task and it needs to learn from his past experience to take the best possible decision without any hesitation...

20% What is the responsibility of the AI assistant? The AI
assistant’s role and responsibilities are often ambiguous and
can vary depending on the context and the type of assistant
being used. Some AI assistants may have preset responses
to common queries, but their behavior can also depend on
the user’s interaction and expectations...

What is the responsibility of the AI assistant? 1. To act
in the same way as the programmer intended. 2. To make
a value assessment of the user’s intentions and offer an
appropriate response. 3. To help the user carry out specific
tasks or follow a strict script. 4. To make the system as
independent of the user as possible...

40% What is the responsibility of the AI assistant? 1. The AI
assistant is responsible for performing tasks that can only
be done by AI technology such as scheduling appointments,
setting reminders and making suggestions, while also pro-
viding quick and accurate responses. 2. The AI assistant
is also responsible for learning and updating its knowledge
base through continuous improvement, thus making it more
efficient and effective. 3. The AI assistant is responsible
for handling and managing user-generated and customer-
oriented input...

What is the responsibility of the AI assistant? 1. Define
the definition of the job specification. 2. Define the role of
the AI assistant for the job. 3. Define the skills necessary
in order to carryout the tasks assigned to the job to do the
work of the same capacity in the market. 4. Determine
the evaluation of the job competence of the AI assistant
to ensure their professional integrity. 5. What type of AI
assistant jobs are available? 6. What industries require
technology assistance work to complete the tasks that it
own personnel cannot perform...

60% What is the responsibility of the AI assistant? In a nut-
shell, the responsibility of the AI assistant could vary depend-
ing on the task, but generally, the focus would be on auto-
matic tasks, without the need for human intervention. Some
common tasks could include setting reminders, scheduling
appointments, and making routine household or productivity
tasks. The AI assistant also serves as a backup or a relief
system, taking on responsibilities when the user is not avail-
able ...

What is the responsibility of the AI assistant? 2.3.
?? Brush for a discussion I wonder is it worth doing is
important.2- It isn’t useful just reducing labor costs; it
helps employees feel a sense of connected to your atten-
tion which leads to better workplace values among staffers
and leads to long relationships among org...

80% What is the responsibility of the AI assistant? Our Design
is based on our understanding of the world, and we are
actively learning, adapting and adapting, so we’re always
evolving new ideas, which we see to be most unique and
relevant in our community...

What is the responsibility of the AI assistant? ygua
AIeltemperaturen/2, (64mbz/.3/.1/, 7.kbld.org.0/2/ In
these puthebout les bnvols n merginels ...

A.10 MORE ABLATION STUDIES

SVD-LLM + Normal LoRA Fine-tuning v.s. SVD-LLM + Sequential LoRA fine-tuning. To
illustrate the superiority of the designed parameter update with the sequential low-rank approximation
in SVD-LLM, which is a kind of sequential LoRA fine-tuning strategy over the normal LoRA fine-
tuning strategy, we compare the compression performance of SVD-LLM by applying either of these
two fine-tuning strategies. Let’s denote SVD-LLM (SFT) as SVD-LLM by applying sequential LoRA
fine-tuning and SVD-LLM (NFT) as SVD-LLM by applying normal LoRA fine-tuning. As shown
in Table 15, SVD-LLM (SFT) consistently outperforms SVD-LLM (NFT), which also reaffirms our
analysis in Section 3.2 that optimizing both low-rank matrices Wu,Wv at the same time is not stable
and may lead to poor fine-tuning performance.

ASVD + Sequential LoRA Fine-tuning v.s. SVD-LLM + Sequential LoRA Fine-tuning. Although
the designed sequential LoRA fine-tuning strategy could also be applied in other SVD-based LLM
compression methods, other methods’ performance is still poorer than SVD-LLM even when inte-
grated with this strategy for enhancement. To illustrate this, we compare the performance of the

20

Published as a conference paper at ICLR 2025

Table 15: Perplexity (↓) of SVD-LLM with original LoRA fine-tuning (denoted as SVD-LLM (SFT)),
ASVD with sequential LoRA fine-tuning (denoted as ASVD (SFT)), and SVD-LLM with sequential
LoRA fine-tuning (denoted as SVD-LLM (SFT)) on WikiText-2 to compress LLaMA-7B under
different compression ratios.

RATIO (MEM.) 20% (10.2GB) 40% (7.76GB) 60% (5.35GB) 80% (2.58GB)

SVD-LLM (NFT) 7.87 11.98 16.30 80.23
ASVD (SFT) 8.37 14.86 44.81 271

SVD-LLM (SFT) 7.73 9.27 15.00 31.79

previous state-of-the-art method ASVD when applied with the sequential LoRA finetuning with
SVD-LLM. Let’s denote SVD-LLM (SFT) as SVD-LLM by applying sequential LoRA fine-tuning and
ASVD (SFT) as ASVD by applying sequential LoRA fine-tuning. As shown in Table 15, SVD-LLM
(SFT) consistently outperforms ASVD (SFT) under various compression ratios.

A.11 LIMITATIONS

There are three limitations of SVD-LLM, which are left for future work.

(1) The compression accuracy still needs to be improved under the high compression ratio.
Although SVD-LLM has achieved the state-of-the-art performance compared to previous works such
as FWSVD and ASVD, its compression accuracy still suffers from degradation, especially under
the high compression ratio. To enhance the practicability of SVD-LLM in real-world scenario, its
accuracy should be at least comparable to that of the quantization method, including both low-bit and
high-bit quantization, rather than being combined with the quantization methods for usage.

(2) The latency of SVD-LLM needs to be optimized while being used to compress the KV cache.
As discussed in Section 4.2, SVD-LLM can also be applied to compress the KV cache for memory
saving during inference. However, this benefit does not come free. In fact, due to the additional
calculation caused by recovering the original key and value states, the inference speed will be
impacted by compressing the KV cache with SVD-LLM, which should be optimized in the future.

(3) SVD-LLM should be better guided for high-quality generation. Although SVD-LLM achieves
low perplexity, as demonstrated in Table 1, it is still possible to generate low-quality content, such as
repeated words even under low compression ratios. This phenomenon of compressed LLM has also
been mentioned in previous work (Ma et al., 2023) and should be eliminated in the future by guiding
the compressed LLM for outputting high-quality generation.

21

	Introduction
	Related Work
	SVD-LLM
	Truncation-Aware Data Whitening
	Parameter Update with Sequential Low-rank Approximation

	Experiments and Analysis
	Comparison with State-of-the-Art SVD-based LLM compression Methods
	Inference Efficiency of SVD-LLM
	Ablation Study
	Comparison with Other Types of LLM Compression Methods

	Conclusion
	Acknowledgement
	Appendix.
	Pseudocode of SVD-LLM
	Compression Loss of ASVD
	Compression Loss of SVD-LLM
	Spectrum Analysis of Singular Values decomposed by SVD-LLM
	Comparison with DRONE
	Comparison with FLAP
	Comparison with smaller LLMs pre-trained from scratch
	Compression Speed Evaluation
	Contents Generated from LLMs Compressed by SVD-LLM and ASVD
	More Ablation Studies
	Limitations

