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Abstract

In this paper, we introduce Milnor-Myerson games, a multiplayer interaction struc-
ture at the core of machine learning (ML), to shed light on the fundamental prin-
ciples and implications the artificial principal-agent problem has had in landmark
ML results like AlphaGo and large language models (LLMs).

1 Introduction

Since its inception, artificial intelligence (AI) has studied the construction of artificial agents that
can think and act like humans (Turing, 1950; McCarthy et al., 1955; Russell & Norvig, 2020). For
almost two decades, and spearheaded by notable results in reinforcement learning (Silver et al., 2016;
2018; Vinyals et al., 2019; Berner et al., 2019) and, more recently, in (self) supervised learning at scale
(OpenAI, 2023; Gemini Team, 2023), machine learning (ML) has positioned itself as the de facto
approach to produce agents with those capabilities. However, several important questions still linger.
Contrast, for instance, the outstanding go-playing abilities of AlphaGo (Silver et al., 2016) and the
natural language understanding capacities of Large Language Models (LLM) (OpenAI, 2023; Gemini
Team, 2023). In AlphaGo, we found an artificial agent that challenged more than two millennia of
human go-playing knowledge with Move 371. In current LLMs, we find general-purpose agents
with a remarkable ability to comprehend human-human and human-world interactions through
natural language (Bubeck et al., 2023). In this paper, we argue that a thread connecting these two
outstanding results is baked into a multiplayer structure that exists at the core of ML problems.

To this end, we note that reinforcement learning (Sutton & Barto, 2018) and supervised learn-
ing (Bishop, 2006; Goodfellow et al., 2016) problems share a common construction. In each, there
are at least three functionally equivalent components, namely, a model or policy, a data distribution
or transition dynamics, and an accuracy or reward function. The meaning of these three compo-
nents hides a multiplayer structure. The first of these players, the principal, arises from a delegation
problem (Ross, 1973). If we consider an artificial agent to be an entity that would act on a human’s
behalf, problem designers have entered into a principal-agent relationship with artificial agents, and
played the role of the principal, a player that defines the payoff of other players, the agents, to guar-
antee a specific outcome for herself or others (Myerson, 1983). In ML, problem designers construct
reward or accuracy functions, the principal strategy, to elicit agent behavior consistent with their
preferences. A second player, nature, emerges by noting that when a (decision-making) player aims
to maximize its payoff in a two-player game against an opponent that plays with a fixed strategy and
constant payoff, it plays a game against nature (Milnor, 1951). The data distribution in supervised
and the transition dynamics in reinforcement learning sketch nature’s strategy, and model a range
of world-grounded problems (Russakovsky et al., 2014; Brockman et al., 2016; Radford et al., 2019).

1Move 37 refers to the 37th move that AlphaGo produced during the second match of the six-match series against
go world-champion Lee Sedol (Menick, 2016; Kohs, 2017).
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Therefore, ML problems share this three-player structure that we introduce in Sec. 3, called Milnor-
Myerson games2, where human designers, acting as principals, encode in their strategies their prefer-
ences for the behaviour an agent uses in its game against the sketch of nature’s strategy the designers
provide. This structure extends to other areas of ML by considering the interactions among multiple
agents and multiple principals. These higher-order structures present an opportunity to explore the
human designer-artificial agent relationship. In Sec. 4, we develop formal notions of the artificial
principal-agent problem, explain the modes of principal supervision and how they connect to sparse
and dense objectives, and describe how ML algorithms function as propagation mechanisms for the
principal’s preferences. Later, in Sec. 5, we leverage these formalisms to connect AlphaGo and LLMs.
The Principal’s Principle of Indifference, a proposition that we derived from the observed bounded
rationality found in human principals (Simon, 1990; Selten, 1990) and the biases strong forms of
supervision have introduced in ML systems (Silver et al., 2017; Wang et al., 2024), advocates that,
in the road towards artificial agents that can think and act as humans and beyond, whenever hu-
man designers are uncertain about the consequences of their preferences, they should refrain for
expressing them.

2 Background

Games Against Nature. A game against nature is an asymmetric two-player game that we
denote by Gρ = ⟨X , Y, ℓ⟩ that a player, the decision-making player, with action space Y, strategy
π ∈ ∆(Y), and payoff function ℓ : X × Y → R, plays against nature, a player with action space
X , strategy ρ ∈ ∆(X ), and whose payoff is unknown or identically zero (Milnor, 1951). If nature’s
strategy is assumed known, the agent solves a problem of decision making under risk (Duncan Luce &
Raiffa, 1989; Peterson, 2017), and solutions can be derived from game theory and the expected utility
framework (Von Neumann & Morgenstern, 1944). Conversely, when nature’s strategy is unknown,
the player faces a problem of decision making under uncertainty, a setting that requires a more
axiomatic treatment (Milnor, 1951; Savage, 1951; Papadimitriou, 1985). We defer to Appendix A
for an extended discussion of this topic.

Common Agency. In many scenarios, multiple parties (or principals) have preferences over the
actions an agent performs. We refer to those cases where an agent must satisfy the preferences
of multiple principals, which may conflict as common agency problems (Bernheim & Whinston,
1986; Peters, 2001). This formulation assumes that principals have preferences over every pair of
actions y, y′ ∈ Y in the agent action space, and that those preferences are expressed through a set
of incentives or payoff functions L = {ℓ1, ℓ2, . . . , ℓM }, one for each of the M principals, such that
each is a function ℓk : Y → R that scores the agent’s actions.

Machine Learning. If one restates SL and RL on interactive terms (see Appendix B), their
definitions reveal functionally equivalent components. Conveniently, instances and states (xt and
st), outputs and actions (yt and at), data distributions and transition functions (µ and ρ), models
and policies (µ and π), or reward functions and metric functions (ℓ and r) have equivalent roles.
Meanwhile, the distinctions may only be relevant for designing learning algorithms. Instead, we
focus on common components, the triplet ⟨π, ρ, ℓ⟩, and their implied multiplayer structure.

3 Milnor-Myerson Games

The triplet of components ⟨π, ρ, ℓ⟩ describes a multiplayer structure that connects ML to decision
theory and principal-agent problems.

The Milnor Decomposition. In decision theory, when the decision-making player is faced with
a player whose acts may affect the decision-maker payoffs but has no interest in the game outcome
of the interactions, the decision-making player is playing a game against nature (Milnor, 1951). In

2In honour to John Milnor’s and Robert B. Myerson’s pioneering contributions to decision theory (Milnor, 1951)
and principal-agent problems (Myerson, 1983).
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either SL or RL problems, the data distribution or the transition dynamics describe those world-
grounded processes. Nature’s behaviour is obtained by either human interactions with the (true)
data distribution and recollected on datasets (sketches) (LeCun et al., 2010; Deng et al., 2009; Lin
et al., 2014) or simulated to leave agents to interact with it (Brockman et al., 2016).
Proposition 1. Every machine learning problem models a multi-player game against nature.

Proof. Sketch: Start from a game against nature and consider a sequential, repeated, perfect infor-
mation game where nature has a known fixed strategy and the agent maximizes expected payoffs.

ML makes several assumptions about nature’s action space structure to model world-grounded prob-
lems. Thus, the action space X may represent images (LeCun et al., 2010; Russakovsky et al., 2014),
the gameboards of chess, shogi or go (Silver et al., 2016; 2018), vector-based observations for robotic
control (Brockman et al., 2016; Andrychowicz et al., 2018), or language tokens (Devlin et al., 2018;
Radford et al., 2019). In (Markovian) RL, the Markov assumption constrains nature’s actions to
be sufficient statistics of past interactions (Puterman, 2005). Moreover, SL and RL differ in their
assumption about nature’s strategy. In the first, the data distribution is a memoryless (or reactive)
strategy ρ : ∆(X ), and as such, nature’s actions are independent from previous actions3. In the
latter, the Markovian transition dynamics represent a memory-one strategy ρ : X × Y → ∆(X ) such
that the last interaction conditions every action.

Myerson Decomposition. The traditional interpretation of agency in the context of ML prob-
lems, mainly in RL problems, is one where an agent is an entity that changes the state of the
environment through its actions to achieve some goal (Sutton & Barto, 2018). This causal interpre-
tation often neglects the representative perspective of agency, common in economics (Ross, 1973),
entertainment (Zelenski, 2003), or sports (Shropshire & Davis, 2008), where an agent is an entity
that acts on behalf of other(s). While in the real world, both perspectives coexist and are the reason
that principal-agent problems arise (Ross, 1973; Mitnick, 1975; Myerson, 1983), we believe that the
agent-as-a-representative perspective uncovers novel aspects of artificial agents and ML problems, as
we will show in Sec. 4. For instance, an artificial agent-principal relationship avoids some traditional
principal-agent problems.
Remark 1. Artificial agents have no intrinsic objectives and only maximize those (extrinsically)
specified by their designers (Nicholson, 2013; Roli et al., 2022; Jaeger, 2023; Jaeger et al., 2024).

Thus, our work takes a philosophical stance in the extrinsic vs intrinsic objective debate, common in
RL neuro-cognitive foundations (Singh et al., 2009; Hassabis et al., 2017; Lake et al., 2017; Botvinick
et al., 2020).

those preferences appear in ML in two forms. In SL, the accuracy function generally has the form
ℓ(x, y) = 1 if y = y∗ where a unique agent action y∗ ∈ Y (e.g., ground-truth label) is the best
response to nature’s action x ∈ X . The accuracy function expresses a top-rank choice preference
y∗ ≻ y′ for such action, and the principal’s indifference y ∼ y′ for other actions y, y′ ∈ Y. In RL, a
(Markov) reward function ℓ(x, y) expresses a (possible partial) set of preferences over agent actions
y ⪰x y′, conditioned on nature’s action x ∈ X .

Higher-Order Milnor-Myerson Games. Beyond the canonical structure containing an agent,
nature, and a principal, denoted by SASPn = ⟨π, ρ, ℓ⟩, there are also Milnor-Myerson games of a
higher order. In the Multi-Agent Single Principal (MASPn) game, that we denote by MASPn =
⟨Π, ρ, ℓ⟩, a set of agents Π = {π1, π2, . . . , πn} play against nature as representatives of a common
principal whose strategy ℓ : X × Y → Rn decides every player’s payoff, and Y = Y1 × Y2 ×
. . . × Yn denotes the n-player joint action space. If we consider a common agency problem, a
Single-Agent Multi-Principal (SAMPn) game, denoted by the tuple SAMPn = ⟨π, ρ, L⟩, models
a structure where an agent π, plays against nature’s strategy ρ, on behalf of a set of principals
L = {ℓ1, ℓ2, . . . , ℓm}, whose strategies ℓk : X × Y → R define the agent’s payoff. Then, in the
Multi-Agent and Multi-Principal (MAMPn) structure, that we denote by MAMPn = ⟨Π, ρ, L⟩, a

3This is an alternative interpretation of the independence component of the i.i.d assumptions (Bishop, 2006).
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set of agents Π = {π1, π2, . . . , πn}, play a game against nature’s strategy ρ on behalf of multiple
principals L = {ℓ1, ℓ2, . . . , ℓm}, whose strategies ℓk : X × Y → Rn define the m payoffs every player
receives. These higher-order structures model interactions in several ML problems (Appendix C.1)

4 The Artificial Principal-Agent Problem

Understanding the foundation that ML problems share through Milnor-Myerson games and their
higher-order structures presents novel challenges (see ??). From all, we focus on the human designer-
artificial agent relationship. We make precise the modes of principal supervision and how they con-
nect to sparse and dense objectives. Next, we describe how ML algorithms propagate the principal’s
preferences to later, in Sec. 5, leverage these ideas to connect AlphaGo and LLMs.

4.1 Modes of Principal Supervision

In traditional principal-agent problems, principals incur agency costs. These costs include the costs
of monitoring, specification, and others (Jensen & Meckling, 1976). In artificial agency, the costs of
specification limit the principal’s strategy effective domain. In many ML problems, specifying payoffs
for every x ∈ X is costly or unfeasible for large (or infinite) action spaces. Generally, principals’
strategies are defined over a subset X ′ ⊆ X of nature’s action space. The notions of supervision
that follow are limited to such a subset.

Weak Supervision. We defined sparse payoff functions, with domain on X ′, to be those principal
strategies that do not communicate preferences over certain outcomes. More formally,
Definition 1. Let ℓ : X ′ × Y → R denote the principal’s strategy. The strategy is weakly sparse
if there exists a nature’s action x ∈ X ′ where it induces no order over the player’s action set Y(x).
For those nature’s actions, the principal expresses an indifference y ∼x y′ for every action pair
y, y′ ∈ Y(x) the payoffs are equal and constant ℓ(x, y) = ℓ(x, y′).

A stronger and more useful notion of sparseness is one where, except on some terminal interactions
where there should be at least one preferred outcome, the principal only expresses indifference in
most states of nature.
Definition 2. Let ℓ : X ′×Y → R denote the principal’s strategy. The strategy is strongly sparse if
for every nature’s action x ∈ X ′ it induces no order over the player’s action set Y(x). The principal
expresses indifference y ∼x y′ for every pair of actions y, y′ ∈ Y(x) whose payoffs are equal and
constant ℓ(x, y) = ℓ(x, y′).
Example 1. Among the strongly sparse principal strategies, we have those leveraged to obtain the
gameplaying abilities AlphaGo, AlphaGo Zero, and AlphaZero (Silver et al., 2016; 2017; 2018).

Weakly and strongly sparse payoffs are a form of weak principal supervision or indifference.

Strong Supervision. In dense payoff functions, the principal explicitly communicates her prefer-
ences over actions. In the first of such cases, at least one agent action is preferred over other actions
as a response to nature’s actions or states. More formally,
Definition 3. Let ℓ : X ′ × Y → R denote a principal’s strategy. The strategy is weakly dense if,
for every nature action x ∈ X ′, it induces a partial order over the player’s action set Y(x). The
principal expresses a strong preference for outcome y∗ ≻x y by having ℓ(x, y∗) > ℓ(x, y′) on every
action pairs y∗, y ∈ Y.
Example 2. Most (multiclass) supervised classification problems (Bishop, 2006) are weakly dense,
where one label y ∈ Y is preferred over others given a certain instance x ∈ X .
Definition 4. Let ℓ : X ′ × Y → R denote a principal’s strategy. The strategy is strongly dense
if for every nature action x ∈ X ′, it induces a total order over the player action set Y(x). The
principal expresses complete and transitive preferences y ≻x y′ or y′ ≻x y for every pair of actions
y, y′ ∈ Y(x) such that either ℓ(x, y) > ℓ(x, y′) or ℓ(x, y′) > ℓ(x, y).
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Example 3. In RL, shaped rewards for goal-based RL problems (Ng et al., 1999; Gupta et al., 2022)
represent instances of strongly dense principal strategies.

We consider both weakly and strongly dense payoff functions a form of strong principal supervision,
as they encapsulate the principal’s explicit preferences over outcomes.

4.2 Algorithms as Preferences Propagation Mechanisms

In RL and SL problems, principal preferences induced by its strategy propagate forward through
the agent-nature sequential interactions. Thus, learning algorithms produce optimal strategies as
objects that hold the consequences of maximizing the principal’s preferences over time.

Reinforcement Learning. In RL, algorithms that leverage state-action-value functions (Watkins,
1989; Mnih et al., 2015), push forward the preferences encoded by the reward function ℓ(x, y) −→
Q∗(x, y) towards the optimal action-value function Q∗(x, y) : X × Y → R. This function holds the
maximum expected sum of payoffs the agent receives from the principal over t ∈ N interactions
with nature’s memory-one strategy ρ : X × Y → ∆(X ), if takes action y ∈ Y, in nature state
x ∈ X (Sutton & Barto, 2018). Thus, it holds preferences over actions y ≻t

x y′, that can be derived
by comparing values Q∗(x, y) > Q∗(x, y′). Similarly, policy gradient (Sutton et al., 1999) and actor-
critic algorithms (Konda & Tsitsiklis, 1999; Schulman et al., 2017; Haarnoja et al., 2018), push the
preferences in the reward function ℓ(x, y) −→ π∗(y|x) towards the optimal policy π∗(y|x) (i.e., the
actor). The probabilities π∗(y|x) > π∗(y′|x) encode the t-step preferences y ≻t

x y′ over actions.

Supervised Learning. In SL, nature’s actions are independent of the agent’s. Therefore, the
principal’s preferences do not propagate through interactions. Instead, learning algorithms transform
the principal preferences ℓ(x, y) → π∗(y|x) directly into an optimal model π∗(y|x) by interpreting the
principal’s 0-1 strategy through probabilistic lenses (e.g., the principle of maximum likelihood Bishop
(2006)). Thus, the optimal strategy π∗(y|x) encodes the probability that action y ∈ Y is the top-
ranked action (i.e., y ≻ y′ for all y′ ∈ Y) as a response to nature action x ∈ X . In the presence of
multiple principals, like in the LLM example above, a single top-ranked action may not exist. Multi-
label classification or label ranking solve similar problems (Tsoumakas & Katakis, 2007; Vembu &
Gärtner, 2011).

Stationarity Under Propagation. We argue that principal strategies whose expressed preferences
are unchanged by algorithms’ forward propagation mechanisms facilitate learning.
Definition 5. Let ℓ : X ′ × Y → R be the principal strategy in G = ⟨ρ, π, ℓ⟩, the principal prefer-
ences are stationary if for every nature action x ∈ X , whenever y ≻x y′, for every pair of actions
y, y′ ∈ Y(x), the pushed-forward preferences y ≻t

x y′ remain unchanged.

There are many instances in RL where the principal strategies that may hold this stationarity
property have accelerated agent learning. For instance, shaped rewards may belong to this class of
strategies (Ng et al., 1999; Gupta et al., 2022). Likewise, rewards learned from demonstrations using
inverse reinforcement learning may behave similarly (Ng & Russell, 2000; Ziebart et al., 2008).

5 AlphaGo, LLMs, and The Principle of Indifference

5.1 From AlphaGo to AlphaZero

The problems of learning to play go, chess, and shogi share the structure of an MASPn game with
two players and a principal, that we denoted by G2

1 = ⟨ρ, Π, ℓ⟩. In these games, the two players, with
action spaces Y1 and Y2, and strategies Π = {π1, π2}, repeatedly play against nature, whose action
space X models the state of the gameboard, and responds to players moves with a (deterministic)
strategy ρ : X ×Y1 ×Y2 → X . A fundamental challenge to applying ML to these board games is the
lack of evaluation criteria. Formulating a principal strategy ℓ : X × Y1 × Y2 → R that determines
how valuable a position is seems unfeasible (Ramon et al., 2001; Müller, 2002; Gelly & Silver, 2008;
McGrath et al., 2022). Instead, the principal’s strategy ℓ : (X × Y1 × Y2)n → R is defined such that
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after a finite sequence of interactions n ∈ N, players either win, lose, or draw the game, according
to some termination conditions and receive final payoffs (Silver et al., 2017; 2018), an instance of
principal weak supervision.

5.2 Large Language Models

LLMs pre-training can be described by a SAMPn game, that we denote by G1
m = ⟨ρ, π, L⟩, where

the LLM is a common agent that satisfies the preferences of m principals (for very large values
of m ∈ N) with strategies ℓk ∈ L. In this setting, an LLM plays with strategy π(y|x) where
x ∈ X n denotes an input sequence of n ∈ N words or tokens, produced by nature’s strategy
ρ : X n × Y → X n+1, and y ∈ Y is a possible next-token completion. Then, in Internet-scale
datasets leveraged to train LLM, every entity that uttered these sentences turns into an implicit
principal of the model. Their strategies are expressed by an accuracy function ℓk : X n × Y → {0, 1}
(or its differentiable surrogates (Bishop, 2006)). The principal’s ignorance problem emerges by
aggregating every principal’s preferences. For instance, suppose that for the sequence or prompt
x = “The sky is”, values of y = {blue, gray, beautiful} are plausible model completions. Then,
sentences like “The sky is blue” or “The sky is beautiful” in a dataset represent principals’ incom-
patible preferences (e.g., blue ≻ gray ∼ beautiful ∼ . . . and beautiful ≻ gray ∼ blue ∼ . . .) over the
space of completions of that phrase, that may create an aggregated partial preference relationship
blue ∼x beautiful ≻x gray . . . over the possible completions.

5.3 The Principle of Indifference

It is in the principal’s best interest to define stationary strategies. One may immediately wonder why
a principal with foresight over her preferences would require a learning algorithm. We argue that the
strategy specification (i.e., for the learning problem) may be simpler than writing the program that
executes them. And that trade-off is what favours learning over, for instance, knowledge-based sys-
tems. However, specifying them would require her to have the computational capacity to foresee the
long-term consequences of the stepwise preferences. There is a space of small world problems (Bin-
more, 2007; 2017) where the principal may be able to provide such strong supervision, but in other
large world problems, those one may consider attractive, rarely human principals have that foresight
because of their boundedness (Simon, 1990; Selten, 1990; Tversky & Kahneman, 1974), and thus, are
generally unable to perform such computations. Consequently, rationally-bounded principals may
introduce biased preferences through their strategies. Both AlphaGo and LLMs represent caution-
ary tales on this issue. For instance, the initial AlphaGo playing strategy was bootstrapped from
expert human demonstrations (Silver et al., 2016). Yet, AlphaGo Zero and AlphaZero discarded
those demonstrations, learned the games tabula rasa from strongly sparse supervision, and achieved
far superior gameplaying abilities (Silver et al., 2017; 2018). Similarly, LLMs are pre-trained, as
we explained earlier, with a multi-principal structure that induces indifference over preferences,
but fine-tuning (Ouyang et al., 2022), a stronger form of supervision, hinders capabilities built by
pre-training (Wang et al., 2024).

Consequently, the weak vs strong supervision dichotomy presented in Sec. 4 has implications beyond
traditional concerns about the hardness of the credit assignment problem (Minsky, 1961; Sutton,
1984). Strong supervision imposes some computational and rationality requirements on human de-
signers that rarely hold and, as such, almost guarantee biased solutions. The general surprise around
AlphaGo’s Move 37 provides a good context to this observation. Both AlphaGo or AlphaZero and
LLMs benefited from weak supervision in the form of principal indifference. We argue indifference
should be a guiding principle to build objectives for artificial agents that can think and act as humans
but also be able to innovate (McGrath et al., 2022).

Definition 6. (The Principal’s Principle of Indifference) If the principal is uncertain about
the consequences of her step-wise preference among agent actions, her strategy should express indif-
ference to those actions.



RLJ | RLC 2024

Undoubtedly, the principle of indifference offers principals no free lunch. Beyond the credit assign-
ment problem, weak supervision leads to loss of designer control and revitalizes the problems of AI
safety (Amodei et al., 2016). Moreover, it requires principals to metareason about their bounded
rationality and its influence on their understanding of the problem space.

6 Machine Learning Through Milnor-Myerson Games

Multiplayer is The Question and The Answer. Understanding ML problems under the Milnor-
Myerson games has many implications. Many have argued that multiplayer interactions are fun-
damental to obtaining extremely capable agents (Shoham et al., 2007; Stone, 2007; Leibo et al.,
2019; Baker et al., 2020). The ideas we presented here may further reinforce the beliefs that most
outstanding ML results originate from multiplayer interactions at scale.

Axiomatic Decision Theory and ML. Interestingly, the objectives in Eq. 1 and Eq. 2 are
formulated, from a decision theory perspective, as problems of decision-making under risk, where
nature’s strategy is assumed known and the agent maximizes expected payoff (Peterson, 2017).
Except for a very limited set of real-world problems (e.g., chess, go, videogames, or simple robotics),
nature strategy is hardly computable. It is hard to describe such a function at the scale of recent
LLMs. Thus, we may need to reconcile the objectives that describe ML paradigms with critiques to
(Bayesian) decision theory on large-scale problems (Savage, 1954; Binmore, 2007; 2017).

The Principal-Artificial Agent Problem. In economics and mechanism design, in the principal-
agent problem an agent may have objectives that are misaligned with the principal’s (Ross, 1973;
Myerson, 1983; Conitzer & Sandholm, 2002). While, in theory, learning algorithms would contin-
uously optimize their designer’s objective (Silver et al., 2021), in practice, several other problems
arise that cause the artificial agent and its designer(s) to have misaligned objectives. Specification
problems lead to learning agents displaying behaviours that diverge from the designer’s intended
goals Amodei et al. (2016); Leike et al. (2018). In RL, there is still a debate on whether reward
functions are sufficiently expressive instruments of the designer’s goals (Silver et al., 2021) or if
they impose some expressivity constraints (Abel et al., 2021; Vamplew et al., 2022; Bowling et al.,
2023). In ML, Hadfield-Menell & Hadfield (2018) introduces the principal-agent problem through
contract theory. Similarly, LaCroix & Bengio (2019) defines equivalences between economic and ML
concepts, including the principal-agent problem. Both works present the principal-agent problem
and bounded rationality in AI safety perspective (Amodei et al., 2016). In contrast, we consider
AI alignment to be one of the several consequences of the principal-agent problem. In the opposite
direction, from ML to other areas, Ben-Porat et al. (2023) leveraged ML techniques, particularly
RL reward-shaping techniques, to improve the principal’s outcome in a traditional principal-agent
problem, and Gan et al. (2023) study the principal-agent problem under partial observability and
communication constraints. Hyland et al. (2023) specification and verification in principal-agent
problems by distributed computation of boolean games (Harrenstein et al., 2001).

The Limits of Our Understanding. In our framing, understanding these components as nature
raises an important issue. If the principals, due to their cognitive limitations, have a limited un-
derstanding of the world, artificial agents’ behaviour would be limited by the principal’s ability to
accurately devise sketches of nature’s strategy (Sadeghi & Levine, 2016; Chebotar et al., 2018) and,
ultimately, to produce novel problems (Leibo et al., 2019). These two situations further reinforce
the principal-agent problem between designers and their artificial learning agents.

The In-Roads to Unshackled Artificial Agents. The question is whether it is possible to release
artificial agents from their representatives duties. Several existing threads may lead to generally
capable agents. For instance, open-ended learning (Wang et al., 2019; Stooke et al., 2021; Sigaud
et al., 2023; Abel et al., 2023; Bruce et al., 2024) or intrinsic motivation objectives (Schmidhuber,
1991; Oudeyer & Kaplan, 2009) offer promising results. Furthermore, approaches to Embodied AI
envision artificial agents that interact directly with their environments (Puig et al., 2023). However,
unshackled agents may develop preferences that are not aligned with their human designers, and
then a true principal-agent problem will materialize.
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A Games Against Nature

To better comprehend what games against nature represent, we reproduce below the following
dilemma that we will call Savage’s Sixth Egg Dilemma (Savage, 1954), adapted from (Duncan Luce
& Raiffa, 1989), Chapter 13.

"Your spouse has just broken five good eggs into a bowl when you come in and volunteer to finish
making the omelet. A sixth egg, which for some reason must be either used or wasted altogether,
lies unbroken beside the bowl. You must decide what to do with this unbroken egg. Perhaps it is
not too great an oversimplification to say that you must decide among three acts only, namely, to
break it into a bowl containing the other five, to break it into a saucer for inspection, or to throw it
away without inspection. Depending of the state of the egg, each of those three acts will have some
consequence of concern to you, say as indicated in the following table:"

Action State of Nature

Good Rotten

Break into bowl Six-egg omelet No omelet, five good eggs trashed

Break into saucer Six-egg omelet, saucer to wash Five-egg omelet and a saucer to wash

Throw away Five-egg omelet, good egg destroyed Five-egg omelet

Table 1: Savage’s Sixth Egg Dilemma.

For instance, the principles of insufficient reason (Milnor, 1951), minimax (Savage, 1954) or minimax
regret (Savage, 1951) present some axiomatic approaches a rational agent could follow to inform its
decisions when faced with an uncertain prospect over nature’s actions, meaning, the agent does
not know ρ ∈ ∆(X ). However, the more predominant formulation of sequential decision-making
problems is linked to the principle of expected utility (Von Neumann & Morgenstern, 1944). A
derivative of the problem of decision making under risk, the expected utility theory approaches
decision making assuming the decision-making agent knows the probabilities ρ ∈ ∆(X ) of nature’s
actions (Duncan Luce & Raiffa, 1989; Peterson, 2017).

B Interactive Machine Learning Problems

We re-state SL and RL on interactive terms to understand how our discussion applies to both.

Supervised Learning. A supervised learning task (Bishop, 2006), denoted by the tuple T =
⟨X , Y, ρ, ℓ⟩, is a problem where instances x ∈ X are drawn from a data distribution ρ ∈ ∆(X ),
and presented to a model µ : X → ∆(Y) to produce outputs y ∈ Y scored by a metric function
ℓ : X × Y → R. The objective of supervised learning is to find a model µ∗ ∈ M that maximizes the
cumulative performance function J for a number T ∈ N of interactions between the model and the
data distribution, scored by the metric function.

J (µ; ρ, ℓ) = E xt∼ρ
yt∼µ(·|xt)

[
T∑

t=1
ℓ(xt, yt)

]
(1)

Notice that our presentation offers a more interactive but equally valid perspective of SL. Generally,
datasets contain pre-populated instance-outputs pairs, representing a history of past interactions
with the data distribution, while also holding the evaluation values of the metric function4.

Reinforcement Learning. In a traditional RL problem (Sutton & Barto, 2018), the tuple T =
⟨S, A, ρ, r, γ⟩ and defines a Markov Decision Process (MDP) (Bellman, 1957; Puterman, 2005), a

4This perspective is also adopted by other approaches like offline RL. See (?).
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sequence of states s ∈ S are drawn from a transition function ρ : S × A → ∆(S) and presented to
a policy π : S → ∆(A) to produce actions a ∈ A, scored by a reward function r : S × A → R. The
objective in RL is to find a policy π∗ ∈ Π that maximizes a the performance J function:

J(π; ρ, r, γ) = Est∼ρ(·|st−1,at−1)
at∼π(·|st)

[ ∞∑
t=0

γtr(st, at)
]

(2)

where the interactions between the policy and the transition dynamics, scored by the reward function,
and the discount factor γ ∈ (0, 1] introduces a preference for the value of earlier interactions (Pitis,
2019).

Learning Algorithms. In a broad sense, we consider a learning algorithm to be any procedure to
search and find a solution, or at least a close approximation, for the objective:

π∗ = arg max
π∈Π

J (π, ρ, r) (3)

such that π∗ ∈ Π satisfies J (π∗) ≥ J (π), and the evaluation functional J originates in Eq. 1 or 2.

C A Graphical Representation of Milnor-Myerson Games
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Figure 1: A graphical representation of Milnor-Myerson games and the higher order structures.

C.1 Milnor-Myerson Games and Where to Find Them

The MASPn is found in MARL (Shapley, 1953; Littman, 1994; Albrecht et al., 2024), and, in SL, on
ensemble models (Zhang & Ma, 2012) and mixture of experts (Yuksel et al., 2012), two techniques
recently employed in LLM (Du et al., 2022). The SAMPn structure is implicit in SL datasets
that used multiple annotators per instance but avoided the multi-principal structure by voting over
final labels (Deng et al., 2009; Krizhevsky, 2009; Everingham et al., 2010), and in LLM alignment
techniques that elicit annotators preferences over outputs (Ouyang et al., 2022; Rafailov et al., 2023).
In general, *MPn models are closely related to multi-objective optimization problems (Roijers et al.,
2013; Rădulescu et al., 2020; Röpke et al., 2023), but the *MPn structure highlights the common
agency problem.


