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ABSTRACT

Employing large learning rates (LRs) in deep learning can accelerate convergence
and improve generalization, but it can also cause training instability and loss ex-
plosion: determining an appropriate LR is an often laborious and painful art. Our
study into the fine-grained behaviors of parametric singularities, specifically the
stable ranks of weight matrices of network components, reveals a strong connec-
tion between these singularities and training instability. As training progresses,
parametric singularities trend upward, a phenomenon that is directly aggravated
by large LRs. Crucially, several training steps before prominent instabilities such
as gradient explosions, we observe unusually high parametric singularities across
the network components, leading to rank-deficient representations. These repre-
sentations, in turn, amplify parametric singularities during backpropagation, cre-
ating a vicious cycle that eventually results in loss explosions. We refer to this
phenomenon as the curse of singularities. Building on this understanding, we
propose a lightweight and robust stabilization method called Parametric Singular-
ity Smoothing (PSS), which allows for early intervention and mitigates impending
instability by smoothing the singular spectra of weight matrices, thereby prevent-
ing the curse of singularities. This approach is easy to implement, works at any
stage of training by restoring stable training even after instability, has neglectable
computational overhead, and, most importantly, frees us from the painful LR fine-
tunings to avoid instabilities. Experimental results across various datasets, net-
works, and optimizers demonstrate that our approach allows a 5-10× increase in
LR without producing instability, attaining better training efficiency and gener-
alization. We release our code for everyone to use our methods and reproduce
the experiments, available at https://anonymous.4open.science/r/
ICLR_stability-C69C.

1 INTRODUCTION

Applying large learning rates (LRs) in deep learning is widely known to have benefits, e.g., escaping
local minima (Li et al., 2019; Jastrzebski et al., 2020), accelerated convergence (Smith, 2017; Smith
& Topin, 2019), and better generalization (Lu et al., 2023). However, large LRs also increase the
probability of training instability (Lewkowycz et al., 2020; Cohen et al., 2021; Wang & Roberts,
2023), which often leads to loss explosions that waste computational resources, a serious issue
in large models. Although recent work has investigated the properties of large LRs from various
aspects, there still lacks an effective solution to address the instabilities that are more prominent
with large LRs. Nowadays, fine-tuning LRs for stabilities remains commonly indispensable and
can be painful, especially for real-world foundation models. For instance, it takes multiple runs
to determine a proper LR free of instabilities when training OPT-175B (Zhang et al., 2022), each
consuming dozens of days on thousands of GPUs. Our goal is to enable a reliable, stable, automated,
restart-free approach to using large LRs.

We start by investigating the behaviors of the stable ranks (Rudelson & Vershynin, 2007), i.e.,
parametric singularities, of weight matrices across model components, such as the key, query, and
value matrices of self-attention heads in transformers (Dong et al., 2021). Recent studies (Mousavi-
Hosseini et al., 2022; Zangrando et al., 2024; Feng et al., 2022; Huh et al., 2021; Arora et al., 2019)
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have revealed the low-rank properties of parametric matrices in different neural networks. These
matrices tend to be increasingly “singular” as training progresses. Such singularities are usually
considered to be linked with feature spaces of decreased rankings (Dong et al., 2021; Noci et al.,
2022); pronounced parametric singularities generally imply that a few singular vectors dominate the
feature space, leading to rank-deficient representations with poor expressiveness (Dong et al., 2021;
Noci et al., 2022). Previous work did not discuss or investigate the relationship between singularities
and training instabilities; we are the first to study how the network’s fine-grained, dynamic singu-
larity behaviors cause loss explosions that prevent further learning, which happens quite commonly
for large LRs.

Specifically, we investigate the parametric singularity distributions across network components of
training sessions with exploding losses. We find that in practice parametric singularities increase
monotonically as training proceeds, with deep layers having higher singularities than shallow lay-
ers. Notably, growing singularity trends can be observed across varying LR values and are more
pronounced with large LRs. Inspecting the few training steps preceding loss explosions reveals a
particular step in which growing singularities in the parametric space yield rank-deficient represen-
tations with unusually high similarity in the feature spaces. Specifically, a few dominant singular
values in the parametric space overshadow the contributions of other singular directions, particularly
in deep layers, leading to a sharp reduction in representational diversity. Updating such networks
will further increase the parametric singularities, leading to yet more severe rank deficiencies in the
next training step. Within a few steps, this vicious cycle produces loss explosion and puts an end
to productive learning. We call this phenomenon the curse of singularities, and argue that it is a
primary cause of training instability.

Based on these findings, we propose a computationally efficient and robust method called Parametric
Singularity Smoothing (PSS) for using large LRs without training instability. PSS enables early
detection of instability and restores stability by smoothing the singular spectrums of each weight
matrix across the network components, raising stable ranks and avoiding the curse of singularities.
This method is simple, easy to implement, and does not require restarts or manual LR tuning when
countering training instabilities. It enables the use of large LRs without producing loss explosions,
and it can even restore stability after instability has occurred. We evaluated this method using various
datasets and networks and found that it increases usable LR by 5-10×, providing potentially better
training efficiency and generalized performance.

This work’s contributions follow:

• It is the first to describe the dynamic patterns of network singularities and reveal their tight
associations with loss explosion, a phenomenon we call the curse of singualrites.

• It describes a lightweight, easy to implement and robust method enabling large LRs without
loss explosion that does not depend on LR tuning or training restarts.

• The PSS method significantly increases the maximum stable LR by 5-10×, providing po-
tentially better training efficiency and generalized performance.

2 ANALYSIS

2.1 STABLE RANK AND STABLE JACOBIAN ENERGY

Define a feed-forward neural network as f(x;θ) = fL(fL−1(. . . f1(x;W1); . . . ;WL−1);WL)
where x and θ denote the input and learnable parameters, respectively, L is the number of lay-
ers, fl and W l denote the function and the collection of weight matrices of the l-th layer. Let
W l = {Wl

i}k
l

i=1 where Wl
i denotes the i-th weight matrix of the l-th layer and kl denotes the total

number of weight matrices in the l-th layer. We use the stable rank (Rudelson & Vershynin, 2007)
to represent the degree of singularity of a weight matrix W.

Formally, for a matrix W ∈ Rm×n with rank r ≤ min(m,n), we perform the Singular Value
Decomposition (SVD) to obtain its singular values {σi}min(m,n)

i=1 , left singular vectors {ui}mi=1where
ui ∈ Rm, and right singular vectors {vi}ni=1 where vi ∈ Rn, such that W =

∑r
i=1 σiuiv

⊤
i .

Throughout the paper, we assume all singular values are sorted in descending order, namely σ1 ≥
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σ2 ≥ . . . σr > 0, and we denote the i-th singular value of W as σi(W). The stable rank (SR) is
defined as follows.
Definition 1. (Stable Rank). The stable rank of a matrix W is defined as the squared ratios of its
Frobenius norm ∥W∥2F to its matrix 2-norm ∥W∥22, which can be written as

SR(W) =
∥W∥2F
∥W∥22

=

∑r
i=1 σ

2
i (W)

σ2
1(W)

. (1)

SR is a “softer” version of the matrix rank and possesses several desirable properties. It better
numerically reflects the singular degree of a weight matrix and while its insensitivity to matrix
scales and small perturbations enables use across varying parametric spaces. We therefore use it as
a measure of the singularities of weight matrices.

A small SR value intuitively indicates the emergence of pronounced singularities, where a few sin-
gular values dominate the others in the weight matrix. These overly dominant singular values can
lead to rank-deficient representations, which in turn produce Jacobian matrices that, upon updates,
further exacerbate the weight singularities and reduce SR values even more.

We define a new and intuitive descriptor to quantify how the gradient updates will change the para-
metric singularities.

Formally, for a matrix W ∈ Rm×n, let JW(x) = ∂L(x)
∂W ∈ Rm×n be the Jacobian matrix of the

loss function L w.r.t. W computed on x, and we will write JW for simplicity. For a singular value
σi(W) with corresponding singular vectors ui and vi, we could project the Jacobian matrix along
ui and vi to find its degree of “energy” projected on this singular component, which is defined as

φi(W) = (u⊤
i JWvi)

2. (2)

φi(W) can be interpreted as the length of the projection of JW along the singular vector direction
of σi(W). In general, the higher φi(W) is, the more energy of JW is distributed along the singular
vector direction of σi(W), indicating more substantial parametric updates along that singular com-
ponent. To capture this, we introduce the concept of Stable Jacobian Energy (SJE), which quantifies
the proportion of Jacobian energy concentrated on the top singular vectors within the SR.
Definition 2. (Stable Jacobian Energy). The Stable Jacobian Energy (SJE) of a matrix W is the
ratio of its Jacobian matrix JW’s energy projected on the singular vectors within the SR to the
energy projected on all singular vectors, which is defined as

SJE(W) =

∑⌊SR(W)⌋
i=1 φi(W)∑min(m,n)
j=1 φj(W)

(3)

Where ⌊SR(W)⌋ denotes the floor of SR(W).

A large SJE value typically indicates that those top singular vectors within the SR will receive high
Jacobian energy, and thus, the parametric updates along those singular components can be larger.

SR and SJE are the two key measures used to describe the behaviors of fine-grained network singu-
larities in this work, and we present the empirical observations in the next section.

2.2 THE CURSE OF SINGULARITIES: EMPIRICAL EVIDENCE

We start by illustrating the overall trend of parametric singularities across the training session and
discuss the role of LRs during the process. We then illustrate the cyclic interaction between para-
metric singularities and SJE, investigating network behaviors in the steps leading up to prominent
training instabilities, ultimately revealing the existence of the curse of singularities. Without loss of
generality, we plot figures in this section using data collected from a BERT-base model trained on
Wikitext dataset, while the observations are prevalent across networks and datasets.

Parametric singularities and LR impacts. In Fig. 1, we present the layer-wise average para-
metric singularities, measured by SR, across the weight matrices of the query modules WQ and
feed-forward networks (FFN) Wfc as training advances. The SR values remain stable during the
warm-up phase of around 1000 steps, with weights matrices consisting of significant singular values
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Figure 1: SR curves of 12 layers across training steps. The left and right columns demonstrate
the average SRs computed on weight matrices of the query modules and FFNs, respectively. All
components of the model share the same trend (See in Appendix A).

on more than 35 singular directions in WQ or 180 in Wfc. We can reasonably assume that the
expressivities of the network at this stage are intact. After the warm-up phase, we could observe
that the SR curves demonstrate a continuous downward trend despite some differences in layers and
network components. This trend can be explained as when the network learns to fit the dataset,
most irrelevant singular components are gradually discarded, and weight matrices focus on several
dominating singular directions. Notably, the monotonic increasing trend of singularities is more
pronounced in deep layers. We believe that the increased singularities could somehow impair the
expressivity capabilities and lead to rank-deficiency representations, which is in accordance with the
insights of previous works (Bao et al., 2024).

We further discuss the impacts of LRs on parametric singularities. As shown in Fig. 2(a), a larger
LR will generally lead to SR curves of lower values (only an FFN of one layer is shown but this is a
common observation). That is, large LRs will typically amplify the effects of network singularities,
which are potentially associated with higher probabilities of training instabilities.

Figure 2: a) Left: SR curves of FFN in layer 6 under varying LRs; More layers/modules can be
found in Appendix A with similar trends. b) Right: SR-SJE relationships across training steps.
SR-SJE Dynamics Driving Singularities. We delve further into the cyclic interaction between
Stable Jacobian Energy (SJE) and Stable Rank (SR), as visualized in Fig. 2(b). Intuitively, the SJE
values stay less than 0.4 during the warm-up stage, indicating < 40% Jacobian energy is projected
on the singular vectors within the stable ranks. As learning proceeds, we witness a constant upward
trend of SJEs that reaches approximately 0.8 in late training stages, implying that around 80% of
Jacobian energy is sprayed on the dominating singular directions, which is rather significant con-
sidering the stable ranks are even smaller than the warm-up stage. The SJE’s increasing trend is
complementary to the declining tendency of SR curves. As network singularity intensifies and dom-
inant singular vectors gain prominence in the weight matrices, Jacobian matrices of high SJE will
enhance the singular trend by further pushing parametric updates along those directions of signif-
icant singular values. This cycle of escalating singularities, captured by the SR-SJE relationship,
underscores the curse of singularities, which ultimately leads to unstable losses and the breakdown
of training stability.

Training Breakdown. Then, we investigate the network’s behavior leading up to training insta-
bilities, focusing on how escalating singularity drives loss explosions and training collapse. Fig. 3
(top row, blue) shows a case of loss explosion with an LR of 5 × 10−4, while the bottom row (red)
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Figure 3: The top four panels depict the evolution of NTK-λmax (for measuring gradient alignment),
average token cosine similarity (between tokens from different sequences), Stable Rank(SR), train-
ing loss, and gradient norm during a case of loss explosion with a learning rate of 5 × 10−4. The
bottom four panels illustrate the same metrics during normal training with a learning rate of 1×10−4.

represents normal training with an LR of 1 × 10−4. The first column highlights an unusual plunge
in the SR for the blue case, in contrast to the steady decrease in the red case. This sharp rise in
parametric singularities leads to representations with overly high similarities in the feature space as
shown in the second column of Fig. 3. The average cosine similarity between tokens reaches an
unusually high 0.6 in shallow layers, climbing to an extreme 0.9 in deeper layers for the blue case,
compared to typical values around 0.1 in the red one. Such similarity patterns suggest that network
representations become rank-deficient and fail to retain sample-wise distinguishability.

This escalation of singularity, driven by the vicious cycle between Stable Jacobian Energy (SJE)
and SR, culminates in severe rank deficiency and heightened gradient alignment. We quantify this
alignment using the principal eigenvalue of a modified Neural Tangent Kernel (NTK) matrix (Jacot
et al., 2018), where each element captures the dot product of normalized gradients between pairs of
data points. The sharp rise of NTK λmax, as shown in the third column of Fig. 3 for the blue case,
indicates that most gradients are increasingly aligning in the same direction, signaling the model’s
diminishing ability to learn diverse patterns from different data. Ultimately, these metrics reach
critical values: token cosine similarities converge to 1.0 across all layers, and NTK λmax hits its
upper bound, meaning the gradients for all data points are fully aligned. This marks the complete
collapse of the model’s ability to differentiate between data points and capture distinct, nuanced
patterns. The training loss escalates sharply and remains irreversibly high, signaling the breakdown
of the learning process and the model’s failure to recover.

3 METHOD

To dispel the curse of singularities, we propose a training strategy named Parametric Singularity
Smoothing (PSS) to detect approaching instability and prevent its occurrence by smoothing the sin-
gular spectra of weight matrices when necessary. PSS is an easy-to-implement, efficient, and robust
method capable of both rescuing network from suffering instabilities and restoring the trainability
even after the loss explosions.

Detection. The curse of singularities is observed to constantly befall with gradients of significantly
increasing magnitudes. Thus, we adopt gradient norms that can be fetched off-the-shelf during
backpropagation as an effective indicator to launch the smoothing operations. Specifically, we track
the ratio of the current step’s gradient norms to the average gradient norms of all training steps,
denoted as µt+1 = ∥gt+1∥F

∥gtavg∥F
, where gt+1 is the gradient at step t + 1 of the model, and gtavg is

the historical average gradient over the previous t steps, calculated using an exponentially weighted
moving average: gt

avg = (1 − α)gt−1
avg + αgt. Here α is the smoothing coefficient, typically 0 <
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α ≤ 1. If it is spotted that µt+1 ≥ τ where τ is a threshold (we empirically set τ to 2.5 throughout
the experiments), the model is considered to be stepping into the zone of potential instabilities, and
hence, the smoothing operation is required to meditate the parametric singularities. We emphasize
that the choice of τ is robust: a lower τ may cause false positives but without affecting normal
training, while a higher τ may miss instabilities, but PSS can still rescue and restore stable training
even after instability has occurred.

Protection. Upon detecting instability, we mitigate the singularity of the parameter matrix W
in each linear module by smoothing the singular spectrum. To reduce computational cost, we de-
compose only the dominant singular values and their corresponding singular vectors, limited in
number by the SR, reduce the dominant singular values, and reparameterize the matrix using the
corresponding singular vectors. Specifically, we first compute the largest singular value σ1 using the
Power Iteration Method (Golub & Van Loan, 2013), then calculate the SR(W). With this, we apply
Dominant Direction Decomposition (DDD) (Halko et al., 2009) to decompose the dominant part of
the parameter matrix:

Wdominant =

⌊SR(W)⌋∑
i=1

σiuiv
⊤
i ,

where σ = {σi}⌊SR(W)⌋
i=1 denotes dominant singular values of the parameter matrix W.

We apply a smooth function fsmooth to σ to get the smoothed singular values

σ∗ = {σ∗
i }

⌊SR(W)⌋
i=1 = fsmooth(σ),

and we then reparameterize the dominant part Wdominant without altering the singular vectors:

W∗
dominant =

⌊SR(W)⌋∑
i=1

σ∗
i uiv

⊤
i ,

resulting in the smoothed parameter matrix:

W∗ = W∗
dominant +W −Wdominant.

Given that the dominant singular vectors of the parameter matrix capture essential features from
the data, the goal during smoothing is to avoid overly diminishing their magnitude. We select
σ⌊SR(W)⌋+1 as a threshold, ensuring that all dominant singular values remain above this level.

The choice of fsmooth remains flexible and robust. Sub-linear functions such as Logarithmic with
Scaling, Softplus, Softmax, or smoothing operations like convolution that maintain the relative order
of dominant singular values are effective. Additionally, we show that an aggressive clipping-based
method, where all dominant singular values σi are reduced to σ⌊SR(W)⌋+1, also demonstrates effec-
tiveness. Ultimately, the objective is to increase the SR of weight matrices, with the specific choice
of smoothing function adaptable to the task.

By integrating detection and protection, PSS enables early intervention to prevent impending insta-
bility, stabilizes the parameter matrix under large LRs, and can rescue and restore stability even after
instability has occurred. This leads to robust and reliable training dynamics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model configuration. We conduct experiments on both the BERT (Devlin et al., 2019) and GPT-
2 (Radford et al., 2019) models. We evaluate the effectiveness and robustness of PSS method by
exploring its performance across different model scales and LRs. We present the main experimen-
tal results on BERT-base (110M parameters) and GPT-2-Medium (345M). We validate our method
on larger models, including BERT-large (340M), GPT-2-Large (774M) and GPT-2-XL (1.5B), and
details are in the appendix C.2 For the Masked Language Modeling (MLM) task, we train BERT
from scratch using the Wikitext (Merity et al., 2016) dataset, and for the Causal Language Mod-
eling (CLM) task we train GPT-2 using the mixed dataset of Amazon-review and the OpenWeb-
Text (Gokaslan & Cohen, 2019). Both are trained using a LR schedule with warm-up followed by
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decay. We present experimental results across a wide range of LRs for each model scale, spanning
from rates that enable stable convergence to those that lead to instability. More detailed configura-
tions are provided in the appendix C.1. Our approach is compared against two stabilization methods,
including Gradient Clipping (GC) and Orthogonal Regularization (OR) (Brock et al., 2017; Brock,
2018).

Evaluation metrics. To assess the effectiveness of the stabilization method, we track the fre-
quency of loss explosions across multiple trials under the same configurations following Zhai et al.
(2023). While maintaining stable training, we analyze the expansion of the LR range for which
stable training occurs by presenting convergence performance under various LR settings. We eval-
uate the impact of each method on the overall model training efficiency duration by evaluating the
required floating-point computations(FLOPs) (Rasley et al., 2020) and time overhead.

4.2 MAIN RESULTS

Method
Model BERT-base GPT-2-Medium

lr=1e-4 lr=2e-4 lr=4e-4 lr=5e-4 lr=1e-3 lr=2e-3

Naive 0/33.0±0.2 3/37.5±0.1 3/37.5±0.1 0/33.8±0.1 3/37.4±0.1 3/37.5±0.1

GC 0/32.9±0.1 0/32.7±0.1 3/37.4±0.1 0/33.7±0.1 0/33.9±0.1 0/35.0±0.1

OR 0/33.1±0.1 1/32.9±0.1 3/37.4±0.1 0/33.8±0.1 3/37.5±0.1 3/37.4±0.1

PSS 0/33.0±0.1 0/32.8±0.1 0/32.6±0.1 0/33.8±0.1 0/34.0±0.1 0/34.4±0.1

Table 1: Results of stability test on BERT-base and GPT-2-Medium models. In the context of the x/y
(z) entry, y denotes the number of evaluations performed for the considered method, x represents
instances where the model exhibited instability, and z signifies the perplexity of the model at the
conclusion of the training process.

Stability. To evaluate the effectiveness of the stabilization method, we explore different LRs
from stable convergence to loss explosion. For each fixed experimental configuration, we repeat the
experiments three times using different fixed random seeds and measure the frequency of loss explo-
sions to assess the reliability of the method, ensuring that the stabilization approach can definitively
resolve instability issues.

Table 1 presents the comparison result, indicating that the GC and OR methods can only handle
scenarios with small LRs, but at the cost of reducing the convergence speed and degrading the final
performance. At moderately higher LRs, they can only slightly alleviate instability issues but cannot
reliably and definitively stable the model training, and at even larger LRs, they completely fail. In
contrast, our method ensures stable training across all configurations without compromising the
model’s convergence performance.

Fig. 4(a) illustrates the test loss curves for different methods on the BERT-base model at LRs of
1e-4 and 4e-4. Our method effectively detect two instances of loss explosion and quickly stabilize
the training, with only minor, short-lived spikes in loss. Furthermore, it ensures stability without
significant additional training steps to recover to the pre-explosion loss levels.

We investigate the usable LR range once stable training is ensured. Fig. 4(b) presents the final test
loss across different LRs for the BERT-base and GPT-2-Medium models. On the BERT-base model,
the GC and OR methods expand the maximum LR from 1e-4 to 2e-4, a twofold increase, while
our method pushed it to 2e-3, achieving a 10-fold improvement. Similarly, on the GPT-2-Medium
model, our method extends the LR range by by 10 times, outperforming other approaches. We
further validate our method on larger models, including BERT-large, GPT-2-Large and GPT-2-XL,
finding that PSS expand the LR range by up to 5 times without compromising convergence. Details
are in the appendix C.2. This broader range allows model engineers to set LR hyper-parameters more
flexibly without the risk of instability, enabling the use of larger LRs and reducing the complexity
and time required for hyper-parameter tuning.

Another potential benefit of PSS expanding the LR range is improved performance at convergence.
Typically, LR and final performance exhibit a U-shaped relationship. However, the training process
may suffer from instability when the LR is near the bottom of the curve. As shown in Fig. 4(b),
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Figure 4: a) Left: Test loss curves of each stabilization method on two LRs: 1e-4 and 4e-4 in
BERT-base model. b) right: The varying LRs and corresponding convergence performance of each
stabilization method in BERT-base and GPT2-Medium models.

Method CPU+GPU cost @ 1 step CPU+GPU cost @ 100k step

Fp computations Time Fp computations Time

Naive 9.33 TFLOPs 781± 10 ms 933 PFLOPs 9.15± 0.08 h
GC 9.33 TFLOPs 784± 12 ms 936 PFLOPs 9.14± 0.10 h
OR 11.46 TFLOPs 864± 15 ms 1146 PFLOPs 10.04± 0.10 h

PSS 9.36 TFLOPs 1979± 25 ms 936 PFLOPs 9.17± 0.09 h

Table 2: Computational cost comparison of different methods in terms of floating-point (Fp) com-
putations and execution time for both a single step and 100k steps.

under the BERT-base configuration, our method’s expanded LR range enables it to achieve a lower
test loss, which other methods fail to stabilize.

Computation overhead. For a parameter matrix W ∈ Rm×n, in the detection policy, we use
gradient norms as early indicators of instability, with a negligible computational cost of O(mn). In
the protection policy, the computational complexity of DDD on the matrix with ⌊SR(W)⌋ = k is
O(mn log k). For a feature matrix X ∈ Rn×b, where n is the feature dimension and b the batch
size, the forward and backward pass complexity is O(mnb). In practice, since b and log k are of
the same order of magnitude, the cost of DDD is comparable to that of a forward-backward step.
PSS’s protection is triggered fewer than 10 times in most cases, and even in extreme LR settings,
the activation frequency is less than 0.1% of the total steps, adding virtually little overhead to the
training process.

We experimentally demonstrate the computational cost of our method in Table 2. In the ”1 step”
section, we show the cost of using the protection strategy when PSS detects instability. It can be
seen that a single invocation of PSS incurs up to 2.40 times the CPU + GPU time of a single step
in the naive baseline. However, since the protection policy is rarely triggered, over the full train-
ing process, PSS introduces nearly no additional overhead. In the BERT-base model, the additional
computational overhead introduced by our method accounts for only 0.21% of the baseline train-
ing time. Moreover, compared to the regularization methods that similarly adjust singularity, PSS
achieves a %8.5 improvement in overall training time.

4.3 ROBUSTNESS OF PSS

Our method demonstrates exceptional robustness, specifically in the following three aspects:
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Figure 5: The experiment is conducted on the BERT-base model, trained with a learning rate of 4e-
4. a) Left: The test loss curve in the naive baseline, which experiences instability, compared to the
test loss curve when PSS is applied at different stages. b) Right: The test loss curve using different
smoothing policies upon detecting instability.

Rescue Robustness. Fig. 5(a) highlights our method’s effectiveness across different instability
stages. When applied preemptively, it causes only brief, minor loss spikes while preventing future
instability. If applied after divergence, it quickly halts gradient vanishing and restores normal loss
descent. In contrast, prior methods fail in such cases, requiring trial-and-error tuning from saved
checkpoints. This demonstrates the robustness of our detection metric: false positives do not disrupt
training, and even after full divergence, the method reliably restores stability.

Smoothing Policy Robustness. Fig. 5 demonstrates the effectiveness of various smoothing poli-
cies, indicating that all are effective. Details of each policy are provided in the Appendix B.1. This
suggests that as long as parametric singularity is reduced, the choice of smoothing policy becomes
less critical, highlighting the robustness of the policy selection.

Compatibility Robustness. Our method imposes no specific requirements on model architec-
ture, optimizer, or dataset, and is highly flexible and easy to integrate, requiring only minimal code
changes. Furthermore, it is orthogonal to other stabilization methods, allowing for simultaneous use
to further enhance training stability.

4.4 TRAINING DYNAMICS WITH OUR METHOD

Figure 6: The effect of our method on the analytical metrics before, including SR, NTK-λmax and
token-level cosine similarity. Each metric varies at the time our method is adapted

To better understand how our method stabilizes model training, Fig. 6 shows the changes in key
metrics from the analysis section, including SR, NTK-λmax and token-level cosine similarity, after
applying our method. When instability occurs, both NTK-λmax and token-level cosine similarity
spike sharply, as noted in the analysis section, while the SR remains low. After applying our method,
these metrics return to normal levels, and the SR increases, allowing the model to resume stable
training.

9
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5 RELATED WORK

Large LRs. Large LRs can offer significant benefits in deep learning. Jastrzebski et al. (2020)
shows that large LRs improve the conditioning of the covariance of gradients, leading to flatter min-
ima that generalize better (Lewkowycz et al., 2020; Lu et al., 2023; Huang et al., 2020; Leclerc
& Madry, 2020). Additionally, Li et al. (2019) demonstrates from a feature learning perspective
that small LRs cause models to first memorize low-noise, hard-to-fit patterns, resulting in poorer
generalization. Smith (2017) and Smith & Topin (2019) show that cyclical large LRs can sig-
nificantly accelerate model convergence. However, the instability caused by large LRs has been
widely observed in empirical studies. Theoretical analyses often focus on sharpness bounds (Cohen
et al., 2021), and Wang & Roberts (2023) explains this instability through landscape flattening and
landscape shift. We establish a link between large LRs and parametric singularity, introducing the
concept of the ”curse of singularities” to explain the resulting instability.

Training Stability. Training instability has been widely studied from a theoretical perspective.
Techniques like meticulous weight initialization (Glorot & Bengio, 2010; He et al., 2015; Mishkin
& Matas, 2015; Hu et al., 2020) and normalization (Ba et al., 2016; Ioffe & Szegedy, 2015; Ulyanov
et al., 2016) are critical for stabilizing neural networks. Additionally, research has examined the
effects of activation non-linearity (Hu, 2016), skip connections (Szegedy et al., 2017), and model
depth and width (Hanin, 2018; Yang & Schoenholz, 2018) on stability. In practice, gradient clip-
ping (Allen-Zhu et al., 2019) is a common method for managing instability by capping gradient
magnitudes. Adaptive methods, such as those proposed by Tang et al. (2023), improve on this by
incorporating optimizers like Adagrad. Other approaches include selectively freezing parameters
in ViT models (Chen et al., 2021) and using spectral normalization to prevent attention entropy
collapse (Zhai et al., 2023), further stabilizing training. Despite the aforementioned stability meth-
ods, models still encounter instability under large LRs, and these methods prove ineffective once
instability arises. Our PSS method significantly broadens the usable LR range and ensures reliable
training.

6 CONCLUSION

This work tackles the challenge of training instability from large LRs by identifying parametric
singularity as a key factor. Excessive singularity in weight matrices leads to rank deficiencies and
loss explosions. We uncover a vicious cycle, the ”curse of singularities”, that worsens instability as
training progresses, ultimately leading to rank-deficient representation and resulting in loss explo-
sion. Our method smooths singular spectra, enabling stable use of large LRs. This foundation offers
insights into managing singularities and stabilizing training. We show our approach’s robustness
across networks, extending LR ranges and reducing training times.
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A DETAILED ANALYSIS

We conducted a detailed parametric singularity analysis on the BERT-base model. In Figs8, 9 and
10, we present the dynamic changes in the average stable rank of the Attention-head, Attention-
Dense and FFN modules across different layers and learning rates. It can be observed that, as
training progresses, the stable rank of various modules decreases across layers, with deeper layers
showing consistently lower stable ranks compared to shallower ones. Additionally, regarding the
learning rate, we observe that larger learning rates accelerate the growing singularity trends, and the
parameter matrices tend to converge to a lower stable rank.

Figure 7: The dynamic changes in the average stable rank of the Attention-head modules across
different layers and learning rates in BERT-base model.
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Figure 8: The dynamic changes in the average stable rank of the Attention-head modules across
different layers and learning rates in BERT-base model.

B METHOD DETAILS

B.1 SMOOTHING POLICY

Given a weight matrix W and its dominant singular values σ = {σi}⌈SR(W)⌉
i=1 , we introduce several

smoothing functions below.
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Figure 9: The dynamic changes in the average stable rank of the Attention-Dense modules across
different layers and learning rates in BERT-base model.

Convolution. We apply a convolution kernel k = {kj}mj=−m to the dominant singular values σ

to smooth the transition between them. The smoothed singular values σsmooth = {σsmooth
i } are

computed by convolving the kernel with the original singular values:

σsmooth
i =

m∑
j=−m

kj · σi+j , ∀i ∈ {m+ 1, . . . , ⌈SR(W)⌉ −m}
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Figure 10: The dynamic changes in the average stable rank of the FFN modules across different
layers and learning rates in BERT-base model.

where σi+j refers to neighboring singular values, and the kernel k is typically normalized to ensure
that the sum of the kernel elements equals 1:

m∑
j=−m

kj = 1.

This convolution operation smooths the singular value spectrum by averaging over a local neigh-
borhood of values. It reduces abrupt changes between adjacent singular values while preserving
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their relative order, ensuring that the most dominant singular values retain their influence in the
parametric space.

Softmax. We apply the Softmax function to the dominant singular values σ = {σi}⌈SR(W)⌉
i=1 to en-

sure that the singular values are normalized while retaining their relative importance. The Softmax-
smoothed singular values σsoftmax = {σsoftmax

i } are computed as follows:

σsoftmax
i =

exp(β · σi)∑⌈SR(W)⌉
j=1 exp(β · σj)

where β is a scaling parameter that controls the sharpness of the distribution. A higher β places
more emphasis on the larger singular values, while a lower β spreads the emphasis more evenly
across all singular values.

The Softmax function smooths the singular values by normalizing them in a way that maintains the
hierarchy of dominance, but it prevents any one singular value from dominating excessively. This
ensures that the singular value distribution remains balanced and well-behaved during the smoothing
process.

C EXPERIMENT DEATILS

C.1 MODEL CONFIGURATION DETAILS

The detailed training configuration of BERT and GPT-2 in shown in Table 3 and Table 4.

Configurations BERT-base BERT-large

Hidden activation GELU
Max position embeddings 512
Tokenizer RoBERTa-base
Vocabulary size 50265
Sequence length 128
Layernorm ϵ 1e-12
Dropout probability 0.1
Optimizer AdamW
AdamW weight decay 0.01
AdamW (β1, β2) (0.9, 0.999)
AdamW ϵ 0.01
LR warm-up steps 1000
LR schedular Cosine

Hidden size 768 1024
Intermediate size 4 × Hidden size
Hidden Layers 12 24
Num. attention heads 12 16
Batch size 64 32

Table 3: Configuration of BERT training.

C.2 EXPERIMENT RESULTS ON LARGER MODELS

We validated the effectiveness of our method on larger models, including BERT-large (340M), GPT-
2-Large (774M), and GPT-2-XL (1.5B). For these larger models, we primarily compared with the
naive baseline to demonstrate our method’s ability to stabilize training. In all three models, we
successfully used large learning rates, which would cause instability in the naive baseline, to achieve
stable training.
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Configurations GPT-2-medium GPT-2-large GPT-2-XL

Hidden activation GELU
Max position embeddings 512
Tokenizer r50-k
Vocabulary size 50257
Sequence length 256
Layernorm ϵ 1e-5
Dropout probability 0.5
Optimizer AdamW
AdamW weight decay 0.1
AdamW (β1, β2) (0.9, 0.995)
AdamW ϵ 0.01
LR warm-up steps 1000
LR schedular Linear

Hidden size 1024 1280 1600
Intermediate size 4 × Hidden size
Hidden Layers 24 36 48
Num. attention heads 16 20 25
Batch size 64 32 16

Table 4: Configuration of GPT-2 training.

Method
Model BERT-Large GPT-2-Large GPT-2-XL

lr=5e-5 lr=1e-4 5e-5 1e-4 1e-5 5e-5

Naive 0/22.4±0.1 2/2− 0/13.9 1/1− 0/13.7 1/1−

PSS 0/22.4±0.1 0/22.7±0.1 0/14.0 0/14.2 0/13.8 0/13.9

Table 5: Results on BERT-Large, GPT-2-Large and GPT-2-XL

19


	Introduction
	Analysis
	Stable rank and stable Jacobian energy
	The curse of singularities: empirical evidence

	Method
	Experiments
	Experimental Setup
	Main Results
	Robustness of PSS
	training dynamics with our method

	Related work
	Conclusion
	Detailed Analysis
	Method Details
	Smoothing Policy

	Experiment deatils
	Model Configuration Details
	Experiment Results on Larger Models


