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Abstract

The Segment Anything Model (SAM) has achieved a notable success in two-dimensional
image segmentation in natural images. However, the substantial gap between medical and
natural images hinders its direct application to medical image segmentation tasks. Particu-
larly in 3D medical images, SAM struggles to learn contextual relationships between slices,
limiting its practical applicability. Moreover, applying 2D SAM to 3D images requires
prompting the entire volume, which is time- and label-consuming. To address these prob-
lems, we propose Slide-SAM, which treats a stack of three adjacent slices as a prediction
window. It firstly takes three slices from a 3D volume and point or bounding box prompts
on the central slice as inputs to predict segmentation masks for all three slices. Subse-
quently, the masks of the top and bottom slices are then used to generate new prompts
for adjacent slices. Finally, step-wise prediction can be achieved by sliding the prediction
window forward or backward through the entire volume. Our model is trained on multiple
public and private medical datasets and demonstrates its effectiveness through extensive
3D segmetnation experiments, with the help of minimal prompts. Code is available at
https://github.com/Curli-quan/Slide-SAM.

Keywords: Segmentation, Interactive segmentation.

1. Introduction

Nowadays, 3D medical image segmentation plays a crucial role in medical image analysis for
clinical analysis and diagnosis. However, annotating 3D medical images requires a signifi-
cant amount of human labor and time resources. Recently, the Segment Anything Model
(SAM) (Kirillov et al., 2023) demonstrates impressive zero-shot segmentation capabilities
in large-scale computer vision tasks (Mazurowski et al., 2023; Huang et al., 2023b; He et al.,
2023). In the field of medical imaging, SAM introduces new possibilities for accelerating
data annotation by using non-fixed points, bounding boxes, and rough mask prompts to
define segmentation region categories. However, the huge distributional gap between natu-
ral images and medical images makes SAM inapplicable directly to medical images (Huang
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et al., 2023a; Cheng et al., 2023). One straightforward solution to bridge the gap is finetun-
ing SAM using medical images (Cheng et al., 2023; Ma and Wang, 2023; Wu et al., 2023).
Another feasible approach is to adjust the numeric range of medical images, making them
visually more akin to natural images, which greatly improves the segmentation ability of
SAM in the medical domain. Given these straightforward solutions, we believe that this
issue may not be the central challenge in medical segmentation tasks.

The fundamental challenge that SAM faces with medical images, in our view, lies in its
inability to efficiently segment 3D images. Most recent variants can only employ a slice-by-
slice approach for processing volumetric images (Cheng et al., 2023; Ma and Wang, 2023).
However, such methods require substantial manual assistance and overlook the contextual
information between slices, resulting in evident discontinuities in the segmentation results
on each layer. Some other methods utilize adapters to introduce information between slices
(Bui et al., 2023; Lei et al., 2023; Wu et al., 2023) whereas they still require a substantial
cost in terms of prompt annotations. Additionally, there exists another category of methods
that directly extend SAM into a 3D model (Gong et al., 2023). Nevertheless, this method
relinquishes the assistance provided by SAM’s pre-trained weights due to the difference
between tasks, necessitating a more resource-intensive model training process. Indeed, a
core question prominently arises: How can SAM be enabled to predict 3D data effectively
with only one prompt while fully harnessing its pre-trained weights? To address it, we
propose a network called Slide-SAM. Slide-SAM only requires a prompt from the central
slice to simultaneously infer multiple adjacent slices, and the resulting predictions can be
used to generate prompts for the next group of adjacent slices. This is achieved through
a sliding window approach, ultimately enabling one prompt to segment an entire volume.
Furthermore, Slide-SAM’s architecture and task are similar to the original SAM (from an
RGB image to 3 grayscale images), making it easier to leverage the pre-trained weights
of SAM. Regarding data, we utilize both 3D ground truth labels and 2D pseudo-labels
generated by SAM and we introduce a hybrid loss function that controls which slices to
calculate the loss on, allowing the incorporation of single-slice labels and multi-slice labels.
Extensive experiments prove that our Slide-SAM can gain superior inference performance
on 3D images with minimal prompt cost.

2. Method

2.1. Structure of SAM

SAM consists of three main components: image encoder, prompt encoder and light-weight
mask decoder. The image encoder is based on the Vision Transformer (ViT) (Dosovitskiy
et al., 2020) pretrained by MAE (He et al., 2022) to extract representations. Prompt
encoders can handle both sparse (points, boxes, text) and dense (masks) prompts. In this
paper, we mainly focus on sparse encoders, which represent points and boxes as positional
encodings that are then summed with the learned embeddings for each prompt type. The
mask decoder is a Transformer decoder block modified to include dynamic mask prediction
headers. SAM uses bidirectional cross-attention in each block, one for prompt-to-image
embeddings and the other for image-to-prompt embeddings, to learn the interaction between
prompt and image embeddings. After fusing two embeddings, SAM upsamples the image
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Figure 1: The training pipeline of Slide-SAM. First, Three adjacent slices are used as input
and fed into the backbone network. Then, the Prompt encoder is employed to encode
points or boxes. The Mask decoder receives the generated features from the previous step
and generates masks for each slice using different heads. The hybrid loss is only computed
for layers with labels.

embedding, and then a multilayer perceptron maps the output labels to a dynamic linear
classifier that predicts the target mask given the image.

2.2. Structure of Slide-SAM

Feature Encoder: Concerning the feature encoder, which is a transformer encoder, we
incorporate LoRA (Hu et al., 2021), enabling SAM to update only a small subset of parame-
ters during medical image training. The ViT-B (used in SAM-B) serves as the backbone and
remains frozen throughout training, while the embedding layer is configured to be trainable.

Mask Encoder: Given an image with 3 slices X ∈ RH×W×3, the mask decoder efficiently
maps the image embedding Fim ∈ Rc×h×w, prompt embeddings P ∈ R5×c, and an output
token into feature maps Fo ∈ Rc×h×w representing the images, and three prediction heads
H representing the prompted-based tasks. In order to segment multiple slices at the same
time, the feature maps are expanded from one to three, but followed with the same heads.

Specifically, for the feature map Fo, Slide-SAM has three different MLP blocks to convert
the feature map Fo into three feature maps F1 ∈ Rc×h×w, F2 ∈ Rc×h×w, and F3 ∈ Rc×h×w.
Each feature map represents a slice. The heads H are divided into three heads Hs1 ∈ Rc,
Hs2 ∈ Rc, and Hs3 ∈ Rc for segmenting different semantic regions, and Hu ∈ Rc for IoU
prediction. Similar to SAM, we can obtain mask predictions M ∈ RH×W×3×3 and IoU
predictions U ∈ R3:

Mij = Fi ⊙Hsj , j = {1, 2, 3}
Uj = MLP (Hu),

(1)

where ⊙ is point-wise multiplication. Additionally, to fully leverage the prior knowledge
of SAM weights, we load all weights from the Transformer decoder and the weights of the
heads. We duplicate the weights of the MLP block receiving the feature map Fo from one
to three to load into the three branches of Slide-SAM.
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Prompt Encoder: We consider two sets of prompts: sparse (points, boxes) and dense
(masks). The distinction between our method and SAM lies in the fact that our input images
consist of three slices, and we opt to select the middle slice as a reference to provide prompts.
Regarding the mask prompt, we extend the input channel count of the convolutional block
associated with the mask prompt to three, in order to facilitate the input of masks from
three layers of slices. Points and boxes are encoded by positional encodings summed with
learned embeddings for each prompt type. Mask prompts are encoded and then summed
element-wise with the image embedding.

2.3. Training strategy

Hybrid loss: Given the prediction M ∈ RH×W×3×3 and the ground-truth M̂ ∈ RH×W×3,
Slide-SAM adopts cross-entropy and Dice loss to supervise the fine-tuning process. The loss
function can be described as follows:

Lj
seg(Mj , M̂) = λ1Lce(Mj , M̂) + λ2Ldice(Mj , M̂),

Lj
iou(Uj ,Mj , M̂) = Lmse(Uj , IoU(Mj , M̂))

(2)

L = Lk
seg + Lk

iou, k = argmin
j

Lj , (3)

where Lce and Ldice represent cross-entropy loss and dice loss, respectively. M ∈ RH×W×3

and M̂ ∈ RH×W×3 represent the prediction and the ground truth, respectively. λ1 and λ2

represent loss weights, which are used to balance the impact between these two loss terms.
λ1 and λ2 are set to 20 and 1 in practice, respectively.

Next, to facilitate concurrent training on 2D and 3D data, we introduce an indicator
I ∈ {0, 1}3 to guide the layers for which loss computation is required. As a result, Eq (3)
can be transformed as follows:

L̂j
seg = ILseg(Mj , M̂), (4)

For instance, when using 3D labels, all three slices possess masks, resulting in each value
of the indicator being 1. Conversely, when using 2D labels, only one slice contains a mask,
leading to the indicator values being set to 1 for the slice with the mask and 0 for the others.
In the case of IoU prediction loss, since it is not feasible to accurately predict all masks
when using 2D labels, the exact IoU values remain unknown. Therefore, in such situations,
we set the IoU prediction loss to be 0.

2.4. Inference

Our inference process, as shown in Figure 2, begins by selecting a specific layer as the start-
ing point. We provide prompts for points or bounding boxes on this layer. Subsequently,
we input this layer and its adjacent slices (3 slices in total) into the model to obtain seg-
mentation masks. The masks at both ends are then denoised by morphological opening and
used for computing bounding boxes for the next 3 consecutive slices. We iterate through
the inference process in a sliding window fashion, extending towards both ends, until one
of the masks at ends is empty.
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Figure 2: The inference process of Slide-SAM.

Method
CHAOS BTCV

Liver Kid(R) Kid(L) Spleen Avg. Liver Stomach Kid(L) Spleen Avg.

nnUNet (Isensee et al., 2021) 87.95 93.91 93.67 87.78 90.82 96.17 76.79 94.81 93.84 90.40
SSL-ALP (Ouyang et al., 2020) (1 volume) 63.82 56.52 63.68 73.40 64.35 69.40 34.35 44.89 65.00 53.40

SAM (N points) 29.79 36.93 63.77 45.55 44.01 39.60 31.74 68.57 23.46 40.84
SAM-Med2d (N points) 58.48 89.16 87.53 72.51 76.92 84.89 79.02 92.97 92.03 87.22
SAMMed-3D (N points) 82.80 80.25 78.49 79.37 80.22 64.31 54.73 85.98 75.38 70.10
Ours (1 point) 88.39 91.86 90.74 90.53 90.38 92.38 89.03 92.35 75.62 87.34

SAM (N boxes) 78.48 93.81 92.40 91.84 89.13 72.18 83.98 93.67 88.51 84.58
SAM-Med2d (N boxes) 90.09 94.39 94.03 92.73 92.81 93.58 82.88 93.49 94.07 91.00
Ours (1 box) 88.42 91.89 90.98 90.76 90.51 95.44 74.31 92.42 91.16 88.33
Ours (5 boxes) 91.70 92.18 91.37 92.03 91.82 95.62 90.88 93.49 91.88 92.96
Ours (N boxes) 92.94 92.40 91.60 92.75 92.42 95.75 93.24 93.52 93.44 93.98

Table 1: Evaluation on CHAOS and BTCV testsets (Dice (%)).

3. Experiment

3.1. Dataset preparation

Training data: The training data we used is divided into two parts. (1) Annotated datasets.
The public datasets include AbdomenCT-1K (Ma et al., 2021), TotalSegmentor (Wasserthal
et al., 2023), CTPelvic1K (Liu et al., 2021), WORD (Luo et al., 2021), etc. and some private
data; (2) Pseudo-labels generated by SAM. We use SAM to generate labels for unlabeled
or partially labeled data. These labels are typically in 2D format and need to be used in
conjunction with the mixed loss function we propose.
Evaluation settings: We choose ISBI 2019 Combined Healthy Abdominal Organ Seg-
mentation Challenge (CHAOS) (Kavur et al., 2021), MICCAI 2015 Multi-Atlas Abdominal
Labeling challenge (BTCV) (Landman et al., 2015) and WORD (Luo et al., 2021) as the
validation dataset. CHAOS and BTCV are split into training and test sets in a 4:1 ratio.
20 cases are taken from the WORD as testset. MSD Pancreas and MSD Colon (Antonelli
et al., 2022) are split into training, validation and test sets in a 7:1:2 ration, following (Gong
et al., 2023). We choose Dice as the evaluation metric.
Preprocessing: We initially apply value clipping to confine the range of CT data within
[-200, 400] and MRI data within [0, 600]. Subsequently, we standardize the intensity values
of each volume to the range [0, 255]. We proceed to extract all slice images along the x,
y, and z axes, along with their corresponding masks. These slices are then organized and
saved in groups of three adjacent slices. During the extraction process, we discard groups
for which the percentage of the central slice’s mask area is less than 0.14%.
Settings: To quantitively assess the performance of our model, we conduct comparative
experiments involving fully-supervised networks, including nnUNet (Isensee et al., 2021), a
one-shot network SSL-ALp (Ouyang et al., 2020), as well as SAM (Kirillov et al., 2023),
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Type Methods Pancreas Tumor Colon Tumor

Supervised
models

nnUNet (Isensee et al., 2021)1 41.65 43.91
nnFormer (Zhou et al., 2023)1 36.53 24.28
Swin-UNETR (Hatamizadeh et al., 2021)1 40.57 35.21

Num of Prompts 1 3 10 1 3 10

SAM
variants

SAM-B (Kirillov et al., 2023)1 24.01 29.80 30.55 28.83 35.26 39.14
SAM3d-Adapter (Gong et al., 2023)1 54.09 54.92 57.47 48.35 49.43 49.99
Ours 60.28 70.01 80.09 61.89 69.80 71.55

1 Copied from (Gong et al., 2023).

Table 2: Comparison with classical medical image segmentation methods on MSD Pancreas
and MSD Colon datasets (Dice (%)).

Method Prompt Liver Spleen Kid(L) Kid(R) Stomach Gallbladder Esophagus Pancreas

SAM-B ∼40 boxes 74.98 89.74 93.57 93.56 78.86 82.21 72.09 62.31
SAM-Med2d ∼40 boxes 93.51 92.00 91.66 92.01 87.48 70.68 52.07 64.81
SAMMed-3D 1 point 90.38 82.83 84.10 87.24 55.28 60.56 28.02 43.49

Ours 1 box 94.50 87.36 92.86 92.45 76.40 73.75 37.42 61.65
Ours 5 boxes 95.55 92.03 92.32 92.73 91.35 83.01 48.97 65.54
Ours (ViT-H) 1 box 94.36 90.01 93.04 91.39 76.46 69.03 60.75 71.84
Ours (ViT-H) 5 boxes 95.25 92.46 93.40 92.60 92.08 78.57 69.52 82.38

Method Duodenum Colon Intestine Adrenal Rectum Bladder Femur(L) Femur(R) Avg.

SAM-B 59.03 34.99 54.98 17.21 84.05 86.23 89.53 89.08 72.65
SAM-Med2d 58.10 54.54 73.32 15.45 85.37 91.71 89.40 89.24 75.14
SAMMed-3D 31.41 24.45 30.47 0.86 60.38 86.84 83.89 73.65 57.74

Ours 44.75 31.69 50.92 24.80 73.92 90.85 89.12 90.33 69.54
Ours 62.89 64.33 76.07 32.54 76.94 92.88 92.04 92.60 78.23
Ours (ViT-H) 50.00 50.15 56.78 33.98 77.86 84.11 93.47 93.72 74.18
Ours (ViT-H) 76.70 79.43 81.77 49.97 86.68 91.76 93.89 93.99 84.38

Table 3: Evaluation on WORD testset with box prompts (Dice (%)). The best and
second best are highlighted

SAM-Med2d (Cheng et al., 2023), SAM3d-Adapter (Gong et al., 2023). The fully supervised
networks employ all training data and corresponding labels. SAM and SAM-Med2d are
initialized with public weights. The one-shot segmentation model utilizes training data but
abstains from using labels, and requires only the labels of one volume to make predictions.

Implementation details: We use AdamW as the optimizer, and set the training rate to
0.0002. β1, β2 and weight decay settings are 0.9, 0.999 and 0.1 respectively. We end training
at 20 epochs. Our models are trained on 4 Nvidia RTX GPUs with 24G GPU memory.

3.2. Main results

In Table 1, we find that our performances are much better than SAM and SAM-Med2d when
using point prompts, and compared to them using prompts on each slice, we only use one
point prompt. When using 1 box prompt, we achieve similar performance to SAM-Med2d
on multiple anatomies. In addition, when we also use box prompts on each slice like SAM,
we can achieve the best performance on multiple anatomies. While initial performance gains
are significant, further improvements plateau as the number of prompts increases. This is
because our method automatically generates reliable prompts for other slices, minimizing
the marginal benefit of additional prompts.
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Figure 3: Labeling efficiency: The number of images that can be annotated using 1000
prompts for WORD testset.

For tumor detection, we compare our method with SAM3d-Adapter (Gong et al., 2023)
and some popular segmentation methods, nnU-Net (Isensee et al., 2021), nnFormer (Zhou
et al., 2023), Swin-UNETR (Hatamizadeh et al., 2021). We finetune Slide-SAM with tumor
datasets based on weights well-trained on fore-mentioned large-scale medical datasets. As
shown in Table 2, our performance Our model significantly outperforms existing supervised
methods and SAM models, while requiring only a small number of prompts. This can
greatly improve annotation efficiency.

For the WORD testset, as illustrated in Table 3, we achieve competitive results with
only 5 prompts per anatomical structure, in stark contrast to SAM and SAM-Med2d, which
necessitate approximately 40 prompts on average for each structure. Moreover, we leverage
a larger backbone network (ViT-H) and incorporate additional CT data to train Slide-SAM,
observing a more robust performance.

Ground
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(N	Points)

Ours
(1	Box)
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Figure 4: Visual comparison on the CHAOS dataset.

3.3. Other analysis

Analysis of prompt efficiency: Assuming we set the condition for successful annotation
as having a Dice coefficient greater than 0.9 between predictions and ground-truth labels,
we counted the number of images successfully annotated by our method and other methods
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Figure 5: Predictions of BTCV testset with different noisy prompts. We display 3 slices
and their masks in RGB format.

(SAM, SAM-Med2D) when using the same 1000 prompts. As demonstrated in Figure 3,
the annotation efficiency of our method is significantly higher than that of other methods.

Visual comparison: As depicted in Figure 4, the segmentation results from the original
SAM exhibit noticeable discontinuities between upper and lower layers, leading to incoher-
ence between adjacent layers. Additionally, when using point prompts, a significant number
of segmentation errors are prevalent, causing considerable challenges for experts. In con-
trast, our method produces remarkably smooth results, whether utilizing point prompts or
box prompts as initial prompts. It provides excellent 3D segmentation results and facilitates
subsequent annotation optimization, making it a more user-friendly option for experts.

Noisy prompts: As shown in Figure 5, we attempt to simulate a realistic annotation
environment by using points or bounding box prompts with noise. We find that our method
exhibits a certain level of robustness to noise. For box prompts, stable prediction results
are obtained regardless of translation or scaling. The stability of point prompts is relatively
lower. Poor predictions may occur with points at edges.

4. Conclusion

One main challenge AM encounters when applied to medical images mainly stems from
its limitations in effectively segmenting 3D image data. To address this, we introduce
Slide-SAM, which leverages pretrained weights and facilitates multi-slice inference through
a sliding window technique. Incorporating our data enrichment strategies and a hybrid loss
function that encompasses both 3D labels and 2D pseudo-labels, our method enhances the
training process and results in performance advancements. Extensive experiments prove
that our Slide-SAM can gain superior inference performance on 3D images with a minimal
prompt cost.
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Appendix A. Usage for clinicians

To assist clinicians in using our tool more easily, we provide a detailed overview of the
workflow for our method. We plan to integrate our tool into existing annotation software.
Assuming the annotation tool with our method is presented as follows, the process begins by
dragging the data needing annotation into the tool. Then, a suitable slice is selected, and an
enclosing box is drawn around the desired area for annotation. For further refinement of the
annotation results, additional point prompts can be added, or a more suitable bounding box
can be drawn on slices where other segmentation results are unsatisfactory. We recommend
ensuring that the box prompt wraps around the target as much as possible to avoid missing
cases. As our method has certain performance limitations, if the desired results are not
achieved, users can modify the labels manually using the annotation tool.

Figure 6: Example of labeling an anatomy. Drawing a bounding box of the target on a
slice.

Appendix B. Dataset preparation

The training data we used is divided into two parts.

• Annotated public datasets and private datasets. The public datasets include AbdomenCT-
1K (Ma et al., 2021), Total Segmentor (Wasserthal et al., 2023), CTPelvic1K (Liu
et al., 2021), WORD (Luo et al., 2021), etc. and some private data.

• Pseudo-labels generated by SAM. As shown in Figure 7, we use SAM to generate
labels for unlabeled or partially labeled data. These labels are typically in 2D format
and need to be used in conjunction with the mixed loss function we propose.

Annotated datasets: We collect multiple datasets including over 4000 CT and MRI vol-
umes and over 30,000 3D masks. We segment all 3D volumes and labels into sets of three
consecutive slices, and resized them to (1024, 1024). The images are stored in JPG format
with compression, while the labels are stored as sparse matrices.
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Pseudo-labels: Since some datasets have only partial annotations, we employ a straight-
forward method to generate a large number of pseudo-labels and apply them after training.
Moreover, we observe that these data indeed result in a significant performance improve-
ment. The generation of pseudo-labels is as follows: We find that by adjusting the window
width of CT or MRI images (i.e., adopting different truncation methods, such as constrain-
ing data within the range of [-200, 400] for CT), SAM can produce different results for the
same data. We believe that this adjustment can make certain regions, originally with small
color differences, more distinguishable, allowing SAM to segment these areas. Therefore,
we used multiple truncation thresholds, [µ ± 3 ∗ δ], [µ ± 2 ∗ δ], [µ ± δ], and [µ ± 0.5 ∗ δ],
where µ and δ refer to the average and standard variance, respectively. In addition, we used
superpixels to generate point/box prompts for SAM. We would exclude superpixels with
an average value below a certain threshold, as we consider them potentially representing
background. Figure 7 illustrates the pseudo-labels we generate.

Figure 7: Pseudo labels on an image from AbdomenCT-1K dataset. (left) GT + Pseudo
labels with different value ranges; (right) + superpixel-prompted pseudo labels.

Appendix C. Implementation details

Prompt genetation: Following SAM and other interactive segmentation models, we sim-
ulate an interactive segmentation setup during training. First, with equal probability, either
a foreground point or bounding box is selected randomly for the target mask. Points are
sampled uniformly from the ground truth mask. Boxes are taken as the ground truth mask’s
bounding box, with random noise added in each coordinate with a standard deviation equal
to 10% of the box sidelength, to a maximum of 20 pixels. This noise profile is a reasonable
compromise between applications like instance segmentation, which produces a tight box
around the target object, and interactive segmentation, where a user may draw a loose box.

C.1. Inference

2D post-processing:
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• (a) Filter out areas with IoU predictions less than 0.4;

• (b) Filter out areas with stability scores less than 0.6. The stability score is calculated
as follows: given a certain stable interval such as [-0.1, 0.1], add the corresponding
offset to the original logits and check the changes in the prediction area. Stability
score = smallest prediction area/largest prediction area. Areas with a stability score
less than a certain value will be filtered.

• (c) Calculate circumscribed matrices for each mask, and use non-maximum suppres-
sion (NMS) to remove overlapping masks using all matrices and their corresponding
prediction confidence values as input.

3D post-processing (sliding window): First, we predict the results for the central slice.
Then, the iterative inference process splits into two directions: forward and backward. For
instance, in the forward direction,

• (a) We utilize the masks on the first slice of each predicted slice result. We apply
morphological opening to denoise each mask and compute bounding boxes. These
bounding boxes serve as prompts for another round of segmentation using the model.
In this segmentation step, the central slice is the one associated with the prompt.

• (b) For areas on this slice that lack coverage from existing masks, we evenly sample
points as prompts for segmentation, following the same segmentation procedure as
described earlier.

• (c) All obtained masks are then subjected to the filtering method described earlier.
Subsequently, the process continues with shifting and predicting masks in the specified
direction. The operations in the backward direction are similar to those outlined
above.

Parallel strategy:

We adopt a parallel strategy during inference, that is, divide all adjacent slices into
multiple batches, and increase the batch size as large as possible to ensure that as much
GPU memory is utilized as possible. Inference is performed on Nvidia Titan RTX 24G and
the batchsize is set to 4. For Slide-SAM, the running speed is 3.25 sec/volume, and the GPU
memory usage is 14G. For Slide-SAM-H, the running speed is about 10 sec/volume, and the
GPU memory usage is 17G. In future, we will also try more mobile-friendly technologies to
light-weight and accelerate model inference, such as using EfficientViT as backbone or SAMI
pretrain strategy in EfficientSAM, using model compression and distillation technology or
other operator acceleration technologies, etc.

Appendix D. Other Analysis

D.1. Noisy Prompts

We test more noisy prompts as shown in Figure 8. Here, we mainly test box prompts
because the results obtained from box prompts are more robust. Box prompts are our
primary annotation method. We find that areas not covered by box prompts are easily
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Figure 8: Noisy prompts. The green box refers to the box prompt. White refers to the
ground-truth label. Red refers to the overlapping of the prediction and the GT label. Yellow
refers to the incorrect prediction.
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missed, and overly large box prompts may lead to incorrect predictions. However, slightly
larger box prompts than the standard bounding boxes result in minimal impact. Therefore,
we recommend making the box prompts slightly larger to avoid missing annotations as much
as possible.

D.2. Z-spacing

Our method works fine under common spacing settings (such as (1,1,3), (1,1,5)). Currently,
the performance of our Slide SAM on consecutive slices with larger differences may be
relatively poor. As shown in the Table 4, we resampled the volumes of the Word testset
along the z-axis to change the z-spacing. We find that slightly increasing the z-spacing
does not have much impact on performance, but performance notably decreases when the
z-spacing becomes too large. We plan to improve this problem in future work, such as
adding an adaptive module to Slide-SAM to try to robust the model identify variable slices
that are further apart.

Method Z-spacing Resampling ratio Liver Spleen Pancreas Gallbladder

Slide-SAM-H 2.5 0mm ∼ 3.00mm 1.0 94.36 90.01 71.84 69.03
2.75mm ∼ 3.30mm 1.1 94.99 89.10 71.18 69.31
3.00mm ∼ 3.60mm 1.2 95.03 88.34 69.59 70.79
3.75mm ∼ 4.50mm 1.5 94.51 89.17 68.36 68.10
5.00mm ∼ 6.00mm 2.0 94.09 88.20 66.19 -
6.25mm ∼ 7.50mm 2.5 93.29 89.15 60.66 -

10.00mm ∼ 12.00mm 4.0 90.25 82.58 48.41 -
15.00mm ∼ 18.00mm 6.0 85.84 75.20 42.38 -
17.50mm ∼ 21.00mm 7.0 83.60 73.54 - -
18.00mm ∼ 24.00mm 8.0 81.71 - - -

Table 4: Evaluation on WORD testset (Dice (%)).

D.3. Heterogeneous datasets

We conduct an additional testing on an in-house dataset sourced from the Guangdong
Provincial People’s Hospital in China. This dataset comprises 120 MRI volumes, parti-
tioned into subsets: 100 volumes for training, 10 volumes for validation, and 10 volumes for
testing purposes. The dataset comprises scans focusing on the lower abdomen, with the seg-
mentation targets being the rectum and rectal tumors. One challenge of this dataset is its
divergence from our pre-training data, which primarily consists of CT scans. Specifically, the
CHAOS dataset is our sole MRI dataset, involving upper abdominal scans. Consequently,
our model has not been exposed to lower abdominal MRI data previously. Furthermore,
the spacing between slices in this dataset measures approximately (0.36, 0.36, 5), with a
pronounced inter-slice gap. This structural peculiarity poses a significant challenge for our
model’s adaptation. To address these challenges, we employ a fine-tuning strategy using
the available training data and subsequently evaluate the performance of our model. The
results are shown in Table 5.

We find that when only one box prompt is used, the performance is not as good as
nnUNet, but when we use 3 or more prompts, the performance can exceed nnUNet. Ad-
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Method Prompt Rectum Tumor

nnUNet-2d 59.62 47.56
nnUNet-3d 68.48 61.68

Slide-SAM-finetune

1 box 65.10 52.89
3 boxes 75.92 61.85
5 boxes 81.11 64.48
10 boxes 83.96 65.12

Table 5: Evaluation on Rectal in-house dataset. (Dice (%))

ditionally, the segmentation accuracy can be further improved as the number of prompts
increases.

D.4. Pseudo labels:

To prove the efficacy of pseudo-labels, we conducte a comparative analysis by assessing
model performance with and without their utilization. As shown in Table 6, we employ all
slices from the 3D volumes of AbdomenCT-1K as the training images and finetune SAM
with the incorporation of the LoRA module. Subsequently, validation is carried out on the
test set of AbdomenCT-1K. Our findings indicate that, when using only the original data
and their associated labels, the finetuned model’s performance is even inferior to that of
the original SAM. However, a notable enhancement in performance is observed when we
incorporate the additional pseudo-labels, thereby affirming the constructive impact of the
pseudo-labels used in our model training.

mIoU Dataset for ft. Point Box
SAM 56.16 72.36

SAM (ft.) Abd-1K 45.68 56.06
SAM (ft.) + pseudo masks 66.82 74.87

Table 6: Comparison between the utilization of generated pseudo-labels and their absence
on AbdomenCT-1K testset.
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