
Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Yuheng Jing 1 2 Kai Li † 1 2 Bingyun Liu 1 2 Ziwen Zhang 1 2 Haobo Fu 3 Qiang Fu 3 Junliang Xing 4

Jian Cheng † 1 5 6

Abstract

Offline Opponent Modeling (OOM) aims to learn
an adaptive autonomous agent policy that dynam-
ically adapts to opponents using an offline dataset
from multi-agent games. Previous work assumes
that the dataset is optimal. However, this assump-
tion is difficult to satisfy in the real world. When
the dataset is suboptimal, existing approaches
struggle to work. To tackle this issue, we propose
a simple and general algorithmic improvement
framework, Truncated Q-driven Instant Policy
Refinement (TIPR), to handle the suboptimal-
ity of OOM algorithms induced by datasets. The
TIPR framework is plug-and-play in nature. Com-
pared to original OOM algorithms, it requires only
two extra steps: (1) Learn a horizon-truncated in-
context action-value function, namely Truncated
Q, using the offline dataset. The Truncated Q esti-
mates the expected return within a fixed, truncated
horizon and is conditioned on opponent informa-
tion. (2) Use the learned Truncated Q to instantly
decide whether to perform policy refinement and
to generate policy after refinement during testing.
Theoretically, we analyze the rationale of Trun-
cated Q from the perspective of No Maximization
Bias probability. Empirically, we conduct exten-
sive comparison and ablation experiments in four
representative competitive environments. TIPR ef-
fectively improves various OOM algorithms pre-
trained with suboptimal datasets.

†Corresponding authors 1C2DL, Institute of Automation, Chi-
nese Academy of Sciences 2School of Artificial Intelligence,
University of Chinese Academy of Sciences 3Tencent AI Lab
4Tsinghua University 5School of Future Technology, University of
Chinese Academy of Sciences 6AiRiA. Correspondence to: Kai Li
<kai.li@ia.ac.cn>, Jian Cheng <jian.cheng@ia.ac.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
A fundamental task towards Artificial General Intelligence
is the development of autonomous agents capable of mod-
eling others. The line of work that focuses on adversarial
domains is commonly referred to as Opponent Modeling
(OM), where we build a self-agent (i.e., autonomous agent)
that models the behaviors, goals, or other properties of op-
ponents to reduce its uncertainty about the environment and
enhance its decision-making (He et al., 2016a; Albrecht
& Stone, 2018; Papoudakis et al., 2021a; Nashed & Zil-
berstein, 2022; Fu et al., 2022; Yu et al., 2022; Ma et al.,
2024; Jing et al., 2024b; 2025). Among the research, Offline
OM (OOM) is a recently proposed learning paradigm (Jing
et al., 2024a). OOM aims to learn an adaptive self-agent
policy that can dynamically adapt to opponents based on the
available opponent information using offline datasets. This
new paradigm makes OM more practical and efficient, as
it relaxes the reliance on interactions with the environment
and opponent policies in the learning process.

Existing work on OOM assumes that the pre-collected multi-
agent game dataset is optimal (Jing et al., 2024a). Here,
‘optimal’ means that for each opponent policy in the offline
dataset, all trajectories are generated by the opponent policy
and its Best Response (BR) self-agent policy. However, the
experiences we can collect are often suboptimal, making
it difficult to meet the above optimality requirement. By
‘suboptimal’, we mean that within the dataset, the self-agent
policy can be arbitrarily bad rather than being the BR to the
opponent policy. As expected, we observe that when pre-
trained on suboptimal datasets, existing OOM algorithms
deteriorate dramatically. This contradicts the original in-
tention of OOM, which is to improve learning efficiency
through offline learning. Regarding this, we aim to explore
how to make OOM effective using suboptimal datasets in
this work. The concept of OOM with suboptimal data is re-
flected in many real-world applications. E.g., NBA players
study opponents’ styles and strategies by analyzing game
replays to identify their weaknesses, even though many re-
plays include videos of losses against those opponents.

In Offline Reinforcement Learning (RL), a mainstream
methodoloy to acquire a policy potentially better than
the one embedded in the dataset is to learn an additional

1

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

100

101

Markov Soccer (MS)

101

102

Level-Based Foraging (LBF)

0 2500 5000 7500 10000
Training Steps

100

102

104

Av
er

ag
e

M
SE

 o
n

Va
lid

at
io

n
Se

t

Physical Deception (PD)

0 2500 5000 7500 10000
Training Steps

100

102

104

Predator Prey (PP)

Original Q Truncated Q

Figure 1. The Mean Squared Error (MSE) curves on the validation
sets for learning different Q functions with various suboptimal
offline datasets from different environments.

action-value function Q for Offline Conservative Learn-
ing (OCL) (Wu et al., 2019; Fujimoto et al., 2019; Kumar
et al., 2020; Jin et al., 2021). Inspired by OCL, an intuitive
way to improve the original policy learned by OOM algo-
rithms from suboptimal datasets is to refine it through Q.
However, in the context of OOM, learning a workable Q
is highly challenging. On the one hand, the involvement
of opponents introduces additional action dimensions to
Q, adding extra estimation complexity. On the other hand,
the non-stationarity of opponents (i.e., opponents switching
policies) makes Q’ estimation unreliable.

For the first challenge, we find that shortening the horizon
over which Q estimates the expected return can significantly
reduce the learning difficulty. Fig. 1 shows the error curves
of learning Q on validation datasets. The error of learning
the Original Q, which estimates the expected cumulative
discounted reward (i.e., return) over the full horizon, is
unacceptably large , especially in environments with more
opponents, e.g., PD and PP. In contrast, learning the Trun-
cated Q, which estimates the expected return over a trun-
cated horizon, results in order-of-magnitude reduction in
error. For the second challenge, we argue that learning an
in-context Q, conditioned on opponent information, is more
beneficial for improving the reliability of the estimation
under the current opponent policy than an unconditional Q.

In addition to how to learn Q, how to use Q also matters in
OOM. The previously mentioned OCL emphasizes learning
an improved policy on the offline trajectory distribution.
However, under OOM’s setting, opponents during testing
can be entirely unseen, leading to severe distributional shifts.
This can significantly degrade the performance of OCL on
the test trajectory distribution. Considering this, we propose
a novel method, Instant Policy Refinement (IPR), to im-
prove the original policy of OOM algorithms during testing.

In summary, we propose a simple and general algorithmic
improvement framework, Truncated Q-driven Instant Policy
Refinement (TIPR), to enhance OOM algorithms in han-
dling suboptimality induced by datasets. The TIPR frame-
work is plug-and-play and requires only two extra steps
compared to original OOM algorithms: (1) Truncated Q
Training: Learn a horizon-truncated in-context action-value
function, namely Truncated Q, using the same dataset used
for pretraining the OOM algorithm. (2) IPR: Use the learned
Truncated Q to instantly decide whether to refine the original
policy and generate the refined policy during testing.

Theoretically, we prove from the perspective of maximiz-
ing the No Maximization Bias probability that, compared to
Original Q, our Truncated Q is potentially a more reasonable
Q function. Empirically, we conduct extensive comparative
and ablation experiments in four representative competitive
environments. We construct offline datasets with varying
degrees of suboptimality to pretrain a series of OOM algo-
rithms and then test their performance against unknown non-
stationary opponents. Our results demonstrate that under
the TIPR framework, various OOM algorithms consistently
achieve considerable performance improvements, regardless
of the degree of suboptimality in the dataset.

2. Preliminaries
We use an n-agent Partially-Observable Stochastic Game
⟨S, {Oi}ni=1, {Ai}ni=1,P, {Ri}ni=1, {Oi}ni=1, T, γ⟩ to for-
malize the multi-agent environment (Yang & Wang, 2020).
Here, S denotes the state space. Oi denotes the observation
space of agent i ∈ [n]. Ai denotes agent i’s action space,
A =

∏n
i=1 Ai is the joint action space. P : S × A × S →

[0, 1] is the transition probabilities. Ri : S×A→ R denotes
the reward function of agent i.Oi : S×A×Oi → [0, 1] de-
notes the agent i’s observation function. T is the full horizon
for each game episode. γ is the discount factor.

We use the superscript 1 to denote terms related to the
self-agent, i.e., the agent under our control, and the su-
perscript −1 to denote terms related to the opponents, i.e.,
all other agents. Both 1 and −1 represent terms in the joint
space. The offline dataset is defined as T := ∪kTk,Tk :=
{τk := (o1,kt , o−1,kt , a1,kt , a−1,kt , r1,kt , r−1,kt)T−1t=0 }. The set
of offline opponent policies embedded in T is denoted as
Πoff := {π−1,k}Kk=1, where k ∈ [K] is the index of the
opponent policy. Tk contains multiple trajectories τk that re-
sult from the interaction between the opponent policy π−1,k

and certain self-agent policies. Existing work assumes that
for any k ∈ [K], the actions a1,k generated by the self-agent
policy are optimal (Jing et al., 2024a). In this work, we make
no such assumptions about the self-agent policies embedded
in T, and they can be arbitrarily suboptimal.

In OOM, the data used to characterize opponent policies is

2

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Start IPR
at Timestep

during Testing

𝟙

𝟙

Sample In-Context Data

from the Opponent's Most
Recent Trajectories

Calculate
Refinement ConditionEstimate Opponent Action

Decide to Refine or Not

Generate Self-agent Action

with Refined Policy

Act with Original OOM Policy

Yes

No

𝟙

Causal Transformer Decoder

Causal Transformer Encoder

fusion fusion fusion

𝟙

𝟙

𝟙

In-Context
Data

Cross
Attention

-1

1 : terms of self-agent

: terms of opponent

Figure 2. Left: Neural network and learning process of Truncated Q. The network of Truncated Q is primarily composed of an Encoder
and a Decoder. The Encoder encodes the In-Context Data D, which is used to characterize the opponent’s policy, into a latent variable z.
This latent variable establishes a connection with the self-agent’s input through cross-attention. The Decoder autoregressively uses Q̆C
and Q̆V at each timestep to predict the Confidence and Value of rewards to be obtained over the next H steps. Right: Overall procedure of
Instant Policy Refinement (IPR). At each timestep during testing, IPR first samples D from the opponent’s recent trajectories and predicts
the opponent’s action using Opponent Imitator πOI, then decides whether the Refinement Condition (RC) is met based on the prediction of
Q̆C. If the RC is satisfied, IPR generates the refined policy π̆ using Q̆V; otherwise, IPR maintains the original OOM policy π̄.

typically called In-Context Data D. A straightforward way
to construct D is to sample several (o−1, a−1) tuples from
the trajectory of a given opponent policy. By this way, the set
of D within T can be defined as D := ∪kDk,Dk := {D :=
(o−1m , a−1m)Mm=1|(o−1, a−1) ∼ τk ∈ Tk}. The adaptive self-
agent policy to be learned can be expressed as π(a1|o1, D),
which dynamically adjusts based on D to adapt to the oppo-
nent. Given an opponent policy π−1, the action-value func-
tion of self-agent can be defined as Qπ,π−1(o1, a1, a−1) =

Eπ,π−1

[∑T−1
t=0 γtr1t

]
. The objective of OOM is to pretrain

π using the dataset T so that it maximizes its expected action
value when tested against a set of online opponent policies
Πon, i.e., maxπ Eπ←OOMPretrain(T),π−1∼ΠonQπ,π−1(·, ·, ·). 1

In Sec. A, we provide extensive related work on Opponent
Modeling, In-Context Learning, Offline RL, Offline Multi-
Agent RL, and Transformers for Decision-Making.

3. Methodology
OOM algorithms typically follow a supervised pretraining
paradigm, and their performance heavily depends on the
self-agent policies embedded in T. However, in the real
world, the collected T is often suboptimal, where the em-
bedded self-agent policies can be arbitrarily poor. In such
cases, the pretrained OOM algorithms could also be arbi-
trarily suboptimal. In this work, we propose a simple and
general algorithmic improvement framework, Truncated Q-
driven Instant Policy Refinement (TIPR). The framework

1π,Q are self-agent’s terms. Omit superscript 1 for simplicity.

learns a horizon-truncated in-context action-value function,
i.e., Truncated Q (see Sec. 3.1), to perform Instant Policy
Refinement (IPR) during testing, thereby improving the
pretrained OOM algorithm (see Sec. 3.2). Truncated Q is
theoretically proven to have the advantage of maximizing
the No Maximization Bias probability (see Sec. 3.3). Our
TIPR is designed as a plug-and-play framework to address
the suboptimality induced by T for OOM algorithms. The
overview of our TIPR framework is illustrated in Fig. 2. We
also provide the corresponding pseudocode in Algo. 1.

3.1. Truncated Q Training

Inspired by Offline Conservative Learning (OCL), which
learns Q for conservative policy improvement to improve
the policies embedded in datasets, we aim to learn a Q to im-
prove OOM algorithms pretrained on suboptimal datasets.
However, under the problem setting of OOM, learning a
workable Q is highly challenging due to the following rea-
sons: (1) Challenge 1: The multi-agent games involve oppo-
nents, and an accurate Q requires modeling the opponents’
actions a−1. This inherently introduces extra complexity to
the learning of Q. (2) Challenge 2: During testing, oppo-
nents are non-stationary, meaning they can switch policies.
In such cases, it is difficult to ensure the reliability of the Q
estimation, as the current Q estimation may not correspond
to the action values under the opponents’ newest policy.

Under the formalization of OOM, assuming Q̄ denotes the
Original Q parameterized by ω. Then, Q̄ can be learned by:

min
ω

E(o1t ,a
1
t ,a

−1
t)∼τ∈T

[
(Q̄(o1t , a

1
t , a
−1
t)−G1

t)
2
]
. (1)

3

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Here, G1
t =

∑T−1
t′=t γ

t′−tr1t′ represents the self-agent’s full
horizon Return-To-Go (RTG). From Eq. (1), we can intu-
itively observe that the error in the optimization objective
of Q̄ accumulates primarily through the accumulation of
rewards over time t′ in G1

t . Therefore, for a given sample
(o1t , a

1
t , a
−1
t), the larger the absolute value of T−t, the more

difficult it becomes for Q̄ to fit that RTG label G1
t .

As mentioned in Challenge 1, inclusion of opponent agents
further exacerbates the difficulty of learning Q̄. This effect
becomes more pronounced as the number of opponents in-
creases, as demonstrated in Fig. 1 for PD (2 opponents) and
PP (3 opponents). To address this challenge, we argue that
truncating the horizon over which Q estimates the expected
return from the full length to a fixed, truncated length can
mitigate the cumulative error effect during the learning of
Q. This truncation makes it feasible to learn a workable Q,
as thoroughly validated by experimental results in Sec. 4.2.

To address the aforementioned Challenge 2, we argue that a
sound Q should estimate the action values under the current
opponent policy. Such a Q can provide reliable estimations
even in the presence of non-stationary opponents. There-
fore, we design Q to be in-context, incorporating opponents’
(o−1, a−1) as additional conditional inputs. This design po-
tentially enables Q to characterize the current opponent
policy through In-Context Learning (ICL) (Lin et al., 2024).

To sum up, we propose learning a horizon-truncated in-
context action-value function Truncated Q, denoted as Q̆,
to overcome the challenges associated with learning Q in
OOM. Assuming that Q̆ estimates the expected return over
a truncated horizon of H , Q̆ decomposes the prediction of
the expected return within H steps into predictions of the
specific rewards for each timestep. Here, Q̆ is composed
of Q̆C and Q̆V. For a specific future timestep h, Q̆

h

C and

Q̆
h

V predict the Confidence of obtaining the h-th reward and
the Value of the h-th reward, respectively (see the Left side
of Fig. 2). Specifically, we learn Q̆ through the objective:

min
ω

E
k∼[K],(o1t ,a

1
t ,a

−1
t ,{r1

t′}
t+H−1

t′=t
)

∼τk∈Tk,D∼Dk

[α · LQC + β · LQV] .

Here, α and β are the coefficients for different loss terms,
and D represents the In-Context Data mentioned in Sec. 2.
We define the confidence loss LQC for learning Q̆C with
Binary Cross Entropy (BCE) as follows:

LQC :=
1

H

H−1∑
h=0

LBCE(Q̆
h

C(o
1
t , a

1
t , a
−1
t , D),1{r1t+h ̸= 0}),

where LBCE(x, y) = −[y log(x)+(1−y) log(1−x)], 1{·}
is the indicator function, and the outputs of Q̆

h

C are assumed
to have been processed by Sigmoid function σ(x) = 1/(1 +

exp (−x)). We define the value loss LQV for learning Q̆V
using Mean Square Error (MSE) as follows:

LQV :=
1

H

H−1∑
h=0

(Q̆
h

V(o
1
t , a

1
t , a
−1
t , D)− r1t+h)

2.

To maximize Truncated Q’s ability to recognize opponents
through ICL, our neural architecture adopts a causal Trans-
former (Radford et al., 2019). See more details on neural
network design in Sec. E. Moreover, we introduce an aux-
iliary Opponent Imitator πOI(a

−1|o1, D), which learns to
estimate the opponents’ action a−1 given o1 through condi-
tional imitation learning, for the use during the IPR process.

3.2. Instant Policy Refinement

Learning a good Q is undoubtedly important, but how to use
Q to improve OOM algorithms is equally critical. A direct
way is to adopt the OCL methodology, using Q for policy
improvement while adding conservative constraints to en-
sure the iteration does not deviate too far from the trajectory
distribution of T. Existing OOM algorithms typically adopt
supervised pretraining objectives, where these objectives
can conveniently serve as conservative constraints.

Assuming original policy of OOM algorithm is denoted as π̄
and parameterized by θ, the objective of learning a improved
π̄ using OCL based on Q̆ can be informally written as:

max
θ

E
k∼[K],(o1t ,a

1
t ,a

−1
t ,{r1

t′}
t+H−1

t′=t
)

∼τk∈Tk,D∼Dk,â1
t∼π̄(·|o1t ,D)

[
λ · Q̆Σ

V(o
1
t , â

1
t , a
−1
t , D)

−η · LOOM] .

Here, Q̆Σ
V (·, ·, ·, ·) :=

∑H−1
h=0 γhQ̆

h

V(·, ·, ·, ·) denotes the
truncated cumulative value. LOOM typically adopts a cross-
entropy form to imitate the actions of self-agent sampled
from T, which is also equivalent to certain Kullback-Leibler
divergence constraint that prevents deviation from the tra-
jectory distribution of T (Jing et al., 2024a). λ and η are
the coefficients for the policy improvement term and the
conservative constraint term, respectively.

The above OCL method emphasizes improving the policy
on the trajectory distribution of T during offline training.
However, in the context of OOM, opponents during test-
ing are unknown and may even be entirely unseen. In such
cases, severe distributional shifts can occur, rendering the
improvements made offline ineffective on the new trajec-
tory distribution. Therefore, rather than directly following
OCL, we propose improving the original policy of the pre-
trained OOM algorithm during testing through IPR (see the
Right side of Fig. 2). During testing, IPR first determines
whether to refine the original policy based on the estimated
confidence. If refinement is deemed necessary, IPR then
generates the refined policy based on the estimated value.

We provide the detailed procedure of IPR as follows.

4

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Algorithm 1 Truncated Q-driven Instant Policy Refinement
Require: Offline dataset T, original OOM policy π̄ pre-

trained on T, truncation horizon H
Ensure: IPR generated policy πIPR

1: /* Truncated Q Training (Section 3.1) */
2: Initialize Truncated Q model Q̆’s parameters ω
3: while Training is not finished do
4: Sample a batch of opponent policy index k ∼ [K]
5: Sample a batch of training data and label

(o1t , a
1
t , a
−1
t , {r1t′}

t+H−1
t′=t) ∼ τk ∈ Tk

6: Sample a batch of In-Context Data D ∼ Dk ∼ Tk

7: Compute confidence loss LQC , value loss LQV , and
imitation loss LOI for Opponent Imitator πOI

8: Update ω using gradients of α · LQC +β · LQV +LOI
9: end while

10: /* Instant Policy Refinement (Section 3.2) */
11: for each timestep t during testing do
12: Get self-agent observation o1t
13: Sample In-Context Data Dt from the most recent C

opponent trajectories
14: Estimate opponent actions with Opponent Imitator:

a−1t ∼ πOI(·|o1t , Dt)
15: Compute Refinement Condition (RC) fRC by Eq. (2)
16: if fRC(o

1
t , a
−1
t , Dt) > 0 then

17: Generate refined policy π̆ by Eq. (3)
18: Act using refined policy: a1t ← π̆(o1t , a

−1
t , Dt)

19: else
20: Act using original OOM policy: a1t ∼ π̄(·|o1t , Dt)
21: end if
22: end for
23: return IPR generated policy πIPR

Prepare D & a−1. At each timestep t, some preparations
need to be made. First, we randomly sample M tuples of
(o−1, a−1) from the most recent C historical trajectories
of the opponent to construct In-Context Data Dt, which
helps characterize the current opponent policy. Next, we use
the Opponent Imitator πOI to sample a−1t ∼ πOI(·|o1t , Dt),
as the opponents’ action at timestep t is unknown. After
these preparations, we use the estimated confidence Q̆C to
determine whether to perform policy refinement.

Decide whether to refine or not. We define the trun-
cated cumulative confidence as Q̆Σ

C (·, ·, ·, ·) :=
∑H−1

h=0

Bern(Q̆
h

C(·, ·, ·, ·)), where Bern(·) denotes sampling 1 or
0 from the Bernoulli distribution. Next, we define the Re-
finement Condition (RC) as follows:

fRC(o
1
t , a
−1
t , Dt) :=

∑
â1∈A1

1{Q̆Σ
C (o

1
t , â

1, a−1t , Dt) > 0}.

(2)
If fRC(·, ·, ·) > 0 (RC is satisfied), IPR performs policy
refinement. Otherwise, IPR uses the original OOM policy

to generate self-agent action, i.e., a1t ∼ π̄(·|o1t , Dt).

Generate the refined policy. If the RC is satisfied, IPR
use the estimated value Q̆V to derive the refined policy π̆.
Specifically, π̆ generates self-agent action a1t by

π̆(o1t , a
−1
t , Dt) := arg max

â1∈A1
Q̆Σ

V(o
1
t , â

1, a−1t , Dt). (3)

To summarize, at timestep t during testing, given o1t , the
prepared Dt and a−1t , the self-agent policy induced by the
IPR can be expressed as:

πIPR(o
1
t , a
−1
t , Dt) :=

{
π̆(o1t , a

−1
t , Dt), RC is satisfied

π̄(·|o1t , Dt), otherwise
.

Intuitively, IPR performs policy refinement (greedy) only
when it has high confidence in the current value estimation,
while maintaining the original policy (conservative) in other
cases. This policy balancing mechanism is validated in our
experiments to effectively trade-off between greediness and
conservativeness, achieving better performance improve-
ments compared to always being greedy or conservative.

3.3. The Rationale behind Truncated Q

Truncated Q shortens the horizon for estimating the ex-
pected return from the full length to a fixed, truncated length.
This truncation’s impact on the effectiveness of Q function
requires further investigation. This subsection provides a
theoretical analysis to justify the rationality of Truncated Q.

When using Q to improve the original policy, what really
matters is whether the learned Q can correctly choose the
action with the highest true expected return. This is the
most fundamental criterion for evaluating the effectiveness
of the learned Q. Let the truncated horizon random vari-
able be denoted as h, and the neural network of Truncated
Q be denoted as Q̆h. Given any o1, a−1, and D, we aim
for the following Overall No Maximization Bias (NMB)
Probability y(h) to be as large as possible:

y(h) := P (argmax
a1

Q̆h = argmax
a1

EGT), (4)

Gh denotes the horizon-truncated RTG random variable,
while GT denotes the original RTG random variable. It is
straightforward to derive that y(h) satisfies that:

y(h) ≥ f(h)g(h),

where f(h) := P (argmax
a1

Q̆h = argmax
a1

EGh),

g(h) := P (argmax
a1

EGh = argmax
a1

EGT).

(5)

Here, f(h) denotes the Empirical Risk NMB Probability,
which is determined by the neural network’s fitting process.
g(h) denotes the Natural NMB Probability, which is de-
termined by the intrinsic properties of the environment’s
reward structure. Next, we present the following theorem:

5

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Theorem 3.1. For any given o1, a−1, D, we have f(h) ≥
f(h) := 1− 2η0, where η0 satisfies that

∆(h)(

√
S(ln 2|T|

S + 1)− ln η0/4|O1||A||D|
lmin

+
1

lmin

+

√
− ln η0/|O1||A||D|

2lmin
) =

U2

4
.

(6)

The asymptotic complexity of the term ∆(h) is O(h2).

To facilitate a clear understanding of the rationale behind
our theory, we provide the detailed explanations of all the
notations used in Thm. 3.1 in Sec. B.1. The complete proof
of Thm. 3.1 is in Sec. B.2. From Thm. 3.1, we conclude
that as the number of opponents increases (leading to larger
|A| and |D|, where D is the set of all possible D), f(h)
decreases. This implies that fitting EGh with Q̆h becomes
more challenging, which supports Challenge 1 mentioned
in Sec. 3.1 and aligns with the results shown in Fig. 1. Based
on Thm. 3.1, we propose the following proposition:

Proposition 3.2. For any given o1, a−1, D, there exists an
optimal truncated horizon h∗ ∈ [T] that maximizes f(h)g(h),
i.e., the lower bound of y(h). Specifically, there exist func-
tions g such that h∗ ̸= T .

The proof and intuitive analysis of Prop. 3.2 can be found
in Sec. B.3. According to Prop. 3.2, as h increases, f(h)
exhibits a decreasing trend, while g(h) generally tends to
increase. Therefore, selecting an appropriate truncated hori-
zon h for estimating the expected return enables us to trade
off between f(h) and g(h) to maximize y(h). This, in turn,
allows us to select the action with the highest EGT with
higher probability when improving the original policy. To
sum up, our theoretical analysis indicates that compared to
unthinkingly setting h to T (which is the case for Original
Q), learning a Truncated Q is more reasonable.

4. Experiments
In this section, Sec. 4.1 provides a detailed description of
the experimental setup. Sec. 4.2 poses a series of questions
and presents empirical results to answer them, aiming to
analyze the effectiveness of the TIPR framework.

4.1. Experimental Setup

Environments. We consider four sparse-reward competi-
tive multi-agent environmental benchmarks. See Sec. C for
detailed introductions of these environments.

• Markov Soccer (MS) is a two-player zero-sum game
with a discrete state space. In MS, the self-agent’s objec-
tive is to move the ball towards the opponent’s goal, with
the opponent having the same objective. The ball ran-

domly appears on the field at the beginning. MS requires
players to be flexible in both offense and defense.

• Level-Based Foraging (LBF) is a two-player
mixed-incentive game with a discrete state space. In LBF,
the self-agent aims to eat as many apples as possible. All
players and apples have a level. LBF represents a typical
social dilemma and necessitates cooperation with the op-
ponent to eat apples of a higher level than the self-agent’s.

• Physical Deception (PD) is a three-player (two op-
ponents) game with a continuous state space. Self-agent
aims to hit an unknown target landmark, where there is a
fake landmark and a target one. Opponents aim to prevent
self-agent from hitting the target. Self-agent has to detect
the opponents’ deception and identify the real target.

• Predator Prey (PP) is a four-player (three oppo-
nents) game with a continuous state space. Self-agent
is a prey aims to avoid being captured by three predators
(opponents). There are two obstacles. The challenge of
PP lies in the need to model all three opponents simulta-
neously and handle potential cooperation among them.

OOM Baselines. Considering that most existing OM ap-
proaches follow an online learning paradigm, we include
OOM algorithms derived from pretraining-focused OM ap-
proaches adopted by Jing et al. (2024a) as baselines.

• DRON-concat (He et al., 2016a): Encode hand-crafted
features of opponents with a linear network. It concate-
nates the self-agent’s and the opponent’s hidden states to
aid the downstream policy optimization.

• DRON-MoE (He et al., 2016a): Encode hand-crafted
features of opponents with a Mixture-of-Expert network
while also predicting opponents’ actions to model the
opponents (the most performant version in their paper).

• LIAM (Papoudakis et al., 2021a): Use the observations
and actions of the self-agent to reconstruct those of the
opponent through an auto-encoder, thereby embedding the
opponent policy into a latent space to model opponents.

• Prompt-DT (Xu et al., 2022): Based on Decision Trans-
former (Chen et al., 2021), sample expert task trajectories
as prompts to obtain task adaptability through offline pre-
training. We adopt the version in Jing et al. (2024a) that
demonstrates great potential to handle OOM problems.

• TAO (Jing et al., 2024a): 1) Pretrain a well-structured
opponent policy embedding with representation learning.
2) Learn to respond to the opponent policies based on the
learned policy embedding with a Transformer model. 3)
Adapt to unknown opponents with ICL during testing.

Opponent Policies & Offline Datasets. We employ
a diversity-driven Population-Based Training algorithm
MEP (Zhao et al., 2023) to train a policy population. Poli-
cies from this population are used to construct Πoff and Πon.
Opponent policies generated using MEP have been shown
to be performant and exhibit diversity (Jing et al., 2024b).

6

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

−1.0
−0.8
−0.6
−0.4
−0.2

0.0
MS - Optimal Ratio ρ: 0.2 MS - Optimal Ratio ρ: 0.4 MS - Optimal Ratio ρ: 0.6 MS - Optimal Ratio ρ: 0.8

0.0
0.1
0.2
0.3
0.4
0.5

LBF - Optimal Ratio ρ: 0.2 LBF - Optimal Ratio ρ: 0.4 LBF - Optimal Ratio ρ: 0.6 LBF - Optimal Ratio ρ: 0.8

0
25
50
75

100
125
150

Av
er

ag
e

Re
tu

rn

PD - Optimal Ratio ρ: 0.2 PD - Optimal Ratio ρ: 0.4 PD - Optimal Ratio ρ: 0.6 PD - Optimal Ratio ρ: 0.8

Seen Unseen Mixed
Test Mode

−300
−250
−200
−150
−100

−50
0 PP - Optimal Ratio ρ: 0.2

Seen Unseen Mixed
Test Mode

PP - Optimal Ratio ρ: 0.4

Seen Unseen Mixed
Test Mode

PP - Optimal Ratio ρ: 0.6

Seen Unseen Mixed
Test Mode

PP - Optimal Ratio ρ: 0.8

DRON_concat DRON_moe LIAM Prompt_DT TAO w/ TIPR (Performance Increment)

Figure 3. The average original results of various OOM baselines tested against unknown non-stationary opponents, along with the average
results after improvement using the TIPR framework. The different subplots use various environments and offline datasets with different
levels of suboptimality to pretrain the OOM algorithms. We use ‘black error bars’ to represent the Standard Deviation (SD) of the
original OOM policy’s performance and ‘grey error bars’ to represent the SD of the performance after applying TIPR.

We quantitatively measure and visualize the diversity of op-
ponent policies within the MEP population used to construct
the offline datasets T in Sec. D.

Offline datasets T with varying suboptimality, measured by
the Optimal Ratio ρ, are constructed. We define ρ as the
ratio of the performance of self-agent policy embedded in
T to the performance of the BR policy against the opponent
policy. Self-agent policies used to construct T of different ρ
are obtained by training with PPO (Schulman et al., 2017)
for varying numbers of steps while keeping opponent policy
fixed. The smaller ρ, the more suboptimal the dataset T is.

OOM Pretraining & Testing Protocols. We pretrain all
OOM baselines for 3000 steps. The final checkpoints of
the pretrained OOM baselines were used to test against Un-
known Non-stationary Opponents for 2400 episodes. ‘Un-
known’ indicates that the true policy of the opponents is
unknowable to the self-agent. ‘Non-stationary’ means that
the opponent switches its policy by sampling from Πon every
20 episodes. We set up three types of Πon:

1) Seen: This Πon is equivalent to Πoff, which contains 12
policies selected from the MEP population.

2) Unseen: This Πon contains 8 policies selected from the

MEP population that have never appeared in Πoff.
3) Mixed: This Πon is the union of the Seen and Unseen.

All figures and tables report the Mean and Standard Devia-
tion (SD) of the results averaged over 5 random seeds. See
all the hyperparameters in Sec. F.

4.2. Empirical Analysis

Question 1. Can TIPR effectively handle the suboptimal-
ity of OOM algorithms induced by the offline datasets?

Fig. 3 shows the original testing results of all OOM baselines
and their results after applying the TIPR framework. We use
a white shading pattern to highlight the performance incre-
ments achieved using the TIPR framework relative to the
original OOM policy. It can be observed that as ρ decreases,
the performance of all OOM baselines generally drops dra-
matically, reaching an unacceptable level (especially in PD
and PP). After applying the TIPR framework, all OOM
baselines achieved consistent performance improvements.
The improvements achieved by TIPR remain stable across
different ρ settings and are particularly pronounced in envi-
ronments such as PD. These results demonstrate that TIPR
can effectively handle the suboptimality of OOM algorithms

7

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

−0.6
−0.4
−0.2

0.0
MS - IPR

0.0
0.1
0.2
0.3
0.4
0.5
0.6 LBF - IPR

0
30
60
90

120
150

PD - IPR

−300
−250
−200
−150
−100

−50
0 PP - IPR

0.2 0.4 0.6 0.8
Optimal Ratio ρ

−0.6
−0.4
−0.2

0.0

Av
er

ag
e

Re
tu

rn

MS - OCL

0.2 0.4 0.6 0.8
Optimal Ratio ρ

0.0
0.1
0.2
0.3
0.4
0.5
0.6 LBF - OCL

0.2 0.4 0.6 0.8
Optimal Ratio ρ

0
25
50
75

100
125

PD - OCL

0.2 0.4 0.6 0.8
Optimal Ratio ρ

−300
−250
−200
−150
−100

−50
0 PP - OCL

OOM OOM-Original Q OOM-Truncated Q w/o D OOM-Truncated Q w/o Q̆h
C OOM-Truncated Q

Figure 4. The average testing results of improving OOM algorithm using different variants of Q through both IPR and OCL methods,
where the Πon is set to Mixed. Some bars have extreme values, making them difficult to observe clearly. E.g., in subplot ‘PD - IPR’, the
average returns of ‘OOM-Original Q’ are close to 0. In subplot ‘PP - IPR’, the average returns of ‘OOM-Original Q’ are less than −400.

Table 1. The quantitative metrics of estimated values when improv-
ing OOM algorithms during testing using Original Q and Truncated
Q through the IPR method, where the Πon is set to Mixed.

Env.
Evaluation

Term
Optimal Ratio ρ

0.2 0.4 0.6 0.8

MS
Q̄ MSE ↓ 63.9± 18.7 97.5± 52.4 35.9± 7.3 70.5± 14.1
Q̆V MSE ↓ 0.5± 0.1 0.8± 0.2 0.7± 0.2 0.7± 0.1

Q̆C Acc. (%) ↑ 99.3± 0.2 99.0± 0.2 99.2± 0.2 99.3± 0.1

LBF
Q̄ MSE ↓ 46.1± 28.1 23.6± 1.5 29.8± 9.7 42.0± 14.0
Q̆V MSE ↓ 5.8± 1.1 5.1± 1.2 5.1± 1.6 4.7± 1.6

Q̆C Acc. (%) ↑ 97.0± 0.1 97.4± 0.6 96.5± 1.0 97.1± 1.4

PD
Q̄ MSE ↓ 42.8± 9.3 77.8± 34.4 253.9± 54.7 372.1± 105.0
Q̆V MSE ↓ 2.9± 0.1 2.5± 0.4 2.6± 0.3 2.4± 0.3

Q̆C Acc. (%) ↑ 90.7± 10.7 86.1± 3.3 88.9± 6.3 87.6± 4.4

PP
Q̄ MSE ↓ 4.1e5± 3.5e5 3.2e5± 3.5e4 1.8e5± 2.1e5 3.1e5± 2.5e5
Q̆V MSE ↓ 3.3± 0.4 2.9± 0.2 2.5± 0.3 2.1± 0.3

Q̆C Acc. (%) ↑ 89.3± 0.2 90.2± 0.7 88.7± 0.2 90.9± 1.1

induced by the offline datasets.

Question 2. Compared to OCL, can our proposed IPR
more effectively improve OOM algorithms?

In Fig. 4, we present the testing results of improving the pol-
icy of OOM algorithms using different Q variants through
both IPR and OCL. We select the most representative OOM
algorithm, TAO, for observation and analysis.2 Let us focus
on the results of improving OOM algorithm using Trun-
cated Q through IPR and OCL, respectively. We observe
that, compared to OCL, the IPR method generally provides
a more effective improvement to the original OOM policy.
OCL can even degrade the performance of OOM algorithms
in environments such as PD. This can be attributed to the
severe distribution shift between the trajectory distribution
during testing and T. As a result, performing improvements
during testing is better suited to adapt to the new trajectory

2Due to space limits, subsequent ablations also focus on TAO.

distribution than making improvements offline.

Question 3. Compared to Original Q, can using Trun-
cated Q more effectively improve OOM algorithms?

Let us continue observing Fig. 4. Focusing on the results of
using Truncated Q and Original Q for improvements, we
find: Regardless of whether the improvement is achieved
through IPR or OCL, ‘OOM-Truncated Q’ generally out-
performs ‘OOM-Original Q’ in effectively improving the
policy. ‘OOM-Original Q’ can completely spoil the original
OOM policy in many cases, such as in PD and PP.

Table 1 presents the statistics for predictions made when im-
proving OOM algorithms using Original Q and Truncated Q
through IPR during testing. We use MSE to measure the Q’s
value estimations and Accuracy to evaluate the precision
of the Q’s confidence. Truncated Q consistently demon-
strates higher accuracy in its estimations across all games.
In contrast, Original Q generally exhibits very low predic-
tion accuracy and fails to produce meaningful predictions
in PP. These observations support that Truncated Q is more
effective than Original Q in improving OOM algorithms.

Question 4. Do all the key design choices of Truncated Q
contribute positively to improving OOM algorithms?

Fig. 4 also includes the testing results of improving OOM
algorithm using ablated variants of Truncated Q. Within,
‘Truncated Q w/o Q̆

h

C’ is a variant that removes the estima-
tion of confidence, thus always performing policy refine-
ment (greedy). ‘Truncated Q w/o D’ indicates the variant
where the in-context data input is removed. Focusing on
the results of improvements made using IPR, we can find
that both ‘Truncated Q w/o Q̆

h

C’ and ‘Truncated Q w/o D’
generally suffer varying degrees of performance degradation
compared to ‘Truncated Q’. These observations demonstrate

8

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

0.2 0.4 0.6 0.8
Optimal Ratio ρ

−0.6
−0.4
−0.2

0.0

Av
er

ag
e

Re
tu

rn MS

0.2 0.4 0.6 0.8
Optimal Ratio ρ

0.0
0.1
0.2
0.3
0.4
0.5
0.6 LBF

0.2 0.4 0.6 0.8
Optimal Ratio ρ

0
25
50
75

100
125
150
175 PD

0.2 0.4 0.6 0.8
Optimal Ratio ρ

−140
−120
−100

−80
−60
−40
−20

0 PP
OOM OOM-Truncated Q-H1 OOM-Truncated Q-H3 OOM-Truncated Q-H5 OOM-Truncated Q-H10

Figure 5. The average testing results of improving OOM algorithms using Truncated Q with different truncated horizons H , where the
Πon is set to Mixed. We use different colors to represent Truncated Q trained with different values of H .

0 1000 2000 3000
Training Steps

−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

Av
er

ag
e

Re
tu

rn MS

0 1000 2000 3000
Training Steps

0.1
0.2
0.3
0.4
0.5

LBF

0 1000 2000 3000
Training Steps

0
25
50
75

100
125
150
175 PD

0 1000 2000 3000
Training Steps

−350
−300
−250
−200
−150
−100

−50
PP

OOM OOM w/ TIPR Optimal Ratio: 0.2 Optimal Ratio: 0.4 Optimal Ratio: 0.6 Optimal Ratio: 0.8

Figure 6. The average testing results of improving OOM algorithms during their pretraining stage using the TIPR framework, where the
Πon is set to Mixed. We use different colors to represent the datasets with varying Optimal Ratios used for pretraining.

that weighing the decision to refine based on confidence es-
timation and characterizing opponent policies with D both
contribute positively to the effectiveness of Truncated Q.

Question 5. How does the choice of different truncated
horizons H for Truncated Q affect the improvement results?

In Fig. 5, we present the testing results of improving OOM
algorithm using Truncated Q learned with different trun-
cated horizons H under the TIPR framework. We set four
different values for H: 1, 3, 5, and 10. We observe that
TIPR’s improvement on OOM algorithm does not exhibit
a strict correlation trend with the size of H . In different
environments, an optimal value of H exists, which can be
considered a tunable parameter. However, when the value of
H becomes too large, it may lead to adverse improvements
on the original OOM policy (e.g., in LBF and PD). When
H = T , Truncated Q degenerates into Original Q.

Question 6. Can TIPR potentially improve the pretraining
efficiency of OOM algorithms?

Fig. 6 shows the results of using TIPR to improve OOM
algorithms during their pretraining process. Specifically, we
periodically take checkpoints during the OOM algorithm’s
pretraining stage for testing. We find that using TIPR during
pretraining consistently and effectively improves OOM algo-
rithms, regardless of the ρ value of the T used for pretraining.
Moreover, the improvements achieved by TIPR remain rel-
atively stable from the beginning to the end of pretraining.
This suggests that TIPR can enhance the pretraining effi-
ciency of OOM algorithms. When T is suboptimal, using

TIPR can reduce the number of training steps required for
OOM algorithms to achieve the same level of performance.

5. Discussion
Summary. This paper investigates a critical yet underex-
plored problem: How to address the degradation in algo-
rithm performance caused by the suboptimality of offline
datasets in OOM. We propose TIPR, a simple and general
algorithmic improvement framework that learns a horizon-
truncated in-context action value Truncated Q and performs
IPR during testing to address this problem. Our theory justi-
fies the rationality of Truncated Q by analyzing how the trun-
cated horizon affects the No Maximization Bias probability.
Experimental results demonstrate that TIPR effectively im-
proves various OOM algorithms pretrained on suboptimal
datasets, significantly enhancing their adaptability to un-
known non-stationary opponents.

Limitations and future work. In Poiani et al. (2023),
trajectories of different lengths are truncated to estimate the
action value Q. Unlike our work, their goal is to find the
optimal combination of truncation lengths under a given
sampling budget to estimate Q as accurately as possible.
Enlightened by their work, we think that, given a dataset,
how to find the optimal truncated horizon H for Truncated
Q is a problem worth further investigation. Furthermore, in
this work, the testing opponents choose a policy from a fixed
set of policies for switching. An interesting future research
direction would be exploring how to leverage offline datasets
to handle opponents continuously updating their policies.

9

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Acknowledgements
This work is supported in part by the Strategic Priority Re-
search Program of the Chinese Academy of Sciences (Grant
No. XDA0480200), the National Science and Technology
Major Project (2022ZD0116401), the Natural Science Foun-
dation of China (Grant Nos. 62222606 and 61902402), and
the Key Research and Development Program of Jiangsu
Province (Grant No. BE2023016).

Impact Statement
This work advances the field of OOM by addressing the
critical limitation of suboptimal offline datasets, which are
prevalent in real-world multi-agent scenarios. The proposed
TIPR framework enhances the robustness and adaptability
of autonomous agents without requiring additional online
interactions, thereby reducing resource consumption and
potential risks in deployment. Ethically, the framework en-
courages safer AI deployment by minimizing reliance on
idealized data and promoting reliability under imperfect
conditions. However, care must be taken to prevent misuse
in adversarial or deceptive applications, particularly in com-
petitive or high-stakes domains such as finance or security.
Future societal implications include improved collabora-
tion and competition among AI agents in diverse settings,
fostering broader trust and utility in autonomous systems.

References
Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Transform-

ers learn to implement preconditioned gradient descent
for in-context learning. In Advances in Neural Informa-
tion Processing Systems, pp. 35151–35174, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou,
D. What learning algorithm is in-context learning? inves-
tigations with linear models. In International Conference
on Learning Representations, 2023.

Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mor-
datch, I., and Abbeel, P. Continuous adaptation via meta-
learning in nonstationary and competitive environments.
In International Conference on Learning Representations,
2018.

Albrecht, S. V. and Stone, P. Autonomous agents modelling
other agents: A comprehensive survey and open problems.
Artificial Intelligence, 258:66–95, 2018.

Axelrod, R. Effective choice in the prisoner’s dilemma.
Journal of conflict resolution, 24(1):3–25, 1980.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
Stat, 1050:21, 2016.

Bai, C., Wang, L., Yang, Z., Deng, Z.-H., Garg, A., Liu, P.,
and Wang, Z. Pessimistic bootstrapping for uncertainty-
driven offline reinforcement learning. In International
Conference on Learning Representations, 2021.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning
with in-context algorithm selection. arXiv preprint
arXiv:2306.04637, 2023.

Bard, N., Johanson, M., Burch, N., and Bowling, M. Online
implicit agent modelling. In International Conference
on Autonomous Agents and MultiAgent Systems, pp. 255–
262, 2013.

Bernardo, J. M. and Smith, A. F. Bayesian theory, volume
405. John Wiley & Sons, 2009.

Brandfonbrener, D., Whitney, W., Ranganath, R., and Bruna,
J. Offline rl without off-policy evaluation. Advances in
neural information processing systems, 34:4933–4946,
2021.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R.,
and Bruna, J. When does return-conditioned supervised
learning work for offline reinforcement learning? In Ad-
vances in Neural Information Processing Systems, pp.
1542–1553, 2022.

Bridle, J. Training stochastic model recognition algorithms
as networks can lead to maximum mutual information
estimation of parameters. In Advances in Neural Infor-
mation Processing Systems, pp. 211–217, 1989.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. In Advances in Neural Information Processing
Systems, pp. 15084–15097, 2021.

Christianos, F., Schäfer, L., and Albrecht, S. V. Shared expe-
rience actor-critic for multi-agent reinforcement learning.
In Advances in Neural Information Processing Systems,
2020.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast
and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289, 2015.

Cui, Q. and Du, S. S. Provably efficient offline multi-agent
reinforcement learning via strategy-wise bonus. In Ad-
vances in Neural Information Processing Systems, pp.
11739–11751, 2022.

Dai, Z., Chen, Y., Low, B. K. H., Jaillet, P., and Ho, T.-H. R2-
b2: Recursive reasoning-based bayesian optimization for
no-regret learning in games. In International Conference
on Machine Learning, pp. 2291–2301, 2020.

10

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

DiGiovanni, A. and Tewari, A. Thompson sampling for
markov games with piecewise stationary opponent poli-
cies. In Uncertainty in Artificial Intelligence, pp. 738–
748, 2021.

Dorfman, R., Shenfeld, I., and Tamar, A. Offline meta
reinforcement learning–identifiability challenges and ef-
fective data collection strategies. In Advances in Neural
Information Processing Systems, pp. 4607–4618, 2021.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. RL2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135,
2017.

Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S.,
Abbeel, P., and Mordatch, I. Learning with opponent-
learning awareness. In International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 122–130,
2018a.

Foerster, J., Farquhar, G., Al-Shedivat, M., Rocktäschel, T.,
Xing, E., and Whiteson, S. DiCE: The infinitely differen-
tiable Monte Carlo estimator. In International Conference
on Machine Learning, pp. 1524–1533, 2018b.

Formanek, C., Jeewa, A., Shock, J., and Pretorius, A. Off-
the-grid marl: a framework for dataset generation with
baselines for cooperative offline multi-agent reinforce-
ment learning. arXiv preprint arXiv:2302.00521, 2023.

Fu, H., Tian, Y., Yu, H., Liu, W., Wu, S., Xiong, J., Wen,
Y., Li, K., Xing, J., Fu, Q., et al. Greedy when sure
and conservative when uncertain about the opponents.
In International Conference on Machine Learning, pp.
6829–6848, 2022.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning, pp. 2052–2062,
2019.

Fung, K., Zhang, Q., Lu, C., Willi, T., and Foerster, J. N.
Analyzing the sample complexity of model-free oppo-
nent shaping. In ICML Workshop on New Frontiers in
Learning, Control, and Dynamical Systems, 2023.

Furuta, H., Matsuo, Y., and Gu, S. S. Generalized decision
transformer for offline hindsight information matching.

In International Conference on Learning Representations,
2022.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of simple
function classes. In Advances in Neural Information
Processing Systems, volume 35, pp. 30583–30598, 2022.

Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. Emaq:
Expected-max q-learning operator for simple yet effective
offline and online rl. In International Conference on
Machine Learning, pp. 3682–3691. PMLR, 2021.

Grigsby, J., Fan, L., and Zhu, Y. Amago: Scalable in-context
reinforcement learning for adaptive agents. In The Twelfth
International Conference on Learning Representations,
2023.

Grover, A., Al-Shedivat, M., Gupta, J., Burda, Y., and Ed-
wards, H. Learning policy representations in multiagent
systems. In International Conference on Machine Learn-
ing, pp. 1802–1811, 2018.

He, H., Boyd-Graber, J., Kwok, K., and Daumé III, H. Oppo-
nent modeling in deep reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 1804–1813,
2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778,
2016b.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hernandez-Leal, P., Taylor, M. E., Rosman, B. S., Sucar,
L. E., and Munoz de Cote, E. Identifying and track-
ing switching, non-stationary opponents: A bayesian ap-
proach. In AAAI Conference on Artificial Intelligence
Workshop on Multiagent Interaction without Prior Coor-
dination, pp. 560–566, 2016.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. The collected works of Wassily Hoeffd-
ing, pp. 409–426, 1994.

Hong, Z.-W., Su, S.-Y., Shann, T.-Y., Chang, Y.-H., and Lee,
C.-Y. A deep policy inference q-network for multi-agent
systems. In International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1388–1396, 2018.

Hu, S., Fan, Z., Huang, C., Shen, L., Zhang, Y., Wang, Y.,
and Tao, D. Q-value regularized transformer for offline
reinforcement learning. In Forty-first International Con-
ference on Machine Learning, 2024.

11

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and
Makedon, F. A survey on contrastive self-supervised
learning. Technologies, 9(1):2, 2020.

James, G., Witten, D., Hastie, T., Tibshirani, R., et al. An
introduction to statistical learning, volume 112. Springer,
2013.

Jiang, J. and Lu, Z. Offline decentralized multi-agent re-
inforcement learning. arXiv preprint arXiv:2108.01832,
2021.

Jiang, J. and Lu, Z. Online tuning for offline decentralized
multi-agent reinforcement learning. In AAAI Conference
on Artificial Intelligence, pp. 8050–8059, 2023.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline rl? In International Conference on
Machine Learning, pp. 5084–5096. PMLR, 2021.

Jing, Y., Li, K., Liu, B., Zang, Y., Fu, H., FU, Q., Xing,
J., and Cheng, J. Towards offline opponent modeling
with in-context learning. In The Twelfth International
Conference on Learning Representations, 2024a.

Jing, Y., Liu, B., Li, K., Zang, Y., Fu, H., FU, Q., Xing, J.,
and Cheng, J. Opponent modeling with in-context search.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024b.

Jing, Y., Li, K., Liu, B., Fu, H., Fu, Q., Xing, J., and Cheng, J.
An open-ended learning framework for opponent model-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 23222–23230, 2025.

Kim, D. K., Liu, M., Riemer, M. D., Sun, C., Abdulhai, M.,
Habibi, G., Lopez-Cot, S., Tesauro, G., and How, J. A
policy gradient algorithm for learning to learn in multia-
gent reinforcement learning. In International Conference
on Machine Learning, pp. 5541–5550, 2021.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. Stabi-
lizing off-policy q-learning via bootstrapping error reduc-
tion. Advances in neural information processing systems,
32, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative q-learning for offline reinforcement learning. In
Advances in Neural Information Processing Systems, pp.
1179–1191, 2020.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V.,
Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F.,
Tuyls, K., Omidshafiei, S., et al. OpenSpiel: A frame-
work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S. S., Filos, A.,
Brooks, E., Gazeau, M., Sahni, H., Singh, S., and Mnih,
V. In-context reinforcement learning with algorithm dis-
tillation. In International Conference on Learning Repre-
sentations, 2023.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining can
learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Free-
man, D., Guadarrama, S., Fischer, I., Xu, W., Jang, E.,
Michalewski, H., et al. Multi-game decision transformers.
In Advances in Neural Information Processing Systems,
pp. 27921–27936, 2022.

Letcher, A., Foerster, J., Balduzzi, D., Rocktäschel, T., and
Whiteson, S. Stable opponent shaping in differentiable
games. In International Conference on Learning Repre-
sentations, 2019.

Li, L., Yang, R., and Luo, D. Focal: Efficient fully-offline
meta-reinforcement learning via distance metric learning
and behavior regularization. In International Conference
on Learning Representations, 2020.

Li, W., Luo, H., Lin, Z., Zhang, C., Lu, Z., and Ye, D. A
survey on transformers in reinforcement learning. Trans-
actions on Machine Learning Research, 2023a.

Li, Y., Emrullah Ildiz, M., Papailiopoulos, D., and Oymak, S.
Transformers as algorithms: Generalization and implicit
model selection in in-context learning. In International
Conference on Machine Learning, pp. 19565–19594,
2023b.

Lin, L., Bai, Y., and Mei, S. Transformers as decision
makers: Provable in-context reinforcement learning via
supervised pretraining. In The Twelfth International Con-
ference on Learning Representations, 2024.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Machine learning pro-
ceedings 1994, pp. 157–163. Elsevier, 1994.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2018.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mor-
datch, I. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in Neural Infor-
mation Processing Systems, pp. 1–12, 2017.

Lu, C., Willi, T., De Witt, C. A. S., and Foerster, J. Model-
free opponent shaping. In International Conference on
Machine Learning, pp. 14398–14411, 2022.

12

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Lv, Y., Yu, Y., Zheng, Y., Hao, J., Wen, Y., and Yu, Y. Lim-
ited information opponent modeling. In International
Conference on Artificial Neural Networks, pp. 511–522.
Springer, 2023.

Ma, L., Wang, Y., Zhong, F., Zhu, S.-C., and Wang, Y. Fast
peer adaptation with context-aware exploration. In Inter-
national Conference on Machine Learning, pp. 33963–
33982. PMLR, 2024.

Ma, X., Yang, Y., Hu, H., Yang, J., Zhang, C., Zhao, Q.,
Liang, B., and Liu, Q. Offline reinforcement learning
with value-based episodic memory. In International Con-
ference on Learning Representations, 2021.

Melo, L. C. Transformers are meta-reinforcement learners.
In International Conference on Machine Learning, pp.
15340–15359, 2022.

Meng, L., Wen, M., Le, C., Li, X., Xing, D., Zhang, W.,
Wen, Y., Zhang, H., Wang, J., Yang, Y., et al. Offline
pre-trained multi-agent decision transformer. Machine
Intelligence Research, 20(2):233–248, 2023.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. A
simple neural attentive meta-learner. In International
Conference on Learning Representations, 2018.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and
Finn, C. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, pp. 7780–7791, 2021.

Nair, A., Gupta, A., Dalal, M., and Levine, S. Awac: Acceler-
ating online reinforcement learning with offline datasets.
arXiv preprint arXiv:2006.09359, 2020.

Nashed, S. and Zilberstein, S. A survey of opponent model-
ing in adversarial domains. Journal of Artificial Intelli-
gence Research, 73:277–327, 2022.

Pan, L., Huang, L., Ma, T., and Xu, H. Plan better amid
conservatism: Offline multi-agent reinforcement learning
with actor rectification. In International Conference on
Machine Learning, pp. 17221–17237, 2022.

Papoudakis, G. and Albrecht, S. V. Variational autoencoders
for opponent modeling in multi-agent systems. arXiv
preprint arXiv:2001.10829, 2020.

Papoudakis, G., Christianos, F., Albrecht, S., and et al.
Agent modelling under partial observability for deep re-
inforcement learning. In Advances in Neural Information
Processing Systems, pp. 19210–19222, 2021a.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht,
S. V. Benchmarking multi-agent deep reinforcement
learning algorithms in cooperative tasks. In Neural In-
formation Processing Systems Track on Datasets and
Benchmarks (NeurIPS), pp. 10707–10717, 2021b.

Paster, K., McIlraith, S., and Ba, J. You can’t count on luck:
Why decision transformers and rvs fail in stochastic envi-
ronments. In Advances in Neural Information Processing
Systems, pp. 38966–38979, 2022.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Poiani, R., Metelli, A. M., and Restelli, M. Truncating
trajectories in monte carlo reinforcement learning. In In-
ternational Conference on Machine Learning, pp. 27994–
28042. PMLR, 2023.

Pong, V. H., Nair, A. V., Smith, L. M., Huang, C., and
Levine, S. Offline meta-reinforcement learning with on-
line self-supervision. In International Conference on
Machine Learning, pp. 17811–17829, 2022.

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami,
S. A., and Botvinick, M. Machine theory of mind. In
International Conference on Machine Learning, pp. 4218–
4227, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raileanu, R., Denton, E., Szlam, A., and Fergus, R. Mod-
eling others using oneself in multi-agent reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 4257–4266, 2018.

Raventos, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. In Advances in Neural
Information Processing Systems, pp. 1–13, 2023.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-maron, G., Giménez, M., Sulsky, Y.,
Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi,
A., Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals,
O., Bordbar, M., and de Freitas, N. A generalist agent.
Transactions on Machine Learning Research, 2022.

Rosman, B., Hawasly, M., and Ramamoorthy, S. Bayesian
policy reuse. Machine Learning, 104:99–127, 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shao, J., Qu, Y., Chen, C., Zhang, H., and Ji, X. Coun-
terfactual conservative q learning for offline multi-agent
reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

13

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Tian, Q., Kuang, K., Liu, F., and Wang, B. Learning from
good trajectories in offline multi-agent reinforcement
learning. In AAAI Conference on Artificial Intelligence,
pp. 11672–11680, 2023.

Tseng, W.-C., Wang, T.-H. J., Lin, Y.-C., and Isola, P. Of-
fline multi-agent reinforcement learning with knowledge
distillation. In Advances in Neural Information Process-
ing Systems, pp. 226–237, 2022.

Vapnik, V. Statistical learning theory. John Wiley & Sons
google schola, 2:831–842, 1998.

Villaflor, A. R., Huang, Z., Pande, S., Dolan, J. M., and
Schneider, J. Addressing optimism bias in sequence mod-
eling for reinforcement learning. In International Confer-
ence on Machine Learning, pp. 22270–22283, 2022.

Von Der Osten, F. B., Kirley, M., and Miller, T. The minds
of many: Opponent modeling in a stochastic game. In
International Joint Conference on Artificial Intelligence,
pp. 3845–3851, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Wang, Y., Yang, C., Wen, Y., Liu, Y., and Qiao, Y. Critic-
guided decision transformer for offline reinforcement
learning. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 38, pp. 15706–15714, 2024.

Wen, Y., Yang, Y., Luo, R., Wang, J., and Pan, W. Proba-
bilistic recursive reasoning for multi-agent reinforcement
learning. In International Conference on Learning Rep-
resentations, 2019.

Wen, Y., Yang, Y., and Wang, J. Modelling bounded ratio-
nality in multi-agent interactions by generalized recursive
reasoning. In International Joint Conferences on Artifi-
cial Intelligence, pp. 414–421, 2021.

Willi, T., Letcher, A. H., Treutlein, J., and Foerster, J. Cola:
consistent learning with opponent-learning awareness.
In International Conference on Machine Learning, pp.
23804–23831, 2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp.
38–45, 2020.

Wu, C., Tang, P., Yang, J., Hu, Y., Lv, T., Fan, C., and
Zhang, C. Conservative offline policy adaptation in multi-
agent games. Advances in Neural Information Processing
Systems, 36, 2024a.

Wu, J., Wu, H., Qiu, Z., Wang, J., and Long, M. Supported
policy optimization for offline reinforcement learning.
Advances in Neural Information Processing Systems, 35:
31278–31291, 2022a.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Wu, Y., Zhai, S., Srivastava, N., Susskind, J. M., Zhang, J.,
Salakhutdinov, R., and Goh, H. Uncertainty weighted
actor-critic for offline reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 11319–
11328. PMLR, 2021.

Wu, Y., McMahan, J., Zhu, X., and Xie, Q. Reward poison-
ing attacks on offline multi-agent reinforcement learning.
In AAAI Conference on Artificial Intelligence, pp. 10426–
10434, 2023.

Wu, Y.-H., Wang, X., and Hamaya, M. Elastic decision
transformer. Advances in Neural Information Processing
Systems, 36, 2024b.

Wu, Z., Li, K., Xu, H., Zang, Y., An, B., and Xing, J. L2e:
Learning to exploit your opponent. In International Joint
Conference on Neural Networks, pp. 1–8, 2022b.

Xiao, C., Wu, Y., Mei, J., Dai, B., Lattimore, T., Li, L.,
Szepesvari, C., and Schuurmans, D. On the optimal-
ity of batch policy optimization algorithms. In Inter-
national Conference on Machine Learning, pp. 11362–
11371. PMLR, 2021.

Xiao, C., Wang, H., Pan, Y., White, A., and White, M. The
in-sample softmax for offline reinforcement learning. In
The Eleventh International Conference on Learning Rep-
resentations, 2023.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. In International Conference on Learning Rep-
resentations, 2021.

14

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In International Conference
on Machine Learning, pp. 24631–24645, 2022.

Yamagata, T., Khalil, A., and Santos-Rodriguez, R. Q-
learning decision transformer: Leveraging dynamic pro-
gramming for conditional sequence modelling in offline
rl. In International Conference on Machine Learning, pp.
38989–39007. PMLR, 2023.

Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., and Schu-
urmans, D. Foundation models for decision making:
Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023a.

Yang, S., Schuurmans, D., Abbeel, P., and Nachum, O. Di-
chotomy of control: Separating what you can control
from what you cannot. In International Conference on
Learning Representations, 2023b.

Yang, T., Hao, J., Meng, Z., Zhang, C., Zheng, Y., and
Zheng, Z. Towards efficient detection and optimal re-
sponse against sophisticated opponents. In International
Joint Conference on Artificial Intelligence, pp. 623–629,
2019.

Yang, Y. and Wang, J. An overview of multi-agent reinforce-
ment learning from game theoretical perspective. arXiv
preprint arXiv:2011.00583, 2020.

Yang, Y., Ma, X., Li, C., Zheng, Z., Zhang, Q., Huang, G.,
Yang, J., and Zhao, Q. Believe what you see: Implicit
constraint approach for offline multi-agent reinforcement
learning. Advances in Neural Information Processing
Systems, 34:10299–10312, 2021.

Yu, X., Jiang, J., Zhang, W., Jiang, H., and Lu, Z. Model-
based opponent modeling. In Advances in Neural Infor-
mation Processing Systems, pp. 28208–28221, 2022.

Yuan, L., Fu, Z., Shen, J., Xu, L., Shen, J., and Zhu, S.-C.
Emergence of pragmatics from referential game between
theory of mind agents. arXiv preprint arXiv:2001.07752,
2020.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

Zhao, R., Song, J., Yuan, Y., Hu, H., Gao, Y., Wu, Y., Sun,
Z., and Yang, W. Maximum entropy population-based
training for zero-shot human-ai coordination. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 6145–6153, 2023.

Zhao, S., Lu, C., Grosse, R. B., and Foerster, J. Proximal
learning with opponent-learning awareness. In Advances

in Neural Information Processing Systems, pp. 26324–
26336, 2022.

Zheng, Y., Meng, Z., Hao, J., Zhang, Z., Yang, T., and Fan,
C. A deep bayesian policy reuse approach against non-
stationary agents. In Advances in Neural Information
Processing Systems, pp. 962–972, 2018.

Zhu, Z., Liu, M., Mao, L., Kang, B., Xu, M., Yu, Y., Ermon,
S., and Zhang, W. Madiff: Offline multi-agent learning
with diffusion models. arXiv preprint arXiv:2305.17330,
2023.

Zhuang, Z., Peng, D., Liu, J., Zhang, Z., and Wang, D.
Reinformer: Max-return sequence modeling for offline
rl. In Forty-first International Conference on Machine
Learning, 2024.

Zintgraf, L., Devlin, S., Ciosek, K., Whiteson, S., and Hof-
mann, K. Deep interactive bayesian reinforcement learn-
ing via meta-learning. In International Conference on
Autonomous Agents and MultiAgent Systems, pp. 1712–
1714, 2021.

15

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

A. Related Work
Opponent Modeling (OM). Most prior OM work relies on a fully online learning paradigm, directly interacting with the
environment and the opponent’s policy rather than learning an opponent model from an offline dataset. The existing learning
paradigms generally boil down to two stages: (1) Pretraining: pretrain an opponent model with designed OM methodology
on a training set of opponent policies; (2) Testing: deploying the pretrained opponent model in a certain way on a testing set
of opponent policies to benchmark adaptability to unknown opponents.

Different OM approaches typically have their own distinct focuses:

1. Pretraining-Focused Approach (PFA) focuses on acquiring knowledge of responding to different opponents during
pretraining and generalizing it to testing.

2. Testing-Focused Approach (TFA) centers on updating the pretrained opponent model during testing to reason and
respond to unknown opponents effectively.

Methodologically, OM approaches based on Representation Learning (Jaiswal et al., 2020) and Non-meta-gradient Meta-
learning (Duan et al., 2016) typically fall under the category of PFA:

• OM approaches based on Representation Learning aim to learn high-quality representations of opponent policies
during pretraining to assist in policy optimization (He et al., 2016a; Hong et al., 2018; Grover et al., 2018; Papoudakis
& Albrecht, 2020; Zintgraf et al., 2021; Papoudakis et al., 2021a; Papoudakis & Albrecht, 2020).

• OM approaches based on Non-meta-gradient Meta-learning attempt to use recurrent architectures to learn the internal
structure of each opponent’s policy and the differences between them during pretraining (Wang et al., 2016; Zintgraf
et al., 2021).

OM approaches based on Bayesian Learning (Bernardo & Smith, 2009), Meta-gradient-based Meta-learning (Finn et al.,
2017), Shaping Opponents’ Learning (Foerster et al., 2018a), Recursive Reasoning (Wen et al., 2019), and Theory of
Mind (Rabinowitz et al., 2018) methodologies typically fall under the category of TFA:

• OM approaches based on Bayesian Learning detect or infer the opponent policies in real-time using Bayesian methods
and subsequently generate responses based on the inferred information (Bard et al., 2013; Rosman et al., 2016;
Hernandez-Leal et al., 2016; Zheng et al., 2018; DiGiovanni & Tewari, 2021; Fu et al., 2022; Lv et al., 2023).

• OM approaches based on Meta-gradient-based Meta-learning emphasizes leveraging the well-initialized solutions
obtained during pretraining in the parameter space to fine-tune and quickly adapt to the test opponents (Al-Shedivat
et al., 2018; Kim et al., 2021; Wu et al., 2022b).

• OM approaches based on Shaping Opponents’ Learning model opponents’ updating gradients to estimate the mutual
influence between the future opponent policy and the current self-agent’s policy (Foerster et al., 2018a;b; Letcher et al.,
2019; Kim et al., 2021; Lu et al., 2022; Willi et al., 2022; Zhao et al., 2022; Fung et al., 2023).

• OM approaches based on Recursive Reasoning simulate nested layers of beliefs, predict the opponent’s behavior, and
generate the best response based on the expected reasoning process of the opponent towards the self-agent (Wen et al.,
2019; 2021; Dai et al., 2020; Yuan et al., 2020; Yu et al., 2022).

• OM approaches based on Theory of Mind concentrate on reasoning about the opponent’s mental states and intentions to
predict and adapt to their behavior (Von Der Osten et al., 2017; Rabinowitz et al., 2018; Raileanu et al., 2018; Yang
et al., 2019).

Offline Opponent Modeling (OOM) is a recently proposed learning paradigm that aims to use offline datasets, without
interacting with the environment or opponent agents, to learn an adaptive self-agent policy that dynamically adapts to
opponents based on opponent information. Jing et al. (2024a) was the first to propose OOM. It first uses representation
learning methods to learn embeddings of opponent policies and then employs In-Context Learning to train an adaptive
self-agent policy. Jing et al. (2024a) assumes that the offline dataset is optimal, which is a challenging assumption to satisfy

16

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

in real-world scenarios. We found that when this assumption is not met, the performance of OOM algorithms deteriorates
to an unacceptable level. Our work aims to propose a general algorithmic improvement framework, TIPR, to relax this
assumption and enable OOM algorithms to learn workable adaptive self-agent policies even from highly suboptimal offline
datasets.

Previous online OM approaches belonging to PFA can be easily adapted to the OOM learning paradigm, as their methodolo-
gies generally do not rely on interactions with the environment or other agents. We adopt the same OOM baselines as Jing
et al. (2024a), which are reasonably modified from some representative PFAs. Interestingly, Wu et al. (2024a) recently
introduced Constrained Self-Play for offline policy adaptation, which shares a similar objective with OOM. However, the
setup of Wu et al. (2024a) is much simpler than OOM: it assumes that interaction with the environment is still possible and
that the opponent adopts a fixed, known policy during testing rather than unknown non-stationary policies.

In-Context Learning (ICL). Algorithmically, In-Context Learning (ICL) can be considered as taking a more agnostic
approach by learning the learning algorithm itself (Duan et al., 2016; Wang et al., 2016; Mishra et al., 2018; Laskin
et al., 2023). Recent work investigates why and how supervised pretrained Transformers perform ICL (Garg et al., 2022;
Li et al., 2023b; Zhang et al., 2023; Ahn et al., 2023; Raventos et al., 2023). Xie et al. (2021) introduces a Bayesian
framework explaining how ICL works. Some work proves Transformers can implement ICL algorithms via in-context
gradient descent (Von Oswald et al., 2023; Akyürek et al., 2023; Bai et al., 2023).

In terms of decision-making, ICL can endow the pretrained model Reinforcement Learning (RL) abilities in an in-context
way (Wang et al., 2016; Duan et al., 2016; Grigsby et al., 2023; Dorfman et al., 2021; Mitchell et al., 2021; Li et al., 2020;
Pong et al., 2022; Laskin et al., 2023; Lee et al., 2023). Wang et al. (2016); Duan et al. (2016); Grigsby et al. (2023) focus on
the online meta-RL setting with the training objective to be the total reward. Furthermore, Dorfman et al. (2021); Mitchell
et al. (2021); Li et al. (2020); Pong et al. (2022) focus on offline meta-RL, and their training objectives explicitly handle
the distribution shift. Laskin et al. (2023) applies autoregressive supervised learning to distill (sub-sampled) traces of a
single-task RL algorithm into a task-agnostic model. Lee et al. (2023) proposes supervised pretraining to empirically and
theoretically demonstrate In-Context RL abilities. Lin et al. (2024) further introduce a theoretical analysis framework to
explain the principles and working conditions of In-Context RL.

Existing ICL methods in decision-making primarily focus on task adaptation in single-agent settings. Our work is among
the few exploratory studies focusing on adapting to non-stationary opponents in multi-agent scenarios. Jing et al. (2024a)
was the first to propose the OOM problem setting. It introduced using ICL methods to learn an adaptive self-agent policy,
which conditions on opponent information to imitate self-agent policies embedded in the offline dataset. However, the
suboptimality of real-world offline datasets significantly reduces the effectiveness of OOM algorithms for the opponent
adaptation. To address this issue, we propose an improvement framework based on horizon-truncated in-context Q to handle
the suboptimality of OOM algorithms induced by offline datasets. Inspired by the aforementioned ICL works, we train
the action-value function Q in an in-context manner. We found that Q learned this way, compared to an unconditional Q,
has higher confidence and can better handle the impact of opponent non-stationarity. Such an ICL-based design choice
effectively enhances Q’s ability to improve the adaptation performance of various OOM algorithms.

Offline RL. The mainstream methodology in Offline RL is Offline Conservative Learning (OCL), which performs policy
iteration with the mixed policies embedded in the offline dataset as reference policies. OCL may incorporate soft or hard
conservative constraints to restrict updates within the trajectory distribution of the offline dataset. In offline single-agent RL,
pessimism-driven OCL has been widely demonstrated to effectively reduce extrapolation error (Kumar et al., 2020; Fujimoto
et al., 2019; Jin et al., 2021; Xiao et al., 2021; Kostrikov et al., 2021). Some have implemented OCL through statistical
constraints (Wu et al., 2019; Peng et al., 2019; Brandfonbrener et al., 2021; Fujimoto & Gu, 2021; Nair et al., 2020), such as
KL divergence. Other works have employed in-sample methods for conservative policy optimization (Fujimoto et al., 2019;
Kostrikov et al., 2021; Ma et al., 2021; Wu et al., 2022a; Xiao et al., 2023). Additionally, some have used ensemble methods
to encode the concept of conservatism (Kumar et al., 2019; Ghasemipour et al., 2021; Wu et al., 2021; Bai et al., 2021).

In this work, we propose TIPR, which improves OOM algorithms by performing IPR through a horizon-truncated in-context
Q to address the suboptimality induced by offline datasets. Methodologically, TIPR is in sharp contrast to OCL, as TIPR
performs policy refinement instantly during testing rather than by optimizing an objective function during offline pretraining
like OCL. Additionally, compared to conservatism, TIPR places greater emphasis on policy balancing—performing policy
refinement when confidence in value estimation is high while retaining the original policy when confidence is low. Notably,
we found that using our proposed Truncated Q for OCL can also effectively improve the original OOM policy to some extent.

17

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

In contrast, using Original Q for OCL not only fails to enhance the original OOM policy but often completely undermines it.

Offline Multi-Agent RL (MARL). Offline MARL has emerged as an important research topic on multi-agent system
in recent years (Cui & Du, 2022; Tian et al., 2023; Wu et al., 2023; Jiang & Lu, 2023; Formanek et al., 2023; Yang et al.,
2021; Pan et al., 2022; Shao et al., 2024; Tseng et al., 2022; Meng et al., 2023; Zhu et al., 2023). This research focuses on
developing effective policies solely from pre-existing datasets, without any interaction with multi-agent environments. The
offline approach eliminates the need for costly or potentially hazardous online exploration, thereby enhancing the practicality
of MARL for real-world applications.

An vital challenge in offline MARL is to handle the distribution shift between the offline dataset and the true transition
dynamics at test time (Jiang & Lu, 2021). This challenge is also referred to as extrapolation error, where offline models
may encounter out-of-distribution states or actions when deployed online. When opponents adopt policies not represented
in the offline dataset, the performance of policies trained exclusively offline can deteriorate substantially. Recent studies
have introduced several techniques to mitigate this challenge. Consistent with the ideas of many offline single-agent RL
methods (Fujimoto et al., 2019; Kumar et al., 2020), some address extrapolation error through the concept of OCL (Yang
et al., 2021; Pan et al., 2022; Shao et al., 2024). For example, Pan et al. (2022) introduced Offline MARL with Actor
Rectification that uses zero-order optimization to update the actor based on the offline critic conservatively. There is also
increasingly work adapting Transformer architecture for offline MARL. For instance, Tseng et al. (2022) proposed distilling
knowledge from a teacher Transformer model trained with global information into decentralized student to enable effective
decentralized execution. Multi-Agent Decision Transformer (Meng et al., 2023) treats MARL as a sequence modeling
problem and predicts actions in an autoregressive manner. Recently, there have also been explorations of developing offline
MARL frameworks based on diffusion models for centralized training with decentralized execution (Zhu et al., 2023).

Offline MARL and OOM share a common goal of deriving effective policies from offline datasets in multi-agent environments
and applying them in testing scenarios to enhance efficiency and narrow the gap with real-world applications. Nevertheless,
most offline MARL approaches focus on purely cooperative settings, while in OOM, we mainly focus on competitive games
where the environment features opponents. Moreover, OOM, either explicitly or implicitly, must incorporate the modeling
of other agents in the environment to achieve adaptability, whereas offline MARL does not place significant emphasis on
this requirement. This is because OOM typically assumes a more challenging setting where the policies of other agents in
the testing environment are unknown and non-stationary.

Transformers for Decision-Making. Growing interest has emerged in utilizing Transformers for decision-making by
reframing the problem as sequence modeling. (Yang et al., 2023a; Li et al., 2023a). Chen et al. (2021) introduced Decision
Transformer (DT), a model that predicts action sequences conditioned on returns using a causal Transformer trained on
offline data. DT has opened up a series of research from a new perspective, that decision-making problems can be addressed
through Return-Conditioned Supervised Learning (RCSL). Further research has investigated advancements such as enhanced
conditioning (Furuta et al., 2022; Paster et al., 2022) and architectural improvements (Villaflor et al., 2022). Another
promising avenue leverages the generality and scalability of Transformers for multi-task learning (Lee et al., 2022; Reed
et al., 2022). Additionally, Transformers used in decision-making have shown potential for meta-learning (Melo, 2022).

Interestingly, recent works have introduced methods from offline single-agent RL into RCSL to address the issue of
suboptimality in offline datasets (Yamagata et al., 2023; Wu et al., 2024b; Wang et al., 2024; Hu et al., 2024; Zhuang et al.,
2024). The core ideas of these works can also be summarized as OCL. This work proposes TIPR, which differs from these
prior works in the following aspects:

1. Methodological Difference from OCL: Unlike OCL, which performs iterative policy improvement during pretraining
through an objective function, TIPR is the first to introduce IPR, conducting instant policy refinement during testing to
improve the original policy.

2. Not an RCSL Method: TIPR does not belong to the RCSL class of methods, as Truncated Q is not conditioned on
the Return-To-Go. Brandfonbrener et al. (2022) discussed the issues of specifying conditioning functions in RCSL
methods and how unreasonable conditioning functions can lead to arbitrarily poor results.

It is worth noting that most of the previously mentioned ICL works adopt a Transformer architecture, as Transformers
have a natural advantage in sequence modeling tasks (Garg et al., 2022; Li et al., 2023b; Zhang et al., 2023; Duan et al.,
2016; Grigsby et al., 2023). For instance, Lee et al. (2023) proposed a Transformer-based ICL approach that outperforms

18

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

behaviors observed in the dataset, both empirically and theoretically, with respect to regret, a performance measure where
DT falls short (Brandfonbrener et al., 2022; Yang et al., 2023b). Building on these insights, our Truncated Q utilizes a causal
Transformer architecture to enhance the model’s ICL capabilities, particularly within the domain of OM.

B. Detailed Theoretical Analysis
B.1. Explanations of Notations

Table 2. Notations in Thm. 3.1

Notation Description

h The random variable of truncated horizon for the Truncated Q function.

f(h)
The Empirical No Maximization Bias (NMB) probability, i.e., the proba-
bility that the action selected by the Truncated Q function aligns with
the action that maximizes the true truncated expected return.

η0

A parameter used to lower bound the empirical NMB probability
with the inequality f(h) ≥ 1 − 2η0, where this parameter satis-

fies the equation that ∆(h)(

√
S(ln

2|T|
S +1)−ln η0/4|O1||A||D|

lmin
+ 1

lmin
+√

− ln η0/|O1||A||D|
2lmin

) = U2

4 .

∆(h)
A term related to the Q function’s fitting error over the truncated horizon;
its asymptotic complexity is O(h2).

S

The Vapnik-Chervonenkis (VC) dimension of the function set
L := {A(h) ≤ L(o1, a,D,Gh;ω) ≤ B(h), ω ∈ Ω}, where
L(o1, a,D,Gh;ω) := (Q̆h(o

1, a,D;ω) − Gh)
2 denotes the loss func-

tion for learning Truncated Q function Q̆h. A(h) is the infimum of
L(o1, a,D,Gh;ω) while B(h) is its supremum. Ω is the space of param-
eter ω. Notations using sans-serif fonts all represent random variables.

|T| The size (number of trajectories) of the offline dataset T.
|O1| The cardinality of the self-agent’s observation space.
|A| The cardinality of the joint action space of all agents in the environment.

|D| The cardinality of the In-Context Data set D, where D is the set of all
possible In-Context Data D.

lmin

Let l(o1, a,D) denote the number of samples (o1, a,D) in the offline
dataset T, then lmin = mino1,a,D l(o1, a,D) represents the minimum
number of samples (o1, a,D) in the offline dataset T.

U
A constant satisfies equation that mino1,a−1,D(Gh(o

1, a1∗, a−1,D) −
Gh(o

1, a1+, a−1,D)) = U , where a1∗ is the self-agent action that maxi-
mizes Gh, and a1+ is the self-agent action with the second-highest Gh.

B.2. Proof of Thm. 3.1

Theorem 3.1. For any given o1, a−1, D, we have f(h) ≥ f(h) := 1− 2η0, where η0 satisfies that

∆(h)(

√
S(ln 2|T|

S + 1)− ln η0/4|O1||A||D|
lmin

+
1

lmin
+

√
− ln η0/|O1||A||D|

2lmin
) =

U2

4
. (7)

The asymptotic complexity of the term ∆(h) is O(h2).

Proof. First, we define some notation for convenience in the derivation. Let the truncated horizon random variable be
denoted as h, and let the neural network for Truncated Q be represented as Q̆h, with parameters ω and parameter space Ω.

19

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Let the random variable for the self-agent’s observation be denoted as o1, the random variable for the joint actions of all
agents as a, and the random variable for the In-Context Data as D. Let the set of all possible In-Context Data denoted as
D := {D = (o−1m , a−1m)Mm=1|(o−1, a−1) ∈ (O−1 × A−1)}.

Without loss of generality, we use Mean Squared Error (MSE) to define the loss function for learning Q̆h as follows:

L(o1, a,D,Gh;ω) := (Q̆h(o
1, a,D;ω)− Gh)

2. (8)

Assuming that the infimum of Eq. (8) is A(h) and the supremum of Eq. (8) is B(h), we define the difference between
the supremum and supremum as ∆(h) := B(h)−A(h). Under a general assumption, let the environment reward random
variable r follow a certain distribution with values in [a, b]. Then, we have ah ≤ Gh ≤ bh. It is straightforward to derive that
the asymptotic complexity of ∆(h) is O(h2).

Ideally, we aim to find the optimal parameter ω∗ that minimizes the following risk functionalR(ω) within the function set
L := {A(h) ≤ L(o1, a,D,Gh;ω) ≤ B(h), ω ∈ Ω}.

R(ω) =
∑
o1,a,D

P (o1, a,D)

∫
Gh

L(o1, a,D,Gh;ω)dF (Gh|o1, a,D) =
∑
o1,a,D

P (o1, a,D)R(o1, a,D|ω). (9)

Here, F represents the cumulative distribution function, andR(o1, a,D|ω) denotes the per-sample risk functional.

However, since the true distribution of (o1, a,D) is unknown, we can only apply the Empirical Risk Minimization (ERM)
principle on the pre-collected offline dataset T to find the most suitable ω. That is, we seek the parameter ω+ that minimizes
the following empirical risk functionalRemp(ω).

Remp(ω) =
1

|T|

|T|∑
i=1

L(o1(i), a(i),D(i),Gh(i);ω) =
1

|T|
∑
o1,a,D

l(o1, a,D)Remp(o
1, a,D|ω). (10)

Here, l(o1, a,D) represents the number of samples (o1, a,D) in the offline dataset T, and Remp(o
1, a,D|ω) denotes the

per-sample empirical risk functional.

Next, we introduce two lemmas to assist in the proof.

Lemma B.1. (Vapnik, 1998) Assume that {A ≤ L(x;ω) ≤ B,ω ∈ Ω} is a measurable, bounded real function set whose
indicator set satisfies the measurability condition. Let Φ = {ϕ| infω,x L(x;ω) ≤ ϕ ≤ supω,x L(x;ω)}, and denote the
annealed entropy of the indicator set asHΩ,Φ

ann . Then, the following inequality holds:

P{sup
ω∈Ω

(

∫
x

L(x;ω)dF (x)− 1

|T|

|T|∑
i=1

L(x(i);ω)) > ϵ} ≤ 4 exp{(H
Ω,Φ
ann (2|T|)
|T|

− (ϵ− 1/|T|)2

(B −A)2
)|T|}. (11)

Eq. (11) can be equivalently expressed as follows.

For ∀ω, the following inequality holds with probability at least 1− η:

R(ω) ≤ Remp(ω) + (B −A)

√
HΩ,Φ

ann (2|T|)− ln η/4

|T|
+

1

|T|
. (12)

Lemma B.2. (Vapnik, 1998) Let the Vapnik-Chervonenkis (VC) dimension of the function set {A ≤ L(x;ω) ≤ B,ω ∈ Ω}
in Thm. B.1 be denoted as S. Then, the following inequality holds:

HΩ,Φ
ann (|T|) ≤ S(ln

|T|
S

+ 1). (13)

Substituting the previously defined loss function Eq. (8) and sample data (o1, a,D) into Thm. B.1 and Thm. B.2, we have:

P{sup
ω∈Ω

max
o1,a,D

(

∫
Gh

L(o1, a,D,Gh;ω)dF (Gh|o1, a,D)−
1

l(o1, a,D)

l(o1,a,D)∑
i=1

L(o1(i), a(i),D(i),Gh(i);ω)) > ϵ}

20

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

≤
∑
o1,a,D

P{sup
ω∈Ω

(

∫
Gh

L(o1, a,D,Gh;ω)dF (Gh|o1, a,D)−
1

l(o1, a,D)

l(o1,a,D)∑
i=1

L(o1(i), a(i),D(i),Gh(i);ω)) > ϵ} (14a)

≤
∑
o1,a,D

4 exp{(H
Ω,Φ
ann (2l(o1, a,D))

l(o1, a,D)
− (ϵ− 1/l(o1, a,D))2

(∆(h))2
)l(o1, a,D)} (14b)

≤ 4|O1||A||D| exp{S(ln 2|T|
S

+ 1)− (ϵ− 1/lmin)
2

(∆(h))2
lmin}. (14c)

Here, lmin = mino1,a,D l(o1, a,D) represents the minimum number of samples (o1, a,D) in the offline dataset T. Eq. (14a)
clearly holds. Eq. (14b) can be derived from Eq. (11) in Thm. B.1. Eq. (14c) follows from Eq. (13) in Thm. B.2, where S
represents the VC dimension of L.

According to Eq. (12) in Thm. B.2, the above Eq. (14) can be equivalently written as follow.

For ∀ω, o1, a,D, the following inequality holds with probability at least 1− η:

R(o1, a,D|ω)−Remp(o
1, a,D|ω) ≤ ∆(h)

√
S(ln 2|T|

S + 1)− ln η/4|O1||A||D|
lmin

+
1

lmin
. (15)

According to Hoeffding’s Inequality (Hoeffding, 1994), we have:

P{max
o1,a,D

(

∫
Gh

L(o1, a,D,Gh;ω)dF (Gh|o1, a,D)−
1

l(o1, a,D)

l(o1,a,D)∑
i=1

L(o1(i), a(i),D(i),Gh(i);ω)) > ϵ}

≤
∑
o1,a,D

P{
∫
Gh

L(o1, a,D,Gh;ω)dF (Gh|o1, a,D)−
1

l(o1, a,D)

l(o1,a,D)∑
i=1

L(o1(i), a(i),D(i),Gh(i);ω) > ϵ} (16a)

≤
∑
o1,a,D

exp{−2ϵ2l(o1, a,D)

(∆(h))2
} (16b)

≤ |O1||A||D| exp{− 2ϵ2lmin

(∆(h))2
}. (16c)

Eq. (16a) and Eq. (16c) clearly hold. The above Eq. (16) can be equivalently written as follow.

For ∀o1, a,D, the following inequality holds with probability at least 1− η:

Remp(o
1, a,D|ω∗)−R(o1, a,D|ω∗) ≤ ∆(h)

√
− ln η/|O1||A||D|

2lmin
. (17)

As mentioned earlier, in practice, we can only find ω+ by minimizingRemp(ω) (see Eq. (10)). However, strictly speaking,
we should find ω+ by optimizing the following objective:

min
ω

max
o1,a,D

(Remp(o
1, a,D|ω)−Remp(o

1, a,D|ω∗)). (18)

Without loss of generality, assuming that ω+ is found using Eq. (18), we can derive that:

max
o1,a,D

(Remp(o
1, a,D|ω+)−Remp(o

1, a,D|ω∗)) ≤ max
o1,a,D

(Remp(o
1, a,D|ω∗)−Remp(o

1, a,D|ω∗)) = 0. (19)

Based on Eqs. (15), (17) and (19), we can derive the following formula.

The following inequality holds with probability at least 1− η:

max
o1,a,D

(R(o1, a,D|ω+)−R(o1, a,D|ω∗))

21

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

≤ max
o1,a,D

(R(o1, a,D|ω+)−Remp(o
1, a,D|ω+))

+ max
o1,a,D

(Remp(o
1, a,D|ω+)−Remp(o

1, a,D|ω∗))

+ max
o1,a,D

(Remp(o
1, a,D|ω∗)−R(o1, a,D|ω∗)) (20a)

≤ ∆(h)(

√
S(ln 2|T|

S + 1)− ln η/4|O1||A||D|
lmin

+
1

lmin
+

√
− ln η/|O1||A||D|

2lmin
)

+ max
o1,a,D

(Remp(o
1, a,D|ω+)−Remp(o

1, a,D|ω∗)) (20b)

≤ δ := ∆(h)(

√
S(ln 2|T|

S + 1)− ln η/4|O1||A||D|
lmin

+
1

lmin
+

√
− ln η/|O1||A||D|

2lmin
). (20c)

Eq. (20a) clearly holds. Eq. (20b) can be derived from Eq. (15) and Eq. (17). Eq. (20c) follows from Eq. (19).

From Eq. (20), we have:
∀o1, a,D, R(o1, a,D|ω+)−R(o1, a,D|ω∗) ≤ δ. (21)

According to the Bias-Variance Decomposition (James et al., 2013), we have:

∀o1, a,D, R(o1, a,D|ω) = EGh
L(o1, a,D,Gh;ω) = (Q̆h(o

1, a,D;ω)− EGh)
2 + VGh. (22)

Substituting Eq. (22) into Eq. (21), we obtain:

∀o1, a,D, (Q̆h(o
1, a,D;ω+)− EGh)

2 − (Q̆h(o
1, a,D;ω∗)− EGh)

2 ≤ δ. (23)

When the neural network Q̆h converges, the bias of ω∗, i.e., the second term of the left side in Eq. (23), can be considered 0.
Therefore, we can derive the following formula.

For ∀o1, a,D, the following inequality holds with probability at least 1− η:

|Q̆h(o
1, a,D;ω+)− EGh| ≤

√
δ. (24)

Assume that
min

o1,a−1,D
(Gh(o

1, a1∗, a−1,D)− Gh(o
1, a1+, a−1,D)) = U, (25)

where a1∗ is the self-agent action that maximizes Gh, and a1+ is the self-agent action with the second-highest Gh. Observ-
ing Eqs. (24) and (25), it is straightforward to derive the following formula.

When 2
√
δ = U , there is at least a probability of 1− 2η0 that Q̆h selects the action with the highest EGh, i.e.,

f(h) = P (argmax
a1

Q̆h = argmax
a1

EGh) ≥ f(h) := 1− 2η0. (26)

Within, η0 satisfies that:

∆(h)(

√
S(ln 2|T|

S + 1)− ln η0/4|O1||A||D|
lmin

+
1

lmin
+

√
− ln η0/|O1||A||D|

2lmin
) =

U2

4
. (27)

This concludes the proof.

B.3. Proof and Intuitive Analysis of Prop. 3.2

Proposition 3.2. For any given o1, a−1, D, there exists an optimal truncated horizon h∗ ∈ [T] that maximizes f(h)g(h), i.e.,
the lower bound of y(h). Specifically, there exist functions g such that h∗ ̸= T .

22

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Proof. To ensure that Truncated Q selects the action with the highest EGT with maximum probability during policy
refinement, we need to find the optimal h ∈ [T] that maximizes the Overall No Maximization Bias (NMB) Probability y(h).

However, directly maximizing y(h) is intractable, and we need to perform further transformations. Based on Eq. (5), we can
maximize its lower bound f(h)g(h). For any given o1, a−1, D, this objective can be written as:

max
h

f(h)g(h). (28)

Here, the Empirical Risk NMB Probability f(h) is determined by the neural network’s fitting process on the dataset T, while
the Natural NMB Probability g(h) is dictated by the intrinsic properties of the environment’s reward structure.

Eq. (28) is still intractable, requiring further transformation. According to Thm. 3.1, for any given o1, a−1, D, f(h) has a
tight lower bound denoted as f(h) = 1− 2η0. The variation of f(h) with respect to h can approximately characterize the
variation of f(h). Thus, we can optimize the following objective as an approximation to optimize Eq. (28):

max
h

f(h)g(h). (29)

As h increases, ∆(h) also monotonically increases, leading to a monotonic increase in η0, which in turn causes f(h) to
monotonically decrease. Therefore, f(h) is a strictly monotonically decreasing function with respect to h.

Since g(h) is determined by the environment, we cannot explicitly formulate it. However, upon observation, it is easy to
conclude that g(h) satisfies certain properties:

• When h = 1, g(h) attains its minimum value, denoted as gmin.

• When h = T , g(h) attains its maximum value of 1.

• When 1 < h < T , we have gmin ≤ g(h) ≤ 1.

It can be observed that as h increases, the function g(h) generally exhibits an upward trend. Based on these properties, it can
be derived that there exists an h∗ ∈ [T] that satisfies Eq. (29).

Specifically, there exist functions g such that h∗ ̸= T . Below, we provide some examples:

• When g(h) = 1, it clearly holds that h∗ = 1.

• There exist strictly monotonically increasing functions g(h) such that gmin < g(h∗) < 1 and 1 < h∗ < T .

This concludes the proof.

Intuitive Analysis. For better intuitive understanding, we further transform Eq. (29) for analysis. It is known that for any
given o1, a−1, D, the following holds:

y(h) ≥ f(h)g(h). (30)

Therefore, it is straightforward to derive that:

− ln y(h) ≤ (− ln f(h)) + (− ln g(h)). (31)

Maximizing y(h) can be achieved by optimizing the following objective:

min
h

(− ln f(h)) + (− ln g(h)). (32)

Fig. 7 presents a schematic illustration of the variation in NMB probability as h changes when g is a certain strictly
monotonically increasing function. In the case shown in Fig. 7, the optimal h needs to balance the trade-off between− ln f(h)
and − ln g(h), thereby approximately minimizing − ln y(h), which in turn maximizes y(h). It can be intuitively observed
that the optimal value of h is not necessarily always T .

With the aid of Fig. 7, we can further intuitively analyze the benefits of IPR making refinement decisions based on value
confidence Q̆C, rather than unthinkingly refining the original policy in all cases. In the practical implementation of Truncated

23

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

0 10 20 30 40 50
Truncated Horizon (h)

0.0

0.1

0.2

0.3

0.4

Ne
ga

tiv
e

Lo
g

of
 N

M
B

Pr
ob

ab
ilit

y

h∗ = 8

Schematic of h vs. NMB Probabilities

−lng(h)
−ln (h)
−lny(h)

Figure 7. Illustration of the variation in NMB probability as h changes when g is a certain strictly monotonically increasing function.

Q, we empirically set a truncated horizon H . However, the true h∗ could potentially be a much larger value. In this scenario,
the y(H) values for many given samples (o1, a−1, D) may be very small, resulting in a low probability of selecting the
action with the highest EGT after policy refinement. At this point, rather than using Truncated Q for refinement, it would be
better to retain the original policy. Building on this reasoning, IPR uses value confidence Q̆C to balance the decision of
whether to perform policy refinement.

24

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

(a) MS (b) LBF (c) PD (d) PP

Figure 8. The environmental benchmarks.

C. Detailed Introductions of the Environments
Markov Soccer (MS) MS (Littman, 1994; Lanctot et al., 2019) is a sparse-reward two-player zero-sum game with a
discrete state space. The game is played on a 4× 7 grid in Fig. 8(a). The game begins with the self-agent (blue) and the
opponent (red) in random squares in the left and right half (except the goals), respectively, and the ball goes to one of them
randomly or none of them to a random square in the middle column. The players have five actions: move N, S, W, E, or
stand still (i.e., NO-OP). An action is considered invalid if it leads the player to a shaded square (grey) or outside the border.
If a player has the ball, possession will be exchanged and transition will not take place when the two players move into the
same square. Both the self-agent’s and the opponent’s objectives are taking the ball into the other’s goal (the self-agent’s
goal is blue, and the opponent’s goal is red), and the game ends when this happens. The reward is sparse, providing +10
for success, −10 for failure, and 0 for instances where the maximum timestep limit is exceeded, only at the end of the
games. For specific implementation of this environment, we adopt the open-source code of OpenSpiel, which is available at
https://github.com/deepmind/open_spiel.

Level-Based Foraging (LBF) LBF (Christianos et al., 2020; Papoudakis et al., 2021b) is a sparse-reward two-
player mixed-incentive game with a discrete state space, as shown in Fig. 8(b). The game is played on a 9×9 grid with the
self-agent (in blue) and the opponent (in black), along with five apples (in red). At the beginning of each episode, the two
players and the five apples are randomly generated in the environment and assigned a level marked in their bottom-right
corner. The goal of the self-agent is to eat as many apples as possible. All players can move in four directions or eat an
apple. Eating an apple can be successfully done only under the following conditions: one or two players are around the
apple, and all players who take the action of eating an apple have a summed level at least equal to the level of the apple. The
environment has sparse rewards, representing the players’ contributions to eating all the apples in the environment. The
environment is essentially a long-term social dilemma and can be viewed as an extension of the Prisoner’s Dilemma (Axelrod,
1980). The challenge in this environment is that the self-agent must learn to cooperate to eat high-level apples while greedily
eating low-level apples simultaneously. For specific implementation of this environment, we adopt the open-source code of
lb-foraging, which is available at https://github.com/semitable/lb-foraging.

Physical Deception (PD) PD (Lowe et al., 2017) is a sparse-reward three-player non-zero-sum game with a
continuous state space. PD includes the self-agent (red), two opponents (purple), one normal landmark (black), and one
target landmark (green) shown in Fig. 8(c). All agents observe position of landmarks and other agents. There are no
borders present on the entire game map. The self-agent’s objective is to hit the target landmark which is unknown to
him (i.e., the self-agent does not know which one of the landmarks is the target one) as many times as possible. The
opponents’ objective is to minimize the times that the self-agent hits the target landmark while maximizing the times that
they themselves hit the target landmark. Therefore, the opponents need to cleverly deceive the self-agent, while the self-agent
must astutely detect the opponents’ deception. When the self-agent hits the target landmark, it receives a sparse reward of
10, while the opponents receive −10. When the opponents hit the target landmark, they receive a sparse reward of 10. For
specific implementation of this environment, we adopt the open-source code of Multi-Agent Particle Environment, which
is available at https://github.com/openai/multiagent-particle-envs. Additionally, we introduce a
collision mechanism to the original environment to increase the randomness and dynamics of the environment.

25

https://github.com/deepmind/open_spiel
https://github.com/semitable/lb-foraging
https://github.com/openai/multiagent-particle-envs

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

Predator Prey (PP) PP (Lowe et al., 2017) is a sparse-reward four-player non-zero-sum game with a continuous
state space, as shown in Fig. 8(d). The environment consists of three predators (in red), one prey (in green), and two
obstacles (in black). The goal of the predators is to capture (i.e., collide with) the prey as much as possible, while the goal
of the prey is to be captured as little as possible. The environment features sparse rewards, where each time a predator
captures the prey, the capturing predator receives a reward of 10, and the prey receives a reward of −10. Additionally,
the environment provides a very small, dense reward to the prey to prevent it from running out of the map boundaries.
Here, the prey is the self-agent, and the three predators serve as the opponents. From the perspective of the self-agent, the
environment is highly unstable, as there are three opponents with unknown policies in the environment. The challenge in
this environment is that the self-agent must model the behavior of three opponents simultaneously and adapt to various
potential coordination strategies employed by the opponents (e.g., surrounding from three different directions). For specific
implementation of this environment, we adopt the open-source code of Multi-Agent Particle Environment, which is available
at https://github.com/openai/multiagent-particle-envs.

D. Diversity of Opponent Policies

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10
1, 11

1, 12

Opponent Policy

1, 1

1, 2

1, 3

1, 4

1, 5

1, 6

1, 7

1, 8

1, 9

1, 10

1, 11

1, 12

Op
po

ne
nt

 P
ol

icy

0.00 7.77 7.60 6.04 1.19 6.65 5.86 7.39 1.22 7.39 6.65 1.25

1.24 0.00 1.52 2.54 1.24 3.00 2.34 1.66 1.41 1.66 3.00 1.46

1.17 1.44 0.00 1.53 1.17 2.05 1.35 1.31 1.34 1.31 2.05 1.38

1.04 2.09 1.72 0.00 1.04 1.57 1.22 1.82 1.17 1.82 1.57 1.19

1.19 7.69 7.52 6.01 0.00 6.60 5.83 7.35 1.22 7.35 6.60 1.25

1.28 2.63 2.13 1.47 1.28 0.00 1.51 2.53 1.32 2.53 1.19 1.33

1.01 2.37 1.93 1.23 1.01 1.58 0.00 2.06 1.15 2.06 1.58 1.17

1.15 1.46 1.33 1.18 1.15 2.01 1.06 0.00 1.35 1.19 2.01 1.39

1.22 7.70 7.47 6.30 1.22 6.71 6.04 7.37 0.00 7.37 6.71 1.21

1.14 1.46 1.33 1.15 1.14 1.98 1.03 1.19 1.35 0.00 1.98 1.38

1.30 2.57 2.10 1.47 1.30 1.19 1.52 2.52 1.33 2.52 0.00 1.33

1.25 7.37 6.92 6.10 1.25 6.50 5.78 6.87 1.21 6.87 6.50 0.00

MS

0

1

2

3

4

5

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10
1, 11

1, 12

Opponent Policy

1, 1

1, 2

1, 3

1, 4

1, 5

1, 6

1, 7

1, 8

1, 9

1, 10

1, 11

1, 12

Op
po

ne
nt

 P
ol

icy

0.00 6.19 5.78 2.08 0.90 3.60 1.13 6.09 0.84 5.99 1.58 0.76

1.30 0.00 1.05 1.47 1.11 1.32 1.53 1.01 1.24 1.06 1.63 1.30

1.19 1.07 0.00 1.47 1.03 1.36 1.49 1.17 1.13 1.03 1.61 1.19

1.33 2.24 2.17 0.00 1.19 1.15 1.11 2.16 1.30 2.03 1.04 1.33

0.87 4.79 4.08 1.10 0.00 2.45 1.50 4.68 0.81 4.52 1.68 0.87

1.60 1.34 1.36 0.97 1.43 0.00 1.20 1.24 1.56 1.23 1.16 1.60

1.20 2.81 2.66 1.22 1.08 1.00 0.00 2.65 1.17 2.60 1.13 1.20

1.22 1.02 1.09 1.51 1.04 1.39 1.55 0.00 1.17 0.98 1.63 1.22

0.84 6.25 5.20 1.92 0.82 3.81 1.05 6.25 0.00 6.03 1.43 0.84

1.22 1.07 0.99 1.50 1.03 1.43 1.48 0.94 1.15 0.00 1.59 1.22

1.27 2.94 2.66 1.09 1.14 1.54 1.06 2.91 1.22 2.70 0.00 1.27

0.76 6.34 5.93 2.12 0.91 3.59 1.11 6.23 0.84 6.10 1.62 0.00

LBF

0

1

2

3

4

5

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10
1, 11

1, 12

Opponent Policy

1, 1

1, 2

1, 3

1, 4

1, 5

1, 6

1, 7

1, 8

1, 9

1, 10

1, 11

1, 12

Op
po

ne
nt

 P
ol

icy

0.00 7.84 7.86 7.42 1.70 7.50 7.40 7.84 1.73 7.88 7.42 1.67

1.24 0.00 2.03 1.59 1.32 1.51 1.50 1.67 1.41 2.37 1.59 1.24

1.25 1.98 0.00 1.70 1.33 1.64 1.70 1.98 1.41 1.98 1.70 1.25

1.20 2.52 2.88 0.00 1.29 1.93 1.76 2.52 1.38 2.83 1.67 1.20

1.72 8.33 8.36 8.11 0.00 8.13 8.09 8.33 1.71 8.39 8.11 1.72

1.20 2.19 2.62 1.91 1.29 0.00 1.97 2.19 1.39 2.49 1.91 1.20

1.19 2.37 2.79 1.76 1.28 1.97 0.00 2.37 1.37 2.80 1.76 1.19

1.24 1.67 2.01 1.61 1.32 1.54 1.51 0.00 1.41 2.34 1.61 1.24

1.78 8.88 8.89 8.70 1.72 8.72 8.68 8.88 0.00 8.92 8.70 1.78

1.26 2.27 1.99 1.66 1.35 1.53 1.70 2.27 1.43 0.00 1.66 1.26

1.20 2.37 2.75 1.67 1.28 1.93 1.76 2.37 1.38 2.76 0.00 1.20

1.67 7.85 7.87 7.44 1.70 7.52 7.42 7.85 1.73 7.89 7.44 0.00

PD

0

1

2

3

4

5

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10
1, 11

1, 12

Opponent Policy

1, 1

1, 2

1, 3

1, 4

1, 5

1, 6

1, 7

1, 8

1, 9

1, 10

1, 11

1, 12

Op
po

ne
nt

 P
ol

icy

0.00 8.70 8.70 8.45 0.97 8.42 8.46 8.71 1.13 8.70 8.46 0.89

1.50 0.00 1.55 4.17 1.54 4.02 4.46 1.09 1.75 0.89 4.46 1.50

1.50 1.57 0.00 4.00 1.54 3.80 4.23 1.66 1.75 1.57 4.23 1.50

1.43 4.38 4.45 0.00 1.48 1.78 1.23 4.28 1.65 4.38 1.23 1.43

1.01 9.41 9.42 9.39 0.00 9.39 9.43 9.41 1.03 9.41 9.43 1.01

1.44 4.64 4.69 1.80 1.47 0.00 1.04 4.52 1.64 4.64 1.04 1.44

1.45 4.64 4.66 1.22 1.48 1.85 0.00 4.54 1.65 4.64 0.89 1.45

1.50 1.09 1.61 4.12 1.54 3.90 4.38 0.00 1.76 1.09 4.38 1.50

1.28 9.75 9.76 9.52 0.99 9.52 9.58 9.74 0.00 9.75 9.58 1.28

1.50 0.89 1.54 4.14 1.53 4.01 4.42 1.09 1.74 0.00 4.42 1.50

1.44 4.69 4.72 1.22 1.48 1.88 0.89 4.58 1.67 4.69 0.00 1.44

0.89 8.69 8.69 8.46 0.97 8.43 8.47 8.70 1.13 8.69 8.47 0.00

PP

0

1

2

3

4

5

Figure 9. Pair-wise expected KL divergence of all the opponent policies used to construct the offline datasets T.

As mentioned in Sec. 4.1, we run the Maximum Entropy Population-based training algorithm (MEP) (Zhao et al., 2023) to

26

https://github.com/openai/multiagent-particle-envs

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

generate a diversified opponent policy population. Nevertheless, a quantitative analysis is still necessary to measure the
similarity/dissimilarity between different opponent policies used to construct the offline datasets T.

From the MEP population, 12 policies are selected as pretraining opponents (Seen Set), and 8 policies are selected as
testing opponents in the Unseen Set. We calculate the pair-wise expected KL divergence between different pretraining
opponents to measure their dissimilarity. The results for MS, LBF, PD, and PP are shown in Fig. 9, respectively.

For any given policies π−1,i and π−1,j ∈ Seen Set, we estimate the expected KL divergence between them by:

DKL(π
−1,i||π−1,j) = Eo−1∼P (o−1)

[∑
a−1∈A−1

π−1,i(a−1|o−1) · log π−1,i(a−1|o−1)
π−1,j(a−1|o−1)

]
. (33)

Here, P (o−1) denotes the opponent observation distribution. Ideally, P (o−1) should cover the entire opponent observation
space O−1. However, in practical situations, covering the entire opponent observation space O−1 in even slightly large
environments can be intractable.

To maximize the coverage of the opponent observation space by P (o−1), we employ the following sampling method: Within
the Seen Set, there are a total of 12 opponent policies. For each opponent policy π−1,k, we sample 1200 episodes. In these
1200 episodes, the opponents’ policy are fixed to π−1,k while the self-agent traverses through all the opponent policies,
resulting in the self-agent using per opponent policy for 100 episodes.

In Fig. 9, the lighter the color in the heatmap, the higher the KL divergence value, indicating a lower similarity between the
two policies. Assuming a dissimilarity threshold of 1.0 (i.e., two policies are dissimilar if their expected KL divergence is
greater than 1.0), over 80% of the expected KL divergence values in all environments exceed this threshold. This indicates
that the pretraining opponent policies are generally well-distinguished from one another. The dissimilarity rates for MS, LBF,
PD, and PP are 92.35%, 80.56%, 91.67%, and 85.42%, respectively. Overall, we can consider the MEP opponent policies
we select to construct the offline datasets T to be adequately diverse.

E. Neural Architecture Designs
E.1. Neural Architectures of Truncated Q

For the horizon-truncated in-context action-value function we proposed, i.e., Truncated Q, we adopt the neural architecture
design as follows:

• Backbone: The backbone of the Truncated Q is mainly implemented based on the causal Transformer, i.e., GPT2 (Rad-
ford et al., 2019) model of Hugging Face (Wolf et al., 2020). Both the Encoder and Decoder of the Truncated Q’s
neural architecture adopt this backbone. The backbone is a GPT2 model composed of 3 self-attention blocks. Each
self-attention block consists of a single-head attention layer and a feed-forward layer. The Decoder’s self-attention block
includes an additional single-head cross-attention layer. Residual connections (He et al., 2016b) and LayerNorm (Ba
et al., 2016) are utilized after each layer in the self-attention block. Within each attention layer, dropout (Srivastava
et al., 2014) is added to the residual connection and attention weight. In the backbone, the feed-forward layer consists
of a fully connected layer that increases the number of hidden layer nodes and a projection layer that recovers the
number of hidden layer nodes. Except for the fully connected layer in the feed-forward layer, which consists of 128
nodes with GELU (Hendrycks & Gimpel, 2016) activation functions, the other hidden layers are composed of 32 nodes
without activation functions.

• Encoder: The opponents’ observations o−1 and actions a−1 are fed into modality-specific linear layers, and a positional
episodic timestep encoding is added. We adopt the same timestep encoding as in (Chen et al., 2021). Then, we use
a fusion linear layer to fuse the o−1, a−1 embedding tokens at each timestep into fused embedding tokens. Finally,
the sequences of fused embedding tokens are fed into the backbone, which autoregressively outputs the per-timestep
embedding tokens z−1 corresponding to each (o−1, a−1) tuple using a causal self-attention mask. The per-timestep
embedding tokens z−1 are inputed as key and value into the cross-attention layers of the Decoder. The fusion linear layer
comprise 32 nodes without activation functions. The modality-specific linear layers for the opponents’ observations
o−1 and actions a−1 comprise 32 nodes with ELU (Clevert et al., 2015) activation functions.

• Decoder: Self-agent observations o1, opponents actions a−1, self-agent actions a1, and self-agent rewards r1 are fed
into modality-specific linear layers. A positional episodic timestep encoding is added. We adopt the same timestep

27

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

encoding as in Chen et al. (2021). In addition, an agent index encoding is added to each token to distinguish the inputs
from different agents. The sequences of embedded tokens are fed into the cross-attention layers of the backbone as
query, which autoregressively outputs the action-value predictions Q̆ at the positions of self-agent actions a1 tokens
using a causal self-attention mask. The Opponent Imitator πOI of the Decoder autoregressively predicts opponents
actions a−1 at the positions of self-agent observations o1 tokens. The modality-specific linear layers for the self-agent
observations o1, opponents actions a−1, self-agent actions a1, and self-agent rewards r1 comprise 32 nodes without
activation functions. All the output heads use linear layers. The output head of Q̆C uses Sigmoid as activation functions.

• Input & Output: Given timestep t, the input sequences for the Encoder and the Decoder are (o−11 , a−11 , . . . , o−1M , a−1M)
and (o1t−L+1, a

−1
t−L+1, a

1
t−L+1, r

1
t−L+1, . . . , o

1
t−1, a

−1
t−1, a

1
t−1, r

1
t−1, o

1
t), respectively. Within, L is the in-episode his-

torical trajectory sequence length for the Decoder, as Transformer model has a token capacity. The output prediction
sequence is (πOI(t−L+1), Q̆

h

C(t−L+1), Q̆
h

V(t−L+1), . . . , πOI(t), Q̆
h

C(t), Q̆
h

V(t)). During training, the corresponding output
label sequence is (a−1t−L+1, {1{r1t′ ̸= 0}}t−L+H

t′=t−L+1, {r1t′}
t−L+H
t′=t−L+1, . . . , a

−1
t , {1{r1t′ ̸= 0}}t+H−1

t′=t , {r1t′}
t+H−1
t′=t).

E.2. Neural Architectures of OOM Baselines

For all the OOM baselines, we strictly follow the neural architecture designs adopted in Jing et al. (2024a):

• DRON-concat: We use the GPT2 model mentioned in Sec. E.1 to implement the backbones of DRON-concat. DRON-
concat’s neural architecture contains 2 backbones, and the backbones’ architectural design is identical to that of
Truncated Q’s Decoder, except that it does not include the cross-attention layer. One of the backbones is used to encode
the sequence consisting of RTGs G1, observations o1, and actions a1, while the other backbone is used to encode the
opponent’s hand-crafted features (He et al., 2016a). To be versatile in different environments, we consider using the
opponent’s previous action and the opponent’s previous action frequency as the hand-crafted features. We concatenate
the embedding tokens obtained by the two backbone encodings in the dimension of the hidden state and feed them to
a fusion linear layer to get concatenated embedding tokens. Within, the hand-crafted feature embedding tokens are
aligned with the positions of a1 embedding tokens, and other positions are filled with 0 and aligned with the positions
of G1, a1 embedding tokens. Finally, given the concatenated embedding tokens, the actions a1t are autoregressively
predicted at the locations of observations o1t . Both the fusion linear layer and the linear layer of hand-crafted features
comprise 32 nodes without activation functions, while the number of other hidden layer nodes and the activation
function settings are identical to those of Truncated Q’s Decoder. All the output heads use linear layers.

• DRON-MoE: We use the GPT2 model mentioned in Sec. E.1 to implement the backbones of DRON-MoE. DRON-
MoE’s neural architecture contains 2 backbones, and the backbones’ architectural design is identical to that of Truncated
Q’s Decoder, except that it does not include the cross-attention layer. One backbone is used to encode the sequence
consisting of RTGs G1, observations o1, and actions a1, while the other backbone is used to encode G1, o1, a1 sequence
and the opponent’s hand-crafted features. For the first backbone: After encoding G1

t , o
1
t , a

1
t , the o1t embedding tokens

are fed to an expert linear layer and output a predefined number of expert of action probability distributions. For the
second backbone: Before inputting, the opponent’s hand-crafted features are concatenated with the corresponding
observations o1 according to the timestep, and they are fed to a mixing linear layer; after encoding G1

t , o
1
t , a

1
t and

hand-crafted features, o1 embedding tokens are fed to an expert linear layer, and a weight vector with a length of the
number of experts is outputted. Finally, the obtained weight vector is used to perform a weighted summation of the
obtained action probability distributions, and the actions a1t are predicted autoregressively. The mixing linear layer
consists of 32 nodes without activation function, and the expert linear layer consists of 32 nodes with Softmax (Bridle,
1989) activation function. The number of other hidden layer nodes and the activation function settings are identical to
Truncated Q’s Decoder. All the output heads use linear layers. The predefined number of experts is set to 5.

• LIAM: We use the GPT2 model mentioned in Sec. E.1 to implement the backbones of LIAM. The architectural design
of LIAM’s backbone is the same as that of Truncated Q’s Decoder, except that it does not include a cross-attention
layer. In addition to feeding the sequence consisting of RTGs G1, observations o1, and actions a1 into the backbone
and predicting the action a1 in an autoregressive manner using a causal self-attention mask, we also employ an extra
decoder to learn an auxiliary task (Papoudakis et al., 2021a). This auxiliary task involves reconstructing the opponent’s
observations o−1t and actions a−1t using the observations o1t and actions a1t−1 of the self-agent. Specifically, we use the
o1t token embeddings obtained through the backbone as input to the extra decoder to predict o−1t and a−1t , as the o1t
token embeddings contain all the information of o1t and a1t−1. The extra decoder consists of two linear layers with 32

28

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

nodes and no activation functions. The number of other hidden layer nodes and the activation function settings are
identical to Truncated Q’s Decoder. All the output heads use linear layers.

• Prompt-DT: We implement Prompt-DT’s neural architecture directly based on its open-source code, which is available
at https://github.com/mxu34/prompt-dt. We use high-quality data against opponent policies from offline
datasets as expert demonstrations (i.e., prompts). High-quality data refers to trajectories of the self-agent that rank near
the top in terms of return across all episodes in which it competes against a specific opponent policy. Specifically, we
select the top 20% for the high-quality data, sample 3 trajectory, and then sample consecutive fragments with a length
of 5 from the trajectory as prompts. The linear layers for RTGs, observations, and actions in the prompts consist of 32
nodes without activation functions. The number of other hidden layer nodes and the activation function settings are
identical to Truncated Q’s Decoder. All the output heads use linear layers.

• TAO: We implement TAO’s neural architecture directly based on its open-source code, which is available at [TAO
Code]. (1) TAO’s Encoder: We implement TAO’s encoder using the exact same backbone as the Encoder of Truncated
Q. The opponents’ actions a−1, rewards r−1, and observations o−1 are fed into modality-specific linear layers, and a
positional episodic timestep encoding is added. We use a fusion linear layer to fuse the a−1t−1, r

−1
t−1, o

−1
t embedding

tokens at each timestep into fused embedding tokens. The sequences of fused embedding tokens are fed into the
backbone, which autoregressively outputs the per-timestep embedding tokens corresponding to each (a−1t−1, r

−1
t−1, o

−1
t)

tuple using a causal self-attention mask. Then, we input all the per-timestep embedding tokens output by the backbone,
as key and value into the cross-attention layers of TAO’s decoder. The modality-specific linear layers for the opponents’
actions, rewards, and observations are composed of 32 nodes with ELU (Clevert et al., 2015) activation functions. (2)
TAO’s Decoder: We implement TAO’s decoder using the exact same backbone as the Decoder of Truncated Q. The
self-agent’s RTGs G1, observations o1, and actions a1 are fed into modality-specific linear layers, and a positional
episodic timestep encoding is added. The sequences consisting of embedding tokens of G1

t , o
1
t , a

1
t are fed into the

cross-attention layers of the backbone as query, autoregressively predicts actions a1t at the positions of o1t embedding
tokens using a causal self-attention mask. The modality-specific linear layers for the self-agent’s RTGs, observations,
and actions are composed of 32 nodes without activation functions. All the output heads use linear layers.

29

https://github.com/mxu34/prompt-dt
https://openreview.net/attachment?id=2SwHngthig&name=supplementary_material
https://openreview.net/attachment?id=2SwHngthig&name=supplementary_material

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

F. Hyperparameters
F.1. Hyperparameters for Opponent Policies & Offline Datasets

Hyperparameter Name MS LBF PD PP

Dimensionality of observations 12 21 10 16

Dimensionality of actions 5 6 5 5

Horizon for each episode (T) 50 50 100 100

Agent index of the self-agent 0 0 0 3

Agent indexes of the opponents 1 1 1, 2 0, 1, 2

Size of MEP population 4 4 4 4

Weighting coefficient for MEP’s diversity objective 1e− 2 1e− 2 1e− 2 1e− 2

Total number of episodes used for training MEP population 1e5 1e5 1e5 1e5

Total number of episodes used for training self-agent policies
(these policies are used to construct offline datasets T, the
training objective is to achieve the BR against the opponent)

1e4 1e4 1e4 1e4

Number of updating epochs at each MEP’s and self-agent
policies’ training step 10 10 10 10

Batch size for training MEP population and self-agent policies 4096 4096 4096 4096

Learning rate for training MEP population 5e− 4 5e− 4 5e− 4 5e− 4

Learning rate for training self-agent policies 8e− 5 8e− 5 8e− 5 8e− 5

Maximum norm of the gradients for training MEP population
and self-agent policies 5.0 5.0 5.0 5.0

Clipping factor of PPO (Schulman et al., 2017) used for train-
ing MEP population and self-agent policies 0.2 0.2 0.2 0.2

Number of opponent policies used to construct the offline
dataset T (K) 12 12 12 12

Number of trajectories used to construct the Tk for each
opponent policy π−1,k

1e3 1e3 1e3 1e3

30

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

F.2. Hyperparameters for OOM Baselines Pretraining

Hyperparameter Name MS LBF PD PP

In-episode historical trajectory sequence length for the
backbone (see Sec. E.2 for detailed descriptions) 20 20 20 20

Sequence length of the In-Context Data D (M) 15 15 15 15

Number of trajectories sampled to constrcut D (C) 3 3 3 3

Total number of training steps 3e3 3e3 3e3 3e3

Number of updating epochs at each training step 10 10 10 10

Batch size 20 20 20 20

Warm-up epochs (the learning rate is multiplied by
num epoch+1

warm-up epochs to allow it to increase linearly during the
initial warm-up epochs of training)

1e4 1e4 1e4 1e4

Reward scaling factor (all the rewards are multiplied
by 1

reward scaling factor to reduce the variance of training) 1 1 100 100

Learning rate for AdamW (Loshchilov & Hutter, 2018)
optimizer 1e− 4 1e− 4 1e− 4 1e− 4

Weight decay coefficient for AdamW optimizer 1e− 4 1e− 4 1e− 4 1e− 4

Maximum norm of the gradients (clip if exceeded) 0.5 0.5 0.5 0.5

Dropout factor for the backbone (GPT2 model) 0.1 0.1 0.1 0.1

Random seeds 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4

F.3. Hyperparameters for Truncated Q Training

Hyperparameter Name MS LBF PD PP

In-episode historical trajectory sequence length for the
Decoder (L) (see Sec. E.1 for detailed descriptions) 20 20 20 20

Sequence length of the In-Context Data D (M) 15 15 15 15

Number of trajectories sampled to constrcut D (C) 3 3 3 3

Total number of training steps 1e4 1e4 1e4 1e4

Number of updating epochs at each training step 10 10 10 10

Batch size 20 20 20 20

Weighting coefficient for confidence loss LQC (α) 1.0 1.0 1.0 1.0

Weighting coefficient for value loss LQV (β) 1.0 1.0 1.0 1.0

Warm-up epochs 1e4 1e4 1e4 1e4

Learning rate for AdamW optimizer 5e− 3 5e− 3 5e− 3 5e− 3

Weight decay coefficient for AdamW optimizer 1e− 4 1e− 4 1e− 4 1e− 4

Maximum norm of the gradients (clip if exceeded) 0.5 0.5 0.5 0.5

Dropout factor for the backbone (GPT2 model) 0.1 0.1 0.1 0.1

Random seeds 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4

31

Offline Opponent Modeling with Truncated Q-driven Instant Policy Refinement

F.4. Hyperparameters for Instant Policy Refinement

Hyperparameter Name MS LBF PD PP

Truncated horizon (H) 3 3 3 3

Total number of episodes for testing 2400 2400 2400 2400

Number of episodes between each opponent’s
non-stationary policy switching 20 20 20 20

Sequence length of the In-Context Data D (M) 15 15 15 15

Number of historical trajectories of the opponent
sampled to construct D (C) 3 3 3 3

Random seeds 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4

32

