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ABSTRACT

Vision Transformers (ViTs) deliver state-of-the-art accuracy but their quadratic at-
tention cost and redundant computations severely hinder deployment on latency-
and resource-constrained platforms. Existing pruning approaches treat either to-
kens or heads in isolation, relying on heuristics or first-order signals, which of-
ten sacrifice accuracy or fail to generalize across inputs. We introduce HEART-
ViT, a Hessian-guided efficient dynamic attention and token pruning for vision
transformers, which to the best of our knowledge, is the first unified, second-
order, input-adaptive framework for ViT optimization. HEART-ViT estimates
curvature-weighted sensitivities of both tokens and attention heads using effi-
cient Hessian–vector products, enabling principled pruning decisions under ex-
plicit loss budgets. This dual-view sensitivity reveals an important structural in-
sight: token pruning dominates computational savings, while head pruning pro-
vides fine-grained redundancy removal, and their combination achieves a superior
trade-off. On ImageNet-100 and ImageNet-1K with ViT-B/16 and DeiT-B/16,
HEART-ViT achieves up to 49.4% FLOPs reduction, 36% lower latency, and 46%
higher throughput, while consistently matching or even surpassing baseline ac-
curacy after fine-tuning (e.g., +4.7% recovery at 40% token pruning). Beyond
theoretical benchmarks, we deploy HEART-ViT on different edge devices, like-
AGX Orin, demonstrating that our reductions in FLOPs and latency translate di-
rectly into real-world gains in inference speed and energy efficiency. HEART-ViT
bridges the gap between theory and practice, delivering the first unified, curvature-
driven pruning framework that is both accuracy-preserving and edge-efficient.

1 INTRODUCTION

Vision Transformers (ViTs) have rapidly become a foundation model in computer vision, achieving
state-of-the-art performance across classification, detection, and segmentation tasks. Their success
stems from their flexibility: ViTs can model long-range dependencies and scale effectively with
data and compute. However, this power comes at a cost. Standard ViTs process hundreds of tokens
through dozens of attention heads, resulting in substantial inference latency and memory footprint.
Such overheads limit their adoption in real-time and resource-constrained settings, such as mobile
devices or edge platforms.

A natural way to address this challenge is pruning: removing parts of the model that contribute lit-
tle to performance. In convolutional networks, pruning strategies are well studied, ranging from
magnitude-based weight removal to structured filter pruning. In contrast, pruning in ViTs re-
mains less mature. Existing dynamic ViT methods typically rely on heuristics—such as entropy-
based token dropping Rao et al. (2021); Zhou et al. (2025), saliency or Hessian-aware importance
scores Yang et al. (2023b); Wang et al. (2021), or auxiliary gating modules for token retention Rao
et al. (2021); Pan et al. (2022)—to decide what to prune. While effective in some cases, these
heuristics are not explicitly tied to the model’s loss, making pruning decisions less principled and
sometimes unstable across inputs.

In this work, we propose HEART-ViT (Head and Token–Aware Pruning), a framework that per-
forms input-adaptive pruning of both tokens and attention heads based on second-order sensitivity
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Figure 1: Our method pushes the Pareto frontier of FLOPs vs. accuracy on ImageNet-1K. We compare
ViT-B/16 and DeiT-B/16 under symmetric (Sym) and asymmetric (Asym) pruning against strong baselines and
state-of-the-art transformer variants. Our pruned models consistently achieve higher accuracy at significantly
reduced FLOPs, surpassing both dense ViT/DeiT baselines and competitive efficient transformers. Detailed
results are on Appendix.Table 6. Notes: Sym = Symmetric pruning; 20/20 = 20% Tokens + 20% Heads.

analysis. Our key insight is that the importance of a component can be quantified by how much the
loss would increase if that component were removed. Using a second-order Taylor expansion, we
derive a simple and elegant score: the quadratic form z⊤Hzz, where z is a token or head activation
and Hz is the Hessian of the loss with respect to z. This score has two desirable properties: (i) it
is loss-aware, directly reflecting the training objective, and (ii) it is input-specific, capturing which
tokens and heads matter for each example.

Building on this sensitivity measure, HEART-ViT introduces a unified pruning strategy that dynam-
ically gates tokens and heads during inference. Low-sensitivity components are pruned away, while
important ones are retained. Our method supports both symmetric pruning (uniform ratios across
layers) and asymmetric pruning (adaptive ratios guided by sensitivity), enabling flexible trade-offs
between efficiency and accuracy. To further stabilize pruning, we employ layerwise normalization
and optional soft gates, which provide a differentiable relaxation useful for fine-tuning.

Our contributions are threefold:

• We develop a principled, second-order sensitivity framework for dynamic token and head
pruning in Vision Transformers.

• We unify token and head pruning under the same importance criterion, avoiding the need
for heuristic rules or auxiliary predictors.

• We demonstrate that HEART-ViT achieves significant FLOPs and latency reductions while
preserving, and in some cases improving, accuracy on challenging benchmarks.

HEART-ViT brings a loss-aware, mathematically grounded perspective to pruning in Vision Trans-
formers, bridging the gap between theory and practice in efficient transformer inference. To high-
light our contributions in context, Table 1 presents a comparative novelty timeline (2021–2025),
situating HEART-ViT relative to representative ViT pruning methods. This timeline illustrates how
HEART-ViT is the first to combine second-order sensitivity, unified token & head pruning, and
explicit loss-budget control, going beyond prior heuristic- or module-based approaches.

2 RELATED WORK

Transformers have revolutionized computer vision and NLP tasks but remain computationally ex-
pensive for deployment in resource-constrained settings. Numerous studies have proposed tech-
niques to prune redundant components while preserving accuracy. Early efforts like Weight Mag-
nitude Pruning and Structured Pruning focused on removing entire layers or heads based on fixed
heuristics Molchanov et al. (2017b). Later, Rao et al. (2021) and Chavan et al. (2022) introduced
dynamic token pruning based on learned importance scores, reducing inference costs by skipping
unimportant tokens.
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Year 2021a 2021b 2022a 2022b 2023 2024 2025 (Ours)

Method TokenLearner
Ryoo et al. (2021)

DynamicViT
Rao et al. (2021)

EViT
Liang et al. (2022)

SPViT
Kong et al. (2022)

ToMe
Bolya et al. (2023b)

Sparse-then-Prune
Prasetyo et al. (2023)

HEART-ViT
(Ours)

Core Techniques
Token pruning ✓ ✓ ✓ ✓ ✓ ✓ ✓
Head pruning ✗ ✗ ✗ ✗ ✗ ✓(structural) ✓(dynamic)
Attention/CLS-based heuristics ✗ ✓ ✓ ✓ ✓ ✓ ✗
Learned token/module generator ✓ ✓ ✗ ✓ ✗ ✗ ✗
Second-order Hessian sensitivity ✗ ✗ ✗ ✗ ✗ ✗ ✓
Unified token & head pruning ✗ ✗ ✗ ✗ ✗ ✗ ✓

Objective / Loss-level Innovations
Per-input dynamic pruning ✓ ✓ ✓ ✓ ✓ ✗ ✓
Taylor-series ∆L linkage ✗ ✗ ✗ ✗ ✗ ✗ ✓
Loss-budget constraint (ε) ✗ ✗ ✗ ✗ ✗ ✗ ✓
Soft-to-hard gating (annealed) ✗ ✗ ✗ ✗ ✗ ✗ ✓
Symmetric vs. Asymmetric pruning ✗ ✗ ✗ ✗ ✗ ✗ ✓

Empirical Evaluation Paradigms
Latency / throughput analysis ✗ ✓ ✓ ✓ ✓ ✗ ✓
Edge-device relevance ✗ ✗ ✗ ✓ ✓ ✗ ✓
Ablations across heads & tokens ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Comparative novelty timeline (2021–2025) situating our HEART-ViT framework relative to repre-
sentative ViT pruning approaches. Unlike prior heuristics or static structural methods, HEART-ViT introduces
a unified, second-order, loss-aware pruning criterion covering both tokens and heads, and explores symmetric
vs. asymmetric pruning strategies under explicit loss budgets.

Recent studies such as Yang et al. (2023a) expand this line of work by introducing layer-agnostic
Hessian-based saliency scores and latency-aware regularization to improve deployability on edge
devices. Token pruning reduces the input sequence length during inference, targeting redundant
spatial information. Bolya et al. (2023a) proposed merging similar tokens via bipartite matching,
while Ruan et al. (2021) employed gating mechanisms to prune tokens dynamically per sample.
However, these methods often rely on learned importance scores or attention weights, which may
not correlate well with actual sensitivity to loss.

More recently, methods like Fu et al. (2024) and Tao et al. (2025) introduced efficient, training-
free or lightweight strategies for dynamic pruning in long-context LLMs and ViTs, showing that
token-level adaptivity can be achieved without sacrificing performance.

Attention head pruning aims to remove redundant heads within multi-head attention (MHA). While
earlier works used attention entropy Michel et al. (2019) or magnitude-based heuristics, such ap-
proaches fail to consider second-order sensitivity. Taylor expansion-based head pruning Sanh et al.
(2020) improved interpretability but remained static across inputs. Recent techniques, such as
Entropy-Guided Head Importance Lee & s. Kim (2024), leverage entropy metrics to guide pruning
and mitigate information loss. Additionally, Automatic Channel Pruning for Multi-Head Attention
Lee & Hwang (2024) tackles head-level redundancy through channel similarity-based heuristics.

Hessian-based methods evaluate the impact of pruning on loss via second-order derivatives, offering
a principled criterion for parameter importance. Notable early works such as Molchanov et al.
(2017a) and Singh et al. (2020)applied Hessian approximations to CNN pruning. In ViTs, Yu et al.
(2022) extended this concept to structured attention pruning.

More recently, SwiftPrune Kang et al. (2025) introduced a Hessian-free metric for LLM weight
pruning, while SNOWS Lucas & Mazumder (2024) proposed a second-order optimization frame-
work without explicit Hessian computation, targeting global objective preservation. These methods
aim to reduce computational overhead while maintaining the benefits of second-order sensitivity.

Recent advances focus on input-conditional computation. AdaViT Mullapudi et al. (2022) and DeiT-
GATE Tang et al. (2023) introduced gating mechanisms to prune tokens and heads based on input
content. However, these methods often require reinforcement learning or complex routing logic,
which can increase inference time and destabilize training. To address this, Automatic Pruning
Rate Adjustment Ishibashi & Meng (2025) and OptiPrune Le et al. (2025) propose adaptive sparsity
control via gradient-aware or loss-aware criteria for sample-dependent efficiency.

Unlike prior methods that rely on attention magnitude or learned heuristics, HEART-ViT intro-
duces a Hessian-based dynamic pruning framework that jointly estimates token and head sensitiv-
ity through second-order approximations. By integrating Hutchinson’s estimator and adaptive gat-
ing, our method performs input-dependent structured pruning, achieving competitive accuracy with
lower computational cost. Furthermore, HEART-ViT bridges the gap between dynamic inference
and mathematically grounded sensitivity measures, setting a new direction for efficient transformer
deployment.
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3 TECHNICAL APPROACH

3.1 PROBLEM SETUP

Vision Transformers (ViTs) achieve strong accuracy but incur high inference cost. Given a pre-
trained ViT fθ and a data distribution D, our goal is per-input dynamic pruning of tokens and atten-
tion heads with minimal loss increase. For an input image x, the ViT processes a sequence of token
embeddings X0 = [t01, . . . , t

0
n0
] ∈ Rn0×d produced by patch embedding plus positional encodings.

Each transformer layer ℓ = 1, . . . , L applies

Xℓ = FFNℓ
(
MSAℓ(LN(Xℓ−1))

)
+Xℓ−1.

Multi-head self-attention (MSA) uses Hℓ heads,

MSAℓ(X) =
[
hℓ
1(X); . . . ;hℓ

Hℓ
(X)

]
W ℓ

O, hℓ
k(X) = softmax

(
QkK

⊤
k√

dk

)
Vk,

with Qk = XW ℓ,Q
k , Kk = XW ℓ,K

k , Vk = XW ℓ,V
k .

We introduce binary masks over token activations and head outputs at inference:

M ℓ
T ∈ {0, 1}nℓ , M ℓ

A ∈ {0, 1}Hℓ .

Let gℓT = diag(M ℓ
T ) and gℓA = diag(M ℓ

A) denote token and head gates. Gated forward pass applies

X̃ℓ−1 = gℓ−1
T Xℓ−1, M̃SA

ℓ
(X̃ℓ−1) =

[
gℓAh

ℓ
1(X̃

ℓ−1); . . . ; gℓAh
ℓ
Hℓ

(X̃ℓ−1)
]
W ℓ

O,

and proceeds as usual. The prediction for input x under masks M = {M ℓ
T ,M

ℓ
A}Lℓ=1 is fθ(x;M).

Objective. We seek sparse masks that preserve accuracy in expectation:

min
M

E(x,y)∼D L
(
y, fθ(x;M)

)
+ λT

∑
ℓ

∥M ℓ
T ∥0 + λA

∑
ℓ

∥M ℓ
A∥0. (1)

Equivalently, for a loss budget ε > 0 we may constrain

min
M

∑
ℓ

(
∥M ℓ

T ∥0 + ∥M ℓ
A∥0

)
s.t. E(x,y)

[
∆L(x;M)

]
≤ ε, (2)

with ∆L(x;M) = L(y, fθ(x;M))− L(y, fθ(x;1)) ≥ 0.

Eqs. 1–2 form a dual perspective: one emphasizes sparsity with loss regularization, the other en-
forces an explicit error budget. This flexibility allows HEART-ViT to be deployed under accuracy
constraints (e.g., real-time inference) or resource constraints (e.g., FLOPs budgets).

3.2 SECOND-ORDER, INPUT-AWARE SENSITIVITY

For dynamic pruning we score, per input x, the loss sensitivity to removing a component z (a token
activation tℓj(x) or a head output hℓ

k(x)). Consider perturbing the component by ∆z and apply a
second-order Taylor expansion around the converged model:

L(z +∆z) ≈ L(z) + ∇zL⊤∆z + 1
2∆z⊤∇2

zL︸︷︷︸
Hz

∆z.

Substituting ∆z = −z gives

∆Lz(x) ≈ −∇zL⊤z(x) + 1
2 z(x)

⊤Hz(x) z(x).

At convergence ∇zL ≈ 0, leaving only the curvature term:

∆Lz(x) ≈ 1
2 z(x)

⊤Hz(x) z(x). (3)

The loss increase from removing a component is controlled by the curvature along its activation
direction: flatter directions cause little change, while steeper ones are costly to prune.
We therefore define the second-order importance (up to a factor of 2):

Sz(x) = z(x)⊤Hz(x) z(x), z ∈
{
tℓj(x), h

ℓ
k(x)

}
. (4)

Sz measures how much curvature-weighted energy a token or head carries toward the loss; pruning
low-Sz elements discards directions of minimal influence. Both token and head scores are activation-
based and thus input-adaptive.
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Efficient evaluation via HVP. We never formHz explicitly. Using Pearlmutter’s trick,
Hz(x) z(x) =

d

dϵ
∇zL

(
z(x) + ϵz(x)

)∣∣∣∣
ϵ=0

,

so Sz(x) = ⟨Hz(x)z(x), z(x)⟩ is computed with two backprop passes. For robustness we average
over a small calibration batch B:

S̄z = 1
|B|

∑
(x,y)∈B

Sz(x). (5)

This averaging stabilizes scores, ensuring that pruning decisions reflect consistent importance across
inputs rather than noise from a single example.

Safe pruning budget. If we prune a set Z , the total loss increase is additively approximated:
∆L(x;Z) ≈ 1

2

∑
z∈Z

Sz(x).

Enforcing
∑

z∈Z Sz(x) ≤ 2ε ensures ∆L≤ε under the quadratic model.

Hutchinson’s Estimator. The quadratic form in Eq. 4 can be interpreted as a rank-1 trace. Recall
Hutchinson’s identity for any symmetric matrix H:

Tr(H) = Ev∼Rad(±1)

[
v⊤Hv

]
.

If we restrict the trace to the one-dimensional subspace spanned by z(x),

Sz(x) = ∥z(x)∥22 ·
z(x)

∥z(x)∥2

⊤
Hz(x)

z(x)

∥z(x)∥2
,

we obtain the Rayleigh quotient of Hz along z(x). Thus Sz is a principled specialization of
Hutchinson-type estimators with a deterministic probe vector, situating HEART-ViT in a broader
stochastic-estimation framework.

3.3 UNIFIED TOKEN & HEAD SCORING

Token sensitivity. For token tℓj(x) ∈ Rd,

Stℓj
(x) = tℓj(x)

⊤Htℓj
(x) tℓj(x). (6)

Aggregating across layers yields Sagg
tj (x) =

∑
ℓ Stℓj

(x).

Head sensitivity. For head output hℓ
k(x) ∈ Rnℓ×dk , we score its vectorization:

Saℓ
k
(x) = vec

(
hℓ
k(x)

)⊤Hhℓ
k
(x) vec

(
hℓ
k(x)

)
. (7)

Thus tokens and heads share the same curvature-weighted quadratic form, differing only in dimen-
sionality. This symmetry highlights that HEART-ViT unifies representational (tokens) and opera-
tional (heads) pruning under one criterion.

Normalization and ranking. Within each layer ℓ we normalize scores:

Ŝz =
Sz − µℓ

σℓ
, µℓ = mean{Sz}z∈Cℓ

, σℓ = std{Sz}z∈Cℓ
, (8)

where Cℓ is the candidate set. Components are pruned by threshold or percentile.

3.4 DYNAMIC PRUNING POLICY

For input x, HEART-ViT computes {Sz(x)} per layer and applies either hard or soft gating:

Hard selection (inference). Keep top-k by Sz or prune those with Sz < τ :
Mz(x) = I

[
Sz(x) ≥ τ

]
. (9)

Soft gating (fine-tuning). Use a sigmoid gate with annealed γ so Gz approaches a hard mask as:
Gz(x) = σ

(
γ(Ŝz(x)− τ)

)
∈ (0, 1), (10)

Forward uses Gz multiplicatively on tokens and head outputs.

Hard gating guarantees strict sparsity for deployment; soft gating is a differentiable relaxation en-
abling gradient-based fine-tuning. This connects HEART-ViT to continuous relaxations used in
differentiable NAS, while retaining interpretability as second-order loss-aware pruning.

Complexity. Per layer, sensitivity evaluation uses one forward and two backprops for HVP; se-
lection is O(nℓ lognℓ) for nℓ candidates (tokens+heads). Calibration amortizes over many inputs
(|B|≪|D|). Overhead is small relative to the ViT forward, while pruning reduces FLOPs/latency.
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(a) ViT-B/16(ImageNet-1k) (b) DeiT-B/16(ImageNet-1k)

(c) ViT-B/16(ImageNet-100) (d) DeiT-B/16(ImageNet-100)
Figure 2: Accuracy decomposition under symmetric (Sym) and asymmetric (Asym) pruning. (a)–(b) show
results on ImageNet-1K for ViT-B/16 and DeiT-B/16, while (c)–(d) present the corresponding results on
ImageNet-100. Bars indicate pruned retention (bottom) and accuracy recovered by fine-tuning (FT, top);
the dashed line marks the dense baseline; ∆ annotations indicate the accuracy change relative to the base-
line.detailed results has been shown in (Appendix: Table 2 & 3.)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We conduct experiments on ImageNet-1K and ImageNet-100 using ViT-B/16 and DeiT-B/16 back-
bones. HEART-ViT is evaluated under both symmetric and asymmetric pruning ratios, with pre-
and post-fine-tuning results reported. A detailed description of datasets, architectures, training hy-
perparameters, and pruning configurations is provided in Appendix A.1.

4.2 RESULT

Figure 3 - (a)(b) (ImageNet-1k) & 3(b)(c) (ImageNet-100) present the results of symmetric and
asymmetric token & head pruning using HEART-ViT on ViT-B/16 and DeiT-B/16.(detailed results in
Appendix. Table 2 and 3 ) In symmetric pruning, tokens and heads are removed at the same rate (e.g.,
50%/50%), while in asymmetric pruning, they are pruned at different rates (e.g., 20% tokens / 80%
heads). This distinction is important because tokens and heads play different roles in representational
capacity: pruning them uniformly may discard essential information, whereas asymmetric pruning
leverages the higher redundancy of attention heads to achieve better efficiency–accuracy trade-offs.

Our pruning method in ViT-B/16 with ImageNet-100, shows substantial efficiency gains with strong
accuracy recovery after fine-tuning. At 50% symmetric pruning, FLOPs are reduced by half while
final accuracy improves to 91.0% (+1.17% over baseline). Even stronger gains are achieved with
20/80 asymmetric pruning, which delivers 92.21% final accuracy, the best result on this dataset
(+2.38% over baseline). DeiT-B/16 shows similar resilience: 20/20 symmetric pruning achieves
95.18%, matching the dense model, while 20/80 asymmetric pruning slightly improves to 95.0%,
confirming the robustness of distilled supervision under pruning.

Also in ImageNet-1K, the same trends are observed at a larger scale. For ViT-B/16, 20/80 asym-
metric pruning achieves 86.17% final accuracy, outperforming the dense baseline by +4.71%, while
symmetric 50% pruning reduces FLOPs by half and still maintains 82.99% accuracy. For DeiT-
B/16, both strategies surpass baseline at moderate pruning: 20/20 symmetric pruning yields 82.89%
(+3.28% vs. baseline) and 20/80 asymmetric pruning improves further to 83.13% (+3.52% vs. base-
line). Notably, DeiT-B/16 exhibits exceptional recovery under extreme pruning: after 80/20 pruning,
accuracy recovers by +32.8% to reach 70.62%, and after 80/80 pruning, it regains +15.9% to reach
69.75%, even with a 79% FLOPs reduction.
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(a) ViT-B/16 on ImageNet-1K (b) DeiT-B/16 on ImageNet-1K

(c) ViT-B/16 on ImageNet-100 (d) DeiT-B/16 on ImageNet-100
Figure 3: Accuracy vs FLOPs reduction curves for Symmetric and Asymmetric pruning on ImageNet-1K (a–b)
and ImageNet-100 (c–d). Baseline accuracy is shown as dashed lines.

Observations across both ImageNet-1k and ImageNet-100, Fine-tuning shown in figure 2 is essen-
tial for recovery at higher pruning ratios (≥60%), where accuracy drops sharply before adaptation.
Across datasets and backbones, asymmetric pruning consistently outperforms symmetric pruning at
moderate ratios, validating HEART-ViT’s sensitivity-driven approach to pruning tokens and heads
unevenly. DeiT-B/16 demonstrates stronger resilience under extreme pruning than ViT-B/16, sug-
gesting that distilled supervision confers additional robustness to structural sparsification.

Both the tables 2 and 3 and figure 3 together show that HEART-ViT consistently achieves Pareto-
optimal trade-offs in FLOPs, throughput, and accuracy. Symmetric pruning provides a stable base-
line, while asymmetric pruning yields superior performance–efficiency trade-offs by leveraging the
different redundancy levels of tokens and heads. These findings confirm that sensitivity-aware asym-
metric pruning is a principled and scalable strategy for improving the efficiency of Vision Transform-
ers across datasets and architectures.

4.3 LAYERWISE REPRESENTATION ANALYSIS.

We further compare ViT-B/16 and DeiT-B/16 under identical 50% token + 50% head symmetric
pruning to understand how architectural and training differences influence robustness (Fig. 4 for
ViT-B, Fig. 5 for DeiT-B). Across both backbones, CKA similarity decays monotonically with
depth, indicating that pruning perturbs intermediate hidden states most strongly in shallow-to-mid
layers. However, DeiT exhibits lower CKA values overall, reflecting greater representational shifts,
likely due to its stronger distillation-driven supervision which constrains dense features more tightly
and amplifies pruning perturbations.

CLS-token cosine similarity shows a similar trend: ViT’s CLS trajectory diverges smoothly yet
remains tightly coupled with the dense model (>0.992), while DeiT’s CLS cosine drops earlier
and more sharply, suggesting that DeiT reorganizes its global semantic embedding more aggres-
sively under pruning. Residual ratios also highlight a key difference: ViT maintains a smooth
transformation-to-identity tradeoff across depth, with fine-tuning restoring balance in later layers.
DeiT instead shows sharper fluctuations in residual norms, with pruned layers oscillating more be-
tween identity-like and transformation-heavy behavior.

Taken together, these results reveal that ViT’s representations are more stable under structured prun-
ing, while DeiT undergoes stronger representational reshaping. Fine-tuning compensates in both
cases, but the trajectory differs: ViT converges to a nearby solution space, whereas DeiT explores a
more reorganized representational geometry. Extended analyses, including more pruning ratios and
asymmetric settings, are provided in the Appendix.
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(a) CKA similarity across layers. (b) CLS-token cosine similarity. (c) Residual ratio ∥xin∥/∥xout∥.

Figure 4: Layerwise analysis of ViT-B/16 under 50% symmetric pruning (tokens + heads) on ImageNet-1K.
CKA reveals mid-layer representational shifts that are partially recovered after fine-tuning. CLS cosine shows
pruning drives the model toward an alternative semantic trajectory, while residual ratios highlight temporary
suppression of transformations that fine-tuning restores.

(a) CKA similarity across layers. (b) CLS-token cosine similarity. (c) Residual ratio ∥xin∥/∥xout∥.
Figure 5: Layerwise analysis of DeiT-B/16 under 50% symmetric pruning on ImageNet-1K. Compared to
ViT, DeiT shows stronger representational shifts in CKA and CLS similarity, and larger fluctuations in residual
ratios, indicating that its distilled training makes it more sensitive to pruning perturbations.

Figure 6: Jetson Orin AGX latency vs. pruning ratio on ImageNet-1K for ViT-B/16 and DeiT-B/16.
HEART-ViT reduces latency from baseline values of ∼23 ms to ∼13–14 ms, achieving up to 40.6% improve-
ment. Asymmetric pruning occasionally outperforms symmetric pruning, highlighting the benefit of token–
head imbalance.

4.4 EXPERIMENTS ON EDGE DEVICES

To evaluate deployment efficiency, we conducted experiments on a range of NVIDIA Jetson Orin
edge devices with varying computational capabilities (Appendix. Table 7). These include AGX
Orin, Orin NX, and Orin Nano variants, covering GPU core counts from 512 to 2048 and memory
capacities from 4 GB to 32 GB. Due to space constraints, we present detailed results for the AGX
Orin device, while noting that similar trends were consistently observed across the other platforms.

On AGX Orin, HEART-ViT achieves substantial latency savings for both ImageNet-1K (fig. 6)
and ImageNet-100 (fig. 7). Baseline inference latencies of 23 ms are reduced to 13–14 ms at
moderate pruning ratios (40–60%), corresponding to 35–43% improvements. Symmetric pruning
yields smooth, monotonic reductions, while asymmetric pruning reveals sharper drops at selective
configurations (e.g., 40/60 in DeiT-B/16 on ImageNet-1K, 60/40 in ViT-B/16 on ImageNet-100).
These findings validate the dual-view sensitivity principle of HEART-ViT: token pruning drives
bulk savings, while head pruning captures fine-grained redundancy, with asymmetric schedules of-
ten outperforming symmetric ones at equivalent budgets. Also, ViT-B/16 exhibits slightly higher
maximum speedups (up to 43.1% on ImageNet-100) than DeiT-B/16, reflecting its greater redun-
dancy compared to the distillation-optimized DeiT architecture.
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Figure 7: Jetson Orin AGX latency vs. pruning ratio on ImageNet-100 for ViT-B/16 and DeiT-B/16.
HEART-ViT consistently achieves up to 43.1% latency reduction, with symmetric pruning yielding smooth
improvements while asymmetric pruning unlocks sharper drops at selective ratios. Similar efficiency trends
were observed on other Orin devices (Appendix. Table 7).

5 ABLATION STUDY

Our asymmetric pruning results reveal that the efficiency improvements of Vision Transformers are
overwhelmingly determined by the proportion of tokens removed, while the impact of head pruning
is comparatively minor. For example, pruning 40% of tokens and 60% of heads reduces FLOPs
by ∼ 39–40%, closely matching the token ratio. Conversely, pruning 80% of heads but only 20%
of tokens reduces FLOPs by merely ∼ 20%. These observations indicate that FLOPs reduction
consistently tracks the percentage of tokens pruned, highlighting the dominant role of token pruning
in computational efficiency.

To understand this phenomenon, consider the self-attention operation at layer ℓ with nℓ tokens,
hidden dimension d, and Hℓ heads:

hℓ
k(X) = softmax

(
QkK

⊤
k√

dk

)
Vk, Qk = XW ℓ,Q

k , Kk = XW ℓ,K
k , Vk = XW ℓ,V

k , (11)

with the multi-head output
MSAℓ(X) = [hℓ

1(X); . . . ;hℓ
Hℓ

(X)]W ℓ
O. (12)

The dominant cost arises from the quadratic query–key product:
FLOPsℓ ≈ O(Hℓ · n2

ℓ · dk). (13)
Pruning tokens reduces the number of rows and columns in the attention matrix:

nℓ → αnℓ ⇒ FLOPsℓtokens ∼ O(Hℓ · (αnℓ)
2 · dk), (14)

which produces a quadratic reduction in FLOPs. Where, pruning heads only decreases the number
of parallel attention maps:

Hℓ → βHℓ ⇒ FLOPsℓheads ∼ O(βHℓ · n2
ℓ · dk), (15)

which is only a linear reduction. This explains why FLOPs savings empirically align with token
pruning ratios and not head pruning ratios: tokens govern the quadratic term, while heads merely
scale it linearly. Curvature-based sensitivity analysis further reinforces this asymmetry. The impor-
tance of a component is measured as

Sℓ
z(x) = z(x)⊤Hℓ

z(x) z(x), (16)
where z(x) is either a token activation or a head output, and Hℓ

z is the Hessian restricted to that
component. Token activations, especially those from background patches in early layers, often align
with flat curvature directions, yielding small Sℓ

z(x) and making them inexpensive to prune. Head
outputs, however, correspond to specialized functional subspaces (locality, long-range context, se-
mantics) that align with sharper curvature directions, making their removal more costly to accuracy.

Layer-wise dynamics also differ. In early layers, token redundancy is high and many background
tokens can be safely removed, while retaining all heads preserves representational diversity. In mid-
dle layers, token pruning remains effective, but head pruning begins to harm feature aggregation.
In later layers, tokens are already compressed toward the class token, and pruning heads dispro-
portionately damages semantic integration. Thus, token pruning primarily governs computational
efficiency, while head pruning controls representational diversity.

Overall, token pruning dominates head pruning because it reduces the quadratic computational core
of self-attention, exploits the redundancy of background tokens, and directly improves hardware
efficiency. Head pruning, while important for reducing parameter count and balancing accuracy, has
a secondary effect on computation. This explains why asymmetric pruning strategies biased toward
token pruning consistently achieve the best trade-off between efficiency and accuracy.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

Datasets. ImageNet-1K consists of 1.28M training and 50K validation images over 1,000 classes
at 224×224 resolution. We report single-crop Top-1 accuracy on the validation set. ImageNet-100
is a 100-class subset of ImageNet with the same resolution and evaluation protocol; we use the
canonical class list and standard train/val split.

Architectures. We evaluate two backbones: ViT-B/16 (12 layers, 12 heads, patch size 16, hidden
dim 768) and DeiT-B/16 (same macro-architecture, data-efficient training). All models use 224×224
inputs, a class token, learned positional embeddings, and LayerNorm pre/post as in their original
releases.

Methods Compared. Baseline (Dense): the unpruned backbone trained/fine-tuned under our
recipe. HEART-ViT (ours): Hessian-guided dynamic token+head pruning. We evaluate Symmet-
ric ratios (Tokens/Heads = 20/20, 40/40, 50/50, 60/60, 80/80) and Asymmetric ratios (20/80, 40/60,
60/40, 80/20). We report both pre-fine-tuning and post-fine-tuning accuracy.

Training & Fine-Tuning Protocol. Unless stated otherwise, we follow standard ViT/DeiT prac-
tice. Optimizer: AdamW (β1=0.9, β2=0.999), weight decay 0.05. LR schedule: cosine decay with
5-epoch linear warm-up; peak LR 5×10−4 for ViT-B/16 and 3×10−4 for DeiT-B/16 (scaled with
global batch size when applicable). Batching: global batch size 1024 (with gradient accumulation
if needed); mixed precision (AMP). Augmentation: RandAugment, random resized crop to 224,
horizontal flip; label smoothing ε=0.1; Mixup= 0.8 and CutMix= 1.0 during training (disabled for
evaluation). Regularization: DropPath 0.1 for ViT-B/16 and 0.1–0.2 for DeiT-B/16. Initial training:
200 epochs with early exit (patience = 15 epochs), monitoring validation Top-1. Fine-tuning after
pruning: 100 epochs with the same early-exit rule (patience = 15). Hardware: all experiments run
on NVIDIA A100 GPUs.

Dataset Model Pruning Strategy Ratio (Tokens/Heads) Baseline Acc. Pruned Acc. (Before FT) Final Acc. (After FT) FLOPs (G) ∆Acc. Recovered Acc. FLOPs ↓ Throughput ↑

ImageNet-100

ViT-B/16

Symmetric 20% / 20%

89.83

88.91 91.73 13.45 +1.90 +2.82 20.17% +17.45%
40% / 40% 86.99 90.74 10.14 +0.91 +3.75 39.83% +21.96%
50% / 50% 85.83 91.00 8.52 +1.17 +5.17 49.40% +25.15%
60% / 60% 79.32 89.49 6.83 -0.34 +10.17 59.49% +35.71%
80% / 80% 64.68 85.52 3.51 -4.31 +20.84 79.15% +45.51%

Asymmetric 20% / 80% 89.18 92.21 13.45 +2.38 +3.03 20.17% +17.20%
40% / 60% 86.52 90.57 10.14 +0.74 +4.05 39.83% +21.79%
60% / 40% 76.73 87.57 6.83 -2.26 +10.84 59.49% +35.81%
80% / 20% 70.05 86.22 3.51 -3.61 +16.17 79.15% +44.76%

DeiT-B/16

Symmetric 20% / 20%

95.16

94.77 95.18 13.45 +0.02 +0.41 20.17% +16.59%
40% / 40% 91.58 93.54 10.14 -1.62 +1.96 39.83% +20.91%
50% / 50% 92.92 94.49 8.52 -0.67 +1.57 49.40% +23.82%
60% / 60% 88.53 92.77 6.83 -2.39 +4.24 59.49% +33.26%
80% / 80% 71.18 85.52 3.51 -9.64 +14.34 79.15% +42.77%

Asymmetric 20% / 80% 94.25 95.00 13.45 -0.16 +0.75 20.17% +16.64%
40% / 60% 93.11 94.26 10.14 -0.90 +1.15 39.83% +21.21%
60% / 40% 88.41 92.18 6.83 -2.98 +3.77 59.49% +33.80%
80% / 20% 73.55 89.35 3.51 -5.81 +15.80 79.15% +43.13%

Table 2: Symmetric vs Asymmetric pruning on ImageNet-100 for ViT-B/16 and DeiT-B/16. Baseline accuracy
is shown once per model; pruning results are reported before and after fine-tuning (FT). ∆Acc. denotes the
difference between Final and Baseline accuracies; Recovered Acc. denotes the improvement of Final over
Pruned.

LLM Usage: In preparing this manuscript, we only used large language models (LLMs) to assist
with writing flow and polishing the text for clarity and readability. No part of the research design,
methodology, experiments, analysis, or results was generated by or dependent on an LLM; all sci-
entific contributions are solely the work of the authors.
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Algorithm 1 HEART-ViT: Head & Token–Aware Dynamic Pruning

Require: Pretrained ViT fθ, data distribution D, layers ℓ = 1:L with tokens tℓj and heads hℓ
k, keep

policies (pT , pA) or loss budget ε, temperature schedule γ(t)
Ensure: Per-input masks M ℓ

T (x),M
ℓ
A(x) for inference; optional soft gates Gℓ

z(x) for fine-tuning
Phase A: Calibration (one-time or infrequent)

1: Sample a small calibration batch B∼D
2: for ℓ = 1 to L do
3: for all z ∈ {tℓj , hℓ

k} do

4: S̄z ←
1

|B|
∑

(x,y)∈B

⟨Hz(x) z(x), z(x)⟩ ▷ HVP via Pearlmutter; 2 backprops

5: end for
6: µℓ ← mean{S̄z}z∈Cℓ

; σℓ ← std{S̄z}z∈Cℓ

7: end for
8: choose thresholds τ ℓT , τ

ℓ
A by percentiles (pT , pA) or by loss budget with

∑
ℓ εℓ = ε

Phase B: Inference (per-input hard selection)
9: Forward once to cache activations {tℓj(x), hℓ

k(x)}
10: for ℓ = 1 to L do
11: for all z ∈ {tℓj(x), hℓ

k(x)} do
12: Sz(x)← ⟨Hz(x) z(x), z(x)⟩ ; Ŝz(x)←

(
Sz(x)− µℓ

)
/σℓ

13: end for
14: if percentile policy then
15: Keep top-pT tokens and top-pA heads by Sz(x)
16: else if loss-budget policy then
17: Select largest Zℓ(x) s.t.

∑
z∈Zℓ(x) Sz(x) ≤ 2εℓ

18: end if
19: for all z ∈ Cℓ do
20: Mz(x)← I[z ∈ Zℓ(x)]; apply masks: tℓj ←Mtℓj

(x) tℓj ; hℓ
k ←Maℓ

k
(x)hℓ

k

21: end for
22: end for
23: return fθ(x;M)

Phase C: Fine-tuning (optional; soft gates)
24: for training step t = 1, 2, . . . do
25: Sample minibatch B; forward to get activations
26: for ℓ = 1 to L do
27: Compute Sz(x) and Ŝz(x) as above (optionally on a subset)
28: Gz(x)← σ

(
γ(t) · (Ŝz(x)− τ ℓ)

)
▷ soft gate

29: Apply gated forward: tℓj ← Gtℓj
(x) tℓj ; hℓ

k ← Gaℓ
k
(x)hℓ

k

30: end for
31: Backprop, update θ; anneal γ(t)↑ so G→M
32: end for

Dataset Model Pruning Strategy Ratio (Tokens/Heads) Baseline Acc. Pruned Acc. (Before FT) Final Acc. (After FT) FLOPs (G) ∆Acc. Recovered Acc. FLOPs ↓ Throughput ↑

ImageNet-1K ViT-B/16

Symmetric 20% / 20%

81.46

79.14 85.20 13.45 +3.74 +6.06 20.16% +17.86%
40% / 40% 77.66 84.60 10.14 +3.14 +6.94 39.82% +22.53%
50% / 50% 75.30 82.99 8.52 +1.53 +7.69 49.40% +25.19%
60% / 60% 68.72 81.35 6.83 -0.11 +12.63 59.48% +36.01%
80% / 80% 42.17 69.84 3.51 -11.62 +27.67 79.14% +46.14%

Asymmetric 20% / 80% 79.93 86.17 13.45 +4.71 +6.24 20.16% +17.68%
40% / 60% 76.92 84.36 10.14 +2.90 +7.44 39.82% +22.01%
60% / 40% 67.02 80.98 6.83 -0.48 +13.96 59.48% +36.00%
80% / 20% 50.54 75.94 3.51 -5.52 +25.40 79.14% +45.71%

ImageNet-1K DeiT-B/16

Symmetric 20% / 20%

81.8

80.7 85.08 13.45 +3.28 +4.38 20.16% +15.81%
40% / 40% 77.12 84.05 10.14 +2.25 +6.93 39.82% +21.25%
50% / 50% 74.87 83.81 8.52 +2.01 +8.94 49.40% +24.33%
60% / 60% 73.79 81.43 6.83 -0.37 +7.64 59.48% +34.28%
80% / 80% 56.08 71.94 3.51 -9.86 +15.86 79.14% +44.38%

Asymmetric 20% / 80% 80.73 85.32 13.45 +3.52 +4.59 20.16% +16.13%
40% / 60% 76.00 82.45 10.14 +0.65 +6.45 39.82% +21.29%
60% / 40% 65.71 77.92 6.83 -3.88 +12.21 59.48% +34.69%
80% / 20% 40.01 72.81 3.51 -8.99 +32.80 79.14% +43.68%

Table 3: Symmetric vs Asymmetric pruning on ImageNet-1K for ViT-B/16 and DeiT-B/16. Baseline accuracy
is shown once per block; pruning results are reported before and after fine-tuning (FT). ∆Acc. denotes the
difference between Final and Baseline accuracies; Recovered Acc. denotes the improvement of Final over
Pruned.
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Dataset Model Pruning Strategy Ratio (Tokens/Heads) Baseline Lat. (ms) Pruned Lat. (Before FT) Final Lat. (After FT) Latency Improved (%)

ImageNet-Full

ViT-B/16

Symmetric 20% / 20%

23.50

18.78 18.08 23.1%
40% / 40% 14.05 14.40 38.7%
50% / 50% 15.89 16.01 31.9%
60% / 60% 14.79 14.47 38.5%
80% / 80% 14.20 14.28 39.2%

Asymmetric 20% / 80% 18.73 18.59 20.9%
40% / 60% 14.00 13.95 40.6%
60% / 40% 15.59 14.57 38.0%
80% / 20% 16.88 14.45 38.5%

DeiT-B/16

Symmetric 20% / 20%

23.78

18.12 18.11 23.9%
40% / 40% 14.86 15.18 36.2%
50% / 50% 16.20 15.84 33.4%
60% / 60% 15.56 15.44 35.1%
80% / 80% 14.76 15.49 34.9%

Asymmetric 20% / 80% 18.31 18.22 23.4%
40% / 60% 14.45 14.36 39.6%
60% / 40% 15.22 16.20 31.9%
80% / 20% 15.40 14.59 38.7%

Table 4: AGX Orin edge device latency analysis for DeiT-B/16 and ViT-B/16 under Symmetric vs Asymmetric
pruning on ImageNet-1k. Latency improvement is computed as (Baseline − Final)/Baseline × 100. Higher
values indicate larger speedups.

Dataset Model Pruning Strategy Ratio (Tokens/Heads) Baseline Lat. (ms) Pruned Lat. (Before FT) Final Lat. (After FT) Latency Improved (%)

ImageNet-100

DeiT-B/16

Symmetric 20% / 20%

23.05

18.04 18.03 21.8%
40% / 40% 14.06 13.62 40.9%
50% / 50% 17.02 15.82 31.3%
60% / 60% 15.49 14.10 38.8%
80% / 80% 14.73 13.68 40.6%

Asymmetric 20% / 80% 19.38 18.74 18.7%
40% / 60% 14.41 13.59 41.0%
60% / 40% 16.67 14.99 34.9%
80% / 20% 14.84 13.72 40.5%

ViT-B/16

Symmetric 20% / 20%

23.43

18.13 18.07 22.9%
40% / 40% 13.61 13.58 42.0%
50% / 50% 15.21 15.07 35.7%
60% / 60% 14.06 13.34 43.1%
80% / 80% 13.99 13.72 41.4%

Asymmetric 20% / 80% 19.47 18.97 19.1%
40% / 60% 14.04 13.62 41.9%
60% / 40% 14.41 13.53 42.3%
80% / 20% 14.05 13.62 41.9%

Table 5: AGX Orin edge device latency latency analysis for DeiT-B/16 and ViT-B/16 under Symmetric vs
Asymmetric pruning on ImageNet-100. Latency improvement is computed as (Baseline − Final)/Baseline ×
100. Higher values indicate larger speedups.
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756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Method FLOPs (G) Top-1 Acc. (%) Category
ViT-Base/16 Dosovitskiy et al. (2021) 17.6 77.9 Baseline
DeiT-Base/16 Touvron et al. (2021) 17.6 81.8 Baseline
CrossViT-B Chen et al. (2021) 21.2 82.2 SOTA
T2T-ViT-24 Yuan et al. (2021) 14.1 82.3 SOTA
TNT-B Han et al. (2021) 14.1 82.8 SOTA
Swin-B Liu et al. (2021) 15.4 83.3 SOTA
LV-ViT-M Jiang et al. (2021) 12.7 84.0 SOTA
DynamicViT-LV-M/0.8 Rao et al. (2021) 9.6 83.9 SOTA

Our Results (ViT-B/16)
Symmetric Pruning
Sym 20/20 13.45 85.20 Ours
Sym 40/40 10.14 84.60 Ours
Sym 50/50 8.52 82.99 Ours
Sym 60/60 6.83 81.35 Ours
Sym 80/80 3.51 69.84 Ours
Asymmetric Pruning
Asym 20/80 13.45 86.17 Ours
Asym 40/60 10.14 84.36 Ours
Asym 60/40 6.83 80.98 Ours
Asym 80/20 3.51 75.94 Ours

Our Results (DeiT-B/16)
Symmetric Pruning
Sym 20/20 13.45 85.08 Ours
Sym 40/40 10.14 84.05 Ours
Sym 50/50 8.52 83.81 Ours
Sym 60/60 6.83 81.43 Ours
Sym 80/80 3.51 71.94 Ours
Asymmetric Pruning
Asym 20/80 13.45 85.32 Ours
Asym 40/60 10.14 82.45 Ours
Asym 60/40 6.83 77.92 Ours
Asym 80/20 3.51 72.81 Ours

Table 6: Comparison of our pruning results with state-of-the-art (SOTA) vision transformer variants on
ImageNet-1K. We report FLOPs (billions, G) and Top-1 accuracy. Our method achieves superior trade-offs
between accuracy and efficiency in both symmetric (Sym) and asymmetric (Asym) pruning settings.

Device GPU Cores Max GPU Frequency Shared Memory
AGX Orin 1792 930 MHz 32 GB
Orin NX 1024 918 MHz 16 GB
Orin Nano 512 625 MHz 4 GB
AGX Orin Devkit (old version) 2048 1.3 GHz 32 GB
Orin NX 1024 765 MHz 8 GB
Orin Nano 1024 625 MHz 8 GB

Table 7: Specifications of Various Orin Devices
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