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ABSTRACT

Molecular property prediction is one of the fastest-growing applications of deep
learning with critical real-world impacts. Including 3D molecular structure as
input to learned models improves their performance for many molecular tasks.
However, this information is infeasible to compute at the scale required by sev-
eral real-world applications. We propose pre-training a model to reason about
the geometry of molecules given only their 2D molecular graphs. Using methods
from self-supervised learning, we maximize the mutual information between 3D
summary vectors and the representations of a Graph Neural Network (GNN) such
that they contain latent 3D information. During fine-tuning on molecules with un-
known geometry, the GNN still produces implicit 3D information and can use it to
improve downstream tasks. We show that 3D pre-training provides significant im-
provements for a wide range of properties, such as a 22% average MAE reduction
on eight quantum mechanical properties. Moreover, the learned representations
can be effectively transferred between datasets in different molecular spaces.

1 INTRODUCTION

The understanding of molecular and quantum chemistry is a rapidly growing area for deep learning
with models having direct real-world impacts in quantum chemistry (Dral, 2020), protein structure
prediction (Jumper et al., 2021), materials science (Schmidt et al., 2019), and drug discovery (Stokes
et al., 2020). In particular, for the task of molecular property prediction, GNNs have had great
success (Yang et al., 2019).

GNNs operate on the molecular graph by updating each atom’s representation based on the atoms
connected to it via covalent bonds. However, these models reason poorly about other important
interatomic forces that depend on the atoms’ relative positions in space. Previous works showed that
using the atoms’ 3D coordinates in space improves the accuracy of molecular property prediction
(Schütt et al., 2017; Klicpera et al., 2020b; Liu et al., 2021; Klicpera et al., 2021).

However, using classical molecular dynamics simulations to explicitly compute a molecule’s geom-
etry before predicting its properties is computationally intractable for many real-world applications.
Even recent Machine Learning (ML) methods for conformation generation (Xu et al., 2021b; Shi
et al., 2021; Ganea et al., 2021) are still too slow for large-scale applications.

Our Solution: 3D Infomax We pre-train a GNN to encode implicit 3D information in its latent vec-
tors using publicly available molecular structures. A GNN is pre-trained by maximizing the mutual
information (MI) between its embedding of a 2D molecular graph and a representation capturing the
3D information that is produced by a separate network. This way, the GNN learns to produce latent
3D information using only the information given by the 2D molecular graphs. After pre-training,
the weights can be transferred and fine-tuned on molecular datasets where no 3D information is
available. For those molecules, the GNN is still able to produce implicit 3D information that can be
used to inform property predictions.

Several other self-supervised learning (SSL) methods that do not use 3D information have been
proposed and evaluated to pre-train GNNs and obtain better property predictions after fine-tuning
(Hu et al., 2020b; You et al., 2020; Xu et al., 2021a). These often rely on augmentations (such as
removing atoms) that significantly alter the molecules while assuming that their properties do not

1



Under review as a conference paper at ICLR 2022

Figure 1: The considered problem setting and the motivation for our 3D Infomax pre-training.

change. Meanwhile, 3D Infomax pre-training teaches the model to reason about how atoms interact
in space, which is a principled and generalizable form of information.

We analyze our method’s performance by pre-training with multiple 3D datasets before evaluating
on ten quantum mechanical properties and ten datasets with biological, pharmacological, or chem-
ical properties. 3D Infomax improves property predictions by large margins and the learned repre-
sentations are highly generalizable: significant improvements are obtained even when the molecular
space of the pre-training dataset is vastly different (e.g., in size) from the kinds of molecules in
the downstream tasks. While conventional pre-training methods sometimes suffer from negative
transfer (Pan & Yang, 2010), i.e., a decrease in performance, this is not observed for 3D Infomax.

Our main contributions are:

• A 3D pre-training method that enables GNNs to reason about the geometry of molecules
given only their 2D molecular graphs, which improves property predictions.

• Experiments showing that our learned representations are meaningful for various quantum
mechanical, chemical, biological, or pharmacological tasks, without negative transfer.

• Empirical evidence that the embeddings generalize across different molecular spaces.
• An approach to leverage information from multiple molecular conformers that further im-

proves downstream property predictions and an evaluation to what extent this is possible.

2 BACKGROUND

Molecular Conformers We pre-train models to learn 3D information and transfer it to downstream
molecular property prediction tasks. This 3D information is not given by a single set of coordinates.
For a given molecular graph there are multiple conformers, i.e., probable arrangements of the atoms,
which can lead to different chemical properties. It is usual to consider only the conformers of lower
energy since they have a higher probability of naturally occurring.

Several tools exist to compute conformers ranging from methods based on classical force fields to
slower but more accurate molecular dynamics simulations. Methods such as RDKit’s ETKDG algo-
rithm (Landrum, 2016) are fast but in our experiments we find that their less accurate 3D information
does not necessarily improve predictions. The popular metadynamics method CREST (Grimme,
2019) offers a good tradeoff between speed and accuracy but still requires about 6 hours per drug-
like molecule per CPU-core (Axelrod & Gomez-Bombarelli, 2020). This highlights the need to cap-
ture 3D information without explicitly computing structures, especially for drug-discovery screening
datasets comprising of millions or billions of molecules (Gorgulla et al., 2020).
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Symmetries of Molecules A molecule’s conformation does not change if all the atom coordinates
are jointly translated or rotated around a point, i.e., molecules are symmetric with respect to these
two types of transformations which is also called SE(3) symmetry. Note that some molecules (called
chiral) are not invariant to reflections: their properties depend on their chirality. Deep learning
architectures that capture these symmetries are usually more sample efficient, and they generalize to
all symmetric inputs the architecture has been designed for (Bronstein et al., 2021). In our method,
the produced representations of the 3D structure respect these symmetries of molecules.

Scaffold Split The preferred way to evaluate molecular models is to use a scaffold split when gen-
erating the train-test sets, such that the molecules from the test set do not share a scaffold with those
of the training set. This helps to avoid overestimating the generalization power (Yang et al., 2019)
since ML models tend to memorize and overfit these structures. We use the common Bemis-Murcko
scaffold (Bemis & Murcko, 1996) (see Figure 5 in Appendix A). Molecules that share identical
scaffolds are put into the same set, i.e., each scaffold goes into either the train, validation or test set.

Graph Neural Networks We make use of GNNs to predict molecular properties given a molecu-
lar graph. Many GNNs can be described in the framework of Message Passing Neural Networks
(MPNNs) (Gilmer et al., 2017), such as the PNA model (Corso et al., 2020) which we employ.

The aim of MPNNs is to learn a representation of a graph G = (V, E) with vertices V connected
by edges E . They do so by iteratively applying message-passing layers and then combining all ver-
tex representations in a readout function. A message-passing layer first creates messages for each
edge based on the vertices it connects, then each vertex representation is updated by aggregating the
messages of all connected edges and combining them with the previous layer’s representation. The
messages are usually created by multi-layer perceptrons (MLPs) and are aggregated via permuta-
tion invariant functions such as taking their mean, max, or sum. After the message-passing layers,
another permutation invariant function is used as readout to obtain a final graph level representation.

3 RELATED WORK

Molecular property predictions While ours is the first work on pre-training GNNs for molecu-
lar property prediction using 3D information, it heavily draws from the fields of SSL and ML for
molecules. An important milestone for the latter was Gilmer et al. (2017) introducing MPNNs af-
ter which GNNs became popular for quantum chemistry (Brockschmidt, 2020; Tang et al., 2020;
Withnall et al., 2020), drug discovery (Li et al., 2017; Stokes et al., 2020; Torng & Altman, 2019),
and molecular property prediction in general (Coley et al., 2019; Hy et al., 2018; Unke & Meuwly,
2019). The field is well established with easily accessible molecular datasets driving progress (Wu
et al., 2017; Hu et al., 2020a) and rigorous evaluations of MPNNs for property prediction (Yang
et al., 2019) showing the effectiveness of the approach.

While these GNNs have had great successes by operating on the 2D graph, many tasks on molecules
can be improved by additionally using 3D information. A simple approach is to use bond lengths
as edge features (Chen et al., 2020a), but methods that capture more molecular geometry improve
on this such as SchNet (Schütt et al., 2017). Similarly, DimeNet (Klicpera et al., 2020b;a) proposed
extracting more 3D information via bond angles, which further improved quantum mechanical prop-
erty prediction. Spherical Message Passing (SMP) (Liu et al., 2021) included another angular quan-
tity, and GemNet (Klicpera et al., 2021) developed an approach to also capture torsion angles, such
that all relative atom positions are uniquely defined. Equivariant Graph Neural Networks (EGNN)
(Satorras et al., 2021) achieved the same by operating on all pairwise atom distances.

Self-Supervised Learning attempts to find supervision signals in unlabelled data to learn mean-
ingful representations. In particular, contrastive learning (van den Oord et al., 2018; Gutmann &
Hyvärinen, 2010; Belghazi et al., 2018; Hjelm et al., 2019) is a popular class of methods. These learn
representations by comparing the embeddings of similar and dissimilar inputs and have achieved im-
pressive results in computer vision (Chen et al., 2020b; Caron et al., 2020).

Learning from unlabeled data also is a critical challenge in molecular chemistry since datasets are
relatively small due to experimental costs. Several works have explored contrastive learning variants
in the context of molecular graphs for non-quantum molecular properties (Hu et al., 2020b; Wang
et al., 2021; You et al., 2020; 2021; Xu et al., 2021a). The improvements these methods provided in
molecular property prediction are still limited and often fail to generalize.
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4 METHOD

Our goal is a method that produces latent 3D information from a 2D molecular graph and use it for
more accurate molecular property predictions. For this purpose, we propose to pre-train a GNN to
produce latent representations of a molecule’s 3D geometry. Through this pre-training, the network
learns the connection between the 2D information of molecular graphs and their 3D conformers.

After pre-training, we transfer the weights and fine-tune them on property prediction tasks as visu-
alized in Figure 2. The GNN’s produced 3D information can be used to improve predictions. The
following presents our 3D Infomax pre-training before explaining the baselines we compare with.

4.1 3D INFOMAX PRE-TRAINING

Figure 2: We first pre-train a 2D network fa by maximizing the mutual information (MI) between its
representation za of a molecular graph G and a 3D representation zb produced from the molecules’
conformers Rj . In step 2, the weights of fa are transferred and fine-tuned to predict properties.

3D Infomax uses two different models, as visualized in Figure 2. Firstly, the model that should be
pre-trained which we call 2D network fa since its inputs are 2D molecular graphs G = (V, E) with
atoms V and bonds E from which it produces a representation fa(G) = za ∈ Rdz . Secondly, the 3D
network f b which encodes the atoms’ 3D coordinatesR = {rv}v∈V in a 3D representation f b(R) =
zb ∈ Rdz . Our pre-training can also be understood from a knowledge distillation perspective where
the student 2D network learns from the teacher 3D network to produce 3D information.

Contrastive Framework To teach the 2D network fa to produce 3D information from the 2D
graph inputs, we maximize the mutual information between the latent 2D representations za and
3D representations zb. Intuitively, we wish to maximize the agreement between za and zb if they
are derived from the same molecule. For this purpose, we use contrastive learning (visualized in
Figure 3). We consider a batch of N molecular graphs {Gi}i∈{1...N} with their atom coordinates
{Ri}i∈{1...N} from which the networks produce multiple representations zai and zbi .

The first objective of contrastive learning is to maximize the representations’ similarity if they are a
positive pair, meaning that they come from the same molecule (same index i). The second objective
is to enforce dissimilarity between negative pairs zai and zbk where i 6= k, i.e., the 2D and 3D
representations in the batch should be dissimilar if they come from different molecules. These
objectives are captured in the popular NTXent loss (Chen et al., 2020b) and we use a similar loss to
jointly optimize our models:

L = − 1

N

N∑
i=1

log esim(za
i , z

b
i )/τ∑N

k=1
k 6=i

esim(za
i , z

b
k)/τ

 (1)

where sim(za, zb) = za · zb/(‖za‖‖zb‖) is the cosine similarity and τ is a temperature parameter
which can be seen as weight for the most similar negative pair. While different combinations of
contrastive losses and SSL are possible to learn a joint embedding space between 2D and 3D repre-
sentations, we found the above loss to perform best. Other methods (Barlow Twins (Zbontar et al.,
2021), BYOL (Grill et al., 2020), VICReg (Bardes et al., 2021)) are explored in Appendix C.4.
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Figure 3: The single conformer example shows a batch of three molecular graphs as input to the
2D network with the corresponding three conformers as input to the 3D model. During 3D pre-
training, the contrastive loss L enforces high similarity between latent representations that come
from the same molecule (green arrows) while encouraging dissimilarity otherwise (red arrows).
This is depicted for the first molecule, but the same is calculated for the second and third. The
final loss is the average. The multiple conformer example on the right shows two conformers per
molecule c = 2, and the loss is adjusted to treat all of them as positive pairs if they come from the
same molecule and as negative pairs otherwise. Our loss Lmulti3D achieves this.

Multiple Conformers For most molecules, there are multiple low-energy stable conformers. In-
stead of only using the most probable conformer (with the lowest energy), we found that leveraging
structural information from multiple conformers provides significant benefits. To achieve this, we
now consider the c highest probability conformers {Rji}j∈{1...c} of the i-th molecule. If there are
fewer than c conformers for a molecule, the lowest energy conformer is repeated. Our choice for
the following approach is justified by its good trade-off between simplicity and performance in the
comparisons with other possible methods in Appendix C.2.

For every molecule the 3D network now takes all conformers as input and produces their latent
3D representations {zbi,j}j∈{1...c}. The objective is to maximize the similarity between zai and all
conformer representations zbi,j that stem from the same molecule (see Figure 3). As such, we modify
our loss to sum over the similarities of all conformers to obtain the final loss:

Lmulti3D = − 1

N

N∑
i=1

log ∑c
j=1 e

sim(za
i , z

b
i,j)/τ∑N

k=1
k 6=i

∑c
j=1 e

sim(za
i , z

b
k,j)/τ

 . (2)

3D Network As the 2D network is an arbitrary GNN that should be pre-trained for which we choose
Principal Neighborhood Aggregation (PNA) (Corso et al., 2020), the last missing part of our method
is the 3D network. Its purpose is to encode as much 3D information as possible into the vector zb and
it does not have access to the 2D information used by the 2D network such as atom or bond features.
Otherwise, the mutual information could be increased by both networks encoding this information
instead of the desired 3D information.. Our concrete architecture encodes the 3D information given
by the pairwise Euclidean distances of all atoms. This representation uniquely defines all relative
atom positions and is invariant to translation and rotation, as desired, but also to reflection, which
is a disadvantage since molecular properties can change under reflections (chiral molecules). Using
all pairwise distances also means that the method’s complexity is quadratic in the number of atoms,
but this is feasible for drug-like molecules.

The pairwise distances duv between atoms u and v are first mapped to a higher dimensional space
using high-frequency functions. This motivation for this is to enable deep networks to better fit data
with high-frequency variation (Rahaman et al., 2019; Tancik et al., 2020). This scenario is present
in our case with small differences in bond lengths. These bond distances and their small variations
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might be the most important ones assuming that close-by atoms have the most relevant interactions.
As such, we use the following mapping γ : R 7→ R2F+1 with the number of frequencies F set to 4:

γ(duv) = (duv, sin(duv/2
0), cos(duv/2

0), . . . , sin(duv/2
F−1), cos(duv/2

F−1)). (3)

The further components can be seen as an MPNN (Gilmer et al., 2017) operating on the fully con-
nected graph of a molecule with the encoded distances as edge features and a constant learned vector
as node features. We use these initial node representations instead of atom features (as in the 2D
network) such that the mutual information cannot be increased by both networks only encoding
the atom feature information. Instead, 3D information has to be captured to solve the objective.
The message passing layers iteratively encode the 3D information into the node features, which are
pooled to produce the 3D representation zb. The differences to standard MPNNs are detailed in
Appendix A. Instead of the presented architecture, a 3D GNN such as SMP (Liu et al., 2021) op-
erating on learned node embeddings could also be used. We justify choosing our architecture with
experiments in Appendix C.1 that also show the γ mapping’s effectiveness by ablating it.

4.2 PRE-TRAINING BASELINES

Distance Predictor A simpler method to 3D pre-train a GNN instead of 3D Infomax is by directly
predicting all atom distances. To predict the distance between node v and u, we concatenate their
representations hu, hv ∈ Rdh that were produced by the GNN and feed them to an MLP that
produces a single scalar U : R2dh 7→ R. The distance prediction distuv is then given by

distuv = softplus(U(hv ‖ hu) + U(hu ‖ hv)) (4)

where ‖ denotes concatenation and softplus(x) = log(1 + ex). The node representations are con-
catenated in both orders and fed to the MLP to ensure that the function is symmetric. The final loss
to pre-train f is the mean squared error between the predicted and true distances.

Conformer Generation As a second 3D pre-training alternative to 3D Infomax, we pre-train a GNN
by generating molecular conformers via the state-of-the-art (SOTA) method GeoMol (Ganea et al.,
2021). To predict correct 3D conformers, the GNN has to encode 3D information in its hidden layers
which can potentially be transferred and used to inform downstream property predictions.

GraphCL We compare against the conventional augmentation-based pre-training method Graph
Contrastive Learning (GraphCL) (You et al., 2020) with the settings of JOAO (You et al., 2021)
since it outperformed other SSL approaches for multiple molecular tasks. It uses a common self-
supervised objective in which the model has to learn to produce representations that are invariant to
augmentations. We use randomly dropping nodes with a ratio of 0.2 on both branches of the SSL
setup since JOAO found this combination of augmentations to work particularly well for molecules.

5 EXPERIMENTS

Data and Setup For pre-training, we use three datasets of molecules with 3D conformer informa-
tion: QM9 (Ramakrishnan et al., 2014) which contains 134k small molecules (18 atoms on average)
with a single conformer, GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2020) with 304k molecules
and QMugs (Isert et al., 2021) with 665k. GEOM-Drugs and QMug, both consist of larger drug-like
molecules (44.4 and 30.6 atoms on average) with multiple conformers. For fine-tuning we consider
quantum properties on the one side and biological, chemical, and pharmacological properties on
the other side. We predict ten quantum properties of QM9 and GEOM-Drugs (a disjoint half of
the datasets if the other half was used for pre-training), for which we employ a random split. For
non-quantum properties, we use ten Open Graph Benchmark (OGB) (Hu et al., 2020a) datasets with
their standard scaffold splits. We use OGB’s atom and bond featurization for all datasets. Details
for all used data are in Appendix B.1.

We choose PNA (Corso et al., 2020) as the GNN to pre-train due to its simplicity and SOTA per-
formance for molecular tasks. The reported confidence intervals are one standard deviation cal-
culated from six random weight initializations, unless stated otherwise. All baselines we com-
pare with use the same GNN as our 3D Infomax method and all experimental settings are de-
tailed in Appendix B. Code to 3D pre-train a GNN or to reproduce results is available at https:
//anonymous.4open.science/r/3141.
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5.1 QUANTUM MECHANICAL PROPERTIES

We use 3D Infomax to pre-train three different instances of PNA (1) on 50k molecules from QM9
using a single conformer, (2) on 140k of GEOM-Drugs with 5 conformers and, (3) on 620k of
QMugs using 3 conformers. For comparison, we use two different pre-training methods. These are
GraphCL (You et al., 2020) as described in Section 4.2 and pre-training by predicting the Gibbs
free enery of GEOM-Drugs’ pre-training subset (labeled PropPred). All pre-training methods use a
batch size of 500.

After pre-training, the models are fine-tuned on 50k molecules from QM9 (in Table 1) or 140k from
GEOM-Drugs (in Table 2) that have no overlap with the molecules from the pre-training data. On
the same molecules, we also train PNA with random weight initialization (labeled Rand Init) to
compare how much the downstream performance is improved by the different pre-training methods.
Furthermore, we train and test the 3D GNN SMP (Liu et al., 2021) on the same molecules with
3D coordinates generated by RDKit’s ETKDG algorithm, (Landrum, 2016) which can be done in
a fast manner (labeled RDKit SMP). Using conformers generated by the SOTA learned method
GeoMol (Ganea et al., 2021) always performed worse (Appendix C.6). Lastly, we evaluate SMP
using the accurate ground truth 3D conformers of QM9 which were computed with time-consuming
simulations that would be infeasible for many real-world applications. These structures are not
available to the other methods.

Table 1: Mean Absolute Error (MAE) for QM9’s properties. 3D Infomax is tested with three
different pre-training datasets and GraphCL uses a two times larger subset of GEOM-Drugs. True
3D SMP is a 3D GNN using ground truth 3D coordinates (hidden from other methods). Details
on confidence intervals are in Appendix B. Colors indicate improvement (lower MAE) or worse
performance compared to the randomly initialized (Rand Init) model.

Pre-training baselines Our 3D Infomax RDKit True 3D
Target Rand Init GraphCL PropPred QM9 Drugs QMugs SMP SMP

µ 0.4133±0.003 0.3937 0.3975 0.3507 0.3512 0.3668 0.4344 0.0726
α 0.3972±0.014 0.3295 0.3732 0.3268 0.2959 0.2807 0.3020 0.1542
homo 82.10±0.33 79.57 93.11 68.96 70.78 70.77 82.51 56.19
lumo 85.72±1.62 80.81 99.84 69.51 71.38 78.10 80.36 43.58
gap 123.08±3.98 120.08 131.99 101.71 102.59 103.85 114.24 85.10
r2 22.14±0.21 21.84 29.21 17.39 18.96 18.00 22.63 1.51
ZPVE 15.08±2.83 12.39 11.17 7.966 9.677 12.06 5.18 2.69
cv 0.1670±0.004 0.1422 0.1795 0.1306 0.1409 0.1208 0.1419 0.0498

Table 1 shows that 3D Infomax pre-training leads to large improvements over the randomly initial-
ized baseline and over GraphCL with all three pre-training datasets. After 3D pre-training on one
half of QM9, the average decrease in MAE is 22%. Comparing 3D Infomax on GEOM-Drugs with
GraphCL shows that even though the latter is pre-trained on two times as many molecules from the
same dataset, 3D pre-training is always better by a large margin.

Table 2: The MAE for GEOM-Drugs’
properties. 3D Infomax compared with
GraphCL and no pre-training.

Method Gibbs 〈E〉
Rand Init .2035 .1026
GraphCL .1941 .0995
3D Infomax QM9 .1852 .0968
3D Infomax Drugs .1811 .0952
3D Infomax QMugs .1835 .0965

Pre-training with the disjoint half of QM9 performs
best since it shares the molecular space of the test set.
Nevertheless, the learned representations also gener-
alize well: pre-training on GEOM-Drugs and QMugs
leads to improvements of 19% and 18% respectively,
even though QM9 contains much smaller molecules
with on average 18 atoms compared to the 44.4 atoms
for the drug-like molecules of GEOM-Drugs.

While 3D Infomax yields large improvements, the
MAE is still substantially higher than that of SMP,
which uses the 3D information explicitly. One reason for this is likely that QM9’s properties are
conformer-specific. There might be a maximum accuracy that can be achieved if only the molecule
is known and not for which conformer the property should be predicted. Nevertheless, this perfor-
mance gap suggests that there is still room for improvement.
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Table 2 further confirms that 3D Infomax substantially improves quantum property predictions and
generalizes out-of-distribution. Our method outperforms GraphCL, even though GraphCL also sees
the fine-tuning molecules during pre-training. Moreover, we observe strong generalization when
pre-training with QM9 and fine-tuning on GEOM-Drugs. In this case, the pre-training data only
contains the elements C, H, N, O, and F while the target data contains eleven additional elements
that are unseen during pre-training.

Such consistent and out-of-distribution improvements can be explained by the type of information
captured with 3D Infomax. Learning to reason about molecular geometry and its impact does not
depend on the data’s molecular space and therefore it is not necessary to have a high similarity
between the molecules during pre-training and fine-tuning.

Another advantage of 3D Infomax is its comparably fast convergence. Pre-training on 620k
molecules of QMugs with 3 conformers takes 12 hours, compared to 71 hours for GraphCL on
280k molecules of GEOM-Drugs.

5.2 PREDICTIVE 3D PRE-TRAINING

Table 3: Comparison of 3D Infomax against predictive 3D pre-training baselines. Shown is the
MAE for predicting QM9’s properties. Colors indicate improvement (lower MAE) or worse perfor-
mance compared to the randomly initialized (Rand Init) model.

Method µ α homo lumo gap r2 ZPVE cv

Rand Init 0.4148 0.3348 82.10 87.74 120.94 22.14 15.08 0.1670
Dist-pred 0.4626 0.3570 80.58 84.93 116.21 29.23 25.91 0.1587
Conf-gen 0.3940 0.4219 79.75 79.16 110.72 20.86 21.10 0.1555
3D Infomax 0.3512 0.2959 70.78 71.38 102.59 18.96 9.677 0.1409

3D pre-training by directly predicting 3D quantities is simpler than 3D Infomax and would be prefer-
able in case of similar gains. Therefore, we compare with the baselines in Section 4.2 using the same
140k molecules of GEOM-Drugs for all 3D pre-training methods. Dist-pred refers to predicting all
atom distances of the highest probability conformer and Conf-gen means pre-training by predicting
up to 10 conformers. Table 3 shows that 3D Infomax pre-training is always superior to the predictive
baselines and is the only method to not suffer from negative transfer (Pan & Yang, 2010).

5.3 NON-QUANTUM PROPERTIES

Table 4: Comparison of 3D pre-training baselines and GraphCL against 3D Infomax on various
OGB datasets. Shown is either the Root Mean Squared Error (RMSE) (lower is better) or the area
under the ROC-curve (ROC-AUC) (higher is better). Colors indicate improvement, worse perfor-
mance, or no significant change compared to the randomly initialized (Rand Init) model.

Dataset Metric Rand Init Dist-pred Conf-gen GraphCL 3D Infomax

esol RMSE ↓ 0.947±0.038 0.986±0.025 0.867±0.045 0.959±0.047 0.894±0.028

lipo RMSE ↓ 0.739±0.009 0.718±0.021 0.757±0.035 0.714±0.011 0.695±0.012

freesolv RMSE ↓ 2.233±0.261 2.486±0.222 2.428±0.155 3.744±0.292 2.337±0.227

bace ROC-AUC ↑ 78.13±1.30 76.51±1.95 80.02±1.58 77.18±4.01 79.42±1.94

bbbp ROC-AUC ↑ 68.27±1.98 66.06± 1.84 66.16±2.24 71.06±2.00 69.10±1.07

tox21 ROC-AUC ↑ 73.88±0.64 73.87±0.43 75.24±1.00 78.92±0.61 74.46±0.74

toxcast ROC-AUC ↑ 63.62±0.48 61.58±0.58 64.74±1.20 64.95±0.31 64.41±0.88

clintox ROC-AUC ↑ 58.98±5.40 55.77±5.86 64.27±5.22 51.07±5.52 59.43±3.21

sider ROC-AUC ↑ 55.95±3.27 57.13±1.89 56.34±4.20 57.32±5.00 53.37±3.34

hiv ROC-AUC ↑ 77.06±3.16 75.66±1.26 76.57±1.39 76.06±1.06 76.08±1.33

In the previous sections, we found that 3D Infomax yields large improvements for predicting quan-
tum properties. For non-quantum properties, there is less empirical evidence that 3D information
improves prediction accuracy. Nevertheless, for tasks such as binding prediction in the bace dataset,
we would expect it to be helpful, and we compare different methods pre-trained with GEOM-Drugs.

In Table 4, we find that 3D Infomax improved performance for 4 out of 10 OGB datasets. In contrast
to the results for quantum mechanical property predictions (Section 5.1), it is not always superior to
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GraphCL and Conf-gen. However, 3D Infomax never decreases performance which can be valuable
in practice and make the method worth employing for non-quantum properties as well.

When investigating for which tasks 3D Infomax is useful, we see that abstract tasks such as pre-
dicting clinical test outcomes (clintox) benefit less. The most significant improvements are rather
possible for tasks like predicting solubility and lipophilicity in esol and lipo. These are more di-
rectly related to molecular mechanics and a molecule’s intrinsic properties (e.g., the dipole mo-
ment/polarity is important for predicting lipophilicity). They do not depend on how a molecule will
interact with others to result in, e.g., different effects on patients. For such tasks, Conf-gen often
leads to significant improvements, providing further evidence for the value of 3D pre-training.

Additionally, for datasets like bace with its binding prediction task where 3D information should be
valuable, the improvements are only modest. This could suggest that our method does not capture
all of the 3D information that is relevant for predicting protein binding, and there is still room for
improvement. Another explanation is that a molecule’s geometry is less helpful for bace since the
geometry of the protein and the binding pocket the molecule has to fit into are not known.

5.4 NUMBER OF CONFORMERS AND PRE-TRAINING MOLECULES

Figure 4: The left plot shows the MAE for the QM9’s homo and GEOM-Drugs’ Gibbs property
when varying the number of GEOM-Drugs’ conformers used during pre-training. The right plot
depicts the MAE when using different numbers of molecules of GEOM-Drugs during pre-training.

Figure 4’s left plot highlights the benefit of using more than a single conformer. However, the
marginal gain reduces as higher energy conformers are added and beyond a certain point (around
three conformers), the reduced focus on the most likely conformers worsens the downstream perfor-
mance. This is in line with the observation that, on average, three conformers are enough to cover
70% of the cumulative Boltzmann weight for GEOM-Drugs. Additionally, experiments in Appendix
C.2 show that using multiple conformers is essential when pre-training with QMugs: the MAE for
QM9’s homo property is 82.57 with a single conformer while it improves to 70.77 when using three.

In the right plot of Figure 4 we can observe the performance improving as the size of the pre-training
dataset increases. However, the returns are diminishing, and we cannot claim that even larger pre-
training datasets are likely to drastically improve performance.

6 CONCLUSION

We presented a pre-training strategy, 3D Infomax, that teaches a GNN to produce latent 3D and
quantum information from 2D molecular graphs. This can later be used during fine-tuning to im-
prove molecular property predictions while retaining the inference speed of a standard GNN op-
erating on 2D molecular graphs. We found consistently large improvements (∼22%) for quantum
properties, overshadowing the gains possible with conventional SSL methods. The embedded 3D
knowledge can be transferred across highly different types of molecules (e.g., from molecules with
an average of 18 atoms to drug-like molecules with 44.4 atoms) since the representations capture a
principled form of information that is known to be useful for molecular tasks. Similarly, we demon-
strated that learned embeddings are transferable across different physical, biological, and pharma-
ceutical tasks. Lastly, we observed that using multiple molecular conformers during pre-training
provides valuable additional information to further improve downstream property predictions.

9
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7 ETHICS STATEMENT

We see the most important application and the largest possible positive societal impact of our method
in the domain of drug discovery. Our 3D Infomax pre-training method improves molecular property
predictions with implicit 3D information while being fast at inference. This means that our approach
can be used when predicting the properties of vast amounts of molecules to identify potential drug
candidates and in large-scale virtual screening. Applications to materials science could also help
in developing new materials for energy storage or energy generation (e.g., solar panels), which are
crucial for transitioning to clean energy and preventing climate change.

We believe the greatest possible risks to be side effects such as practitioners blindly trusting molecu-
lar property predictions of learned models. Research on explainability of GNN’s predictions would
be crucial for solving this problem. Additional possible risks come from malicious applications of
molecular property predictions, such as developing chemical or biological weapons.

8 REPRODUCIBILITY STATEMENT

All code to reproduce our results is available at https://anonymous.4open.science/r/
3141. This repository also provides an explanation for running the experiments. Moreover, we
detail our hyperparameter search spaces and final parameter settings in Appendix B.3 for all our
used architectures and baselines. Furthermore, Appendix B.1 provides the exact datasets we use
and their availability with guides for downloading them in our repository. Additionally, there are
additional clarifying explanations for the exact architecture of the 3D network in Appendix A. Lastly,
we state the seeds which we use for the different runs in our repository as well as Appendix B and
completely specify our used hard- and software in Appendix B.5.
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A FURTHER EXPLANATIONS

3D Network Details The l-th layer of the 3D network takes two sets as input. First, n2 − n edge
representations {dluv ∈ Rdd | u, v ∈ V ∧ u 6= v} (the edges of a complete graph without self-
loops). In the first layer they are given by the encoded distances fed through an initial feed-forward
network Uinit : R2F+1 7→ Rdd which projects them to the hidden dimension of the edges d0uv =
Uinit(γ(duv)). The second input is a set of n atom representations {hl1, . . . hln} with dimensionality
Rdh . In the first layer, the atom representations are all set to the same learned vector that is initialized
with a standard normal. With ‖ meaning concatenation, every layer updates the edge and atom
representations and iteratively encodes 3D information into them as follows:

muv = Uedge([h
l
u ‖ hlv ‖ dluv]) (5)

dl+1
uv = dluv +muv (6)

hl+1
u = Uh([hu ‖

n∑
v=1
v 6=u

muv ∗ σ(Usoftedge(muv)]). (7)

The layer is parameterized by three MLPs where the first one updates the edges Uedge : R2dh+dd 7→
Rdd . The second one updates the atom representations Uh : Rdh+dd 7→ Rdh . The third one
Usoftedge : Rdd 7→ R is followed by the logistic sigmoid function to create a value between 0
and 1 that can be seen as a soft edge weight telling us how probable an edge is for each message
muv as it is done by Satorras et al. (2021).

To produce the final 3D representation zb, all atom representations are aggregated by concatenat-
ing their mean, their maximum, and their standard deviation and feeding this through a final feed-
forward network U : R3dh 7→ Rdz .

B EXPERIMENTAL DETAILS

B.1 DATA DETAILS

We use three datasets containing 3D information for pre-training with diversity in molecule size and
the number of molecules, as can be seen in Table 5. The pre-training datasets are:
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Figure 5: Depiction of two groups of molecules where all the molecules in the top row have the same
Bemis-Murcko scaffold (Bemis & Murcko, 1996) which is different from the scaffold to which the
two molecules in the bottom row belong. We can easily obtain the scaffold of a molecule using
RDKit (Landrum, 2016).

1. QM91 (Ramakrishnan et al., 2014) contains 134k stable small organic molecules of 5 ele-
ments (CHONF). Every molecule has the 3D coordinates of one low-energy conformer and
is annotated with 12 quantum mechanical properties as regression targets. The molecules
are considered very small, with at most 9 heavy atoms.

2. GEOM-Drugs2 (Axelrod & Gomez-Bombarelli, 2020) consists of 304k realistically-sized
biologically and pharmacologically relevant molecules of 16 elements, annotated with mul-
tiple 3D conformers, the ensemble Gibbs free energy, and the ensemble energy as regres-
sion targets. For the average molecule, 70% of the Boltzmann weight is captured by just
three conformers as can be seen in Figure 6a where we also provide a histogram for the
number of molecules that have a certain amount of conformers in Figure 6b. The conform-
ers are generated using CREST (Grimme, 2019).

3. QMugs3 (Isert et al., 2021) has 665k drug-like molecules with three diverse conformers
each and multiple conformer specific quantum mechanical properties as regression tasks.
The conformers are generated using CREST (Grimme, 2019).

For fine-tuning, we use a variety of datasets that cover a wide range of domains and applications.
The molecular properties are relevant for quantum mechanics, physical chemistry, biophysics, and
physiology such that we can obtain a good estimate of how valuable our 3D pre-training is for each
domain. For quantum mechanical properties, which are often specific to a conformer, it is clear that
3D information is important and there has been a lot of evidence that learned methods highly benefit
from its use (Klicpera et al., 2020b;a; Liu et al., 2021; Schütt et al., 2017). For these properties, the
interest is in how much our method can leverage this information and transfer it to molecules where
no 3D geometry is available.

Meanwhile, for biological or physiological properties such as blood-brain barrier penetration, it is
not as clear if improvements from 3D information are to be expected. As such, this question needs
to be answered next to how much of the benefits 3D pre-training recovers. For this purpose, we use
the following molecular graph datasets, which are mainly taken from MoleculeNet (Wu et al., 2017)
and we use the scaffold splits4 with an 80/10/10 split ratio provided by OGB Hu et al. (2020a). The
fine-tuning datasets are:

1. QM9 and GEOM-Drugs: On these 3D datasets we also fine-tune and evaluate the quan-
tum mechanical properties of one half of the datasets with a random split. This is done after
either pre-training on another 3D dataset (generalization), or after pre-training on the other
half of the same dataset (in distribution).

1https://github.com/klicperajo/dimenet/blob/master/data/qm9_eV.npz
2https://github.com/learningmatter-mit/geom
3https://www.research-collection.ethz.ch/handle/20.500.11850/482129
4https://ogb.stanford.edu/docs/graphprop
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2. ESOL: 1128 common organic small molecules with water solubility data (log solubility in
mols per liter).

3. Lipo: Experimental data for the octanol/water distribution coefficient of 4200 molecules.
4. FreeSolv: The hydration free energy of 642 molecules in water.
5. HIV: 41k molecules with binary labels for HIV virus replication inhibition.
6. BACE: Binary labels of binding results for inhibitors of human β-secretase 1 for 1512

molecules.
7. BBBP: 2039 molecules with binary labels for blood-brain barrier penetration.
8. Tox21: 7831 molecules with binary labels of their toxic for 12 different targets.
9. ToxCast: 8576 molecules with binary labels of toxicity experiment outcomes with 617

targets.
10. SIDER: 1427 approved drugs with 27 different side effect groups and the task is to predict

whether the drug is in the side effect group.
11. ClinTox: 1477 drugs with two binary annotations where the first is to predict toxicity in

clinical trials and the second is the FDA approval status.

The reason why muv and pcba are the only datasets from the OGB benchmark suite which we omit
is their larger size.

Table 5: Statistics of the used datasets. In the upper section are datasets with 3D information,
which we use for pre-training, and the datasets in the bottom section do not contain additional 3D
annotations.

Dataset #Molecules Avg. #Atoms Avg. #Bonds split

QM9 130 831 18.0 18.6 random
GEOM-Drugs 304 293 44.4 46.4 random
QMugs 665 911 30.6 33.4 random
esol 1128 13.3 13.7 scaffold
lipo 4200 27.0 29.5 scaffold
freesolv 642 8.7 8.4 scaffold
bace 1512 34.1 36.9 scaffold
bbbp 2039 24.1 26.0 scaffold
hiv 41 127 25.5 27.5 scaffold
tox21 7831 18.6 19.3 scaffold
toxcast 8576 18.8 19.3 scaffold
clintox 1477 26.2 27.9 scaffold
sider 1427 33.6 35.4 scaffold

B.2 UNITS AND MEANING OF QUANTUM PROPERTIES

For the GEOM-Drugs dataset, all reported numbers have the unit kcal/mol, Gibbs refers to the
ensemble Gibbs free energy, and 〈E〉 to the ensemble energy.

Table 6: Units and description of quantum mechanical properties of the QM9 dataset.

Property Unit Description

µ Debye Dipole moment
α Bohr3 Isotropic polarizability
homo meV Energy of Highest occupied molecular orbital (HOMO)
lumo meV Energy of Lowest occupied molecular orbital (LUMO)
gap meV Gap, difference between LUMO and HOMO
r2 Bohr2 Electronic spatial extent
ZPV E meV Zero point vibrational energy
cv

cal
molK Heat capacity at 298.15 K
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(a) (b)

Figure 6: a) The average number of conformers necessary to cover a certain amount of Boltzmann
weight in GEOM-Drugs. For a given amount of cumulative Boltzmann weight on the horizontal
axis, the vertical axis shows the average number of conformers necessary to pass that threshold. b)
Histogram of how many molecules there are in GEOM-Drugs with a certain amount of conformers.
The histogram is created for 1000 molecules of GEOM-Drugs.

B.3 PARAMETER DETAILS

The hyperparameters for SMP are taken from the official repository5 where Liu et al. (2021) provide
their code, and we predict gap even though it could be calculated as |homo− lumo|. The parameter
search space and final parameters for the PNA architecture are specified in Table 7 and those of the
3D network in Table 8.

Pre-training: We use Adam with a start learning rate of 8×10−5 and a batch size of 500. The learn-
ing rate schedule during pre-training starts with 700 optimization steps of linear warmup followed
by the schedule given by the ReduceLROnPlateau scheduler by PyTorch6 with reduction parameter
0.6, patience 25, and a cooldown of 20.

Fine-tuning quantum mechanical properties: We use Adam with a start learning rate of 7×10−5,
weight decay 1 × 10−11 and a batch size of 128. For the learning rate schedule, we first perform
warmup as follows. We consider three different sets of learnable parameters: (1) the batch norm
parameters, (2) all newly initialized parameters that were not transferred, and (3) all parameters. For
these sets, we increase the learning rate in this order from 0 to the start learning rate with linear
interpolation. For parameter group one, we warm up for 700 steps, 700 steps for group 2, and 350
steps for group 3. After that we use the schedule given by the ReduceLROnPlateau with reduction
parameter 0.5, patience 25, and a cooldown of 20.

Fine-tuning non-quantum properties: We use Adam with a start learning rate of 1 × 10−3 and a
batch size of 32. The learning rate schedule is the same as for the quantum mechanical properties.

The experiment on the non-quantum properties has different hyperparameters for PNA since the
smaller datasets are easily overfitted on with the large architecture we use for the quantum mechan-
ical properties. A smaller PNA yields better performance with the random initialization baseline.
Therefore the PNA in these experiments has a hidden dimension of 50 and 3 message passing layers
as propagation depth. Apart from that, it is the same as the PNA described in Table 7.

5https://github.com/divelab/DIG
6https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

ReduceLROnPlateau.html
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Table 7: Search space for the 2D network PNA through which we searched to obtain a strong
baseline performance on the energy of the highest occupied molecular orbital (homo) property of
the QM9 dataset. The parameters were tuned in the order in which they are listed in this table from
top to bottom. After this was completed for all parameters, we performed a second round of tuning
for a subset of them. The final parameters are marked in bold.

Parameter Search Space

propagation depth [4, 5, 6 ,7]
hidden dimension [40, 50, 75, 90, 100, 150, 200 ,300]
message MLP layers [1, 2, 3]
update MLP layers [1, 2, 3]

aggregators [mean, max, min, std, sum], [mean, max, min], [mean, max, sum],
[mean, max, min, std], [max, sum], [sum]

scalers [identity], [identity, amplification, attenuation]
readout aggregators [mean], [sum], [mean, max, sum], [mean, max, min, sum]
dropout [0, 0.05, 0.1, 0.2]
batchnorm after MLPs True/False
batchnorm in MLPs True/False
readout MLP layers [1, 2, 3]
batchnorm momentum [0.1, 0.9, 0.93]

Table 8: Search space for the 3D network Net3D through which we searched to obtain a strong
baseline performance on the homo property of the QM9 dataset and we considered the size of the
network where parameters leading to less memory use are preferred. The parameters were tuned in
the order in which they are listed in this table from top to bottom. After this was completed for all
parameters, we performed a second round of tuning for a subset of them. The final parameters are
marked in bold.

Parameter Search Space

propagation depth [1, 3, 4, 5]
hidden dimension [10, 20, 40, 60, 80, 100]
F used in γ : R 7→ R2F+1 [0, 3, 4, 8, 10, 50]
message MLP layers [1, 2, 3]
update MLP layers [1, 2, 3]
readout aggregators [mean], [sum], [mean, max, min], [mean, max, min, sum]
dropout [0, 0.05, 0.1, 0.2, 0.5]
batchnorm after MLPs True/False
readout MLP layers [1, 2, 3]
batchnorm momentum [0.1, 0.9, 0.93]
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B.4 CONFIDENCE INTERVAL DETAILS

All the specified confidence intervals in our work are standard deviations calculated from different
weight initializations using the seeds [1, 2, 3, 4, 5, 6] or [1, 2, 3, 4]. The following tables provide
additional confidence intervals for the results in the main text.

Table 9: Additional confidence intervals of our method in Table 1. All standard deviations are
calculated from 4 seeds except for the homo property where 6 are used.

Our 3D Infomax
Target Rand Init QM9 Drugs QMugs

µ 0.4133±0.003 0.3507±0.005 0.3512±0.010 0.3668±0.004
α 0.3972±0.014 0.3268±0.006 0.2959±0.009 0.2807±0.012
homo 82.10±0.33 68.96±0.32 70.78±0.82 70.77±0.74
lumo 85.72±1.62 69.51±0.54 71.38±0.74 78.10±0.69
gap 123.08±3.98 101.71±2.03 102.59±3.27 103.85±1.92
r2 22.14±0.21 17.39±0.94 18.96±0.69 18.00±0.40
ZPVE 15.08±2.83 7.966±1.87 9.677±1.29 12.06±2.40
cv 0.1670±0.004 0.1306±0.009 0.1409±0.016 0.1208±0.008

Table 10: Additional confidence intervals for Table 2.

Method Gibbs 〈E〉
Rand Init .2035± 0.0011 .1026± 0.0017
GraphCL .1941 .0995
3D Infomax QM9 .1852 .0968
3D Infomax Drugs .1811 .0952
3D Infomax QMugs .1835 .0965

Table 11: Additional confidence intervals for Table 3.

Method µ α homo lumo gap r2 ZPVE cv

Rand Init ±0.003 ±0.014 ±0.33 ±1.62 ±3.98 ±0.21 ±2.83 ±0.004
3D Infomax ±0.010 ±0.009 ±0.82 ±0.74 ±3.27 ±0.69 ±1.29 ±0.016

B.5 IMPLEMENTATION

Code to 3D pre-train a GNN or to reproduce results is available at https://anonymous.
4open.science/r/3141. All experiments were implemented in PyTorch (Paszke et al., 2017)
using the deep learning libraries for processing graphs Pytorch Geometric (Fey & Lenssen, 2019)
and Deep Graph Library (Wang et al., 2019). The code we use for SMP (Liu et al., 2021) is under
the GNU General Public License v3.0 and we use their implementation after discussing it with the
first author of the paper and under the consideration that their project welcomed our contributions to
their library.

The experiments were conducted on two different machines while the same system was always used
in direct comparisons. The first machine has an AMD Ryzen 1700 CPU @ 3.70Ghz, 16GB of RAM,
and an Nvidia GTX 1060 GPU with 6GB vRAM. The second system contains two Intel Xeon Gold
6248 CPUs @ 2.50GHz each with 20/40 cores, 400GB of RAM, and four Quadro RTX 8000 GPUs
with 46GB vRAM of which only a single one was used for each experiment. All mentions and of
training time refer to the second system.
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Table 12: Comparison of 3D networks. The MAE of the homo property pre-training and fine-tuning
on different halves of QM9. Net3D w/o γ refers to dropping the distance encoding of Net3D. Net3D
achieves the best MAE.

Method QM9 MAE

Rand Init 82.10±0.33

SMP 72.37
EGNN 70.46
Net3D w/o γ 70.34
Net3D 68.96±0.32

C ADDITIONAL RESULTS

C.1 DIFFERENT 3D NETWORKS AND ABLATION

In this section, we justify the design of our 3D network, which we call Net3D in this comparison. In
Table 12 we compare Net3D with different alternative 3D networks, which are the 3D GNNs SMP
and EGNN operating on learned node embeddings similar to Net3D. Additionally, we ablate the use
of our γ function that maps the pairwise distances to a higher dimensional space since it would be an
unnecessary complication if it provides no benefit. We call it Net3D w/o γ if Net3D directly operates
on the pairwise distances.

In Table 12 we can observe that Net3D yields the best downstream performance and that using
our γ function is a valuable component of it. Possibly EGNN would benefit similarly from this
encoding. SMP’s downstream performance is the worst which could be expected since the 3D input
representation which it uses does not uniquely define all the relative positions in a molecule.

We note that SMP is able to distinguish chiral molecules, unlike the other 3D networks, but this
advantage cannot be evaluated with our experiments on quantum mechanical properties. Chirality
only becomes relevant when considering the interactions between molecules, and in these situations,
SMP might be able to leverage its advantage such that our evaluation could be criticized as not
entirely fair. Additionally, SMP has much lower memory requirements since it does not suffer from
the quadratic complexity of EGNN and Net3D in the molecule size. Nevertheless, Net3D performs
the best, and for drug-like molecules, the quadratic complexity is not problematic.

C.2 DIFFERENT METHODS FOR MULTIPLE CONFORMERS

We test three main approaches and variations of them for incorporating the 3D information of mul-
tiple conformers to justify our choice in the main text. The most straightforward one is conformer
sampling. We use one of the single conformer setups, but when sampling the batch, we additionally
sample j ∈ {1 . . . ci} and use the single conformer Rji . The probability of sampling a conformer is
either distributed uniformly (so 1/ci is the probability for each j) or given by the Boltzmann weight
of each conformer.

multi3D is the approach from the main text where we include multiple conformers as additional
positive pairs in contrastive learning. For each molecule (Gi, {Rji}j∈{1...ci}) we choose the c low-
est energy conformers to have a fixed number of them. If there are fewer than c conformers for
a molecule (ci < c), then the lowest energy conformer is repeated. For every molecule the 3D
network now takes all c conformers {Rji}j∈{1...c} as input and produces their latent 3D represen-
tations {zbi,j}j∈{1...c} which we can see as additional positive samples. In our contrastive setting,
we, therefore, want the similarity between zai and all conformer representations that come from the
same molecule zbi,j to be high. As such, we modify our loss to obtain:

Lmulti3D = − 1

N

N∑
i=1

log ∑c
j=1 e

simcos(z
a
i , z

b
i,j)/τ∑N

k=1
k 6=i

∑c
j=1 e

simcos(za
i , z

b
k,j)/τ

 . (8)
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One concern with this formulation is the following. Let us consider a single molecule. The objective
of high similarity between the many 3D representations and the single 2D representation might be
easier to solve through encoding the same 2D information in the 3D representations instead of cap-
turing the 3D information of all conformers in the single 2D representation. The 2D network would
therefore not learn to produce 3D information from its 2D inputs because the mutual information
could be maximized through encoded 2D information.

To address this problem, multi3D+2D is our third approach. The 2D network is now modified to
produce c many latent 2D representations fa(Gi) = {zai,j}j∈{1...c} which are compared to all 3D
representations of the same molecule in a similarity function sim. We simply use this similarity
in the loss instead of the cosine similarity. Intuitively, the 2D network now has to produce an
embedding for each 3D conformer.

One way to define such a similarity between two same-sized sets of vectors is to use the sum of all
pairwise cosine similarities (for brevity we drop the subscript and only write {zai,j} to mean the set
of all representations corresponding to the i-th molecule):

simall({zai,j}, {zbi,j}) =
c∑
j=1

c∑
k=1

simcos(z
a
i,j , z

b
i,k) (9)

More principled would be to find the optimal transport matching with the highest cosine similar-
ity, such that one 2D representation always corresponds to one 3D representation. However, this
approach was not computationally feasible with the batch sizes we use in contrastive learning. We
instead opt for an upper bound on the maximum similarity matching. For every 3D representation,
we choose the 2D representation that has the highest similarity. This way, one 2D representation
could be associated with multiple 3D embeddings, and we no longer have a mass preserving match-
ing:

simmax({zai,j}, {zbi,j}) =
c∑

k=1

max
j∈{1...c}

simcos(z
a
i,j , z

b
i,k). (10)

Beyond these similarity measures, we explore additional ones based on the inverse of different
distance functions and asymmetric metrics such as the maximum mean discrepancy (Gretton et al.,
2012) or the KL- and JS-Divergence when interpreting the conformer representations as samples
from a normal distribution.

Results We evaluate which of the different approaches best leverage the additional conformer’s
information to justify our choice for multi3D in the main text. Another hypothesis we wish to test
is that for smaller molecules such as those in QM9, the ability to make predictions informed by
multiple conformers is not as important as for larger drug-like molecules. The reasoning is that a
single conformer takes most of the Boltzmann weight for QM9’s molecules due to the fewer degrees
of freedom.

We test conformer sampling, multi3D, and multi3D+2D when pre-training on either QMugs or one
half of GEOM-Drugs and fine-tuning on QM9 or the other half of GEOM-Drugs. In QMugs we have
three diverse conformers available for each molecule which are all used, while for GEOM-Drugs
different numbers of conformers are available of which we use the five with the highest Boltzmann
weight i.e. lowest energy. If there are fewer than five we duplicate the lowest energy conformer
(see Section 4.1 for details). We recall that for the multi3D+2D loss sets with as many elements as
conformers are produced by the 2D and 3D networks. Both the discussed simall and simmax are
used as similarity measures between those sets. For the conformer sampling strategies of using a
uniform weighting or sampling conformers according to their Boltzmann weight, we do not evaluate
the latter on QMugs since we do not have it available with exactly three conformers per molecule.

In Table 13 we can observe that there are large improvements possible when using multiple con-
formers. After pre-training on QMugs, the MAE, when predicting the homo property, decreases
from 82.57 to 70.77 and from .1966 to .1831 for predicting the Gibbs free energy for GEOM-Drugs.
Notably, these improvements are much larger than when pre-training with GEOM-Drugs. This is
likely because the GEOM-Drugs dataset contains the lowest energy conformers, and we always
use the most probable one with the highest Boltzmann weight when pre-training with a single con-
former. Meanwhile, the QMugs dataset contains three diverse conformers per molecule and not
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Table 13: Comparison of strategies for using multiple conformers. The middle double-column
shows the results for pre-training on one half of GEOM-Drugs and the right double-column cor-
responds to pre-training on QMugs, and the second row indicates what dataset was used for fine-
tuning. The Random Init row shows the performance when training from scratch without any pre-
training. For QM9, the reported number is the MAE of the homo property, and for GEOM-Drugs
it is the MAE when predicting the ensemble Gibbs free energy. There are large improvements from
using multiple conformers, but the differences between the methods are small.

Loss/Estimator GEOM-Drugs pre-training QMugs pre-training
QM9 GEOM-Drugs QM9 GEOM-Drugs

Rand Init 82.10±0.33 .2035±.0011 82.10±0.33 .2035±.0011

single conformer 71.66 .1844 82.57 .1966
uniform sampling 70.66 .1823 72.94 .1874
boltzmann sampling 70.93 .1846 x x
multi3D 70.78 .1811 70.77 .1831
simall 71.11 .1849 72.40 .1936
simmax 70.81 .1896 71.15 .1840

the ones with the highest Boltzmann weight. Pre-training with the lowest energy conformer from
GEOM-Drugs already captures most of the relevant information, and using more is not as beneficial.
However, for QMugs, using the information of all three diverse conformers is crucial.

Similar to the small improvements over the random initialization baseline with GEOM-Drugs, the
different methods for using multiple conformers mostly perform the same when pre-training with
GEOM-Drugs. When pre-training with QMugs instead, the MAEs are overall slightly worse, and
we find multi3D to perform the best. Note that this is with the slight caveat that the epoch at which
pre-training is stopped for all methods was chosen based on where multi3D had the lowest MAE.

Due to these results, we consider multi3D, and conformer sampling with uniform weighting as our
best methods since multi3D performs slightly better with pre-training on QMugs but conformer
sampling is simpler and especially uses much less memory. For multi3D, all the conformers need
to be processed in parallel, and training with more than 5 conformers and a batch size of 500 would
not be possible on a 48GB vRAM GPU.

The hypothesis that the downstream performance on the smaller molecules of QM9 would benefit
less from using multiple conformers than the molecules of GEOM-Drugs clearly does not hold.
Surprisingly, the improvements on the small molecules of QM9 are larger.

C.3 DIFFERENT LOSSES

We compare the different losses to estimate and maximize the mutual information. For this purpose,
we pre-train PNA on 50 000 molecules from QM9 and another instance on 140 000 molecules of
GEOM-Drugs, both with a single conformer. We do so with the Donsker-Varadhan (Hjelm et al.,
2019) estimator, the Jensen-Shannon estimator (Hjelm et al., 2019), noise contrastive estimation
of mutual information (InfoNCE), and our loss. For our loss, we search over seven temperature
parameters τ ∈ [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7] and choose τ = 0.1.

In Table 14 we see that 3D pre-training on GEOM-Drugs or QM9 can yield significant improve-
ments for predicting quantum mechanical properties, especially when using InfoNCE and our loss
as objectives. These two objectives perform better than the Donsker-Varadhan, and Jensen-Shannon
estimator in every case and the Jensen-Shannon objective is superior to the Donsker-Varadhan es-
timator, which seems to yield no significant improvements over random initialization. The superi-
ority of the Jensen-Shannon loss over the Donsker-Varadhan alternative is in line with the findings
of Hjelm et al. (2019) in their different setting on images. While our loss seems to perform better
than InfoNCE in three settings, this might be due to the additional investment in searching through
temperature parameters for our loss.
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Table 14: Comparison of mutual information estimators for 3D Infomax. The middle double-column
shows the results for pre-training on one half of QM9, and the right double-column corresponds to
pre-training on one half of GEOM-Drugs, and the second row indicates what dataset was used for
fine-tuning. The Rand Init row shows the performance when training from scratch without any
pre-training. For QM9 the reported number is the MAE of the homo, and for GEOM-Drugs it is the
MAE when predicting the ensemble Gibbs free energy.

Loss/Estimator QM9 pre-training GEOM-Drugs pre-training
QM9 GEOM-Drugs QM9 GEOM-Drugs

Rand Init 82.10±0.33 .2035±.0011 82.10±0.33 .2035±.0011

Donsker-Varadhan 82.49 .2152 85.46 .2013
Jensen-Shannon 80.71 .2078 81.61 .2047
InfoNCE 75.81 .1938 79.31 .1894
our loss 68.96±0.32 .1945 71.66 .1844

C.4 SSL METHODS

Here we compare our 3D Infomax pre-training against three additional SSL methods. These are
Barlow Twins (Zbontar et al., 2021), multi-modal Bootstrap your own latent (BYOL) (Grill et al.,
2020), and Variance-Invariance-Covariance Regularization (VICReg) (Bardes et al., 2021). We pre-
train these methods on one half of QM9. For a fair comparison, we search through 8 different
hyperparameter settings based on the downstream performance on the QM9 homo property. After
these method-specific hyperparameters were selected, we tuned every method with a random search
over the same search space.

For 3D Infomax, we vary the temperature of our loss τ . When using BYOL we try different decay
rates γ for the exponential moving average weight copying. Here, we include γ = 0 making our
setup similar to a multi-modal version of SimSiam (Chen & He, 2020). For Barlow Twins, the
hyperparameter is λ weighting the redundancy loss. Lastly, for VICReg we vary µ and ν, the
parameters for the variance and the covariance regularization:

1. 3D Infomax with our loss: τ ∈ [0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7] where τ = 0.01
performed the best.

2. Multi-modal BYOL: γ ∈ [0, 0.0005, 0.001, 0.005, 0.01, 0.03, 0.05, 0.07] where γ = 0.005
performed the best.

3. Barlow-Twins: λ ∈ [0.002, 0.0039, 0.005, 0.007, 0.01, 0.012, 0.015, 0.02] where γ =
0.0039 performed the best.

4. VICReg: λ = 1; µ ∈ [1, 0.5]; ν ∈ [0.02, 0.04, 0.1, 0.3] where λ = 1, µ = 1, ν = 0.04
performed the best

Table 15: Comparison of latent space SSL methods. The numbers show the MAE when predicting
QM9’s homo property after pre-training on one half of QM9 with the given method and fine-tuning
on the other half of QM9. The Rand Init column shows the MAE without pre-training and with
random weight initialization. 3D Infomax is our best latent space SSL method.

Random Init 3D Infomax BYOL Barlow Twins VICReg

QM9 MAE 82.10±0.33 68.96±0.32 79.16±0.58 82.38±0.48 85.15

The results in Table 15 showcase that 3D Infomax clearly is the superior method in our setting. It
decreases the MAE from 82.10 ± 0.33 to 68.96 ± 0.32 while the other methods either lead to no
improvement or to the much smaller drop to 79.16 ± 0.58 for BYOL. This is not due to collapse
to a constant solution since we can observe a high variance between the representations in a batch
for all methods. Furthermore, with the final parameter settings, all methods were able to achieve a
low value for their loss during pre-training, both on the training and validation data and there are no
optimization issues.
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Intuitively, the results can be explained by 3D Infomax being the only method that optimizes a lower
bound on the mutual information, which potentially makes it especially fit for our setting. The other
approaches have no direct relation to mutual information and instead rely on maximizing a notion
of similarity with tricks to prevent collapse. While this might work for conventional SSL, we see no
success in our scenario where the rigorous guarantee on maximizing the mutual information seems
valuable.

Another reason for the poor performance of BYOL and especially Barlow Twins and VICReg might
be that they rely on having symmetric networks to generate the compared representations. In our
scenario, we have very little similarity between the architectures with our 2D and 3D networks
operating on different modalities. This hypothesis would fit in line with the findings of Bardes
et al. (2021) and Zbontar et al. (2021) where introducing asymmetries between the networks hurt
performance.

C.5 PRE-TRAINING A 3D GNN

We try to use our 3D Infomax setup to pre-train a 3D GNN. For this purpose, we employ SMP (Liu
et al., 2021) as 3D network during pre-training with half of the QM9 dataset. We then transfer it’s
weights and fine tune them using the accurate 3D conformers of the other half of QM9’s molecules
to predict the dataset’s properties. We compare this with SMP trained on the same molecules with
randomly initialized weights. The only architectural difference between the networks is that the
pre-trained GNN does not use atom features for the reasons explained in the 3D Network paragraph
in Section 4.1.

Table 16: MAE for predicting QM9’s molecular properties. SMP is tested with random weight
initialization and with the weights obtained from using it as 3D network in our 3D Infomax pre-
training setup.

Target SMP Rand Init SMP pre-trained

µ 0.0726 0.0801
α 0.1542 0.1276
homo 56.19 44.50
lumo 43.58 37.48
gap 85.10 70.45
r2 1.51 1.12
ZPVE 2.69 2.43
cv 0.0498 0.0421

In Table 16, we find that pre-training improves the 3D GNN’s performance. This may be due to
the covalent bonding structure and other 2D edge information that is available during pre-training
and which SMP usually cannot use since it employs a radius graph. This is the case even though
the pre-trained SMP does not have access to the atom features. Pre-training 3D GNNs might be an
interesting future direction to attempt beating the state-of-the-art methods for predicting quantum
properties with accurate 3D information.

C.6 CHEAP NEURAL CONFORMERS AS 3D GNN INPUT

In Section 5.1 we used RDKit’s ETKDG algorithm (Landrum, 2016) to generate inaccurate but
cheap and fast conformers and employed them as inputs to the 3D GNN SMP (Liu et al., 2021).
Here, we attempt the same with conformers generated by the SOTA deep learning method for con-
formation generation which is GeoMol (Ganea et al., 2021). For this purpose, we train GeoMol with
50k molecules of QM9 and use it to generate the conformations for the rest of QM9. SMP is then
trained on 50k different molecules to predict their properties, either using RDKit’s conformers or
those of GeoMol. This enables a fair comparison with 3D Infomax, which uses the same molecules
for pre-training that were used to train GeoMol. When visually inspecting some of the conformers
generated by GeoMol, we found that they were sometimes of poor quality for molecules with rings
and contained outliers with conformations that seem particularly unrealistic.
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Table 17: MAE for QM9’s properties. 3D Infomax is tested with three different pre-training datasets
and compared with the 3D GNN SMP using explicit 3D coordinates. The conformers are generated
using either the classical method RDKit ETKDG or the learned method GeoMol. Colors indicate
improvement (lower MAE) or worse performance compared to the randomly initialized (Rand Init)
model.

Our 3D Infomax RDKit GeoMol
Target Rand Init QM9 Drugs QMugs SMP SMP

µ 0.4133±0.003 0.3507 0.3512 0.3668 0.4344 0.6046
α 0.3972±0.014 0.3268 0.2959 0.2807 0.3020 0.8435
homo 82.10±0.33 68.96 70.78 70.77 82.51 195.0
lumo 85.72±1.62 69.51 71.38 78.10 80.36 201.4
gap 123.08±3.98 101.71 102.59 103.85 114.24 284.1
r2 22.14±0.21 17.39 18.96 18.00 22.63 65.84
ZPVE 15.08±2.83 7.966 9.677 12.06 5.18 17.40
cv 0.1670±0.004 0.1306 0.1409 0.1208 0.1419 0.5467

Table 17 shows that SMP performs poorly with the conformers generated by GeoMol and using
those generated by RDKit is always superior. This is the case even though the average accuracy of
GeoMol’s conformers is comparable to that of RDKit ETKDG’s conformers when GeoMol is trained
on all of QM9 (Ganea et al., 2021). We hypothesize that the high MAEs with GeoMol’s conformers
occur since they contained some particularly unrealistic outlier conformations, and SMP is not able
to handle those well.

C.7 COMBINING PRE-TRAINING METHODS

Here we simply use GraphCL’s node drop augmentation for the 2D graph and the 3D information
(removing all pairwise distances for a removed atom) with a drop ratio of 0.2 during our 3D pre-
training process.

Table 18: Comparison of performance when combining 3D pre-training with conventional pre-
training by randomly dropping nodes on the 2D or 3D side (labeled 3D Infomax + ) for various
biophysical property OGB datasets. GraphCL is another pre-trained baseline. Shown is either the
RMSE indicated by ↓ where lower values are better or the area under the curve of the Receiver
Operator Characteristic (ROC-AUC) indicated by ↑ where higher values are better. Colors indicate
improvement, worse performance, or no significant change compared to the randomly initialized
(Rand Init) model. 3D Infomax is either on par with random initialization or better. There is no
negative transfer as there is with GraphCL.

dataset Rand Init GraphCL 3D Infomax 3D Infomax +

esol↓ 0.947±0.038 0.959±0.047 0.894±0.028 0.918±0.037

lipo↓ 0.739±0.009 0.714±0.011 0.695±0.012 0.710±0.007

freesolv↓ 2.233±0.261 3.744±0.292 2.337±0.227 2.791±0.323

bace↑ 78.13±1.30 77.18±4.01 79.42±1.94 79.28±3.61

bbbp↑ 68.27±1.98 71.06±2.00 69.10±1.07 68.64±2.19

tox21↑ 73.88±0.64 78.92±0.61 74.46±0.74 73.73±0.69

toxcast↑ 63.62±0.48 64.95±0.31 64.41±0.88 63.95±0.38

clintox↑ 58.98±5.40 51.07±5.52 59.43±3.21 83.59±3.64

sider↑ 55.95±3.27 57.32±5.00 53.37±3.34 58.43±1.28

hiv↑ 77.06±3.16 76.06±1.06 76.08±1.33 75.38±0.95
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