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Abstract

Federated Learning (FL) has emerged as the state-of-the-art approach for learning from
decentralized data in privacy-constrained scenarios. However, system and statistical chal-
lenges hinder its real-world applicability, requiring efficient learning from edge devices and
robustness to data heterogeneity. Despite significant research efforts, existing approaches
often degrade severely due to the joint effect of heterogeneity and partial client participation.
In particular, while momentum appears as a promising approach for overcoming statistical
heterogeneity, in current approaches its update is biased towards the most recently sampled
clients. As we show in this work, this is the reason why it fails to outperform FedAvg,
preventing its effective use in real-world large-scale scenarios. In this work, we propose
a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables
convergence under unbounded data heterogeneity in cyclic partial participation, thereby
advancing the understanding of momentum’s effectiveness in FL. We then introduce adaptive
and communication-efficient variants of GHBM that match the communication complexity
of FedAvg in settings where clients can be stateful. Extensive experiments on vision and
language tasks confirm our theoretical findings, demonstrating that GHBM substantially
improves state-of-the-art performance under random uniform client sampling, particularly in
large-scale settings with high data heterogeneity and low client participation1.

1 Introduction
Federated Learning (FL) (McMahan et al., 2017) is a paradigm to learn from decentralized data in which a
central server orchestrates an iterative two-step training process that involves 1) local training, potentially on
a large number of clients, each with its own private data, and 2) the aggregation of these updated local models
on the server into a single, shared global model. This process is repeated over several communication rounds.
While the inherent privacy-preserving nature of FL makes it well-suited for decentralized applications with
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restricted data sharing, it also introduces significant challenges. Since local data reflects unique characteristics
of individual clients, limiting the optimization to a client’s personal data can lead to issues caused by statistical
heterogeneity. This becomes particularly problematic when multiple optimization steps are performed before
model synchronization, causing clients to drift from the ideal global updates (Karimireddy et al., 2020).
Indeed, heterogeneity has been shown to hinder the convergence of FedAvg (Hsu et al., 2019), increasing the
number of communication rounds needed to achieve a target model quality (Reddi et al., 2021) and negatively
impacting final performance.

Several studies have proposed solutions to mitigate the effects of heterogeneity. For instance, SCAF-
FOLD (Karimireddy et al., 2020) relies on additional control variables to correct the local client’s updates,
while FedDyn (Acar et al., 2021) uses ADMM to align the global and local client solutions. Albeit theoreti-
cally grounded, experimentally these methods are not sufficiently robust to handle extreme heterogeneity, low
client participation, or large-scale problems, exhibiting slow convergence and instabilities (Varno et al., 2022).

Momentum-based FL methods show promise in addressing these challenges. By accumulating past update
directions, momentum can help clients overcome the inconsistencies of local objectives introduced by heteroge-
neous data. Several works explored incorporating momentum in FL, either at the server (Hsu et al., 2019) or
at client-level to correct local updates Ozfatura et al. (2021); Xu et al. (2021). Notably, Mime (Karimireddy
et al., 2021) has been proposed as a framework to make clients mimic the updates of a centralized model
trained on i.i.d. data by leveraging extra server statistics at the client side. While the theoretical advantages
of momentum in FL have been demonstrated under full participation Cheng et al. (2024), it has been shown,
both theoretically and experimentally, that its effectiveness is limited when client participation varies across
training rounds. Indeed, the only momentum-based FL method that operates under partial participation and
does not rely on assumptions on bounded gradient heterogeneity, SCAFFOLD-M (Cheng et al., 2024), still
relies on variance reduction - similarly to SCAFFOLD - to contrast heterogeneity. As a result, it inherits
both the limitations of variance reduction in deep learning (Defazio & Bottou, 2019) and the drawbacks of
SCAFFOLD in FL, as highlighted by Reddi et al. (2021). In practice, as our work shows, existing momentum-
based FL methods exhibit significant limitations in settings with low participation, high heterogeneity, and
real-world large-scale problems. Moreover, current approaches often incur increased communication costs due
to the additional information exchanged to correct local updates (Karimireddy et al., 2020; 2021; Xu et al.,
2021; Ozfatura et al., 2021). This can be a significant drawback in communication-constrained environments,
further hindering the practical adoption of FL in real-world applications and highlighting the critical need for
more robust, effective, and communication-efficient FL algorithms. In this work, we provide a theoretical
justification for the ineffectiveness of classical momentum in FL demonstrating that due to the interplay
of data heterogeneity and partial participation, the momentum term is updated with a biased estimate
of the global gradient, reducing its effectiveness in correcting client drift. To address these challenges, we
propose a novel Generalized Heavy-Ball (GHBM) formulation, which computes momentum as a decayed
average of the past τ momentum terms. This design reduces bias toward the most recently selected clients,
enabling convergence under arbitrary heterogeneity, not only in full participation but also in cyclic partial
participation. We then propose FedHBM, an adaptive and communication-efficient instantiation of GHBM,
and experimentally demonstrate its significantly improved performance over state-of-the-art methods.

Contributions. We summarize our main results below.

• We present a novel formulation of momentum called Generalized Heavy-Ball (GHBM) momentum, which
extends the classical heavy-ball (Polyak, 1964), and propose variants that are robust to heterogeneity and
communication-efficient by design.

• We establish the theoretical convergence rate of GHBM for non-convex functions, extending the previous
result of Cheng et al. (2024) of classical momentum, showing that GHBM converges under arbitrary
heterogeneity even (and most notably) in cyclic partial participation.

• We empirically show that existing FL algorithms suffer severe limitations in extreme non-iid scenarios
and real-world settings. In contrast, GHBM is extremely robust and achieves higher model quality with
significantly faster convergence speeds than other client-drift correction methods.
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2 Related works
The Problem of Statistical Heterogeneity. The detrimental effects of non-iid data in FL were first
observed by (Zhao et al., 2018), who proposed mitigating performance loss by broadcasting a small portion
of public data to reduce the divergence between clients’ distributions. Alternatively, (Li & Wang, 2019) uses
server-side public data for knowledge distillation. Both approaches rely on the strong assumption of readily
available and suitable data. Recognizing weight divergence as a source of performance loss, FedProx (Li
et al., 2020) adds a regularization term to penalize divergence from the global model. Nevertheless, this was
proved ineffective in addressing data heterogeneity Caldarola et al. (2022). Other works (Kopparapu & Lin,
2020; Zaccone et al., 2022; Zeng et al., 2022; Caldarola et al., 2021) explored grouping clients based on their
data distribution to mitigate the challenges of aggregating divergent models.

Stochastic Variance Reduction in FL. Stochastic variance reduction techniques have been applied
in FL (Chen et al., 2021; Li et al., 2019) with SCAFFOLD Karimireddy et al. (2020) providing for the
first time convergence guarantees for arbitrarily heterogeneous data. The authors also shed light on the
client-drift of local optimization, which results in slow and unstable convergence. SCAFFOLD uses control
variates to estimate the direction of the server model and clients’ models and to correct the local update.
This approach requires double the communication to exchange the control variates, and it is not robust
enough to handle large-scale scenarios akin to cross-device FL (Reddi et al., 2021; Karimireddy et al., 2021).
Similarly, SCAFFOLD-M (Cheng et al., 2024) integrates classical momentum into SCAFFOLD to attain a
slightly better convergence rate and maintain robustness to unbounded heterogeneity in partial participation.
However, it still relies on variance reduction to tackle heterogeneity, inheriting and the same limitations of
SCAFFOLD, as the ineffectiveness of variance reduction in deep learning (Defazio & Bottou, 2019).

ADMM and Adaptivity. Other methods are based on the Alternating Direction Method of Multipliers
(Chen et al., 2022; Gong et al., 2022; Wang et al., 2022). In particular, FedDyn(Acar et al., 2021) dynamically
modifies the loss function such that the model parameters converge to stationary points of the global empirical
loss. Although technically it enjoys the same convergence properties of SCAFFOLD without suffering from
its increased communication cost, in practical cases it has displayed problems in dealing with pathological
non-iid settings (Varno et al., 2022). Other works explored the use of adaptivity to speed up the convergence
of FedAvg and reduce the communication overhead (Xie et al., 2019; Reddi et al., 2021).

Use of Momentum as Local Correction. As a first attempt, Hsu et al. (2019) adopted momentum at
server-side to reduce the impact of heterogeneity. With a similar idea, Kim et al. (2024) use the Nesterov
Accelerated Gradient (NAG) to broadcast a lookahead global model and adds a proximal local penalty similar
to FedProx (additional details in Appendix A.1). However, server-side momentum has been proven of
limited effectiveness under high heterogeneity, because the drift happens at the client level. This motivated
later approaches that apply server momentum at each local step (Ozfatura et al., 2021; Xu et al., 2021), and
the more general approach by Karimireddy et al. (2021) to adapt any centralized optimizer to cross-device
FL. It employs a combination of control variates and server optimizer state (e.g. momentum) at each client
step, which lead to increased communication bandwidth and frequency. A recent similar approach (Das et al.,
2022) employs quantized updates, still requiring significantly more computation client-side. Rather differently
from previous works, we propose a novel formulation of momentum specifically designed to take incorporate
the descent information of clients selected at past τ rounds, which generalizes the classical heavy-ball (Polyak,
1964). Most notably, we prove that our GHBM algorithm converges under arbitrary heterogeneity in cyclic
partial participation - the first momentum method achieving this result without relying on other mechanisms
like variance reduction.

Lowering Communication Requirements in FL. Researchers have studied methods to reduce the
memory needed for exchanging gradients in the distributed setting, for example by quantization (Alistarh
et al., 2017) or by compression (Mishchenko et al., 2019; Koloskova et al., 2020). In the context of FL, such
ideas have been developed to meet the communication and scalability constraints (Reisizadeh et al., 2020),
and to take into account heterogeneity (Sattler et al., 2020). Our work focuses on a novel formulation of
momentum that takes into account the joint effects of heterogeneity and partial participation, and that has
a heavy-ball structure allowing efficient use of the information already being sent in vanilla FedAvg, so
additional techniques to compress that information remain orthogonal to our approach.
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3 Method
3.1 Setup
In FL a server and a set S of clients collaboratively solve a learning problem, with |S | = K ∈ N+. At each
round t ∈ [T ], a fraction of C ∈ (0, 1] clients from S is selected to participate to the learning process: we
denote this portion as St ⊆ S . Each client i ∈ St receives the server model θt,0

i ≡ θt−1, and performs J

local optimization steps, using stochastic gradients g̃t,j
i evaluated on local parameters θt,j−1

i and a batch di,j ,
sampled from its local dataset Di. During local training, θt,j

i is the model of client i at round t after the j-th
optimization step, while θt

i ≡ θt,Ji is the model sent back to the server. The server then aggregates the client
updates g̃t

i := (θt−1− θt
i), building pseudo-gradients g̃t that are used to update the model (Reddi et al., 2021).

In this work we formalize the learning objective as a finite-sum optimization problem, where each function is
the local clients’ loss function with only access to that client’s stochastic samples:

arg min
θ∈Rd

[
f(θ) := 1

|S |
∑
i∈S

(fi(θ) := Edi∼Di
[fi(θ; di)])

]
(1)

The analysis we provide in Sec. 4.3 is based on the above formalization of the learning problem, which is
commonly used to model cross-silo FL settings, hence our theoretical results apply to that kind of scenarios.
In this context, we prove that GHBM converges under unbounded heterogeneity relying solely on momentum,
expanding the understanding of its effectiveness compared to other methods that rely on variance reduction
or ADMM to achieve this result (Karimireddy et al., 2020; Cheng et al., 2024; Acar et al., 2021). On the
other hand, it has been proved that it is not possible to guarantee convergence under arbitrary heterogeneity
in the “stochastic” or “streaming” context which is commonly used for modeling cross-device FL (see the
lower bound in Theorem 3.4 of Patel et al. (2022)), so considering it in our formal analysis would be of
limited usefulness. Hence, we focus the theoretical analysis on the former case. Nevertheless, we also
provide large-scale experimental validation on settings that adhere to the characteristics of cross-device FL to
demonstrate that GHBM is suitable for such real-world scenarios (see Sec. 3.4).

3.2 Addressing Client Drift with Momentum
One of the core propositions of federated optimization is to take advantage of local clients’ work, by running
multiple optimization steps on local parameters before synchronization. This has been proven effective for
speeding up convergence when local datasets are i.i.d. with respect to a global distribution (Stich, 2019; Lin
et al., 2020; McMahan et al., 2017), and is particularly important for improving communication efficiency,
which is the bottleneck when learning in decentralized settings. However, the statistical heterogeneity of
clients’ local datasets causes local models to drift from the ideal trajectory of server parameters. One way of
addressing such drift is to use momentum during local optimization, based on the idea that a moving average
of past server pseudo-gradients can correct local optimization towards the solution of the global problem. At
each round, FL methods based on momentum typically use the gradients of the selected clients, whether
computed at local (Xu et al., 2021; Ozfatura et al., 2021) or global (Karimireddy et al., 2021) parameters, to
update the momentum term server-side.

Partial Participation and Biased Momentum. We claim that existing momentum-based methods
overlook a critical aspect of federated learning: partial client participation. Indeed, when only a portion of
clients participate in the training rounds, the server pseudo-gradient used to update the momentum estimate
can be biased towards the previously selected clients, hampering its corrective benefit to local optimization.
This effect is particularly pronounced in settings with high data heterogeneity and low client participation
(common in cross-device FL), where, as our experiments demonstrate, conventional momentum fails to correct
the drift and improve over vanilla FedAvg.

Main Contribution. To address the challenges posed by partial participation, we propose a novel
momentum-based approach that explicitly accounts for client sampling. Our key idea is to update the
momentum term using a pseudo-gradient that approximates the true global gradient over all clients, including
those not participating in the current round. By integrating the descent directions from past rounds into
local updates, our method effectively mitigates the bias introduced by partial participation, resulting in a
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Figure 1: Reusing old gradients is beneficial, despite the introduced lag. The plot shows the
empirical measure of the deviation between (i) the average of the last τ server pseudo-gradient (at different
parameters) and (ii) the server-pseudo gradient calculated over all the clients (at the same parameters),
varying τ , on Cifar-100 with ResNet-20, in non-iid (α = 0, left) and iid (α = 10.000, right) settings.

more accurate and robust momentum estimate. Notably, our momentum formulation retains a heavy-ball
structure similar to classical momentum, enabling it to be used in FL without requiring to send additional
data from server to clients, thus maintaining the same communication complexity as FedAvg.

3.3 Generalized Heavy-Ball Momentum (GHBM)
In this section, we introduce our novel formulation for momentum, which we call Generalized Heavy-Ball
Momentum (GHBM). First, we recall that classical momentum consists of a moving average of past gradients,
and it is commonly expressed as in Eq. (2), which can be equivalently expressed in a version commonly
referred to as heavy-ball momentum in Eq. (3) (see Lemma B.1):

Heavy-Ball Momentum (HBM)

m̃t ← βm̃t−1 + g̃t(θt−1;Dt) (2)
θt ← θt−1 − ηm̃t

m̃t ← (θt−1 − θt−2) (3)
θt ← θt−1 − ηg̃t(θt−1;Dt) + βm̃t

Let us notice that, when applied to FL optimization, the gradient referred to above as g̃t is built from
updates of clients i ∈ St (and so on dataset Dt := ∪i∈StDi), which are usually a small portion of all the
clients participating in the training. Consequently, at each round the momentum is updated using a direction
biased towards the distribution of clients selected in that round. Indeed, the prerequisites for this update to
reflect the objectives of the other clients are (i) iidness of local datasets or (ii) high client participation. Both
conditions are rarely met in practice, and lead to ineffectiveness of existing momentum-based FL methods in
realistic scenarios. Our objective is to update the momentum term at each round with a reliable estimate
of the gradient w.r.t. the global data distribution of all clients. In practice, the desired update rule for
momentum would use the average gradient of all clients selected in the last τ rounds at current parameters
θt−1, as in Eq. (4).

Desired Momentum Update

m̃t ← βm̃t−1 + 1
τ

t∑
k=t−τ+1

g̃k(θt−1;Dk) (4)

Practical Momentum Update

m̃t ← βm̃t−1 + 1
τ

t∑
k=t−τ+1

g̃k(θk−1;Dk) (5)

While Eq. (4) cannot be implemented in partial participation because clients selected in rounds k ∈ [t−τ +1, t)
do not have access to model parameters θt−1, it is possible to reuse old gradients calculated at parameters θk−1

as their approximation, as shown in Eq. (5). This introduces a lag due to using outdated gradients. However,
as we show Fig. 1, the benefits of reducing heterogeneity greatly compensate for this lag, as increasing τ
leads to a reduction in the deviation from the gradient calculated over all the clients.

With this idea in mind, our proposed formulation consists of calculating the momentum term as the decayed
average of past τ momentum terms, instead of explicitly using the server pseudo-gradients at the last τ
rounds, as shown in Eq. (6). This formulation is close to the update rule sketched in Eq. (5) and has the
additional advantage of enjoying a heavy-ball form similar to Eq. (3) (see Lemma B.2), which will be useful
for deriving communication-efficient FL algorithms. In practice, the difference w.r.t. Eq. (3) consists in
considering a delta τ > 1:
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Generalized Heavy-Ball Momentum (GHBM)

m̃t
τ ←

1
τ

τ∑
k=1

βm̃t−k
τ + g̃t(θt−1;Dt) (6)

θt ← θt−1 − ηm̃t
τ

m̃t
τ ←

1
τ

(
θt−1 − θt−τ−1) (7)

θt ← θt−1 − ηg̃t(θt−1;Dt) + βm̃t
τ

As it is trivial to notice, GHBM with τ = 1 recovers the classical momentum, hence it can be considered as a
generalized formulation. The GHBM term is then embedded into local updates using the heavy-ball form
shown in Eq. (7), leading to the following update rule:

Client step:Client step:Client step: θt,j
i ← θt,j−1

i − ηlg̃
t,j
i (θt,j−1

i ; dt,j
i ) + β

τJ

(
θt−1 − θt−τ−1)︸ ︷︷ ︸

τ−GHBM

(8)

Discussion on τττ . The τ hyperparameter in GHBM plays a crucial role, since it controls the number of
server pseudo-gradients to average when estimating the update to the momentum term. Intuitively, when
considering only the effect on heterogeneity reduction, the optimal value would be the one that provides the
average over all clients. Under proper assumptions on client sampling (see Sec. 4.1), this optimal value is
τ = 1/C, which is the inverse of the client participation rate. As we demonstrate, this property is the key
factor that allows GHBM to converge under arbitrary heterogeneity, achieving the same convergence rate in
cyclic partial participation as methods based on classical momentum attain in full participation (see Sec. 4.3).
However, because GHBM reuses old gradients, it introduces a lag that grows with τ . Therefore, the optimal
choice of τ comes with an inevitable trade-off between the heterogeneity reduction effect and other sources of
error, which we discuss in Sec. 4.2.

3.4 Communication Complexity of GHBM and Efficient Variants

Algorithm 1: GHBM, LocalGHBM and FedAvg

Require: initial model θ0, K clients, C participation ratio, T
number of total round, η and ηl learning rates, τ ∈ N+.

1: for t = 1 to T do
2: St ← subset of clients ∼ U(S, max(1, K · C))
3: Send θt−1, θt−τ−1 to all clients i ∈ St

4: for i ∈ St in parallel do
5: θt,0

i ← θt−1

6: Retrieve θt−τi−1 from local storage
7: m̃t

τ ← 1
τJ

(θt−1 − θt−τ−1)
8: m̃t

τi
← 1

τiJ
(θt−1 − θt−τi−1) if θt−τi−1 is set else 0

9: for j = 1 to J do
10: sample a mini-batch di,j from Di

11: θt,j
i ← θt,j−1

i − ηlg̃
t,j
i +βm̃t

τ +βm̃t
τi

12: end for
13: Save model θt−1 into local storage
14: end for
15: g̃t ← 1

|St|

∑
i∈St

(
θt−1 − θt,J

i

)
16: θt ← θt−1 − ηg̃t

17: end for

As it is possible to notice from Algorithm 1,
GHBM requires the server to additionally send
the past model θt−τ−1, which is used to calculate
the momentum term in Eq. (8). Alternatively, the
server could send the momentum term m̃t

τ : in both
cases, this introduces a communication overhead
of 1.5× w.r.t. FedAvg, as momentum is usually
applied to all model parameters. However, this
overhead can be avoided by leveraging the obser-
vation that the choice of τ = 1/C is expected to
be optimal. Indeed, it is sufficient to notice that,
if clients participate cyclically, i.e., the period be-
tween each subsequent sampling is equal for all
clients, and the frequency at which each client is
selected for training is exactly 1/C. Notice that
this is still true on average under uniform client
sampling, i.e., calling τi the sampling period for
client i, E [τi] = τ = 1/C.

Leveraging those observations and exploiting the fact that GHBM has an equivalent heavy-ball form, the
additional requirement on communication can be traded for a requirement on persistent storage at the
clients, allowing them to keep the model received by the server across rounds, as shown in Algorithm 1.
In this algorithm, which we call LocalGHBM, τi is adaptive and determined stochastically by client
participation. The space complexity is constant in the size of model parameters for the clients and the
communication complexity is the same as FedAvg. We empirically found that performance can be further
improved by considering θt

i,j instead of θt−1 and θt−τi
i instead of θt−τi−1 when calculating m̃t

τi
. This final

communication-efficient update rule is named FedHBM.
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Table 1: Comparison of convergence rates of FL algorithms. GHBM improves the state-of-art by attaining, in
cyclic partial participation, the same rate of classical momentum in full participation. Remind that L is the smoothness
constant of objective functions, ∆ = f(θ0) − minθ f(θ) is the initialization gap, σ2 is the clients’ gradient variance, |S |
is the number of clients, C is the participation ratio, J is the number of local steps per round, and T is the number of
communication rounds. ζ := supθ ∥∇f(θ)∥ and G are uniform bounds of gradient norm and dissimilarity.

Algorithm Convergence Rate 1
T

∑T
t=1 E

[
∥∇f(θt)∥2] ≲ Additional

Assumptions
Partial

participation?

FedAvg
(Yang et al., 2021)

(
L∆σ2

|S |JT

)1/2
+ L∆

T Bounded hetero.1 ✗

(Yang et al., 2021)
(

L∆Jσ2

|S |CT

)1/2
+ L∆

T Bounded hetero.1 ✓

FedCM
(Xu et al., 2021)

(
L∆(σ2+|S |CJζ2)

|S |CJT

)1/2
+
(

L∆(σ/
√

J+
√

|S |C(ζ+G)√
|S |CT

)2/3 Bounded grad.
Bounded hetero. ✓

(Cheng et al., 2024)
(

L∆σ2

|S |JT

)1/2
+ L∆

T − ✗

SCAFFOLD-M
(Cheng et al., 2024)

(
L∆σ2

|S |CJT

)1/2
+ L∆

T

(
1 + |S |2/3

|S |C

)
− ✓

GHBM (Thm. 4.11)
(

L∆σ2

|S |JT

)1/2
+ L∆

T Cyclic participation ✓

1 The local learning rate vanishes to zero when gradient dissimilarity is unbounded, i.e., G→∞.

Applicability of GHBM-based Algorithms in FL Scenarios. Although based on the same principle,
our algorithms are suitable for different scenarios. Similarly to algorithms proposed for cross-device FL
(Karimireddy et al., 2021), GHBM uses stateless clients, with the main τ hyperparameter controlled by the
server. This ensures that clients always apply a momentum term consistent with the GHBM update rule,
differently from algorithms that require clients participating in multiple rounds to adhere to their formulation,
such as SCAFFOLD and FedDyn. This is particularly important when the number of clients is large and a
small portion of them participates in each round, and it is why, in our large-scale setting, these methods
fail to converge. These design choices make our algorithm in practice suitable for cross-device FL, where
it offers significant advantages, as experimentally validated in Sec. 5.3. On the other hand, FedHBM and
LocalGHBM take advantage of the fact that clients participate multiple times in the training process to
remove the need to send the momentum term from the server, recovering the same communication complexity
of FedAvg. As a result, clients in these methods are stateful - requiring to maintain variables across rounds
(Kairouz et al., 2021) - and are therefore best suited for scenarios akin to cross-silo FL.

4 Theoretical Discussion

In this section, we establish the theoretical foundations of our algorithms. Our analysis reveals that: (i) the
momentum update rule implemented by GHBM in Eq. (5) approximates an update with global gradient,
with τ controlling the trade-off between heterogeneity reduction and the lag due to using old gradients; (ii)
thanks to this algorithmic design choice, GHBM converges under arbitrary heterogeneity even in (cyclic)
partial participation. The proofs are deferred to Appendix B.

4.1 Assumptions

To prove our results we rely on notions of stochastic gradient with bounded variance (4.1) and the smoothness
of the clients’ objective functions (4.2), which are common in deep learning. Additionally, to facilitate
comparisons with other algorithms that require it, we introduce the Bounded Gradient Dissimilarity (BGD)
(Assumption 4.3). This assumption, commonly used in FL literature, provides an upper bound on the
dissimilarity of clients’ objectives. While our main result in Thm. 4.11 does not require this assumption,
we use it to demonstrate the heterogeneity reduction effect of GHBM, and to show that, under the proper
choice of τ , BGD is not necessary. Finally, we introduce the additional assumption that clients participate
following a cyclic pattern (Assumption 4.4). Notably, this assumption is only required for obtaining our
convergence rate and serves as a technical detail needed to deterministically quantify the contributions of the
clients to the GHBM momentum term (see Fig. 6 in the Appendix for an illustration of cyclic participation).
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Assumption 4.1 (Unbiasedness and bounded
variance of stochastic gradient).

Edi∼Di
[g̃i(θ; di)] = gi(θ;Di)

Edi∼Di

[
∥g̃i(θ; di)− gi(θ;Di)∥2

]
≤ σ2

Assumption 4.2 (Smoothness of client’s objectives).
Let it be a constant L > 0, then for any i, θ1, θ2 the
following holds:

∥gi(θ1)− gi(θ2)∥2 ≤ L2 ∥θ1 − θ2∥2

Assumption 4.3 (Bounded Gradient Dissimi-
larity). There exist a constant G ≥ 0 such that,
∀i, θ:

1
|S |

|S |∑
i=1
∥gi(θ)− g(θ)∥2 ≤ G2

Assumption 4.4 (Cyclic Participation). Let St be
the set of clients sampled at any round t. A sampling
strategy is “cyclic“ with period p = 1/C if:

St = St−p ∀ t > p ∧ Sk ∩ St = ∅ ∀ k ∈ (t− p, t)

Remark 4.5. Our main result (Thm. 4.11) does not require the BGD assumption: indeed we show
that, under a proper choice of τ , the effect of heterogeneity is completely removed from the convergence rate.
Remark 4.6. While Thm. 4.11 relies on Assumption 4.4, cyclic participation is not enforced in the
experiments, where we select clients randomly and uniformly, ensuring fair comparison with algorithms
that do not need this assumption in their analysis. For a more comprehensive discussion on the role of the
cyclic participation assumption in our work, we refer the reader to Sec. 4.3.

4.2 Overcoming Bounded Gradient Dissimilarity in Partial Participation
In this section, we explain the core elements used in our theory to guarantee convergence under arbitrary
heterogeneity for GHBM.

Bounding the Participation-induced Heterogeneity. Let us recall the main idea behind GHBM:
because of partial participation, at each round classical momentum is updated using a direction biased
towards the distribution of clients selected in that round. As a result, recalling that GHBM recovers
classical momentum when τ = 1, we begin by bounding the effect of heterogeneity induced by partial
client participation on the momentum estimate as a function of τ . To this end, let us provisionally adopt
Assumption 4.3 and assume we perform federated optimization with a single full gradient step in partial
participation and consider the momentum update in Eq. (4). In this setup, the following lemma holds:
Lemma 4.7 (Deviation of τ -averaged gradient from true gradient). Define St

τ := ∪τ−1
k=0St−k as the set of

clients selected in the last τ rounds, and gtτ := 1/|St
τ |
∑|St

τ |
i=1 gt

i(θt−1) as the average server pseudo-gradient. The
approximation of a gradient over the last τ rounds gtτ w.r.t. the true gradient is quantified by the following:

E
[∥∥gtτ −∇f(θt−1)

∥∥2
]
≤ 8E

[(
|S | − |St

τ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

Lemma 4.7 shows that, as τ increases, the effect of heterogeneity reduces quadratically as the difference
between the |St| and |St

τ | approaches to zero. The deviation is exactly zero when St
τ = S , i.e. the set of

clients selected in the last τ rounds includes all the clients. While under uniform sampling it is unlikely
to realize this condition because of the non-zero probability of sampling the same clients over consecutive
rounds, under cyclic participation it is possible to make the above error exactly equal to zero 2.
Corollary 4.8. Consider Lemma 4.7 and further assume that, at each round of FL training, clients are
sampled according to a rule satisfying Assumption 4.4. Then, for any τ ∈

(
0, 1

C

]
:

E
[∥∥gtτ −∇f(θt−1)

∥∥2
]
≤ 8 (1− τC)2

(
G2 +

∥∥∇f(θt−1)
∥∥2
)

Remark 4.9. Under Assumption 4.4 and τ = 1/C, the BGD assumption (4.3) is not necessary, as the
two terms in the left-hand side (LHS) of the above inequality are the same by definition.

2An alternative approach could keep track of gradients of each client and then compute gtτ such that it includes the latest
gradients of all clients. In that case, cyclic participation is not necessary, but calculating the needed τ is an instance of the
Batched Coupons Collector problem (Stadje, 1990; Ferrante & Frigo, 2012; Ferrante & Saltalamacchia, 2014), for which a closed
form solution is unknown. That approach would be unrealistic to implement so, motivated by the strong empirical success of
GHBM, in our analysis we prefer adopting an additional assumption, and providing guarantees under cyclic client participation
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Bounding the Overall Error in Momentum Update. In the previous paragraph, we established
the role of τ in GHBM for counteracting heterogeneity and derived its optimal value w.r.t. partial client
participation. However, our analysis assumed that all clients selected in the last τ rounds compute a full
gradient on the same server parameters. As discussed in Sec. 3.3, a more realistic update rule for momentum
would reuse past gradients as in Eq. (5), computed at local parameters. This is because clients selected in
rounds k ∈ [t− τ + 1, t) do not have access to model parameters θt−1. As a result, increasing τ introduces
additional sources of error to the momentum term, which we quantify in the following lemma.
Lemma 4.10 (Bounded Error of Momentum Update). Consider the update rule in Eq. (5), and call
g̃tτ = 1

τ

∑t

k=t−τ+1
1

|Sk|J

∑|Sk|
i=1

∑J

j=1 g̃k,j
i (θk,j−1

i ) the server stochastic average pseudo-gradient over the last
τ global steps and the average server pseudo-gradient at current parameters as gtτ := 1/|St

τ |
∑|St

τ |
i=1 gt

i(θt−1).
Let also define the client drift Ut := 1

|S |J

∑J

j=1

∑|S |
i=1 E∥θt,j

i − θt−1∥2 and the error of server update Et :=
E∥∇f(θt−1) − m̃t+1

τ ∥2. Under Assumptions 4.1, 4.2 and 4.4, it holds that:

E
[∥∥g̃tτ − gtτ

∥∥2
]
≤ 3
(

σ2

|St
τ |J︸ ︷︷ ︸

(a) Noise

+ L2

τ

t∑
k=t−τ+1

Uk︸ ︷︷ ︸
(b) Client drift

+ 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2]+ Ek

)
︸ ︷︷ ︸

(c) Gradient lag

)

Lemma 4.10 shows that the error affecting the GHBM momentum update rule can be decomposed into
three main components: the first term (a) is caused by clients taking stochastic gradients on mini-batches
of data. The dependency indicates that increasing τ has a positive effect until the gradients of all clients
participate to the estimate (i.e. St

τ = S ). The second term (b) represents the average client drift over the
last τ rounds, arising from clients performing multiple local steps. The lemma shows this term has a benign
dependency, as increasing τ does not increase the overall error due to this component. The last term (c)
is the gradient lag, which reflects the error introduced by using pseudo-gradients from clients based on old
parameters. While this may be the main source of error (since it linearly increases with τ), it depends on
Ek, which is the deviation of server update from the true gradient. If momentum succeeds in correcting
local optimization (i.e. Ek is small), this term will also be small and not hinder the optimization. We verify
experimentally that this is indeed the case: the heterogeneity reduction achieved by increasing τ outweights
the overall error bounded in Lemma 4.10, as showed in Fig. 1.

4.3 Convergence Guarantees
We can now state the convergence result for GHBM for non-convex functions in (cyclic) partial participation.
Comparison with recent related algorithms is provided in Tab. 1.
Theorem 4.11. Under Assumptions 4.1, 4.2 and 4.4, if we take m̃0

τ = 0, and β, η and ηl as in Eq. (120),
then GHBM with τ = 1/C converges as:

1
T

T∑
t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆
T

+

√
L∆σ2

|S |JT

where ∆ := f(θ0)−minθ f(θ), ηl ≤ O (1/
√

τ) (see Eq. (120)) and ≲ absorbs numeric constants.

Discussion. The rate of GHBM shows two major improvements: (i) it does not rely on the BGD assumption
(4.3) and (ii) the dominant term on the right-hand side (RHS) scales with the size of all client population |S |,
instead of the clients selected in a single round |S |C, thanks to incorporating old gradients. While under the
assumptions of Thm. 4.11 any τ = k

C , ∀k ∈ N+ will lead to similar conclusions, considering larger interval
increases the error due to using old gradients (see Sec. 4.2), so we would like to choose τ as the minimum
allowing convergence under unbounded heterogeneity. Indeed, a larger τ imposes a stricter bound on the
client learning rate ηl ≤ O (1/

√
τ) in Eq. (120). Since Thm. 4.11 also imposes τ = 1/C, the bound on ηl is

explicitly related to the participation ratio C.
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Figure 2: Comparison between
FedCM and GHBM in cyclic partic-
ipation on a linear regression problem,
non-iid setting, with J = 2 local steps
and K = 10 clients. GHBM with τ =
1/C in cyclic participation (C = 0.2)
performs similarly as FedCM in full
participation (C = 1).

Comparison with FedCM. The best-known rate for FedCM
in partial participation (Xu et al., 2021) relies both on bounded
gradients and bounded gradient dissimilarity and it is asymptotically
weaker than ours. For the case of full participation, Cheng et al.
(2024) proved that FedCM converges without requiring bounded
client dissimilarity. Our results extend theirs in that we prove that
GHBM can achieve the same convergence rate even in cyclic partial
participation. This follows from the fact that in this setting GHBM
update rule approximates the one of classical momentum in full
participation. Indeed, to validate this theoretical finding, in Figure 2
we simulate a cyclic participation setting and show the train loss of
GHBM across rounds, comparing with FedCM, both when selecting
a subset of clients and when selecting them all. As it is shown, the
curve of GHBM with τ as prescribed by Thm. 4.11 approaches the
one of FedCM in full participation.

Comparison with SCAFFOLD-M. Recently Cheng et al. (2024)
proved that momentum accelerates SCAFFOLD, preserving strong
guarantees against heterogeneity in partial participation. However,
the resulting SCAFFOLD-M method is still based on variance reduction, i.e., it converges under arbitrary
heterogeneity thanks to variance reduction, not because it uses momentum. Our rate additionally requires
Assumption 4.4, but is faster and, most importantly, shows that momentum, when modified according to our
formulation, can by itself provide similar guarantees even when not all clients participate.

Advantage of Local Steps and Connections to Incremental Gradient Methods. Thm. 4.11 does
not show an explicit benefit from the local steps, similar to the best-known theory for momentum-based
FL methods (Cheng et al., 2024). However, GHBM offers a clear advantage w.r.t. centralized methods for
finite-sum optimization applied in FL (where clients represent functions), referred to as incremental gradient
methods. One algorithm of this family, the Incremental Aggregated Gradient (IAG), removes the effect of
functions heterogeneity by approximating a full gradient with an aggregate of past gradients, assuming cyclic
participation (Gürbüzbalaban et al., 2015). However, this holds only in standard distributed mini-batch
optimization, where J = 1. GHBM shares a similar intuition, but applying this logic to the momentum
update rather than the gradient estimate is crucial when local steps are involved. Simply extending IAG with
local steps would not mitigate client drift-induced heterogeneity as GHBM does. In fact, its convergence
rate would be bounded by that of FedAvg in full participation, whose lower bound is known to be affected
by heterogeneity (see Thm. II of Karimireddy et al. (2020)).

On the Use of Cyclic Participation Assumption. The use of cyclic participation in the proof of
Thm. 4.11 allows precise control over the clients’ contributions to the average of the last τ pseudo-gradients.
This ensures that the τ -averaged pseudo-gradient used to update the momentum is unaffected by heterogeneity,
which is the important point behind the proof of Thm. 4.11. Under random uniform, due to the non-zero
probability of sampling the same client within τ rounds, this condition is hardly verified. Although one could
technically enforce this condition without cyclic sampling — by explicitly tracking each client’s pseudo-gradient
and computing a uniform average across the most recent one from each client — this would be impractical.
Such a design would not be compliant with protocols like Secure Aggregation, widely adopted in real-world
FL systems, thus posing a significant practical limitation.

Please note that in our analysis convergence under unbounded heterogeneity is not a simple byproduct of the
assumption, but comes explicitly from the algorithmic structure of GHBM (i.e. setting τ = k

C , ∀k ∈ N+ is
necessary). The best-known analysis of FedAvg under cyclic participation is provided by Cho et al. (2023),
which proves that in certain situations (e.g. clients run GD instead of SGD) there can be an asymptotic
advantage in the case we prospect with Assumption 4.4. However, it is important to notice that all the results
presented in Cho et al. (2023) rely on forms of bounded heterogeneity, and with this respect, the results
presented in this work are novel and advance state of the art.
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Figure 3: GHBM effectively counteracts the effects of heterogeneity: our momentum formulation
(τ > 1) is crucial for superior performance, with an optimal value τ = 1/C = 10, as predicted in theory.
Results on Cifar-10 with CNN (left) and ResNet-20 (right), under worst-case heterogeneity.

5 Experimental Results
We present evidence both in controlled and real-world scenarios, showing that: (i) the GHBM formulation
is pivotal to enable momentum to provide an effective correction even in extreme heterogeneity, (ii) our
adaptive LocalGHBM effectively exploits client participation to enhance communication efficiency and (iii)
GHBM is suitable for cross-device scenarios, with stark improvement on large datasets and architectures.

5.1 Setup
Scenarios, Datasets and Models. For the controlled scenarios, we employ Cifar-10/100 as computer
vision tasks, with ResNet-20 and the same CNN similar to a LeNet-5 commonly used in FL works (Hsu
et al., 2020), and Shakespeare dataset as NLP task following (Reddi et al., 2021; Karimireddy et al., 2021).
For Cifar-10/100 we follow the common practice of Hsu et al. (2020), sampling local datasets according
to a Dirichlet distribution with concentration parameter α, denoting as non-iid and iid respectively the
splits corresponding to α = 0 and α = 10.000 (additional details in Appendix C.2). For Shakespeare we
use instead the predefined splits (Caldas et al., 2019). The datasets are partitioned among K = 100 clients,
selecting a portion C = 10% of them at each round. The training round budget T is set to be big enough for
all algorithms to reach convergence in the worst-case scenario (α = 0), constrained by a time budget for the
simulations. Being our proposed algorithm always faster, this ensures fair comparison with competitors.

For simulating real-world scenarios, we adopt the large-scale GLDv2 and INaturalist datasets as CV tasks,
with both a ViT-B\16 (Dosovitskiy et al., 2021) and a MobileNetV2 (Sandler et al., 2018) pretrained
on ImageNet, and StackOverflow dataset as NLP task, following Reddi et al. (2021); Karimireddy et al.
(2021). These settings are particularly challenging, because the learning tasks are complex, the number of
client is high (i.e. on the order of 104-105) and the client participation (for convenience directly reported in
Tab. 3) is scarce (see details in Tab. 6). As is, those settings are akin to cross-device FL.

Metrics and Experimental protocol. As metrics, we consider final model quality, as the average top-1
accuracy over the last 100 rounds of training (Tabs. 2 and 3), and communication/computational efficiency:
this is evaluated by measuring the total amount of exchanged bytes (i.e. considering both the downlink and
uplink communication) and the wall-clock time spent by an algorithm to reach the performance of FedAvg
(Tab. 4). We also provide full convergence curves for a subset of the experiments in Fig. 5. Results are
always reported as the average over 5 independent runs, performed on the best-performing hyperparameters
extensively searched separately for all competitor algorithms. All the experiments are conducted under
random uniform client sampling, as it is standard practice. Further details on datasets, splits, models
and hyperparameters are in Appendix C.

5.2 The Effectiveness of GHBM Compared to Classical Momentum
We provide evidence of the effectiveness of GHBM under worst-case heterogeneity (i.e. α = 0) by comparing
the impact of our generalized heavy-ball momentum formulation to the classical momentum approach, which
corresponds to selecting τ > 1 in the update rule in Eq. (8). As shown in Fig. 3, prior momentum-based
methods (Xu et al., 2021; Ozfatura et al., 2021) fail to improve upon FedAvg. In contrast, as τ increases,
GHBM exhibits a significant enhancement in both convergence speed and final model quality. The optimal
value of τ is experimentally determined to be τ ≈ 1/C = 10, with larger sub-optimal values only slightly
affecting performance (rightmost plot).
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Figure 5: GHBM largely outperforms state-of-the-art methods: the plots show the test accuracy
(%) over rounds, with ResNet-20 on Cifar-100, both in non-iid (left) and iid (middle) settings, and on
StackOverflow (right). GHBM always displays much faster convergence and higher accuracy, even when
distributions are iid, confirming robustness w.r.t. heterogeneity and better dependency on stochastic noise.

This experiment demonstrates that, while complete heterogeneity reduction is theoretically proven only
under cyclic participation (i.e. Thm. 4.11 holds under Assumption 4.4), GHBM empirically achieves strong
heterogeneity reduction even with random uniform client sampling. In particular, the theoretical prescription
on the optimal value τ = 1/C also holds in this setting. Moreover, our communication-efficient variants always
match or surpass the best-tuned GHBM, confirming that their adaptive estimate of each client’s momentum
positively contributes in a scenario of stochastic client participation (see Sec. 4.2).

5.3 Comparison with the State-of-art
Results in Controlled Scenario. We compare GHBM with the most common FL methods, and in
particular with other momentum-based FL algorithms, including the recently proposed SCAFFOLD-M
(Cheng et al., 2024), which which uses both the control variates of SCAFFOLD and the momentum of
FedCM (and consequently incurs in a communication overhead of 2.5× w.r.t. FedAvg). Our results in
Tab. 2 underscore that methods based on classical momentum fail at improving FedAvg in scenarios with
high heterogeneity and partial participation, confirming that in those cases they should not be expected
to provide a significant advantage over heterogeneity. The general ineffectiveness of classical momentum
also holds for SCAFFOLD-M: as it is possible to notice, its performance is not significantly better than
SCAFFOLD’s, and this well aligns with the theory, where the guarantees against heterogeneity come from
the use of control variates, while momentum only brings acceleration. In that our results align with previous
findings in literature suggesting that variance reduction, besides theoretically strong, is often not effective
empirically in deep learning (Defazio & Bottou, 2019). Conversely, our algorithms outperform FedAvg with
an impressive margin of +20.6% and +14.4% on ResNet-20 and CNN under worst-case heterogeneity, and
consistently over less severe conditions (higher values of α in Fig. 4). In particular, as shown in Fig. 5, GHBM
improves over competitor methods also in iid scenarios: this relates to our convergence rate improving not
only w.r.t. heterogeneity, but also displaying a better dependency on the stochastic noise.

Table 2: Comparison with state-of-the-art in controlled
setting (acc@10k-20k rounds for ResNet-20/CNN). NON-
IID (α = 0) and IID (α = 10.000). Best result in bold, second
best underlined. ✗ indicates non-convergence.

Method Cifar-100 (ResNet-20) Cifar-100 (CNN) Shakespeare
NON-IID IID NON-IID IID NON-IID IID

FedAvg 24.7 ±1.2 58.6 ±0.4 38.3 ±0.3 49.7 ±0.2 47.3 ±0.1 47.1 ±0.2
FedProx 24.8 ±1.1 58.5 ±0.3 40.6 ±0.2 49.9 ±0.2 47.3 ±0.1 47.1 ±0.2
SCAFFOLD 30.7 ±1.3 58.0 ±0.6 45.5 ±0.1 49.4 ±0.4 50.2 ±0.1 50.1 ±0.1
FedDyn 6.0 ±0.5 60.8 ±0.7 ✗ 51.9 ±0.2 50.7 ±0.2 50.8 ±0.2
AdaBest 8.4 ±2.0 55.6 ±0.3 35.6 ±0.3 49.7 ±0.2 47.3 ±0.1 47.1 ±0.2
Mime 26.8 ±2.1 59.0 ±0.3 45.3 ±0.4 50.9 ±0.4 48.3 ±0.2 48.5 ±0.1

FedAvgM 24.8 ±0.7 58.7 ±0.9 42.1 ±0.3 50.7 ±0.2 50.0 ±0.0 50.4 ±0.1
FedACG 25.7 ±0.5 58.7 ±0.3 43.5 ±0.4 51.3 ±0.3 50.9 ±0.1 51.0 ±0.1
SCAFFOLD-M 30.9 ±0.7 60.1 ±0.5 45.7 ±0.2 50.1 ±0.3 50.8 ±0.0 51.0 ±0.1
FedCM (GHBM τ=1) 22.2 ±1.0 53.1 ±0.2 36.0 ±0.3 50.2 ±0.5 49.2 ±0.1 50.4 ±0.1
FedADC (GHBM τ=1) 22.4 ±0.1 53.2 ±0.2 37.9 ±0.3 50.2 ±0.4 49.2 ±0.1 50.4 ±0.1
MimeMom 24.3 ±0.9 60.5 ±0.6 48.2 ±0.7 50.6 ±0.1 48.5 ±0.2 48.9 ±0.2
MimeLiteMom 21.2 ±1.6 59.2 ±0.5 46.0 ±0.3 50.7 ±0.1 49.1 ±0.4 49.4 ±0.3

LocalGHBM (ours) 38.2 ±1.0 62.0 ±0.5 50.3 ±0.5 51.9 ±0.4 51.2 ±0.1 51.1 ±0.3
FedHBM (ours) 42.5 ±0.8 62.5 ±0.5 50.4 ±0.5 52.0 ±0.4 51.3 ±0.1 51.4 ±0.2
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Figure 4: Final model quality at differ-
ent values of ααα (lower α→ higher hetero-
geneity) on Cifar-10, with CNN (top) and
ResNet-20 (bottom).
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Results in Real-world Large-scale Scenarios. Extending the experimentation to settings characterized
by extremely low client participation, we test both our GHBM with τ tuned via a grid-search and our adaptive
FedHBM, which exploits client participation to keep the same communication complexity of FedAvg. As
discussed in Secs. 3.3 and 4.2, under such extreme client participation patterns GHBM performs better
because the trade-off between heterogeneity reduction and gradient lag is explicitly tuned by the choice of
the best performing τ , while FedHBM will likely adopt a suboptimal value. However, results in Tab. 3
show a stark improvement over the state-of-art for both our algorithms, indicating that the design principle
of our momentum formulation is remarkably robust and provides effective improvement even when client
participation is very low (e.g. C ≤ 1%).

Table 3: Test accuracy (%) comparison of best SOTA FL algorithms on large-scale and realistic
settings. GHBM is the best algorithm when client participation is extremely low, while FedHBM still
improves the other competitors by a large margin. ✗ means that the algorithm did not converge.

Method
MobileNetV2 ViT-B\16

GLDv2 INaturalist GLDv2 INaturalist StackOverflow
C ≈ 0.79% C ≈ 0.1% C ≈ 0.5% C ≈ 1% C ≈ 0.79% C ≈ 0.1% C ≈ 0.5% C ≈ 0.12%

FedAvg 60.3 ±0.2 38.0 ±0.8 45.25 ±0.1 47.59 ±0.1 68.5 ±0.5 65.6 ±0.1 70.7 ±0.8 24.0 ±0.4
SCAFFOLD 61.0 ±0.1 ✗ ✗ ✗ 67.5 ±3.3 ✗ ✗ 24.8 ±0.4

FedAvgM 61.5 ±0.2 41.3 ±0.4 46.0 ±0.1 48.4 ±0.1 70.0 ±0.5 66.0 ±0.2 71.4 ±0.5 24.1 ±0.3
MimeMom ✗ ✗ ✗ ✗ ✗ ✗ ✗ 24.9 ±0.6

GHBM - best τ (ours) 65.9 ±0.1 41.8 ±0.1 48.7 ±0.1 50.5 ±0.1 74.3 ±0.6 68.8 ±0.3 73.5 ±0.4 27.0 ±0.1
FedHBM (ours) 65.4 ±0.2 41.6 ±0.2 47.3 ±0.0 49.8 ±0.0 73.1 ±0.9 66.7 ±0.7 72.1 ±0.5 24.5 ±0.4

Communication Efficiency. Results in Tab. 4 reveal that our proposed algorithms lead to a dramatic
reduction in both communication and computational cost, with an average saving of respectively +55.9% and
+61.5%. In practice, while FedHBM has the same communication complexity of FedAvgM and GHBM
slightly higher, both our algorithms much show faster convergence and higher final model quality, which
ultimately lead to a significant reduction of the total communication and computational cost. In particular,
in settings with extremely low client participation (e.g. GLDv2 and INaturalist), GHBM is more suitable
for best accuracy, while FedHBM is the best at lowering the communication cost.

Table 4: Total communication and computational cost for reaching the final model quality of
FedAvg, across academic and real-world large-scale datasets (details in Appendix C.3). The coloured arrows
indicate respectively a reduction (↓) and an increase (↑) of communication/computational cost.

Method Comm.
Overhead

Total Communication Cost (bytes exchanged) Total Computational Cost (Wall-Clock Time hh:mm)

Cifar-100 (α = 0) GLDv2 Cifar-100 (α = 0) GLDv2
CNN ResNet-20 MobileNetV2 ViT-B\16 CNN ResNet-20 MobileNetV2 ViT-B\16

FedAvg 1× 30.9 GB 10.3 GB 89.8 GB 483.7 GB 02:05 03:36 13:51 13:56
SCAFFOLD 2× 40.8 GB ↑ 32.0% 14.2 GB ↑ 37.8% 51.2 GB ↓ 43.0% 967.4 GB ↑ 100.0% 01:23 ↓ 34.0% 02:39 ↓ 26.4% 08:28 ↓ 38.9% 15:15 ↑ 9.4%

FedAvgM 1× 21.0 GB ↓ 32.0% 9.1 GB ↓ 11.6% 73.6 GB ↓ 18.0% 403.1 GB ↓ 16.7% 01:25 ↓ 32.0% 03:10 ↓ 12.0% 11:22 ↓ 18.0% 11:37 ↓ 16.7%
MimeMom 3× 21.5 GB ↓ 30.4% 30.9 GB ↑ 200.0% 269.4 GB ↑ 200.0% 1.417 TB ↑ 200.0% 01:27 ↓ 30.4% 10:42 ↑ 197.8% 41:07 ↑ 197.8% 41:30 ↑ 197.8%

GHBM (ours) 1.5× 8.5 GB ↓ 72.5% 7.0 GB ↓ 32.5% 48.5 GB ↓ 46.0% 314.4 GB ↓ 35.0% 00:24 ↓ 80.8% 01:37 ↓ 55.0% 05:20 ↓ 61.5% 06:30 ↓ 53.3%
FedHBM (ours) 1× 5.2 GB ↓ 83.0% 4.2 GB ↓ 59.2% 29.6 GB ↓ 67.0% 234.4 GB ↓ 51.5% 00:22 ↓ 82.0% 01:29 ↓ 59.0% 06:23 ↓ 54.0% 07:31 ↓ 46.0%

6 Conclusions
In this work, we propose Generalized Heavy-Ball Momentum (GHBM), a novel momentum-based optimization
method for Federated Learning (FL) that effectively mitigates the joint effect of statistical heterogeneity and
partial participation. We theoretically prove that GHBM converges under arbitrary heterogeneity in cyclic
partial participation, achieving the same rate classical momentum enjoys in full participation. Additionally,
we introduce FedHBM, a communication-efficient variant that retains the benefits of momentum while
maintaining the same communication complexity as FedAvg. Extensive experiments, conducted under
standard random uniform client sampling, confirm that GHBM significantly outperforms state-of-the-art
FL methods in both convergence speed and final model quality, demonstrating its robustness in large-scale,
real-world heterogeneous FL scenarios.
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A Additional Discussion
A.1 Extended Related Works
Recently, similarly based on variance reduction as SCAFFOLD, (Mishchenko et al., 2022) propose ScaffNew
to achieve accelerated communication complexity in heterogeneous settings through control variates, guaran-
teeing convergence under arbitrary heterogeneity in full participation. The work by Mishchenko et al. (2024),
under the assumption of second-order data heterogeneity, proposes an algorithm which can reduce client drift
by estimating the global update direction as well as employing regularization. The proposed algorithm can be
seen as a combination of FedProx with SCAFFOLD/ScaffNew, and similarly relies on additional server
control variates to correct the drift, so the underlying principle is still variance reduction. Quite differently,
GHBM is based on momentum, properly modified to tackle heterogeneity and partial participation in FL.
Similarly to the already discussed Mime (Karimireddy et al., 2021), Karagulyan et al. (2024) propose the
SPAM algorithm and leverage momentum as a local correction term to benefit from second-order similarity.

Comparison with FedACG (Kim et al., 2024). We provide a comparison with the FedACG algorithm
based on: algorithmic design, theoretical guarantees and empirical results. Algorithmically, it has two
modifications w.r.t. FedAvgM: (i) it uses the Nesterov Accelerated Gradient (NAG) to broadcast a lookahead
global model and (ii) adds a proximal local penalty similar to FedProx w.r.t. this transmitted global
model. The method has the same communication complexity as FedAvg, because it does not exchange
additional information. Our work proposes instead a novel formulation of momentum, explicitly designed
to provide an advantage in heterogeneous FL with partial client participation. We propose both the main
algorithm (GHBM), which has stateless clients but has 1.5× the communication complexity of FedAvg, and
communication efficient versions (e.g. FedHBM), that preserve the communication complexity as FedAvg,
at the cost of using local storage. From a theoretical perspective, the convergence rate of FedACG does
not prove any advantage w.r.t. heterogeneity, since it still relies on the bounded heterogeneity assumption.
GHBM is proven to converge under arbitrary heterogeneity in cyclic partial participation, recovering the
same convergence rate that Cheng et al. (2024) proved for FedCM when in full participation. This is a
significant advantage that then reflects in significantly improved performance. From an empirical perspective,
simulation results are presented in Fig. 5. While it is faster than FedAvgM, it still falls short behind our
algorithms in heterogeneous scenarios. This is a consequence of the same issue we showed in Sec. 3.3 for
classical momentum.

…

Figure 6: Illustration of cyclic client participation with a total of K = 9 clients. Thm. 4.11 holds
under the assumption of cyclic participation, which simply states that there is any fixed order (so client
shuffling methods like Shuffle-Once are compliant with the assumption) in which clients appear across rounds
in the training, i.e. each client is sampled every p = 1

C rounds. In the above image, K · C = 3 clients are
selected for training, i.e. each client is selected exactly once every p = 3 rounds.

A.2 Notes on Failure Cases of SOTA Algorithms
In this paper, we evaluated our approach using the large-scale FL datasets proposed by (Hsu et al., 2020).
Notably, several recent state-of-the-art FL algorithms failed to converge on these datasets. For SCAFFOLD
this result aligns with prior works (Reddi et al., 2021; Karimireddy et al., 2021), since it is unsuitable
for cross-device FL with thousands of devices. Indeed, the client control variates can become stale, and
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may consequently degrade the performance. For MimeMom (Karimireddy et al., 2021), despite extensive
hyperparameter tuning using the authors’ original code, we were unable to achieve convergence. This finding
is surprising since the approach has been proposed to tackle cross-device FL. To our knowledge, this is
the first work to report these failure cases, likely due to the lack of prior evaluations on such challenging
datasets. We believe these findings underscore the need for further investigation into the factors contributing
to algorithm performance in large-scale, heterogeneous FL settings.

B Proofs
Algorithms
To handle the proof, we analyze a simpler version of our algorithm, in which we use the update rule in Eq. (5)
instead of the one described in Eq. (6). The resulting Algorithm 3 we analyze is reported along the plain
GHBM (Algorithm 2) we used in the experiments. Both algorithms enjoy the same underlying idea: use the
gradients of a larger portion of the clients to estimate the momentum term.

Algorithm 2: GHBM (practical version)
Require: initial model θ0, K clients, C participation ratio, T number of total round, η and ηl learning rates, τ ∈ N+.

1: for t = 1 to T do
2: St ← subset of clients ∼ U(S, max(1, K · C))
3: for i ∈ St in parallel do
4: θt,0

i ← θt−1

5: for j = 1 to J do
6: sample a mini-batch di,j from Di

7: ut,j
i ← ∇fi(θt,j−1

i , di,j) + βm̃t
τ

8: θt,j
i ← θt,j−1

i − ηlu
t,j
i

9: end for
10: end for
11: ut ← 1

|St|

∑
i∈St

(
θt−1 − θt,J

i

)
12: θt ← θt−1 − ηut

13: m̃t+1
τ ← 1

τJ

(
θt−τ − θt

)
14: end for

Algorithm 3: GHBM (theory version)
Require: initial model θ0, K clients, C participation ratio, T number of total round, η and ηl learning rates, τ ∈ N+.

1: for t = 1 to T do
2: St ← subset of clients ∼ U(S, max(1, K · C))
3: for i ∈ St in parallel do
4: θt,0

i ← θt−1

5: for j = 1 to J do
6: sample a mini-batch di,j from Di

7: ut,j
i ← β∇fi(θt,j−1

i , di,j) + (1− β)m̃t
τ

8: θt,j
i ← θt,j−1

i − ηlu
t,j
i

9: end for
10: end for
11: ut ← 1

ηl|St|J

∑
i∈St

(
θt−1 − θt,J

i

)
12: θ̄t ← θt−1 − ut + (1− β)m̃t

τ

13: m̃t+1
τ ← (1− β)m̃t

τ + 1
τ

(
θ̄t−τ − θ̄t

)
14: θt ← θt−1 − ηm̃t+1

τ

15: end for

In the following, we list the differences between the two:

1. Explicit use of τ -averaged gradients when updating the momentum term (line 13). This can be
implemented by keeping server-side an auxiliary sequence of models θ̄t, in which the momentum
added client side is subtracted server-side (line 12), such that taking the difference of two models
gives the sum of pseudo-grads.

2. Use of convex sum in local updates (line 7). This is done to align with the formulation of momentum
methods in Cheng et al. (2024), and more in general with the formulation of momentum commonly
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analyzed in literature. There is no theoretical difference between the two versions, as they only differ
by a constant scaling (Liu et al., 2020).

3. Use of gradients averaged over local steps (line 11). This is done to align with the analysis of Cheng
et al. (2024); Xu et al. (2021), and it is equivalent to coupling server and client learning rates (i.e.
setting η = γJηl in Algorithm 3, where γ is the server learning rate we would use in Algorithm 2).

The two algorithms have similar performances, which are reported in Fig. 7
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Figure 7: Comparing the GHBM implementation analyzed in theory (Algorithm 3) with the one proposed
in the main paper (Algorithm 2). The plots show the convergence rate on Cifar-10 (top) and Cifar-100
(bottom), in non-iid (left) and iid (right) scenarios with ResNet-20 architecture.

Preliminaries
Our convergence proof for GHBM is based on the recent work of Cheng et al. (2024), which offers new
proof techniques for momentum-based FL algorithms. Throughout the proofs we use the following auxiliary
variables to facilitate the presentation:

Ut := 1
|S |J

J∑
j=1

|S |∑
i=1

E
[∥∥∥θt,j

i − θt−1
∥∥∥2
]

(9)

Et := E
[∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
]

(10)

ζt,j
i := E

[
θt,j+1

i − θt,j
i

]
(11)

Ξt := 1
|S |

|S |∑
i=1

E
[∥∥∥ζt,0

i

∥∥∥2
]

Λt := E


∥∥∥∥∥∥
1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

g̃k,j
i (θk,j−1

i )

− gtτ

∥∥∥∥∥∥
2 (12)

γt := E
[∥∥gtτ −∇f(θt−1)

∥∥2
]

(13)

20



Published in Transactions on Machine Learning Research (06/2025)

Additionally, here we report the bounded gradient heterogeneity assumption. It is used to quantify the
heterogeneity reduction effect of GHBM varying its τ hyperparameter. Notice that our main claim does not
depend on this assumption, as for the optimal value of τ = 1/C the assumption is not needed (see Lemma 4.7).

B.1 Momentum Expressions
In this section we report the derivation of the momentum expressions in Eq. (3) and (7) from the main paper.
Lemma B.1 (Heavy-Ball Formulation of Classical Momentum). Let us consider the following classical
formulation of momentum:

m̃t = βm̃t−1 + g̃t(θt−1) (14)
θt = θt−1 − ηm̃t (15)

The same update rule can be equivalently expressed with the following, known as heavy-ball formulation:

θt = θt−1 + β(θt−1 − θt−2)− ηg̃(θt−1) (16)

Proof. First derive the expression of m̃t from Eq. (15), both for time t and t− 1:

m̃t =
(
θt−1 − θt

)
η

m̃t−1 =
(
θt−2 − θt−1)

η

Now plug these expressions into Eq. (14) to obtain (16):(
θt−1 − θt

)
η

= β

(
θt−2 − θt−1)

η
+ g̃t(θt−1)(

θt − θt−1) = β
(
θt−1 − θt−2)− ηg̃t(θt−1)

θt = θt−1 + β
(
θt−1 − θt−2)− ηg̃t(θt−1)

Lemma B.2 (Heavy-Ball formulation of generalized momentum). Let us consider the following generalized
formulation of momentum:

m̃t
τ = 1

τ

τ∑
k=1

βm̃t−k
τ + g̃t(θt−1) (17)

θt = θt−1 − ηm̃t
τ (18)

The same update rule can be equivalently expressed in an heavy ball form, which we call as Generalized
Heavy-Ball momentum (GHBM):

θt = θt−1 + β

τ
(θt−1 − θt−τ−1)− ηg̃(θt−1) (19)

Proof. First derive the expression of m̃t
τ from Eq. (18), both for time t and t− 1:

m̃t
τ =

(
θt−1 − θt

)
η

m̃t−1
τ =

(
θt−2 − θt−1)

η
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Now plug these expressions into Eq. (17):

(
θt−1 − θt

)
η

= β

τ

τ∑
k=1

(
θt−k−1 − θt−k

)
η

+ g̃t(θt−1)

(
θt − θt−1) = β

τ

τ∑
k=1

(
θt−k − θt−k−1)− ηg̃t(θt−1)

θt = θt−1 + β

τ

τ∑
k=1

(
θt−k − θt−k−1)− ηg̃t(θt−1)

θt = θt−1 + β

τ
(θt−1 − θt−τ−1)− ηg̃t(θt−1)

Where the last equality (19) comes from telescoping the summation on the rhs.

B.2 Technical Lemmas

Now we cover some technical lemmas which are useful for computations later on. These are known results
that are reported here for the convenience of the reader.
Lemma B.3 (relaxed triangle inequality). Let {v1, . . . , vn} be n vectors in Rd. Then, the following is true:

∥∥∥∥∥
n∑

i=1
vi

∥∥∥∥∥
2

≤ n

n∑
i=1
∥vi∥2

Proof. By Jensen’s inequality, given a convex function ϕ, a series of n vectors {v1, . . . , vn} and a series of
non-negative coefficients λi with

∑n
i=1 λi = 1, it results that

ϕ

(
n∑

i=1
λivi

)
≤

n∑
i=1

λiϕ (vi)

Since the function v → ∥v∥2 is convex, we can use this inequality with coefficients λ1 = . . . = λn = 1/n, with∑n
i=1 λi = 1, and obtain that

∥∥∥∥∥ 1
n

n∑
i=1

vi

∥∥∥∥∥
2

= 1
n2

∥∥∥∥∥
n∑

i=1
vi

∥∥∥∥∥
2

≤ 1
n

n∑
i=1
∥vi∥2

B.3 Proofs of Main Lemmas

In this section we provide the proofs of the main theoretical results presented in the main paper.

Proof of Lemma 4.7 (Deviation of τ -averaged gradient from true gradient)

Let define Sd := S −St
τ and Si := S ∩St

τ . Let us note that when all clients participate, i.e. Sd = ∅, the claim
is trivially true. For Sd ̸= ∅, we can expand the terms at the left-hand side using their definitions as follows:
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γt = E


∥∥∥∥∥∥ 1
|St

τ |

|St
τ |∑

i=1
gt

i −
1
|S |

|S |∑
i=1

gt
i

∥∥∥∥∥∥
2
 (20)

= E


∥∥∥∥∥∥
∑
i∈S

i

(
1
|St

τ |
− 1
|S |

)
gt

i −
∑

k∈S
d

1
|S |

gt
k

∥∥∥∥∥∥
2
 (21)

lemma B.3
≤ 2

E


∥∥∥∥∥∥
∑
i∈S

i

(
1
|St

τ |
− 1
|S |

)
gt

i

∥∥∥∥∥∥
2


︸ ︷︷ ︸
T3

+E


∥∥∥∥∥∥
∑

k∈S
d

1
|S |

gt
k

∥∥∥∥∥∥
2


︸ ︷︷ ︸
T4

 (22)

Let us consider first T3. We have:

T3 = E


∥∥∥∥∥∥
∑
i∈S

i

(
1
|St

τ |
− 1
|S |

)
gt

i

∥∥∥∥∥∥
2
 = E

( 1
|St

τ |
− 1
|S |

)2
∥∥∥∥∥∥
∑
i∈S

i

gt
i

∥∥∥∥∥∥
2
 (23)

lemma B.3
≤ E

( 1
|St

τ |
− 1
|S |

)2
|Si|

∑
i∈S

i

∥∥gt
i

∥∥2

 (24)

= E

( 1
|St

τ |
− 1
|S |

)2
|Si|

∑
i∈S

i

∥∥gt
i −∇f(θt−1) +∇f(θt−1)

∥∥2

 (25)

lemma B.3
≤ 2E

( 1
|St

τ |
− 1
|S |

)2
|Si|

∑
i∈S

i

(∥∥gt
i −∇f(θt−1)

∥∥2 +
∥∥∇f(θt−1)

∥∥2
) (26)

assumption 4.3
≤ 2E

( 1
|St

τ |
− 1
|S |

)2
|Si|

|Si|G2 +
∑
i∈S

i

∥∥∇f(θt−1)
∥∥2

 (27)

Since the term ∇f(θt−1) does not depend on the index i, we get

2E

( 1
|St

τ |
− 1
|S |

)2
|Si|

|Si|G2 +
∑
i∈S

i

∥∥∇f(θt−1)
∥∥2

 (28)

= 2E
[(

1
|St

τ |
− 1
|S |

)2
|Si|

(
|Si|G2 + |Si|

∥∥∇f(θt−1)
∥∥2
)]

(29)

= 2E
[(

1
|St

τ |
− 1
|S |

)2
|Si|2

](
G2 +

∥∥∇f(θt−1)
∥∥2
)

(30)

Now, note that St
τ ⊆ S =⇒ |Si| = |St

τ |. Therefore,

T3 ≤ 2E
[(

1
|St

τ |
− 1
|S |

)2
|Si|2

](
G2 +

∥∥∇f(θt−1)
∥∥2
)

(31)

= 2E
[(
|S | − |St

τ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(32)
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Moving now to T4, we have:

T4 = E


∥∥∥∥∥∥
∑

k∈S
d

1
|S |

gt
k

∥∥∥∥∥∥
2
 ≤ E

( 1
|S |

)2
∥∥∥∥∥∥
∑

k∈S
d

gt
k

∥∥∥∥∥∥
2
 (33)

lemma B.3
≤ E

( 1
|S |

)2
|Sd|

∑
k∈S

d

∥∥gt
k

∥∥2

 (34)

= E

( 1
|S |

)2
|Sd|

∑
k∈S

d

∥∥gt
k −∇f(θt−1) +∇f(θt−1)

∥∥2

 (35)

lemma B.3
≤ 2E

( 1
|S |

)2
|Sd|

∑
k∈S

d

(∥∥gt
k −∇f(θt−1)

∥∥2 +
∥∥∇f(θt−1)

∥∥2
) (36)

assumption 4.3
≤ 2E

( 1
|S |

)2
|Sd|

|Sd|G2 +
∑

k∈S
d

∥∥∇f(θt−1)
∥∥2

 (37)

=2E
[(

1
|S |

)2
|Sd|

(
|Sd|G2 + |Sd|

∥∥∇f(θt−1)
∥∥2
)]

(38)

=2E
[(
|Sd|
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(39)

(40)

Observing that |Sd| = |S | − |St
τ | we obtain:

T4 ≤ 2E
[(
|Sd|
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

= E

[(
|S | − |St

τ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(41)

Finally, by plugging (31) and (41) in (22) we obtain

ESt∼U(S )

[∥∥∥g(t)τ (θ)−∇f(θ)
∥∥∥2
]
≤ 8ESt∼U(S )

[(
|S | − |St

τ |
|S |

)2
](

G2 + ∥∇f(θ)∥2
)

which concludes the proof.

Proof of Corollary 4.8 This corollary follows from Lemma 4.7, which states that

ESt∼U(S )

[∥∥∥g(t)τ (θ)−∇f(θ)
∥∥∥2
]
≤ 8ESt∼U(S )

[(
|S | − |St

τ |
|S |

)2
](

G2 + ∥∇f(θ)∥2
)

To prove the results, we use (i) Assumption 4.4, (ii) the fact that |St| = |S |C ∀t and (iii) St
τ is union of τ

disjoint St sets. Using points (i)-(iii), and assuming τ ∈ [0, 1
C ], it follows that:∥∥∥g(t)τ (θ)−∇f(θ)

∥∥∥2
≤ 8 (1− τC)2

(
G2 + ∥∇f(θ)∥2

)
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Proof of Lemma 4.10 (Bounded error of delayed gradients)

Note that, by Assumption 4.4, |St| = |S |C ∀t, and that |S |Cτ = |St
τ |:

Λt = E


∥∥∥∥∥∥1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

g̃k,j
i (θk,j−1

i )− gtτ

∥∥∥∥∥∥
2 (42)

= E


∥∥∥∥∥∥1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

(
g̃k,j

i (θk,j−1
i )− gi(θt−1)

)∥∥∥∥∥∥
2 (43)

= E


∥∥∥∥∥∥1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

(
g̃k,j

i (θk,j−1
i )− gi(θk,j−1

i ) + gi(θk,j−1
i )− gi(θk−1) + gi(θk−1)− gi(θt−1)

)∥∥∥∥∥∥
2

(44)
≤ 3 (T1 + T2 + T3) (45)

T1 = E


∥∥∥∥∥∥1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

(
g̃k,j

i (θk,j−1
i )− gi(θk,j−1

i )
)∥∥∥∥∥∥

2 (46)

≤ 1
τ

σ2

|St|J
= σ2

|St
τ |J

(47)

T2 = E


∥∥∥∥∥∥1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

(
gi(θk,j−1

i )− gi(θk−1)
)∥∥∥∥∥∥

2 (48)

≤ L2

|S |Jτ

t∑
k=t−τ+1

|S |∑
i=1

J∑
j=1

E
[∥∥θk,j−1 − θk−1∥∥2] (49)

= L2

τ

t∑
k=t−τ+1

Uk (50)

T3 = E


∥∥∥∥∥∥1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

(
gi(θk−1)− gi(θt−1)

)∥∥∥∥∥∥
2 (51)

≤ L2

|S |τ

t∑
k=t−τ+1

|S |∑
i=1

E
[∥∥θk−1 − θt−1∥∥2] (52)

≤ L2

τ

t∑
k=t−τ+1

E
[∥∥θk−1 − θt−1∥∥2] (53)

= L2

τ

t∑
k=t−τ+1

(t− k)E
[∥∥θk − θk−1∥∥2] (54)

≤ 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1∥∥2]+ Ek

)
(55)
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So, combining with lemma Lemmas B.5 and B.6 we have:

T∑
t=1

Λt ≤ 3
(

Tσ2

|St
τ |J

+ L2
T∑

t=1
Ut + 2L2η2(τ − 1)

T −1∑
t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]

+ Et

))
(56)

lemma B.5= 3
(

Tσ2

|St
τ |J

+ 2L2η2(τ − 1)
T −1∑
t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]

+ Et

)
(57)

+ L2TJη2
l β2σ2 (1 + 2J3η2

l β2L2)︸ ︷︷ ︸
T4

+2J2L2e2
T∑

t=1
Ξt)
)

lemma B.6= 3
(

Tσ2

|St
τ |J

+ 2L2η2(τ − 1)
T −1∑
t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]

+ Et

)
(58)

+ T4 + 2J2L2e2 (4η2
l

(
(1− β)2 + e(βηLT )2))︸ ︷︷ ︸

α1

T −1∑
t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2e2J2L2(2eη2
l βτTGτ )︸ ︷︷ ︸

T5

)

= 3
(

Tσ2

|St
τ |J

+ T4 +
(
α1 + 2L2η2

l (τ − 1)
)︸ ︷︷ ︸

α2

T −1∑
t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]

+ Et

)
+ T5

)
(59)

B.4 Convergence Proof

Lemma B.4 (Bounded variance of server updates). Under Assumptions 4.1 and 4.2, it holds that:

T∑
t=1
Et ≤

8
5β
E0 + 3

5

T −1∑
t=0

E
[∥∥∇f(θt−1)

∥∥2
]

+ 21β
σ2

|St
τ |J

T+ (60)

+ 448
5 (ηlJL)2(e3τT )Gτ + 6β

T∑
t=1

γt

Proof.

Et := E
[∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
]

(61)

= E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ ) + β(∇f(θt−1)− g̃tτ )
∥∥2
]

(62)

= E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]

+ β2E
[∥∥(∇f(θt−1)− g̃tτ )

∥∥2
]

(63)

+ 2βE

〈(1− β)(∇f(θt−1)− m̃t
τ ),∇f(θt−1)− 1

τ

t∑
k=t−τ+1

1
|Sk|J

|Sk|∑
i=1

J∑
j=1

gi(θk,j−1
i )

〉
(64)
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Using the AM-GM inequality and Lemma B.3:

≤
(

1 + β

2

)
E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]

+ 2β2 (γt + Λt) +

+ 4βγt + 8β

(
L2

τ

t∑
k=t−τ+1

Uk + 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2]+ Ek

))
(65)

lemma 4.10
≤

(
1 + β

2

)
E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]

+
(
2β2 + 4β

)
γt + 6β2 σ2

|St
τ |J

+ (66)

+
(
6β2 + 8β

)(L2

τ

t∑
k=t−τ+1

Uk + 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2]+ Ek

))
︸ ︷︷ ︸

T1

≤ (1− β)2
(

1 + β

2

)
E
[∥∥∇f(θt−2)− m̃t

τ +∇f(θt−1)−∇f(θt−2)
∥∥2
]

+ (67)

+ 6β2 σ2

|St
τ |J

+ 6βγt + 14βT1

Applying the AM-GM inequality again:

≤ (1− β)2
(

1 + β

2

)[(
1 + β

4

)
E
[∥∥∇f(θt−2)− m̃t

τ

∥∥2
]

+ (68)

+
(

1 + 1
β

)
E
[∥∥∇f(θt−1)−∇f(θt−2)

∥∥2
] ]

+ 6β2 σ2

|St
τ |J

+ 6βγt + 14βT1

assumption 4.2
≤ (1− β)2

(
1 + β

2

)[(
1 + β

4

)
Et−1+ (69)

+
(

1 + 1
β

)
L2E

[∥∥θt−1 − θt−2∥∥2
] ]

+ 6β2 σ2

|St
τ |J

+ 6βγt + 14βT1

≤ (1− β)2
(

1 + β

2

)[(
1 + β

4

)
Et−1+ (70)

+ 2
(

1 + 1
β

)
L2η2

(
E
[∥∥∇f(θt−2)

∥∥2
]

+ Et−1

)]
+ 6β2 σ2

|St
τ |J

+ 6βγt + 14βT1

Where in the last inequality we used the fact that:∥∥θt−1 − θt−2∥∥2 ≤ 2η2
(∥∥∇f(θt−2)

∥∥2 +
∥∥∇f(θt−2)− m̃t

τ

∥∥2
)

.

Now notice that (1− β)2
(

1 + β
2

)(
1 + β

4

)
≤ (1− β) and that 2(1− β)2

(
1 + β

2

)(
1 + 1

β

)
≤ 2

β :

Et ≤ (1− β)Et−1 + 2
β

L2η2
(
E
[∥∥∇f(θt−2)

∥∥2
]

+ Et−1

)
+ 6β2 σ2

|St
τ |J

+ 6βγt + 14βT1 (71)

=
(

1− β + 2
β

L2η2
)
Et−1 + 2

β
L2η2E

[∥∥∇f(θt−2)
∥∥2
]

+ 6β2 σ2

|St
τ |J

+ 6βγt + 14βT1 (72)

Define:

• T2 := L2TJη2
l β2σ2 (1 + 2J3η2

l β2L2)
• T3 := 2e2J2L2(2eη2

l βτTGτ )

• α1 := 2J2L2e2 (4η2
l

(
(1− β)2 + e(βηLT )2))+ 2L2η2

l (τ − 1)
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Summing up over T and substituting into T1 the expression for Ut:
T∑

t=1
Et ≤

(
1− β + 2

β
L2η2 + 14βα1

)
︸ ︷︷ ︸

α2

T −1∑
t=0
Et+ (73)

+
(

2
β

L2η2 + 14βα1

)
︸ ︷︷ ︸

α3

T −1∑
t=0

E
[∥∥∇f(θt−1)

∥∥2
]

+

+ 14β (T2 + T3) T + 6β2 σ2

|St
τ |J

T + 6β

T∑
t=1

γt

We now have that:

α2 :=
(

1− β + 2
β

L2η2 + 14β
[
2J2L2e2 (4η2

l

(
(1− β)2 + e(βηLT )2))+ 2L2η2

l (τ − 1)
])

(74)

=
(

1− β + 2
β

L2η2 + 14β
[
8J2L2e2η2

l

(
(1− β)2 + e(βηLT )2)+ 2L2η2

l (τ − 1)
])

(75)

≤
(

1− β + 2
β

L2η2 + 112βe2(ηlJL)2 [(1− β)2 + (βηLT )2 + (τ − 1)
])

(76)

(77)

Now impose (ηlJL) ≤ (37
√

τβηLTe)−1 and η ≤ β√
8L

. We have that:

α2 ≤
(

1− β + 2β

8 + β

8

)
=
(

1− 5β

8

)
(78)

α3 ≤
3β

8 (79)

14βT2 = 14βL2TJη2
l β2σ2 (1 + 2J3η2

l β2L2) (80)

= 14β3(ηlJL)2
(

1
J

+ 2(ηlJLβ)2
)

σ2T (81)

≤ 7β2 σ2

|St
τ |J

T (82)

Where in the last inequality we apply:

2β(ηlJL)2
(

1
J

+ 2(ηlJLβ)2
)
≤ 1
|St

τ |J

Plugging all the terms together we have:
T∑

t=1
Et ≤

(
1− 5

8β

) T −1∑
t=0
Et + 3β

8

T −1∑
t=0

E
[∥∥∇f(θt−1)

∥∥2
]

+ 13β2 σ2

|St
τ |J

T+ (83)

+ 56β(ηlJL)2(e3τT )Gτ + 6β

T∑
t=1

γt

Rearranging the terms completes the proof.

Lemma B.5. Under Assumptions 4.1 and 4.2, for Eq. (9) it holds that:

Ut ≤ 2J2e2Ξt + Jη2
l β2σ2(1 + 2J3η2

l L2β2) (84)
T∑

t=1
Ut ≤ TJη2

l β2σ2(1 + 2J3η2
l β2L2) + 2J2e2

T∑
t=1

Ξt (85)

28



Published in Transactions on Machine Learning Research (06/2025)

Proof.

E
[∥∥∥θt,j

i − θt−1
∥∥∥2
]
≤ 2E

∥∥∥∥∥
j−1∑
k=0

ζt,k
i

∥∥∥∥∥
2+ 2jη2

l β2σ2 (86)

lemma B.3
≤ 2j

j−1∑
k=0

E
[∥∥∥ζt,k

i

∥∥∥2
]

+ 2jη2
l β2σ2 (87)

For any 1 ≤ k ≤ j − 1 ≤ J − 2, using ηL ≤ 1
βJ ≤

1
β(j+1) , we have:

E
[∥∥∥ζt,k

i

∥∥∥2
]
≤
(

1 + 1
j

)
E
[∥∥∥ζt,k−1

i

∥∥∥2
]

+ (1 + j)E
[∥∥∥ζt,k

i − ζt,k−1
i

∥∥∥2
]

(88)

≤
(

1 + 1
j

)
E
[∥∥∥ζt,k−1

i

∥∥∥2
]

+ (1 + j)η2
l β2L2

(
η2

l β2σ2 + E
[∥∥∥ζt,k−1

i

∥∥∥2
])

(89)

≤
(

1 + 1
j

)
E
[∥∥∥ζt,k−1

i

∥∥∥2
]

+ (1 + j)η4
l β4L2σ2 + 1

1 + j
E
[∥∥∥ζt,k

i − ζt,k−1
i

∥∥∥2
]

(90)

≤
(

1 + 2
j

)
E
[∥∥∥ζt,k−1

i

∥∥∥2
]

+ (1 + j)η4
l β4L2σ2 (91)

(1+ 2
j )j≤e2

≤ e2E
[∥∥∥ζt,0

i

∥∥∥2
]

+ 4j2η4
l β4L2σ2 (92)

So it holds that:

E
[∥∥∥θt,j

i − θt−1
∥∥∥2
]
≤ 2j2

(
e2E

[∥∥∥ζt,0
i

∥∥∥2
]

+ 4j2η4
l L2σ2

)
+ 2jη2

l σ2 (93)

= 2e2j2E
[∥∥∥ζt,0

i

∥∥∥2
]

+ 2jη2
l σ2β2(1 + 4j3η2

l L2β2) (94)

So, summing up over i and j:

Ut ≤
1
|S |J

|S |∑
i=1

J∑
j=1

2e2j2E
[∥∥∥ζt,0

i

∥∥∥2
]

+ 2jη2
l σ2β2(1 + 4j3η2

l L2β2) (95)

≤ 2J2e2Ξt + Jη2
l β2σ2(1 + 2J3η2

l L2β2) (96)

Finally, summing up over T :

T∑
t=1
Ut ≤ TJη2

l β2σ2(1 + 2J3η2
l β2L2)︸ ︷︷ ︸

T1

+2J2e2
T∑

t=1
Ξt (97)

≤ T1 + 2J2e2

4η2 ((1− β)2 + e(βηLT )2) T −1∑
t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2β2τTGτ︸ ︷︷ ︸
T2

 (98)

≤ T1 + α1

T −1∑
t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ α2T2 (99)

Lemma B.6. Under Assumptions 4.1, 4.2 and 4.4, if 224e(ηlJL)2 ((1− β)2 + e(βηLT )2) ≤ 1, for Eq. (11)
it holds for t ≥ 0 that:

Ξt ≤
1

56eJ2L2

T −1∑
t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2
l β2τTGτ (100)
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Proof. Note that ζt,0
i = −ηl

(
(1− β)m̃t

τ + βgi(θt−1)
)
,

1
|S |

|S |∑
i=1

∥∥∥ζt,0
i

∥∥∥2
≤ 2η2

l

(1− β)2 ∥∥m̃t
τ

∥∥2 + β2

|S |

|S |∑
i=1

∥∥gi(θt−1)
∥∥2

 (101)

For any a > 0, considering each client participates to the train every τ = 1
C rounds:

E
[∥∥gi(θt−1)

∥∥2
]

= E
[∥∥gi(θt−1)− gi(θt−τ−1) + gi(θt−τ−1)

∥∥2
]

(102)
lemma B.3
≤ (1 + a)E

[∥∥gi(θt−τ−1)
∥∥2
]

+ (103)

+
(

1 + 1
a

)
E
[∥∥gi(θt−1)− gi(θt−τ−1)

∥∥2
]

≤ (1 + a)E
[∥∥gi(θt−τ−1)

∥∥2
]

+ (104)

+
(

1 + 1
a

)
L2E

[∥∥θt−1 − θt−τ−1∥∥2
]

(105)

≤ (1 + a)E
[∥∥gi(θt−τ−1)

∥∥2
]

+ (106)

+ 2
(

1 + 1
a

)
L2η2τ

τ∑
k=1

(
Et−k + E

[∥∥∇f(θt−k−1)
∥∥2]) (107)

≤ (1 + a) t
τ E
[∥∥gi(θti−1)

∥∥2
]

+ (108)

+ 2
(

1 + 1
a

)
L2η2τ

t
τ∑

s=1

τ∑
k=1

(
Esτ−k + E

[∥∥∇f(θsτ−k)
∥∥2]) (1 + a) t

τ −s

≤ (1 + a) t
τ E
[∥∥gi(θti−1)

∥∥2
]

+ (109)

+ 2
(

1 + 1
a

)
L2η2τ

t−1∑
k=1

(
Ek + E

[∥∥∇f(θk−1)
∥∥2]) (1 + a) t

τ

Where ti := mint∈[T ](t s.t. i ∈ St). Now take a = τ
t :

E
[∥∥gi(θt−1)

∥∥2
]
≤ eE

[∥∥gi(θti−1)
∥∥2
]

+ (110)

+ 2eη2L2τ

(
t

τ
+ 1
) t−1∑

k=1

(
Ek + E

[∥∥∇f(θk−1)
∥∥2])

So:
T∑

t=1
Ξt ≤

T∑
t=1

2η2
l

2(1− β)2
(
Et−1 + E

[∥∥∇f(θt−2∥∥2
])

+ β2

|S |

|S |∑
i=1

E
[∥∥gi(θt−1)

∥∥2
] (111)

≤
T∑

t=1
4η2

l (1− β)2
(
Et−1 + E

[∥∥∇f(θt−2)
∥∥2
])

+ (112)

+ 2η2
l β2

T∑
t=1

 e

|S |

|S |∑
i=1

E
[∥∥gi(θti−1)

∥∥2
]

+ 2eη2
l L2τ

(
t

τ
+ 1
) t−1∑

k=1

(
Ek + E

[∥∥∇f(θt−1∥∥2
])

≤ 4η2
l (1− β)2

T∑
t=1

(
Et−1 + E

[∥∥∇f(θt−2)
∥∥2
])

+ (113)

+ 2η2
l β2

(
eT

τ∑
t=1

Gt + 2e(ηLT )2
T −1∑
t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
]))
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Let us define Gτ := maxt∈[1,τ ] Gt, with Gt := 1
|St|

∑|St|
i=1 E

[∥∥gi(θt−1)
∥∥2
]
. We have that:

T∑
t=1

Ξt ≤ 4η2
l

(
(1− β)2 + e(βηLT )2) T −1∑

t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2
l β2τTGτ (114)

Applying the upper bound of ηl completes the proof.

Lemma B.7 (Cheng et al. (2024)). Under Assumption 4.2, if ηL ≤ 1
24 , the following holds for all t ≥ 0:

E
[
f(θt)

]
≤ E

[
f(θt−1)

]
− 11η

24 E
[∥∥∇f(θt−1)

∥∥2
]

+ 13η

24 Et (115)

Proof. Since f is L-smooth, we have:

f(θt) ≤ f(θt−1) +
〈
∇f(θt−1), θt − θt−1〉+ L

2
∥∥θt − θt−1∥∥2 (116)

= f(θt−1)− η
∥∥∇f(θt−1∥∥2 + η

〈
∇f(θt−1),∇f(θt−1)− m̃t+1

τ

〉
+ Lη2

2
∥∥m̃t+1

τ

∥∥2 (117)

Since θt = θt−1 − ηm̃t+1
τ , using Young’s inequality and imposing ηL ≤ 1

24 , we further have:

f(θt) ≤ f(θt−1)− η

2
∥∥∇f(θt−1)

∥∥2 + η

2
∥∥∇f(θt−1)− m̃t+1

τ

∥∥2 + (118)

+ Lη2
(∥∥∇f(θt−1)

∥∥2 +
∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
)

≤ f(θt−1)− 11η

24
∥∥∇f(θt−1)

∥∥2 + 13η

24
∥∥∇f(θt−1)− m̃t+1

τ

∥∥2 (119)

Proof of Theorem 4.11 (Convergence rate of GHBM for non-convex functions)

Under Assumptions 4.1, 4.2 and 4.4, if we take:

m̃0
τ = 0, β = min

{
1,

√
|S |JL∆

σ2T

}
, η = min

{
1

24L
,

β√
8L

}
(120)

ηlJL ≲ min
{

1,
1

βηL
√

τT
,

√
L∆

β3τGτ T
,

1√
β|S |

,

(
1

β3|S |J

) 1
4
}

then GHBM with optimal τ = 1
C converges as:

1
T

T∑
t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆
T

+

√
L∆σ2

|S |JT
(121)

Proof. Combining the results of Lemmas B.4 and B.7, we have that:

T∑
t=1

(
E
[
f(θt

]
− E

[
f(θt−1]) ≤ −11η

24

T∑
t=1

E
[∥∥∇f(θt−1∥∥2

]
+ 13η

24

T∑
t=1
Et (122)

1
η
E
[
f(θt−1 − f(θ0)

]
≤ 26

30β
E0 −

1
15

T∑
t=1

E
[∥∥∇f(θt−1∥∥2

]
+ 32β

σ2

|St
τ |J

T+ (123)

+ 448
5 (ηlJL)2(e3τT )Gτ + 6β

T∑
t=1

γt (124)
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Imposing τ = 1
C , by Corollary 4.8 we have that γt = 0 and St

τ = S ∀t. Also, noticing that m̃0
τ = 0 implies

E0 ≤ 2L
(
f(θ0)− f∗) = 2L∆, we have that:

1
T

T∑
t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆
ηLT

+ E0

βT
+ (ηlJLβ)2τGτ + β

σ2

|S |J
(125)

≲
L∆
T

+ 2L∆
βT

+ (ηlJLβ)2τGτ + β
σ2

|S |J
(126)

≲
L∆
T

+ 2L∆
βT

+ β2
(

L∆
β3τGτ T

)
τGτ + β

σ2

|S |J
(127)

≲
L∆
T

+ L∆
βT

+ β
σ2

|S |J
(128)

≲
L∆
T

+

√
L∆σ2

|S |JT
(129)

where the fourth inequality follows from applying the upper bound ηlJL ≤
√

L∆
β3τGτ T on the third term of

Eq. (126).

C Experimental Setting
C.1 Datasets and Models
Cifar-10/100. We consider Cifar-10 and Cifar-100 to experiment with image classification tasks, each
one respectively having 10 and 100 classes. For all methods, training images are preprocessed by applying
random crops, followed by random horizontal flips. Both training and test images are finally normalized
according to their mean and standard deviation. As the main model for experimentation, we used a model
similar to LeNet-5 as proposed in (Hsu et al., 2020). To further validate our findings, we also employed a
ResNet-20 as described in (He et al., 2015), following the implementation provided in (Idelbayev, 2021).
Since batch normalization Ioffe & Szegedy (2015) layers have been shown to hamper performance in learning
from decentralized data with skewed label distribution (Hsieh et al., 2020), we replaced them with group
normalization (Wu & He, 2018), using two groups in each layer. For a fair comparison, we used the same
modified network also in centralized training. We report the result of centralized training for reference
in Table 5: as per the hyperparameters, we use 64 for the batch size, 0.01 and 0.1 for the learning rate
respectively for the LeNet and the ResNet-20 and 0.9 for momentum. We trained both models on both
datasets for 150 epochs using a cosine annealing learning rate scheduler.

Table 5: Test accuracy (%) of centralized train-
ing over datasets and models used. Results are
reported in term of mean top-1 accuracy over the last
10 epochs, averaged over 5 independent runs.

Dataset Acc. Centralized (%)
Cifar-10 w/ LeNet 86.48 ±0.22
Cifar-10 w/ ResNet-20 89.05 ±0.44
Cifar-100 w/ LeNet 57.00 ±0.09
Cifar-100 w/ ResNet-20 62.21 ±0.85
Shakespeare 52.00 ±0.16
StackOverflow 28.50 ±0.25
GLDv2 74.03 ±0.15

Shakespeare. The Shakespeare language model-
ing dataset is created by collating the collective works
of William Shakespeare and originally comprises 715
clients, with each client denoting a speaking role.
However, for this study, a different approach was
used, adopting the LEAF (Caldas et al., 2019) frame-
work to split the dataset among 100 devices and
restrict the number of data points per device to 2000.
The non-IID dataset is formed by assigning each
device to a specific role, and the local dataset for
each device contains the sentences from that role.
Conversely, the IID dataset is created by randomly
distributing sentences from all roles across the de-
vices.

For this task, we have employed a two-layer Long Short-Term Memory (LSTM) classifier, consisting of 100
hidden units and an 8-dimensional embedding layer. Our objective is to predict the next character in a
sequence, where there are a total of 80 possible character classes. The model takes in a sequence of 80
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characters as input, and for each character, it learns an 8-dimensional representation. The final output of the
model is a single character prediction for each training example, achieved through the use of 2 LSTM layers
and a densely-connected layer followed by a softmax. This model architecture is the same used by (Li et al.,
2020; Acar et al., 2021).

We report the result of centralized training for reference in Table 5: we train for 75 epochs with constant
learning rate, using as hyperparameters 100 for the batch size, 1 for the learning rate, 0.0001 for the weight
decay and no momentum.

StackOverflow. The Stack Overflow dataset is a language modeling corpus that comprises questions and
answers from the popular Q&A website, StackOverflow. Initially, the dataset consists of 342477 unique users
but for, practical reasons, we limit our analysis to a subset of 40k users. Our goal is to perform the next-word
prediction on these text sequences. To achieve this, we utilize a Recurrent Neural Network (RNN) that
first learns a 96-dimensional representation for each word in a sentence and then processes them through a
single LSTM layer with a hidden dimension of 670. Finally, the model generates predictions using a densely
connected softmax output layer. The model and the preprocessing steps are the same as in (Reddi et al.,
2021). We report the result of centralized training for reference in Table 5: as per the hyperparameters, we
use 16 for the batch size, 10−1/2 for the learning rate and no momentum or weight decay. We train for 50
epochs with a constant learning rate. Given the size of the test dataset, testing is conducted on a subset of
them made by 10000 randomly chosen test examples, selected at the beginning of training.

Large-scale Real-world Datasets. As large-scale real-world datasets for our experimentation, we follow
Hsu et al. (2020). GLDv2 is composed of ≈ 164k images belonging to ≈ 2000 classes, realistically split among
1262 clients. INaturalist is composed of ≈ 120k images belonging to ≈ 1200 classes, split among 9275
clients. These datasets are challenging to train not only because of their inherent complexity (size of images,
number of classes) but also because usually at each round a very small portion of clients is selected. In
particular, for GLDv2 we sample 10 clients per round, while for INaturalist we experiment with different
participation rates, sampling 10, 50, or 100 clients per round. In the main paper, we choose to report the
participation rate instead of the number of sampled clients to better highlight that the tested scenarios are
closer to a cross-device setting, which is the most challenging for algorithms based on client participation, like
SCAFFOLD and ours. As per the model, for both datasets, we use a MobileNetV2 pretrained on ImageNet.

Details on the Experiment in Fig. 7. In the main text (see Sec. 4.3) we provide an experiment to
illustrate the convergence rate of GHBM (see Fig. 7). The learning problem consists in a linear regression of
the coefficients (a, b, c) ∈ R of a quadratic function f(x) = ax2 + bx + c. The synthetic dataset is made of
6400 observations of the above function (with a = 10, b = 5, c = −1) in the range x ∈ [−10, 10]. The dataset
is split among K = 50 clients each one having 128 samples, and non-iidness is simulated by splitting the
domain into equally big disjoint subsets, and having each client the observation of that domain.

Table 6: Details about datasets’ split used for our experiments

Cifar-10 Cifar-100 Shakespeare StackOverflow GLDv2 INaturalist
Clients 100 100 100 40.000 1262 9275
Number of clients per round 10 10 10 50 10 {10, 50, 100}
Number of classes 10 100 80 10004 2028 1203
Avg. examples per client 500 500 2000 428 130 13
Number of local steps 8 8 20 27 13 2
Average participation (round no.) 1k 1k 25 1.5 40 {5, 27, 54}

C.2 Simulating Heterogeneity
For Cifar-10/100 we simulate arbitrary heterogeneity by splitting the total datasets according to a Dirichlet
distribution with concentration parameter α, following Hsu et al. (2020). In practice, we draw a multinomial
qi ∼ Dir(αp) from a Dirichlet distribution, where p describes a prior class distribution over N classes,
and α controls the heterogeneity among all clients: the greater α the more homogeneous the clients’ data
distributions will be. After drawing the class distributions qi, for every client i, we sample training examples
for each class according to qi without replacement.

33



Published in Transactions on Machine Learning Research (06/2025)

Table 7: Hyper-parameter search grid for each combination of method and dataset (for α = 0). The best
values are indicated in bold.

Method HParam Cifar-10/100 Shakespeare StackOverflow
LeNet ResNet-20

All FL wd [0.001, 0.0008, 0.0004] [0.0001, 0.00001] [0, 0.0001, 0.00001] [0, 0.0001, 0.00001]
B 64 64 100 16

FedAvg η [2, 1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [1, 0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FedProx
η [2, 1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [1, 0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
µ [1, 0.1, 0.01, 0.001] [1, 0.1, 0.01, 0.001] [0.1, 0.01, 0.001, 0.0001, 0.00001] [0.1, 0.01, 0.001, 0.0001]

SCAFFOLD η [1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FedDyn
η [1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.1, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001, 0.0001] [0.1, 0.01, 0.001, 0.0001] [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

AdaBest
η [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.1, 0.05, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001, 0.0001] [0.1, 0.01, 0.001, 0.0001] [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

Mime η [2, 1.5, 1, 0.5, 0.1] [2, 1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FedAvgM
η [1, 0.5, 0.1, 0.05, 0.01] [1, 0.1, 0.05] [1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.5, 0.1, 0.05, 0.01, 0.005] [1, 0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]

FedACG

η [1, 0.5, 0.1, 0.05, 0.01] [1, 0.1, 0.05] [0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1]
ηl [0.5, 0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
λ [0.99, 0.9, 0.85] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]
β [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] [0.1, 0.01, 0.001, 0.0001, 0.00001] [0.1, 0.01, 0.001, 0.0001]

MimeMom
η [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.3, 0.1, 0.05] [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.05, 0.03, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1, 0.05]
β [0.99, 0.95, 0.9, 0.85, 0.8] [0.99, 0.95, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]

MimeLiteMom
η [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.3, 0.1] [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.1, 0.05, 0.03, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1, 0.05]
β [0.99, 0.9, 0.85, 0.8] [0.99, 0.95, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]

FedCM
η [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.1, 0.05] -
ηl [1, 0.5, 0.1, 0.05] [1, 0.5, 0.1, 0.5] [1.5, 1, 0.5, 0.1] -
α [0.05, 0.1, 0.5] [0.05, 0.1, 0.5] [0.05, 0.1, 0.5] -

GHBM (ours)
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.9] [0.9] [0.9] [0.9]
τ [5, 10, 20, 40] [5, 10, 20, 40] [5, 10, 20, 40] [5, 10, 20, 40]

FedHBM(ours)
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9]

C.3 Evaluating Communication and Computational Cost
In the main paper we showed a comparison in communication and computational cost of state-of-art FL
algorithms compared to our solutions GHBM and FedHBM: in this section we detail how those results in
table Tab. 4 have been obtained. We follow a three-step procedure:

1. For each algorithm a, we calculate the minimum number of rounds ra to reach the performance of
FedAvg, the total amount of bytes exchanged ba in the whole training budget (number of rounds,
as described in Appendix C.5) and the measure the corresponding total training time ta. In this
way, the different requirements in communication and computation of each algorithm are taken into
account for the next steps.

2. We calculate the actual communication and computational requirements as (tba = ba ·sa, tta = ta ·sa),
where sa = ra

T is the speedup of the algorithm w.r.t. FedAvg. For those competitor algorithms that
did not reach the target performance (e.g. MimeMom) in the training budget T , we conservatively
consider ra = T . In this way, the convergence speed of each algorithm is taken into account for
determining the actual amount of computation needed.

3. We complement the above information with with a reduction/increase factor w.r.t. FedAvg, calculated
as rtba =

(
1− tba

tbFedAvg

)
and rtta =

(
1− tta

ttFedAvg

)
and expressed as a percentage. A cost reduction
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(i.e. rtba > 0 or rtta > 0) is indicated with ↓, while a cost increase (i.e. rtba < 0 or rtta < 0) is
indicated with ↑. This gives a practical indication of how much communication/computation have
been saved in choosing the algorithm at hand as an alternative for FedAvg.

C.4 Hyperparameters
For ease of consultation, we report the hyper-parameters grids as well as the chosen values in Table 7. For
GLDv2 and INaturalist we only test the best SOTA algorithms: FedAvg and FedAvgM as baselines,
SCAFFOLD and MimeMom.

MobileNetV2. For all algorithms we perform E = 5 local epochs, and searched η ∈ {0.1, 1} and ηl ∈
{0.01, 0.1}, and found η = 0.1, ηl = 0.1 works best for FedAvgM, while η = 1, ηl = 0.1 works best for the
others. For INaturalist, we had to enlarge the grid for SCAFFOLD and MimeMom: for both we searched
η ∈ {10−3/2, 10−1, 10−1/2, 1} and ηl ∈ {10−2, 10−3/2, 10−1, 10−1/2}.

ViT-B\16. For all algorithms we perform E = 5 local epochs, and searched η ∈ {0.1, 1} and ηl ∈ {0.03, 0.01}
following (Steiner et al., 2022), and found η = 0.1, ηl = 0.03 works best for FedAvgM, while η = 1, ηl = 0.03
works best for the others.

C.5 Implementation Details
We implemented all the tested algorithms and training procedures in a single codebase, using PyTorch
1.10 framework, compiled with cuda 10.2. The federated learning setup is simulated by using a single
node equipped with 11 Intel(R) Core(TM) i7-6850K CPUs and 4 NVIDIA GeForce GTX 1070 GPUs.
For the large-scale experiments we used the computing capabilities offered by LEONARDO cluster of
CINECA-HPC, employing nodes equipped with 1 CPU Intel(R) Xeon 8358 32 core, 2,6 GHz CPUs and 4
NVIDIA A100 SXM6 64GB (VRAM) GPUs. The simulation always runs in a sequential manner (on a single
GPU) the parallel client training and the following aggregation by the central server.

Practicality of Experiments. Under the above conditions, a single FedAvg experiment on Cifar-100
takes ≈ 02:05 hours (CNN, with T = 20.000) and ≈ 03:36 hours (ResNet-20, with T = 10.000). For
SCAFFOLD we always use the "option II" of their algorithm (Karimireddy et al., 2020) to calculate
the client controls, incurring almost no overhead in our simulations. We found that using "option I"
usually degrades both final model quality and requires almost double the training time, due to the additional
forward+backward passes. Conversely, all Mime’s methods incur a significant overhead due to the additional
round needed to calculate the full-batch gradients, taking ≈ 10:40 hours for Cifar-100 with ResNet-20.
On Shakespeare and StackOverflow, FedAvg takes ≈ 22 minutes and ≈ 3.5 hours to run respectively
T = 250 and T = 1500 rounds.

C.6 Additional Experiments
Table 8: Test accuracy (%) comparison of SOTA FL
algorithms in a controlled setting. Best result is in
bold, second best is underlined.

Method Cifar-10 (ResNet-20) Cifar-10 (CNN)

NON-IID IID NON-IID IID

FedAvg 61.0 ±1.0 86.4 ±0.2 66.1 ±0.3 83.1 ±0.3
FedProx 61.0 ±1.8 86.7 ±0.2 66.1 ±0.3 83.1 ±0.3
SCAFFOLD 71.8 ±1.7 86.8 ±0.3 74.8 ±0.2 82.9 ±0.2
FedDyn 60.2 ±3.0 87.0 ±0.3 70.9 ±0.2 83.5 ±0.1
AdaBest 73.6 ±3.0 86.7 ±0.5 66.1 ±0.3 83.1 ±0.4
Mime 53.7 ±2.9 86.7 ±0.1 75.1 ±0.5 83.1 ±0.2

FedAvgM 66.0 ±2.2 87.7 ±0.3 67.6 ±0.3 83.6 ±0.3
FedCM(GHBM τ=1) 65.2 ±3.2 87.1 ±0.3 69.0 ±0.3 83.4 ±0.3
FedADC(GHBM τ=1) 65.7 ±3.0 87.1 ±0.2 66.1 ±0.3 83.4 ±0.3
MimeMom 69.2 ±3.6 88.0 ±0.1 80.9 ±0.4 83.1 ±0.2
MimeLiteMom 57.0 ±0.9 88.0 ±0.4 78.8 ±0.4 83.2 ±0.3

LocalGHBM (ours) 80.6 ±0.3 88.8 ±0.1 81.1 ±0.3 83.7 ±0.1
FedHBM (ours) 83.4 ±0.3 89.2 ±0.1 81.7 ±0.1 83.8 ±0.1

Experiments on Cifar-10 Table 8 reports
the results of experiments analogous to the ones
presented in Tab. 2. For the main paper, we
report experiments on Cifar-100, as it is a
more complex dataset and often a more reli-
able testing ground for FL algorithms. Indeed,
sometimes algorithms perform well on Cifar-
10 but worse on Cifar-100 (as for the already
discussed case of FedDyn). Results in Tab. 8
confirm the findings of the main paper: under
extreme heterogeneity, some algorithms behave
inconsistently across CNN and ResNet-20
(notice that FedDyn and MimeLiteMom only
with CNN improve FedAvg. Conversely, Lo-
calGHBM and FedHBM both consistently
improve the state-of-art by a large margin.
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