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ABSTRACT

Brain-Computer Interfaces (BCI) have demonstrated significant potential in neu-
ral rehabilitation. However, the variability of non-stationary neural signals often
leads to instabilities of behavioral decoding, posing critical obstacles to chronic
applications. Domain adaptation technique offers a promising solution. Nonethe-
less, the existing direct adaptation within latent spaces could result in feature
deviations. Therefore, developing a stable and efficient alignment framework is
crucial for neural decoders. In this work, we find that dynamical latent features
can be extracted from neural dynamics utilizing causal architectures. We also
demonstrate that the process of self-consistent alignment can generate more stable
latent features. Based on these insights, we propose a novel hierarchical domain
adaptation (HDA) method for the alignment of dynamical latent features. Us-
ing Lyapunov theory, we further analytically validate the stability of dynamical
features, which experimentally exhibit significant enhancements across various
datasets. Our HDA approach effectively addresses the challenge of non-stationary
neural signals, thereby potentially improving the reliability of BCIs.

1 INTRODUCTION

Brain-Computer Interfaces (BCI) offer a direct pathway for connecting the brain with external devices,
demonstrating great potential in neural rehabilitation for people with paralysis (Collinger et al., 2018;
Chaudhary et al., 2016; Willett et al., 2021; Metzger et al., 2023; Willett et al., 2023). Despite recent
advances, one key challenge for BCIs is how to maintain stable performance, considering that the
non-stationary neural recordings could vary across days (Perge et al., 2013; Wimalasena et al., 2020).
The variability in neural signals could stem from various factors, such as environmental conditions
(Santhanam et al., 2007), device degradation (Woeppel et al., 2021), physiological changes (Athalye
et al., 2017) to foreign materials, and behavioral changes (Truccolo et al., 2008). Consequently,
frequent recalibration of a BCI system is necessary to maintain its performance, leading to a critical
barrier to chronic applications (Pandarinath & Bensmaia, 2022).

To alleviate the burden of recalibration, some studies aimed to develop automatic decoder adjustment
approaches to cope with variability in neural signals(Wimalasena et al., 2020; Degenhart et al., 2020).
One strategy is to align the neural signals across multiple days. These approaches allow neural
decoders trained on one day to apply to another day directly. To achieve this, unsupervised domain
adaptation (UDA) techniques have been employed to align the distributions of neural signals across
different recording sessions. Existing UDA approaches for BCIs can be categorized into two types.
The first type performs the distribution alignment in raw neural signal spaces (Farshchian et al., 2018;
Ma et al., 2023). The second type aligns on the latent feature spaces and seeks for the spatio-temporal
relationships in neural signals (Degenhart et al., 2020; Ju & Guan, 2022; Kobler et al., 2022; Cho
et al., 2023; Jude et al., 2022).

Unfortunately, unlike conventional data such as images and videos, aligning neural signals is more
challenging due to the inherently non-stationary nature of neural activities (Gallego et al., 2020).
Directly aligning raw neural signals (Farshchian et al., 2018; Ma et al., 2023) or latent features (Kar-
powicz et al., 2022; Wang et al., 2023) may result in unstable features for decoding. Therefore, it
is crucial to develop a stable and efficient alignment framework, thereby achieving a stable feature
space for robust neural decoders.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Existing researches have shown that the brain executes various functions by converging towards
attractors (Khona & Fiete, 2022), which are linked to dynamical stability in response to neural
perturbations. Inspired by these observations, we propose that dynamical latent features can be
extracted from neural dynamics utilizing causal architectures (Chen et al., 2024). Furthermore, we
show that the process of self-consistent alignment within neural systems promotes the generation of
more stable dynamical latent features. Building on these findings, we introduce a novel framework
of hierarchical domain adaptation (HDA) that efficiently aligns dynamical latent features. Through
validation grounded on Lyapunov theory (Angeli, 2002; Jiang & Wang, 2001), we analytically
demonstrate that HDA enhances the dynamical stability of latent features, achieving stable neural
decoders over extended periods. Experimental validation of HDA reveals significant improvements
across various datasets. Our HDA approach effectively tackles the challenge of non-stationary neural
signals, potentially improving the reliability of BCIs.

The main contributions of this paper are summarized as follows:

• Causal Architectures: Unlike existing UDA studies for BCI decoding, our research utilizes
causal architectures (Chen et al., 2024) based on neural dynamics to extract latent features.
Consequently, the cumulative final latent features (Gros, 2010) can be used for stable neural
decoding. In addition, these dynamical features, derived from short-time windows, have the
potential to meet the real-time operational requirements of BCIs.

• Hierarchical Domain Adaptation: We propose a novel framework for hierarchical domain
adaptation (HDA) that enhances the dynamical stability of latent features, based on causal
architectures. Our findings also indicate that a pre-controlled upper bound on latent feature
deviations contributes to the dynamical stability using Lyapunov theory. A theoretical
verification is provided in Section 3.4.

• Experimental Validation: We conduct extensive experiments on motor cortex datasets (Ma
et al., 2023) to validate the superior performance of HDA compared with existing methods.
Employing Lyapunov exponents, we have numerically verified that HDA enhances feature
stability in non-stationary signals and effectively stabilizes behavioral decoding.

2 RELATED WORK

Unsupervised Domain Adaptation Unsupervised Domain Adaptation (UDA) aims to bridge the
gap between labeled source domain(s) and unlabeled target domains by matching their distributions.
Some studies have achieved by minimizing discrepancies based on specific metrics (Peng et al.,
2019a; Sun et al., 2016; Sun & Saenko, 2016), such as the maximum mean discrepancy (Long et al.,
2015; 2017a). Inspired by Generative Adversarial Networks, another line of research utilizes domain
adversarial training to obtain domain-invariant features (Saito et al., 2018; Sankaranarayanan et al.,
2018; Chen et al., 2020; Long et al., 2018). For instance, the widely-used Domain Adversarial Neural
Network (DANN) (Ganin & Lempitsky, 2015; Ganin et al., 2016) optimizes feature extractors to
generate domain-invariant features that confuse the trained domain classifier.

As mentioned in Section 1, for stabilizing BCI decoding over time, UDA-based alignment approaches
have been utilized for unsupervised recalibrations within raw signal and latent feature spaces. Re-
cently, consistent low-dimensional latent dynamics have been leveraged as the latent features for
alignment (Karpowicz et al., 2022; Wang et al., 2023; Vermani et al., 2023; Pandarinath et al., 2018;
Fang et al., 2023; Safaie et al., 2023). These latent dynamics, situated within the neural manifold
(Degenhart et al., 2020; Gallego et al., 2017; Mitchell-Heggs et al., 2023), are assumed to provide a
stable underlying representation of behavior.

Nevertheless, some intrinsic features, including low signal-to-noise ratios (Hu et al., 2010), frequently
result in instabilities when attempting to align the high-dimensional raw neural signals (Wang et al.,
2023). Meanwhile, alignment in latent spaces typically assumes its stability ensured by neural
manifolds (Gallego et al., 2017; Mitchell-Heggs et al., 2023), lacking further consideration for
the dynamical stability of latent features. For instance, NoMAD (Karpowicz et al., 2022) and the
source-free and unsupervised alignment (Vermani et al., 2023) directly match latent dynamics, which
may overlook the potential instability of the source domain’s extracted latent features. s In contrast,
our method proposes a novel hierarchical alignment based on causal architectures in neural dynamics.
We demonstrate that the iterative process of self-consistent alignment can generate more stable latent
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features. This optimization enhances the dynamical stability of latent features, thereby stabilizing the
neural manifolds against stochastic perturbations.

Representation Disentanglement Representation Disentanglement has been used in UDA to learn
domain-invariant features. In the field of computer vision, researchers have successfully applied this
technique to disentangle semantic latent features for tasks such as cross-domain image classification
(Cai et al., 2019; Lee et al., 2021; Lv et al., 2022) and video action recognition (Wei et al., 2023).
Various methods have been explored, including reweighting source features for meta knowledge
transfer (Wei et al., 2021) and utilizing deep adversarial autoencoders (Peng et al., 2019b). In the
realm of time series analysis, researchers have disentangled semantically meaningful factors to control
the shape of ECG signals (Li et al., 2022).

In neural data analysis, researchers have focused on building robust and generalizable representations
using advanced networks such as transformers (Ye & Pandarinath, 2021; Liu et al., 2022; Le & Shliz-
erman, 2022). Recently, unified frameworks have been proposed to enable scalable representations
across sessions and subjects (Azabou et al., 2023). To achieve this, representation disentanglement
has been employed to understand how different neural populations encode diverse external stimuli
and their intrinsic connections with observable behavioral variables. Supervised learning techniques,
supported by auxiliary variables (Zhou & Wei, 2020), along with self-supervised learning approaches,
such as contrastive learning (Cheng et al., 2020) or swapping (Liu et al., 2021), are used to identify
latent variables that are directly related to observable variables.

Existing disentanglement approaches for neural data analysis primarily focus on learning domain-
invariant representations directly, without performing distribution alignment. Such methods may
work well when source domains contain sufficient samples of various sessions and tasks (Wang et al.,
2020; Parnami & Lee, 2022). Considering that UDA often requires little data (Ma et al., 2023), they
are more practical when less source data is available. In this study, we propose HDA, and leverage
disentanglement techniques as a tool to decompose latent spaces for better distribution alignment.
The use of UDA with disentanglement techniques to stabilize BCI decoding performance has not
been explored.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We view the unsupervised recalibration of BCIs over time as a UDA problem (Long et al., 2017b).
First, we define the domain D as follows: D “ tpx1, y1q, px2, y2q, . . . , pxn, ynqu, where xiptq
(for t “ 0, . . . , w ´ 1) represents a raw neural signal sample of window length w (with w being
significantly shorter than the length of the entire trial) from one session, and xiptq P Rm. The
behavioral label yi corresponds to the pw ´ 1q-th time step, and yi P Rd. Moreover, we define X,
Y as the random variable representing neural signals xi and the corresponding yi from D. Based
on D, we further define a labeled source domain DS encompassing neural signals and labels from
a single session: DS “ tpxS

1 , y
S
1 q, . . . , pxS

nS
, ySnS

qu. Concurrently, the unlabeled target domain DT

includes signals from a separate session: DT “ txT
1 , . . . , x

T
nT

u. For convenience, we define XS ,
YS as the random variable representing neural signals xS

i and the corresponding ySi from domain
DS , respectively. XT denotes the random variable of original signals xT

i from domain DT . Due to
various factors, the distribution mismatch between XS and XT prevents the direct application of a
decoder trained on DS to DT . Our goal is to maintain decoding performance in DT by stabilizing the
extracted latent features via HDA and ensuring a consistent mapping to the label space.

3.2 THE FRAMEWORK OF HIERARCHICAL DOMAIN ADAPTATION

To stabilize extracted latent features, we propose HDA based on the dynamical latent states, as
shown in Fig. 1(a). Initially, we employ an unsupervised alignment strategy to align the raw signal
distribution of DT with that of DS . As outlined in Section 3.4, we found that this step effectively
maintains an upper bound on latent feature deviations under control. The aligned neural signals are
then provided as external inputs to a dynamical system for extracting dynamical latent dynamics.
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Figure 1: (a) The overall framework of HDA. (b) The model of generating Z, which is controlled by
the label variable Y and domain variable O.

Subsequently, drawing inspiration from existing researches on learning interpretable and generalizable
latent variables within neural signals (Zhou & Wei, 2020; Liu et al., 2021), we extract latent variables
that are directly related to behavioral labels. These variables are then identified as the latent semantic
features used for decoding. We further provide the dynamical systems with self-consistent alignment
of these semantic features as feedback. To verify the stability of latent features, we employ Lyapunov
stability (Angeli, 2002; Jiang & Wang, 2001) for a quantitative analysis of the system’s stability.
We have found that by optimizing parameters of the nonlinear dynamical system through HDA, the
dynamical stability of latent features can be enhanced, thereby stabilizing neural decoders.

3.2.1 ADAPTATION IN RAW NEURAL SIGNAL SPACE

We begin by aligning the distribution of target signals with that of the source signals. The characteristic
of spike signals is their capability to capture neural activities at the neuron level (Buzsáki, 2004),
which ensures the sparse dependencies among different channels (Chen et al., 2010; Bighamian
et al., 2019). In comparison to latent feature spaces, where spatio-temporal dependencies are more
intricate, the raw neural signal spaces may offer a more direct causal relationship that facilitates
the identification of units affected by drifts. This identification may help to align the distribution
of the raw signals and forms the basis of our approach to enhance feature stability. Additionally,
aligning input raw neural signals prior to optimizing system parameters enables a more statistically
consistent input representation for our dynamical system. This approach contrasts with those that
apply shared-parameter encoders to derive latent features directly from the original signals across
source and target domains (Wei et al., 2023; 2021).

Considering the unique properties of biological systems, we found that probability densities based
on individual samples may be more accurate to measure distribution discrepancies. This is because
sufficient statistics, such as the mean, typically characterize the collective properties of random
variables. However, the characteristics of individual samples are often more critical due to the
common presence of outliers in biological systems (Gomez-Ramirez & Sanz, 2013). Therefore, we
chose the f -divergence, which is based on probability density functions, to measure the discrepancy
between distributions. However, since f -divergence is difficult to compute directly, we employed
GANs to implement alignment based on f -divergences in an indirect manner. Given that naive GANs
often suffer from training instability, we used LSGANs (Mao et al., 2017) based on the χ2 divergence,
which is a specific case of f -divergence. The benefits of alignment based on f -divergences are
demonstrated in Fig. 7(b).

Specifically, our optimization objective is to identify a nonlinear transformation based on G
that minimizes the χ2 divergence between the distribution of XS and GpXT q, denoted as
Dχ2

`

ppXSq||ppGpXT qq
˘

. Here, this nonlinear transformation is implemented via a generator
Gα from LSGAN, which is more stable than vanilla GANs, with parameters α. As mentioned
in (Mao et al., 2017), it is implemented by alternately training the generator Gα, and a discriminator
Dβ (with parameters β ) via a min-min optimization based on the least-square loss functions Llsdpβq

and Llsgpαq, respectively:

min
β

!

EXS„DS

“

pDβpXSq ´ 1q2
‰

` EXT „DT

”

`

DβpGαpXT qq
˘2

ı)

“ tLlsdpβqu ,

min
α

EXT „DT

”

`

DβpGαpXT qq ´ 1
˘2

ı

“ tLlsgpαqu .
(1)
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After the adaptation within the original data space, we proceed with the extraction and alignment of
dynamical latent features using XS and GαpXT q.

3.2.2 DYNAMICAL LATENT FEATURE EXTRACTION

To achieve real-time extraction of latent features for decoding, we employ a causal architecture (Chen
et al., 2024) based on nonlinear dynamical systems to extract latent dynamics from the raw neural
signals. The initial latent state of this system is based on signals that were recorded at the onset of
time windows, rather than a posterior distribution of the entire trial (Karpowicz et al., 2022; Wang
et al., 2023; Vermani et al., 2023). The latent state evolution is jointly driven by the current time step’s
externally input signal and the latent state from the previous step through a nonlinear transformation.

We utilize xiptq as the external input to the dynamical system at time t, and the corresponding
low-dimensional latent state is denoted as ziptq P Rk (where k ă m). The initial latent state is
determined by the function g: Rm Ñ Rk, and the evolution of the latent state is determined by the
nonlinear function f : pRk

Ś

Rmq Ñ Rk. Thus, the initial state and the subsequent evolution of the
nonlinear dynamical system are characterized by the following equations:

zip0q “ gpxip0qq, ziptq “ fpzipt ´ 1q, xiptqq pt “ 1, . . . , w ´ 1q. (2)

Considering the cumulative effect (Gros, 2010), we utilize the latent state zipw ´ 1q at the final
time step to represent the dynamical latent feature corresponding to xi, which is further transformed
for decoding yi. Specifically, we construct this nonlinear dynamical system using an LSTM-based
(Hochreiter & Schmidhuber, 1997; D’Amico et al., 2023) network Eγ (with parameters γ). The input
of Eγ is xi, and the cell state is regarded as the latent state zi. The cell state at the final time step,
denoted as zipw ´ 1q, is viewed as the output dynamical latent feature of Eγ : zipw ´ 1q “ Eγpxiq.

3.2.3 ADAPTATION IN DYNAMICAL SEMANTIC LATENT SUBSPACE

When performing a specific task, the brain processes a wide range of information, including per-
ception, decision-making, environmental cues, feedback, and more. For instance, task-irrelevant
perceptual information and environmental feedback are also encoded within the latent dynamics.
By decomposing these latent spaces to remove irrelevant components, we aim to reduce variability
within the latent dynamics, thereby improving alignment of latent spaces. Specifically, inspired
by previous studies mentioned in Section 2 and the high parallelism (Wässle, 2004) of brains, we
hypothesize that the drifts of dynamical latent features in the target domain primarily stem from latent
variables that are loosely connected to observable behavioral variables. Based on this hypothesis,
we believe that constructing a semantic subspace, by extracting components of the latent space that
are directly related to behavioral variables, can effectively reduce the drift of neural population
dynamics. Furthermore, we have found that, compared to directly aligning latent features, performing
alignment only within the semantic subspace can provide the dynamical system with a more efficient
self-consistent feedback, guiding it to obtain more stable latent dynamics.

Decomposition of the Dynamical Latent Space Based on the above hypothesis, the generation of
dynamical latent features zipw ´ 1q extracted by Eγ , denoted by the random variable Z, is assumed
to be governed by two independent variables: the domain variable O and the observed behavioral
variable Y. These two variables form two independent subspaces. As depicted in Fig. 1(b), we
decompose the dynamical latent features Z into two independent components based on these two
variables: one part directly encodes the semantic information, and the other part directly encodes the
domain information.

Existing studies (Zhou & Wei, 2020; Liu et al., 2021; Cai et al., 2019; Wei et al., 2023) have shown
that Variational Autoencoders (VAE) can solve for latent feature subspaces determined by different
variables. Here, we first use the VAE’s encoder to transform original dynamical features Z into latent
features Z̃ (Z̃ P Rk̃) that follow a pre-defined Gaussian distribution. Then, we divide Z̃ into two
independent parts. The first k̃y dimensions represent components directly governed by Y, denoted as
the semantic latent features Z̃y (Z̃y P Rk̃y ). The remaining k̃o (k̃o “ k̃ ´ k̃y) dimensions represent
components directly governed by O, denoted as Z̃o (Z̃o P Rk̃o): Z̃ “ rZ̃y, Z̃os. Finally, Z is
reconstructed by the VAE’s decoder using both Z̃y and Z̃o. The Evidence Lower Bound (ELBO) loss
function (Kingma & Welling, 2013) is further utilized to enforce independence (Higgins et al., 2017;
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Burgess et al., 2018; Higgins et al., 2018) and reconstruction constraints on the decomposed latent
subspaces after transformation. The VAE’s encoder, denoted as Qϕ (with parameters ϕ), estimates the
posterior distribution qϕpZ̃|Zq. The prior distribution of the transformed latent features Z̃, denoted
as pzpZ̃q is set to a multivariate Gaussian distribution by convention: pzpZ̃q „ N p0, Iq. The VAE’s
decoder, denoted as Rθ (with parameters θ), is used to estimate pθpZ|Z̃q. The ELBO can then be
expressed as follows:

log ppZq ě EZ̃„qϕpZ̃|Zq
rpθpZ|Z̃qs ´ DKLpqϕpZ̃|Zq||pzpZ̃qq “ ´Lvaepθ, ϕ, γq,Z “ EγpXq. (3)

Here, DKL represents the Kullback-Leibler (KL) divergence, for which a closed-form solution can
be directly provided for Gaussian distributions. Minimizing the divergence based on a Gaussian
distribution with the zero covariance enforces the independence of decomposed subspaces after
transformation, consistent with the previous hypothesis. We maximize EZ̃„qϕpZ̃|Zq

rpθpZ|Z̃qs by
minimizing the reconstructed Mean Squared Error (MSE) loss. Finally, we achieve the maximization
of ELBO by minimizing Lvae.

Further Constraints on Dynamical Semantic Latent Subspace Lvae is not sufficient to ensure the
encoding information of Z̃y and Z̃o as hypothesized. Therefore, drawing on related work (Cai et al.,
2019; Wei et al., 2023), we introduce additional terms to constrain the information encoded within
latent subspaces. Let ZS denote the random variable representing dynamical latent features from DS .
The corresponding latent features transformed by Qϕ are Z̃S , which are further decomposed into
semantic components Z̃S

y via corresponding parameters ϕy of Qϕ, and domain-related components
Z̃S

d with corresponding parameters ϕd. The semantic latent features Z̃S
y are used to decode the

behavioral labels YS . Similarly, for DT , the dynamical latent features extracted from the aligned
neural signals GαpXT q are ZT , which are decomposed into semantic components Z̃T

y and domain-
related components Z̃T

o .

First, to ensure that Z̃S
y and Z̃T

y directly encode semantic information without the effect from domain
variables, we optimize the decoding performance of semantic features and minimize distribution
discrepancies between Z̃S

y and Z̃T
y . Specifically, we use YS and Z̃S

y for supervised training of a
linear decoder Cη (with parameters η), and measure the decoding performance of Z̃S

y using the
loss function Ly: Lypγ, ϕy, ηq “ }YS ´ CηpZ̃S

y q}2, where Z̃S
y “ Qϕy

pZSq “ Qϕy
pEγpXSqq.

Meanwhile, we minimize the conditional distribution discrepancy between Z̃S
y and Z̃T

y using the χ2

divergence Dχ2

´

ppZ̃S
y |XSq } ppZ̃T

y |GαpXT qq

¯

. Similar to the raw signal alignment, we alternately

optimize γ, ϕy , and the discriminator’s (Dy
βy

) parameters βy based on the loss function Lbdpβyq, and
Lbgpγ, ϕyq formulated as follows:

min
βy

"

EXS„DS

”

pDy
βy

pQϕy
pEγpXSqqq ´ 1q2

ı

` EXT „DT

„

´

Dy
βy

pQϕy
pEγpGαpXT qqqq

¯2
ȷ*

min
γ,ϕy

"

EXS„DS

”

pDy
βy

pQϕy pEγpXSqqq ´ 1q2
ı

` EXT „DT

„

´

Dy
βy

pQϕy pEγpGαpXT qqqq ´ 1
¯2

ȷ*

(4)

Secondly, considering the linearity of Cη and the independence constraint between the decomposed
subspaces, Cη could not work well with Z̃S

o and Z̃T
o . Therefore, to ensure that Z̃S

o and Z̃T
o directly

encode the domain information, we only constrain the domain relevance of Z̃S
o and Z̃T

o . Here, we
maximize the χ2 divergence between the conditional distribution of Z̃S

o and Z̃T
o , represented as

Dχ2

´

ppZ̃S
o |XSq } ppZ̃T

o |GαpXT qq

¯

. Similarly, we alternately optimize the parameters γ, ϕo, and
the discriminator’s (Do

βo
) parameters βo based on minimizing the loss function Lodpβoq , maximizing

Logpγ, ϕoq as defined in Eq. (4).

3.3 OVERALL LEARNING ALGORITHM

During the training phase, we initially optimize Gα and Dβ alternately based on Llsd and Llsg . This
step yields the aligned target neural signals, denoted as GαpXT q. For alignment within semantic
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Algorithm 1 Hierarchical Domain Adaptation
Input: source domain DS ; target domain DT ;
Output: signal aligner Gα; latent dynamic extractor Eγ ; VAE’s encoder Qϕ; linear decoder Cη

Initialize Gα, Dβ , Eγ , Qϕ, Rθ, Dy
βy

, Do
βo

Adaptation in Raw Neural Signal Space:
Optimize Gα and Dβ alternately based on Llsgpαq and Llsdpβq;
Adaptation in Dynamical Semantic Latent Subspace:
for iter “ 1 to niter do

Sample mini-batch from DS and DT ;
Update Dy

βy
by Lbdpβyq; Update Do

βo
by Lodpβoq;

Update Eγ , Qϕ, Rθ, Cη by Ltotalpγ, ϕ, θ, ηq

(Ltotalpγ, ϕ, θ, ηq “ Lvaepγ, ϕ, θq ` λyLypγ, ϕy, ηq ` λbLbgpγ, ϕyq ´ λoLogpγ, ϕoq);
end for
return Gα,Eγ ,Qϕ,Cη .

subspaces, we proceed to train the feature extractor Eγ based on dynamical systems, the VAE’s
encoder Qϕ and decoder Rθ, and the linear decoder Cη. The training is guided by a combined
loss function Ltotal: Ltotal “ Lvae ` λyLy ` λbLbg ´ λoLog, where λy, λb, and λo serve as
weighting factors for the respective losses. Concurrently, the discriminators Dy

βy
and Do

βo
are trained

based on Lbd and Lod, respectively. A detailed description of the training procedure is presented
in Algorithm 1.

3.4 VERIFICATION OF DYNAMICAL FEATURE STABILITY

Here, we propose a novel way to measure feature stability grounded in Lyapunov theory. First of all,
for any two hidden states ziptq and zjptq, the system is stable (Agrachev et al., 2008) if there exist
functions βp}z}, tq and γp}x}q. For t ě 1, the following inequality holds:

}ziptq´zjptq} “ }zipt, zip0q, xiptqq´zjpt, zjp0q, xjptqq} ď βp}zip0q´zjp0q}, tq`γp}xiptq´xjptq}8q.
(5)

Furthermore, the stability defined above can be determined using a Lyapunov function V pzq. Given
an equilibrium point z˚ of the system, the following equations are satisfied: (1) V pz˚q “ 0, (2)
9V pz˚q “ 0, (3) V pzq ą 0 for all z ‰ z˚, (4) 9V pzq ă 0 for all z ‰ z˚. It is known that V pzq “ 1

2z
T z

is one of the functions that meet the conditions. However, directly calculating complex V pzq can
be difficult. Therefore, we used the method based on (Wolf et al., 1985) to estimate the stability of
zptq based on the maximum Lyapunov exponent (MLE). The maximum Lyapunov exponent λ can
be defined based on the latent state ziptq as follows: λ “ lim

tÑ8
lim

|δzip0q|Ñ0

1
t ln

|δziptq|

|δzip0q|
. A non-positive

MLE often indicates the stability of dynamical systems, achieving stable dynamical latent features
(Wolf et al., 1985). Here, the MLE λ of zi is estimated to evaluate the stability of dynamical latent
features extracted from DS and DT after adaptation. The detailed calculation of λ and the theoretical
explanation of how pre-alignment enhances stability are provided in Appendix A.2.3.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Datasets We utilized three distinct datasets of extracellular neural recordings obtained from the
primary motor cortex (M1) of non-human primates (Ma et al., 2023), as outlined below. More detailed
dataset descriptions can be found in Appendix B.1.
Random-Target (RT-M). Monkey M was trained to move the cursor into a sequence of three
randomly located targets on the screen within 2.0s after viewing.
Center-Out Reaching (CO-C&CO-M). Monkeys C and M were trained to use an upright handle to
aim for one of eight randomized targets upon receiving an auditory cue.
Data Preprocess and Split For all datasets, we extracted trials from ’gocue time’ to ’trial end’. The
data was then timestamped and smoothed with a Gaussian kernel to estimate firing rate over 50 ms
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bins. We utilized the session labeled with 2D cursor velocity recorded on the Day 0 as DS for training.
As for training DT , we used 80% trials of the unlabeled session collected on another day. As for tests,
we employed the remaining 20% trials from this session.
Evaluation Metric The deviation between decoded and actual cursor velocity is quantified using
the R2 score. All results presented below are averaged on five distinct random seeds. Further
experimental details and settings are elaborated in Appendix B.

Table 1: Comparison of average R2 scores (%) in cross-session velocity decoding
Data Session LSTM Cebra DAF ERDiff NoMAD Cycle-GAN HDA retrain

C
O

-M

Day 0 74.18˘4.90 79.24˘4.90 75.24˘2.22 76.31˘3.62 58.29˘3.38 64.99˘1.17 70.86˘6.13 78.38˘1.37

Day 8 ´118.53˘98.70 ´51.92˘98.70 ´0.01˘0.03 ´75.33˘83.37 57.86˘2.25 71.30˘1.46 76.84˘1.19 85.92˘1.27

Day 14 ´63.85˘19.96 ´1.77˘19.96 ´0.08˘0.05 ´102.82˘34.63 63.45˘1.41 67.05˘1.36 71.70˘1.50 82.92˘0.65

Day 15 ´712.91˘316.04 ´83.24˘316.04 0.03˘0.03 ´66.76˘86.32 57.92˘0.69 64.83˘1.87 75.53˘0.91 82.20˘0.99

Day 22 ´88.57˘58.85 ´21.10˘58.85 ´0.08˘0.04 ´74.60˘60.20 55.49˘3.82 52.88˘9.75 55.47˘8.34 80.43˘1.26

Day 24 ´39.52˘86.25 ´10.28˘86.25 0.04˘0.02 ´14.52˘76.57 62.52˘2.39 70.13˘2.49 71.32˘1.75 86.54˘0.97

Day 25 ´253.83˘270.30 ´64.67˘270.30 0.10˘0.03 ´60.00˘37.44 62.24˘4.23 61.73˘2.34 66.64˘3.08 85.80˘1.08

Day 28 ´107.64˘124.47 ´35.95˘124.47 0.03˘0.02 ´46.10˘74.64 48.82˘18.62 66.01˘2.87 71.38˘2.27 88.33˘0.44

Day 29 ´206.99˘117.46 ´64.32˘117.46 ´0.00˘0.03 ´42.48˘106.10 61.51˘1.61 60.82˘1.80 64.21˘1.06 80.92˘1.67

Day 31 ´63.01˘40.94 ´81.41˘40.94 0.04˘0.05 ´77.22˘91.34 62.17˘2.68 61.77˘0.94 68.23˘2.17 81.64˘1.08

Day 32 ´417.39˘295.63 ´40.10˘295.63 ´0.06˘0.04 ´78.23˘59.91 55.30˘4.43 58.97˘2.84 69.17˘3.39 83.36˘1.36

R
T-

M

Day 0 77.91˘1.14 74.86˘1.03 76.35˘2.36 75.28˘1.96 59.26˘3.14 70.73˘3.58 80.24˘1.97 79.69˘2.68

Day 1 58.51˘4.42 65.97˘2.38 0.05˘0.01 ´130.22˘20.98 57.83˘3.07 66.04˘3.67 69.54˘2.55 76.27˘1.30

Day 38 ´17.93˘17.68 21.34˘6.71 ´0.31˘0.11 ´54.49˘32.98 59.14˘1.82 64.14˘1.77 61.91˘1.04 68.68˘1.97

Day 39 ´104.81˘99.91 ´36.86˘25.62 ´0.14˘0.12 ´38.28˘43.94 58.13˘1.58 69.86˘3.89 68.78˘1.68 78.03˘1.28

Day 40 ´14.81˘47.15 2.63˘20.16 0.06˘0.04 ´31.41˘39.80 61.27˘1.51 66.01˘3.75 68.77˘3.52 83.55˘1.52

Day 52 6.10˘18.37 30.50˘6.94 ´0.16˘0.05 ´110.11˘46.32 53.41˘4.55 47.74˘7.58 56.31˘2.23 61.36˘3.15

Day 53 ´47.05˘63.72 42.33˘4.84 ´0.36˘0.05 ´112.86˘31.80 53.65˘2.69 61.96˘6.85 68.49˘1.15 76.92˘1.96

Day 67 ´158.42˘104.75 25.09˘13.79 ´0.30˘0.07 ´81.18˘77.17 58.12˘1.73 43.76˘7.69 64.79˘1.54 74.83˘0.97

Day 69 ´101.08˘32.58 ´38.82˘29.41 ´0.22˘0.04 ´168.49˘35.82 50.17˘4.60 34.54˘6.80 53.94˘2.31 66.07˘2.27

Day 77 ´280.39˘104.05 ´53.79˘21.04 0.01˘0.00 ´63.76˘54.85 52.39˘2.32 33.38˘7.72 56.90˘2.28 60.33˘1.62

Day 79 ´184.05˘76.77 ´47.01˘13.77 ´0.13˘0.05 ´46.66˘49.72 55.01˘3.05 36.83˘12.53 58.35˘2.40 76.56˘0.92

4.2 COMPARATIVE STUDY

Baselines We used the following methods as baselines, more details are shown in Appendix B.2:
LSTM(Hochreiter & Schmidhuber, 1997): We employed an unaligned LSTM as the decoder to
evaluate the efficacy of alignment.
CEBRA(Schneider et al., 2023): CEBRA is a machine learning method that compresses time series
to uncover hidden structures, demonstrating broad generalizability across various datasets and
conditions.
DAF(Jin et al., 2022) DAF leverages an attention mechanism to extract domain-invariant features
while retaining domain-specific details through a shared module, domain discriminator, and private
modules.
ERDiff(Wang et al., 2023) ERDiff utilizes diffusion models to meticulously reconstruct spatio-
temporal structures and seamlessly aligns them with the latent dynamics extracted from VAEs.
NoMAD(Karpowicz et al., 2022): NoMAD achieves signal alignment in neural manifolds by
capturing the latent dynamics of neural population activities via LFADS (Pandarinath et al., 2018).
Cycle-GAN (Ma et al., 2023): This research employs Cycle-GAN to align the distributions of
full-dimensional neural recordings at each time step.

Results We conducted quantitative comparisons using average R2 of target domains. Day 0 corre-
sponds to DS , while the other sessions represent DT . Results for CO-M and RT-M are presented
in Table 1, with results for the CO-C dataset shown in Table 8. Our method consistently outperforms
others across most sessions of the selected datasets. The unaligned LSTM and CEBRA designed
for generalizable representations frequently fail over extended periods, demonstrating the need for
distribution alignment to stabilize decoding performance. Regarding existing UDA-based alignment
methods, HDA achieves over 6.00% and 10.00% higher R2 on average compared to Cycle-GAN for
CO-M and RT-M, respectively. Compared to NoMAD, we achieve over 10.00% and 8.00% higher on
average. It can also be seen that HDA achieves much better performance than ERDiff and DAF. In
addition, we visualized reach trajectories of CO-M integrated from the decoded cursor velocity. As
shown in Appendix C.2, we observe that HDA yields more precise trajectories.

In addition, HDA consistently demonstrates effective performance across various source days. To
validate this, we conducted additional experiments across all sessions, with the overall performance

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

illustrated in Fig. 6(a). We also conducted experiments using Day 0 as the source session, with source
and target training ratios set at 0.1, 0.2, 0.4, 0.6. As illustrated in Fig. 6(b), HDA shows effective
performance even with a relatively small number of trials.

As for feature stability, we compared our MLE with those from ERDiff and NoMAD, as MLE
can only be derived from sequential models. Fig. 7(d) shows the average MLE for each target
session and their overall averages. A non-positive MLE typically indicates the stability of dynamical
systems. We observed that HDA generally achieves the most stable latent space. Additionally, ERDiff
exhibits greater instability compared to NoMAD, consistent with the R2 score performance shown
in Table 1. We further visualized latent trajectories of latent features zptq on Day22, Day24 from
CO-M. Presented Fig. 3(c), we found that the divergent curves evolve over time to gradually approach
each other. This indicates that the trajectories exhibit characteristics of Lyapunov stability.

Computational Efficiency We compared our efficiency with that of the baselines. Presented in
Table 2, we found that HDA exhibits a similar parameter count to ERDiff and NoMAD, with greater
time efficiency.

Table 2: List of computational efficiency with different methods
Method DAF ERDiff Cycle-GAN NoMAD HDA

Parameter Number (M) 0.06 0.04 0.03 0.05 0.04
Training Time per Epoch (s) 0.15 0.28 0.02 3.77 0.06

4.3 ABLATION STUDY

We conducted an ablation study to confirm the effectiveness of HDA. Performance was evaluated
based on the cross-session decoding and the stability of extracted dynamical latent features.

Evaluation of Main Components We specifically compared our full method against variations
lacking raw neural signal adaptation (HDA-r), latent space decomposition (HDA-d), and semantic
subspace adaptation (HDA-s). The cross-session decoding performance was validated on CO-C, CO-
M, and RT-M datasets, with the results presented in Fig. 2(a). HDA performs the best, demonstrating
the effectiveness of our main modules for stabilizing latent features. We observe that R2 of HDA-r
decreases the most, indicating that this step forms the foundation for better latent space alignment.
Furthermore, HDA-d yields lower R2, highlighting the advantages of latent space decomposition for
more stable semantic features. Without the semantic subspace alignment, HDA-s performs second
best on average, underscoring the necessity of further alignment within the decomposed subspace.

*

**

**

*

*

(a) (b)

**

*
*

Figure 2: (a) R2 scores for cross-session decoding, achieved by the variants HDA-r, HDA-d, HDA-s,
and HDA across CO-C, CO-M, and RT-M datasets. (b) Comparison of the maximum Lyapunov
exponent λ with different methods on CO-C, CO-M, and RT-M datasets. Dots in various colors
represent average MLE from an individual session. The symbols ’*’ and ’**’ denote significant
p-values from paired t-tests, indicating p ă 5 ˆ 10´2 and p ă 1 ˆ 10´2, respectively.

Evaluation of Each Loss Term We further conducted a ablation study on each loss term. Specifically,
we evaluated on Ly , Lb, and Lo with different weights λy , λb, and λo. The average R2 scores (%) are
listed below. As shown in Table 3, it can be seen that all these loss terms are necessary for optimizing
the model performance.
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Stability Validation of Dynamical Latent Features To validate the stability of dynamical latent
features after our adaptation, we evaluated the dynamical system’s stability based on the maximum
Lyapunov exponent λ as mentioned in Section 3.4. A non-positive MLE often indicates the stability of
dynamical systems, achieving stable dynamical latent features (Wolf et al., 1985). More background
information is shown in Appendix A.2. As depicted in Fig. 2(b), consistent with previous findings
on the decoding stability, HDA-r emerges as the most unstable. This underscores the stabilizing
effect of consistent input neural signals on latent features. Furthermore, semantic subspace alignment
effectively enhances the dynamical stability of latent features, compared to HDA-d and HDA-s.

Furthermore, empirical results of pre-alignment are shown in Fig. 3(a) and (b). We found that R2 and
MLE demonstrate an upward trend with an increasing number of pre-alignment epochs. In addition,
we also observed that the latent space alignment can enhance its dynamical stability. As depicted
in Fig. 3(e), MLE converges to a non-positive value with an increasing number of alignment epochs.
We conducted additional experiments on R2 of test signals from the target session during latent
space alignment as well. As depicted in Fig. 3(d), the curves on CO-M, and RT-M show successful
convergences, indicating the training stability of HDA.

Table 3: Full ablation studies on different loss terms. Each weight is adjusted while keeping the other
two fixed at 0.1.

Data λo λb λy

0 0.1 1 2 0 0.1 1 2 0 0.1 1 2

CO-C 79.24˘1.90 79.60˘1.68 79.92˘1.94 79.84˘1.54 79.02˘2.42 81.17˘1.98 79.53˘3.04 78.99˘3.12 ´1.46˘11.23 80.39˘2.20 79.53˘2.90 78.57˘3.00

CO-M 67.68˘4.31 67.93˘3.50 69.21˘2.89 68.38˘4.24 66.75˘4.25 69.49˘3.81 69.10˘3.92 69.60˘3.21 8.85˘2.12 67.50˘4.35 67.38˘4.14 66.36˘4.86

RT-M 65.02˘4.92 65.12˘3.50 64.37˘2.06 65.63˘5.29 60.06˘2.07 63.86˘4.28 63.61˘4.49 61.90˘4.85 ´1.02˘0.72 62.16˘4.14 61.55˘3.97 61.54˘4.49

(a)

(d)

(b)

(e)

(c)

Figure 3: R2 scores (a) and Maximum Lyapunov Exponent (MLE) (b) with varying pre-alignment
training epochs (50, 100, 150, and 200) before the optimization. (c) Latent state trajectory visualiza-
tions (zptq from dimension 3 and 10) from CO-M on Day22 and 24. R2 scores (d) and MLE (e) of
test target trials during the latent space alignment on CO-M, and RT-M datasets, respectively.

5 CONCLUSIONS AND LIMITATIONS

In this study, we addressed the challenge of the decoding instability in BCIs caused by the variability
of neural signals over time. We present a novel hierarchical domain adaptation (HDA) that focuses
on neural dynamics. This framework utilizes causal architecture to extract dynamical latent features,
and improves the feature stability based on the self-consistent alignment. The experimental analysis,
supported by Lyapunov stability theory, demonstrate that our HDA can effectively improve the
stability of dynamical systems, allowing for high-performance behavioral decoding for non-stationary
neural signals. Our work successfully addressed the challenge of non-stationary neural signals,
thereby potentially advancing the reliability of BCIs in chronic applications.

The limitations of this study are as follows. For scenarios with abundant data, HDA requires further
verification to extract more generalizable features, enabling zero-shot inference. Additionally, the
extension of HDA to other datasets involving humans needs validation.
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A HIERARCHICAL DOMAIN ADAPTATION

A.1 ARCHITECTURE DETAILS

We present the detailed architecture of our main modules as follows. The input neural signals have
the shape of (Batch size=256, Window size=w, Number of channels=L). The latent dimensions of
Z̃y and Z̃o are denoted as ky, the dimension of latent states extracted by the nonlinear dynamical
system as kh. The dropout value is represented as vd. The architectures of Eγ , Qϕ, Rθ, Dy

βy
, and

Do
βo

can be seen in Table 4.

Table 4: Detailed Architectures of Modules

Eγ LSTM(L, kh)

Qϕ FC(kh, 2ky , vd)ˆ2

Dy
βy

FC(ky , ky , vd), ReLU(), FC(ky , ky , vd), ReLU(), FC(ky , 1), Sigmoid()

Do
βo

FC(ky , ky , vd), ReLU(), FC(ky , ky , vd), ReLU(), FC(ky , 1), Sigmoid()

Here, we use the term FC to refer to fully connected layers, LSTM to represent Long Short-Term
Memory layers, and ReLU and Sigmoid to denote the corresponding activation functions.

Moreover, default dimensions ky, kh, and value vd mentioned above are configured as shown in
Table 5 according to different datasets.

Table 5: Default Value Setup on Different Datasets

ky kh vd

CO-C 32 32 0.01
CO-M 32 32 0.01
RT-M 32 32 0.01

A.2 LYAPUNOV STABILITY THEORY

A.2.1 RELATED WORK

Lyapunov stability examines the stability of latent state trajectories within a dynamical system when
its initial conditions or external inputs experience perturbations (Jiang & Wang, 2001). This concept,
introduced by Lyapunov (Lyapunov, 1992), has been widely utilized in the stability analysis of various
dynamical systems, including discrete linear systems (Goh, 1977) and nonlinear non-autonomous
systems (Jiang et al., 1996). With the advent of deep learning, neural networks such as Recurrent
Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs) are frequently employed
to model complex nonlinear dynamical systems, with their hidden variables corresponding to the
system’s latent states. Some studies have integrated deep learning with Lyapunov stability to explore
stability during network training (Engelken et al., 2023) and the network robustness (Ribeiro et al.,
2020).

In the field of neuroscience, dynamical systems are frequently employed to model cognitive processes
(Beer, 2000) and neural activities within the motor cortex (Ijspeert et al., 2013). The stability theory
has also been leveraged to analyze these neural activities. For example, studies have identified that
discrete attractors in the prefrontal cortex (Inagaki et al., 2019) are related to Lyapunov stability and
lay the foundation for the working memory performance of animals undertaking delayed alternation
tasks. Inspired by these insights and considering the presence of stable dynamical systems within the
brain, we integrated the concept of Lyapunov stability with the process of extracting stable latent
features from non-stationary neural signals.
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A.2.2 RATIONALE FOR VALIDATION VIA LYAPUNOV STABILITY

In biological systems, similar behaviors often manifest analogous activities within neural populations.
However, neural signals from the target domain may deviate from expected similarities with the
source domain due to various factors. These stochastic factors can cause drifts in any stochastic
dimensions. Here, we argue that Lyapunov stability effectively characterizes the stability of extracted
latent features against random perturbations in original signals. That is to say, the enhancement in
Lyapunov stability of the dynamical system indicates the stabilization of dynamical latent features.
Therefore, we utilize Lyapunov stability as a tool for a quantitative representation of the system’s
stability to validate the stability of dynamical latent features.

A.2.3 MORE EXPLANATIONS ON MAXIMUM LYAPUNOV EXPONENT (MLE)

Here, we give a theoretical explanation on how the pre-alignment of HDA improves dynamical
stability. According to the definition in (Jiang & Wang, 2001), stability measures the distance
between any two hidden states at time t, denoted as ziptq and zjptq. Since these states are extracted
using LSTMs, their distance can be expressed through the Lipschitz continuity of the activation
layers:

}ziptq ´ zjptq} ď Kz ` KiLa}Wc}}xiptq ´ xjptq}, (6)
where Kz and Kx are constants independent of }xiptq ´ xjptq}, and La is the Lipschitz constant
of activation functions. Thus, the pre-alignment, which helps minimize }xiptq ´ xjptq}, aids in
controlling the upper bound of }ziptq ´ zjptq}, enhancing the efficiency of latent feature alignment.

The stability defined in (Jiang & Wang, 2001) can be determined based on (Wolf et al., 1985) to
estimate the stability of zptq as follows:

Step 1:
Select N sample points, denoted one as z1pt0q, find j such that j “ arg mink}z1pt0q ´ zkpt0q}, and
let L0pt0q “ }z1pt0q ´ zjpt0q}.

Step 2:
Find ti, for a given constant ϵ, such that t0 ď t ă ti, L0ptq ď ϵ; L0ptiq ą ϵ. Let L1

0 “ L0ptiq.
Continue with z1ptiq as the next sample point following Step 1.

Step 3:
The maximum Lyapunov exponent(MLE) λ is approximately as follows:

λ «
1

N∆t

M
ÿ

s“1

log2

ˆ

L1
0

L0pt0q

˙

,

where ∆t is the time step interval and M is the number of steps in a single orbit.

B EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTION

CO-C&CO-M. Monkeys C and M performed a center-out (CO) reaching task while grasping an
upright handle. Monkey C used its right hand and Monkey M its left. Each trial began with the
monkey moving its hand to the workspace center. Following a random wait, one of eight equally-
spaced outer targets in a circular arrangement appeared. The monkey then held through a variable
delay until an auditory go cue. To receive liquid reward, the monkey had to reach the outer target
within 1.0 second and hold for 0.5 seconds.

RT-M. Monkey M also performed a random-target (RT) task, reaching to sequences of three targets
presented in random screen locations to complete a trial. The RT task used the same apparatus as
the CO reaching task. Each trial began with the monkey moving its hand to the workspace center.
Three targets were then sequentially presented, and the monkey had to move the cursor into each
within 2.0 seconds of viewing. As the target positions were randomized, the cursor trajectory took on
a "random-target" form each trial.

Detailed Preprocess Process. For all datasets, we extracted trials from ’gocue time’ to ’trial end’ and
preprocessed the neural signals by digitizing, bandpass filtering (250-5000 Hz), and spike detection
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based on root-mean square activity thresholds. The data was then timestamped and smoothed with a
Gaussian kernel to estimate firing rate over 50 ms bins.

B.2 BASELINE IMPLEMENTATION

CEBRA. CEBRA is a sophisticated machine-learning technique developed for the analysis and
compression of time series data, particularly enhancing the study of behavioral and neural data. This
method is capable of uncovering hidden structures within data variability and has been successfully
applied to decode activity in the mouse brain’s visual cortex, even reconstructing what a subject has
viewed. The code is available from https://github.com/AdaptiveMotorControlLab/cebra.

DAF. The Domain Adaptation Forecaster (DAF) utilizes abundant data from a relevant source domain
to enhance performance in a target domain with limited data. DAF employs an attention-based shared
module with a domain discriminator and private modules for each domain, promoting the extraction
of domain-invariant latent features while simultaneously retraining domain-specific features. Our
approach effectively aligns keys from the source and target domains, allowing for effective knowledge
transfer despite differing characteristics. Extensive experiments show that DAF outperforms state-of-
the-art methods on both synthetic and real-world datasets, and ablation studies confirm the efficacy
of our design choices.

ERDiff. This work proposes leveraging diffusion models to first extract latent dynamic structures in
the source domain, then recover them well in the target domain through maximum likelihood align-
ment. Empirical evaluation on synthetic and neural recording datasets demonstrates this approach
outperforms others by better preserving latent dynamic structures longitudinally and between individ-
uals. We implement this based on the openly available code at https://github.com/yulewang97/ERDiff.

NoMAD. NoMAD leverages the latent manifold structure inherent in neural population activity
to establish a stable link between brain activity and motor behavior. It demonstrates the ability to
provide accurate and highly stable behavioral decoding over extended periods, eliminating the need
for supervised recalibration. In this study, we implemented NoMAD using the LFADS code available
at https://github.com/arsedler9/lfads-torch/tree/main. As a result, there may be some deviations from
the original implementation.

Cycle-GAN. This work proposes utilizing Cycle-GAN to align the distributions of full-dimensional
neural recordings and stabilize the original decoding model without requiring recalibration. Through
evaluating Cycle-GAN and a related approach (ADAN) on multiple monkey and task datasets,
Cycle-GAN demonstrated superior performance for robustly maintaining BCI accuracy longitudinally
without additional training. As the study utilizes the same datasets, we directly implement its openly
available code from https://github.com/limblab/adversarial_BCI.

B.3 TRAINING DETAILS

The main configurations for model training included the learning rate, weight decay parameters of
the Adam optimizer, batch sizes, number of training epochs, and GPU hardware. Details of these
hyperparameters are provided in Table 6.

Table 6: Detailed Training Setup

Learning Rate Weight Decay Epoch Number Batch Size GPU

CO-C 2e-3 1e-5 2500 256 NVIDIA 3080Ti
CO-M 2e-3 5e-7 2000 256 NVIDIA 3080Ti
RT-M 2e-3 5e-7 3000 256 NVIDIA 3080Ti

Main hyper-parameters, the signal window size (w), and the weights balancing terms in the final loss
function (λy,b,o) are set as shown in Table 7.

B.4 DETAILED TEST PROCEDURE

Specifically, during the test phase, we employed neural signals XT from the target domain,
which were not leveraged during the training phase, to evaluate the efficacy of our alignment
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Table 7: Hyper-parameter Setup

w λy λb λo

CO-C 6 1 1e-2 1
CO-M 6 1 1e-2 1
RT-M 5 1 1e-2 1

approach. This evaluation is based on the decoding performance, as represented by Ly: Ly “
›

›YT ´ Cη

`

Qϕy

`

Eγ

`

Gα

`

XT
˘˘˘˘

›

›

2
, where YT signifies the actual reaching velocity correspond-

ing to XT .

C ADDITIONAL RESULTS

C.1 COMPARATIVE STUDY

The comprehensive results of average R2 scores for cross-session velocity decoding on the CO-C
dataset are detailed in Table 8.

Table 8: Average R2 Scores (%) of Cross-session Velocity Decoding
Data Session LSTM Cebra DAF ERDiff NoMAD Cycle-GAN HDA retrain

C
O

-C

Day 0 86.65˘1.18 88.30˘1.66 86.25˘0.87 88.52˘0.72 31.99˘9.45 78.29˘1.93 86.66˘0.29 86.66˘0.29

Day 1 5.04˘27.90 15.41˘14.89 ´6.40˘4.97 ´7.59˘12.30 44.39˘5.49 70.31˘4.23 83.32˘0.77 86.03˘0.56

Day 2 9.25˘32.85 53.00˘6.85 ´5.86˘3.90 6.03˘8.44 31.53˘6.13 80.82˘1.36 84.84˘4.68 89.60˘0.52

Day 3 ´128.25˘65.07 23.32˘13.39 ´2.09˘2.34 6.32˘13.51 25.11˘12.50 68.66˘2.24 77.69˘2.91 86.35˘0.99

Day 9 ´24.15˘33.53 ´5.20˘21.77 ´1.80˘2.15 ´76.27˘50.66 38.72˘6.35 74.84˘1.52 84.14˘1.96 88.55˘0.68

Day 10 ´70.33˘65.25 ´2.22˘20.13 ´3.70˘3.36 3.23˘8.19 42.12˘9.81 74.61˘1.14 82.18˘1.17 89.19˘0.80

Day 14 ´65.46˘24.55 ´13.54˘26.38 ´0.87˘0.82 ´38.13˘72.01 39.90˘20.83 63.52˘1.53 73.95˘2.67 85.16˘0.64

Day 15 ´32.08˘24.64 ´31.94˘17.11 ´4.45˘2.39 ´9.75˘16.73 35.71˘15.39 78.00˘0.39 84.41˘0.68 91.39˘0.56

Day 16 ´123.74˘63.89 ´10.21˘17.65 ´2.26˘1.04 ´29.42˘57.08 41.33˘13.65 74.52˘0.34 80.91˘0.95 90.80˘0.34

Day 36 ´70.67˘99.37 ´55.33˘19.88 ´4.24˘3.58 ´29.41˘56.85 35.17˘8.61 39.70˘34.29 74.02˘2.78 89.56˘0.51

Day 37 ´29.54˘59.36 ´44.82˘31.72 ´3.78˘3.13 ´2.44˘10.22 51.48˘10.78 67.46˘3.59 81.31˘1.67 91.80˘0.42

Day 38 ´112.02˘132.39 ´23.46˘22.71 ´2.53˘1.87 ´4.37˘5.70 41.33˘8.24 28.18˘1.15 64.68˘2.72 77.45˘0.48

C.2 DECODED CURSOR VELOCITY VISUALIZATION

As shown in Fig. 4 and Fig. 5, we visualized reach trajectories of CO-M integrated from the decoded
cursor velocity.

LSTM

𝑹𝟐 = −𝟐. 𝟑𝟎

Ground Truth CEBRA NoMAD Cycle-GAN HDA

𝑹𝟐 = −𝟏. 𝟐𝟎 𝑹𝟐 = 𝟎. 𝟔𝟎 𝑹𝟐 = 𝟎. 𝟕𝟐𝑹𝟐 = 𝟎. 𝟓𝟏Day 32 (CO-M)

Figure 4: True and decoded cursor trajectories, integrated from the decoded velocity, are presented
for baselines and HDA after aligning Day 32 to Day 0 on the CO-M. Different colors represent eight
different reach directions.

C.3 ADDITIONAL ANALYSIS ON HDA

We also conducted experiments using Day 0 as the source session, with source and target training
ratios set at 0.1, 0.2, 0.4, 0.6. As illustrated in Fig. 6(b), HDA shows effective performance even with
a relatively small number of trials.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

LSTM

𝑹𝟐 = -𝟏. 𝟏0

Ground Truth CEBRA NoMAD Cycle-GAN HDA

𝑹𝟐 = -𝟏. 𝟓6 𝑹𝟐 = 𝟎. 𝟔𝟔 𝑹𝟐 = 𝟎. 𝟕7𝑹𝟐 = 𝟎. 𝟔𝟏Day 15 (CO-M)

𝑹𝟐 = -𝟓. 𝟓2 𝑹𝟐 = -𝟏. 𝟑𝟕 𝑹𝟐 = 𝟎. 𝟔𝟑 𝑹𝟐 = 𝟎. 𝟕𝟐𝑹𝟐 = 𝟎. 𝟔𝟖Day 31

Figure 5: True and decoded cursor trajectories, integrated from the decoded velocity, are presented
for baselines and HDA on Day 15 and Day31 of CO-M dataset. Different colors represent eight
different reach directions.

(a) (b)

Figure 6: (a) Overall performance of average R2 scores on all the sessions(days) from CO-C, CO-M,
and RT-M. (b) HDA’s performance on CO-M and RT-M at different training ratios (0.1, 0.2, 0.4, and
0.6). Here, the source session is Day0.
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C.4 FEATURE STABILITY COMPARISON

As for feature stability, we compared our MLE with those from ERDiff and NoMAD, as MLE can
only be derived from sequential models. Fig. 7(d) shows the average MLE for each target session and
their overall averages.
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Figure 7: (a) t-SNE visualizations of HDA compared to Cycle-GAN and NoMAD on Day22 and 24
of CO-M. (b) R2 scores of HDA and MMD with different Gaussian kernels (µ=1.0, 2.0, 3.0). (c) R2

score performance of HDA across different latent dimensions. (k̃o = k̃y =8, 16, 64, 256). (d) Total
average Maximum Lyapunov Exponent (MLE) for baselines containing sequential models (ERDiff,
NoMAD) and HDA on CO-M and RT-M. Dots represent average MLE from an individual target
session.

C.5 LATENT FEATURE VISUALIZATION

As shown in Fig. 7(a), the t-SNE results are compared with the top two baselines, demonstrating our
superior alignment performance.

C.6 VISUALIZATION OF DYNAMICAL LATENT FEATURES

To examine our decomposition of the latent spaces, we selected CO-M as the representative dataset
for visualization. We presented a visualization of the semantic dynamical latent features Z̃y, the
domain-related latent features Z̃o, and original latent features Z from both the source and several
target sessions, utilizing t-SNE for dimensionality reduction. These visualizations are depicted
in Fig. 8 and Fig. 9. Our analysis reveals that the semantic latent features of the source and target
sessions are closely aligned, while a discrepancy is observed in the distribution of the domain-related
and original features. This observation suggests that HDA has effectively decomposed the latent
space into semantic and domain-related subspaces.

C.7 HYPER-PARAMETER SENSITIVITY ANALYSIS

The main hyper-parameters of our method include the signal window size (w), and the weights
balancing terms in the final loss function (λb,o), and latent feature dimensions(k̃o,y). The results of
their sensitivity analysis are shown in Tables 9 to 11, and Fig. 7(c).
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Figure 8: Visualizations via t-SNE are presented, depicting the semantic latent features Z̃y, the
domain-related latent features Z̃o, and original latent features Z. Each figure shows latent features
from the source session and a specific target session from CO-M, represented by different colors.
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Figure 9: Visualizations via t-SNE are presented, depicting the semantic latent features Z̃y, the
domain-related latent features Z̃o, and original latent features Z. Each figure shows latent features
from the source session and a specific target session from RT-M, represented by different colors.
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Table 9: Average R2 scores for different datasets with varying λb.
λb CO-C CO-M RT-M

0.0001 0.7912 ˘ 0.0233 0.6619 ˘ 0.0502 0.6448 ˘ 0.0527
0.001 0.7924 ˘ 0.0237 0.6641 ˘ 0.0496 0.6446 ˘ 0.0536
0.01 0.7984 ˘ 0.0194 0.6921 ˘ 0.0289 0.6437 ˘ 0.0206
0.1 0.8109 ˘ 0.0177 0.6838 ˘ 0.0425 0.6563 ˘ 0.0529

Table 10: Average R2 scores for different datasets with varying λo.
λo CO-C CO-M RT-M

0 0.7924 ˘ 0.0190 0.6768 ˘ 0.0431 0.6502 ˘ 0.0492
0.1 0.7960 ˘ 0.0168 0.6793 ˘ 0.0350 0.6512 ˘ 0.0350
1 0.7992 ˘ 0.0194 0.6921 ˘ 0.0289 0.6437 ˘ 0.0206
2 0.7984 ˘ 0.0154 0.6838 ˘ 0.0425 0.6563 ˘ 0.0529

Table 11: Average R2 scores for different datasets with varying w.
w CO-C CO-M RT-M

4 0.7640 ˘ 0.0351 0.6704 ˘ 0.0339 0.6273 ˘ 0.0534
5/6 0.7984 ˘ 0.0194 0.6921 ˘ 0.0289 0.6437 ˘ 0.0206
7 0.7769 ˘ 0.0489 0.6519 ˘ 0.0781 0.6559 ˘ 0.0473
8 0.8074 ˘ 0.0348 0.6703 ˘ 0.0765 0.6240 ˘ 0.0618
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