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Abstract

Multi-label text classification refers to assigning multiple relevant category labels to each text, which has been widely applied
in the real world. To enhance the performance of multi-label text classification, most existing methods only focus on optimizing
document and label representations, assuming accurate label-document similarity is crucial. However, whether the potential
relevance between labels and if the problem of the long-tail distribution of labels could be solved are also key factors affecting
the performance of multi-label classification. To this end, we propose a multi-label text classification model called DV-MLTC,
which is based on a dual-view graph convolutional network to predict multiple labels for text. Specifically, we utilize graph
convolutional neural networks to explore the potential correlation between labels in both the global and local views. First, we
capture the global consistency of labels on the global label graph based on existing statistical information and generate label
paths through a random walk algorithm to reconstruct the label graph. Then, to capture relationships between low-frequency
co-occurring labels on the reconstructed graph, we guide the generation of reasonable co-occurring label pairs within the
local neighborhood by utilizing the local consistency of labels, which also helps alleviate the long-tail distribution of labels.
Finally, we integrate the global and local consistency of labels to address the problem of highly skewed distribution caused
by incomplete label co-occurrence patterns in the label co-occurrence graph. The Evaluation shows that our proposed model
achieves competitive results compared to existing state-of-the-art methods. Moreover, our model achieves a better balance
between efficiency and performance.

Keywords Multi-label classification - Graph convolutional networks - Random walk model - Label co-occurrence - Label
graph

1 Introduction

Multi-label text classification (MLTC) is a crucial task in nat-
ural language processing that finds applications in various
domains, including sentiment analysis [1], patent classifica-
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tion [2], and question answering [3]. The primary objective
of MLTC is to assign one or more appropriate categories to
a document using a set of predefined categories or labels.
In recent years, the MLTC has garnered significant atten-
tion and has become an active area of research. However, the
increasing number of labels and documents, coupled with the
complex interrelationships between labels and documents,
pose significant challenges to MLTC. These challenges have
prompted researchers to delve deeper into the field of multi-
label learning.

Previous research on MLTC focused on developing
enhanced document representations. Various methods have
been proposed for learning label-specific document repre-
sentations [4, 5]. Moreover, some studies have used attention
mechanisms to capture label-semantic-based representations
[6-8] and document-label interaction representations [9—12].
Although these approaches have shown promising results,
they have not fully explored the interactions between label-
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specific semantic components, thereby ignoring the rich label
co-occurrence information within documents.

In recent years, label co-occurrence graph-based methods
have gained attention for their ability to exploit statistical
correlations between labels to construct label co-occurrence
graphs [13—17]. In this study, we refer to the view of label
co-occurrence graphs built using statistical correlations as
label global consistency. We identified two issues regarding
label global consistency. First, statistical label correlations
may exhibit a long-tailed distribution, with some categories
being common and most having only a few relevant docu-
ments. Figure 1 shows the long-tailed distribution on RCV1
[18], where only a few labels have a large number of articles,
and these head labels also have a high co-occurrence with
other labels. Second, the co-occurrence patterns between
label pairs obtained from the training data are frequently
incomplete. For instance, in the AAPD, the labels “computers
and society (cs.CY)” and “Physics and Society (physics.soc-
ph)” co-occurred 300 times in training set, while only 6 times
in test set (0.009%). This imbalance in the co-occurrence
frequency of labels within the data as well as between the
training and testing sets, led to a highly skewed distribution
[15]. Existing methods based solely on label global consis-
tency model label relationships, which are based on prior
statistical information from the training data, fail to address
above two challenges effectively.
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Fig.1 Long-tailed distribution and label co-occurrence for the RCV1.
The co-occurrence matrix undergoes color-coding, wherein the rep-
resentation is influenced by the conditional probability p(i|j). This
probability signifies the likelihood of the presence of a class in the i-th
column given the occurrence of a class in the j-th row
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To address these challenges, we propose a dual-view
graph convolutional network for multi-label text classifi-
cation (DV-MLTC). The proposed method aims to model
label co-occurrences from both global and local perspectives,
thereby offering a comprehensive solution. First, to address
the long-tailed distribution problem, we introduce a strategy
that generates label paths for the local label graph using a
random walk. By reconstructing the local label graph based
on this strategy, we effectively captured the relationships
between low-frequency co-occurring labels. This approach
helps alleviate the long-tail distribution issue and enhances
the overall performance. Second, to address the highly
skewed distribution problem caused by the incompleteness
of label co-occurrence patterns in the label co-occurrence
graph, we leverage the power of the graph convolutional net-
works (GCN) [16]. By employing a GCN, we can model
rich co-occurrence patterns between labels from both global
and local consistency perspectives. Additionally, label local
consistency is proposed to measure the rationality of label
co-occurrence in local neighborhoods, further improving the
accuracy of the model. Furthermore, we incorporated atten-
tion flow to extract label-specific semantic components from
the document content. This allows us to merge the semantic
information of the labels and obtain the initial embedding of
the dual-view graph convolution. Finally, we fuse the fine-
grained document information with learned label correlations
for classification, resulting in a comprehensive and robust
classification model.

This paper makes the following contributions:

e We introduced a novel neural network that leverages
dual-view convolutions on label co-occurrence graphs
for MLTC tasks. Our model combines learned label
information from a dual-view graph convolution with
label-specific document representations using a dual
attention flow. This integration enhanced the overall per-
formance of the model.

e Toeffectively capture the co-occurrence patterns between
labels, we leveraged both global and local label consisten-
cies. Additionally, we employed a dynamic construction
approach for the local label graph using a random-
walk strategy. This strategy enriches the co-occurrence
patterns between labels and significantly improves the
performance of multi-label text classification.

e To evaluate the effectiveness of the proposed model, we
conducted experiments on three commonly used bench-
mark datasets. The experimental results demonstrate the
competitiveness of our model on these datasets, demon-
strating its ability to achieve impressive performance in
multi-label text classification tasks.
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2 Related work
2.1 Enhancing document-label interaction in MLTC

With the widespread application of neural network meth-
ods in document representation, innovative deep-learning
approaches have been developed. XML-CNN [4] uses a
convolution neural network(CNN) and dynamic pooling to
learn text representations for multi-label text classification. A
sequence-to-sequence (Seq2Seq) model based on recurrent
neuron networks (RNNs) was used to capture the correla-
tions between labels [19-21]. Nevertheless, they treated all
words uniformly and failed to discern the informative con-
tent within the documents. Considering the negative impact
of label sequence order on Seq2Seq models, S2S-LSAM
[22] introduces a novel Seq2Seq model with distinct seman-
tic attention mechanisms for labels. This model incorporates
label semantics and textual features through the interaction
of the label semantic attention mechanism, resulting in fused
information comprising both label and textual information.
ML-Reasoner [23] utilizes a sequence model as a text feature
extractor and incorporates the prediction probabilities from
the previous round as an additional input in the model to
reflect label correlation. This approach mitigates the reliance
on label order. The aforementioned methods do not model
the rich co-occurrence relationships among labels. Moreover,
these methods struggle to effectively address the long-tail
issue associated with labels.

Recently, attention mechanisms have been used in sev-
eral studies to enhance the interaction between labels and
words [24], labels and documents [6, 11, 25-27], and labels
and labels [7], in order to learn specific label-specific docu-
ment representations for classification tasks. Some methods
have taken a different approach by incorporating addi-
tional sources of knowledge to enhance label-specific docu-
ment representations [28-30]. These approaches exhibited
promising results in MLTC, underscoring the importance
of investigating semantic connections. However, they did
not thoroughly explore the interactions among label-specific
semantic components, which could potentially enhance the
prediction of low-frequency labels. In our research, we intro-
duced a label-word attention module and a label-semantic
self-attention module. The former extracts important seman-
tics specific to labels from the word-level document infor-
mation. The latter further helps capture label-level semantic
features. Our approach enriches the semantic information of
labels by combining these two modules, and this enhanced
representation has the potential to improve prediction accu-
racy, particularly for low-frequency labels.

2.2 Label co-occurrence graph in MLTC

To apprehend profound correlations among labels in a
graph structure and delve into the semantic interactions

between label-specific components in documents, a common
approach involves utilizing label graphs based on statisti-
cal co-occurrence. MAGNET [14] constructs a label graph
based on frequency. DXML [31] establishes an explicit label
co-occurrence graph to explore label embeddings in a low-
dimensional latent space. LIGCN [32] utilized a pretrained
language model as the initial embedding of a label-word
heterogeneous graph and achieved outstanding classifica-
tion performance while paying attention to different word
choices. The methods used by LR-GCN [33] and GCN-
MTC [15] are similar. They constructed labeled graphs based
on data-driven statistical information, and the former per-
formed better than the latter. LDGN [34] adaptively modeled
the interactions among labels using dual-graph convolu-
tional neural networks. CFTC [35] first constructed a global
label co-occurrence graph and then prevented confounding
shortcuts using counterfactual techniques with the help of a
human causal graph. S-GCN [36] leverages text, words, and
labels to construct a global heterogeneous graph for mining
correlations between similar documents. Subsequently, an
encoder is trained to extract semantic features from document
nodes, followed by utilizing graph convolutional networks to
classify the text nodes. TLC-XML [37] initially constructs
a label correlation graph using the semantic information
of labels and symmetric conditional probabilities. Subse-
quently, strongly correlated labels are further grouped into
the same cluster. Finally, graph convolutional networks are
employed to extract the inter-cluster correlations among the
label clusters. Nevertheless, each label is assigned to only
one cluster, which severely ignores the semantic correlation
of labels.

However, the majority of the above methods primarily
focus on the label global consistency of label co-occurrence
while neglecting the potential label local consistency, which
could potentially enhance classification performance. By
contrast, our proposed dual-view convolution module is
guided by prior knowledge from co-occurrence statistics and
posterior information obtained from a dynamic random walk,
which can effectively capture comprehensive interactions
from different views, understand the potential relationships
between labels through global and local modes in the data,
and improve their classification performance.

3 Proposed model

As shown in Fig. 2, our model comprises two primary
modules: 1) a label-specific document representation based
on dual attention flow. This module outlines the process
of extracting label-specific semantic components from the
word-level information of each document and further extract-
ing label-specific semantic components. 2) Dual-view graph
convolutional networks for semantic interactive learning. We
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Fig. 2 The model architecture of the DV-MLTC consists of two main
components: GlobalConv and LocalConv. In the GlobalConv compo-
nent, we construct a prior label co-occurrence graph and derive the
label co-occurrence matrix A, This matrix represents the connections
between labels based on their co-occurrence probabilities. Using Glob-
alConv, we obtain the label embedding matrix H¢ under the guidance
of the global information (For example, node 1 connects nodes 1,2,3,4,5
by priory probability). In the LocalConv component, we leverage the
label co-occurrence graph to compute the local co-occurrence frequency
between label pairs using a random walk module. This process involves

present a detailed description of how this module effectively
explores and captures comprehensive interactions from dis-
tinct perspectives, guided by prior knowledge of statistical
co-occurrences and posterior information obtained from a
dynamic random walk. Our dual-view convolution module
can effectively explore and capture comprehensive inter-
actions from distinct views guided by prior knowledge of
statistical co-occurrences and posterior information obtained
from a dynamic random walk.

3.1 Problem definition

In the MLTC problem, we have a document set denoted as
D = {dy, d>, ..., d|p|}, and a corresponding label set denoted
as C = {c1, 2, ..., cc|}). Here, |D| represents the number
of documents in the document set, and |C| represents the
total number of labels. Each document d; contains n words
and is associated with labels ¢; € C, where ¢; € {0, 1}|C|,
indicating whether a label is relevant.

To achieve the goal of MLTC, which is assigning the most
relevant label to a new document, we define a global label
co-occurrences graph G = (V, E) where V represents nodes
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Local Consistency Convolution (LocalConv)

extending multiple label paths from a starting node. By incorporating
this local guidance, we can adaptively add label relationships between
pairs that initially had few co-occurrences. This helps mitigate the
long-tail distribution problem by reconstructing the label co-occurrence
graph. (For instance, in Fig. 2, we observe that node 1 was not originally
connected to node 9 and node 12, but the co-occurrence relationship is
added through label co-occurrence graph reconstruction.) Finally, the
label co-occurrence matrix A’ is passed to the local convolution layer
to obtain the matrix H

set and E represents edges set, as in previous work [13, 34,
38]. In this graph, the nodes represent the categories, and the
nodes v; correspond to the labels ¢; in the label set C. The
edges in the graph represent the statistical co-occurrences
between categories. Specifically, we compute the conditional
probability for all label pairs in the training set, yielding
the global label co-occurrence matrix A% ¢ RICIXICI Here,
Aff, = p(vj|v;) signifies the conditional probability of a
document being categorized as ¢; when it belongs to cate-
gory c;. Notably G is a directed graph, therefore, A; ;) may
not be equal to A(; ;) owning the conditional probability cal-
culations.

3.2 Label-specific attention networks

Given a document D containing n words, we utilized bidirec-
tional long short-term memory (BiLSTM) to encode word-
level semantic information in the document representation.
BiLSTM leverages its bidirectional nature to effectively cap-
ture contextual information by processing word sequences
in both forward and backward directions. This enables a
thorough understanding of the document’s semantic context.
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Upon applying BiLSTM, we obtained two sets of hidden
states: forward and backward. These hidden states encap-
sulate the contextual information of the words within a
document. To create a comprehensive word sequence repre-
sentation, we concatenated the forward and backward hidden
states, resulting in the matrix H € R#>da d, denotes the
dimensions of the word vectors. By concatenating the for-
ward and backward hidden states, semantic information can
be captured in both directions, thereby creating a robust and
holistic representation of the word sequence within the doc-
ument.

3.2.1 Label-word attention

Labels possess distinctive semantics in the context of text
classification, concealed within their textual representations
or descriptions. To capitalize on this semantic information,
labels undergo preprocessing and are symbolized as train-
able matrices L € R!€*d in the same latent d,-dimensional
space as words. To ascertain determine the semantic rela-
tionship between each pair of words and labels, scaled
dot-product attention is employed:

T
Nz

where L is the query vector, H is the key vector and the value
vector. u; is the i-th row vector of UY € R IClxda denoting
the semantic component in the document associated with the
label c;. This representation is based on labeled text, which
can be called the Label-Word (LW) attention mechanism.

UY = softmax(

YH ey

3.2.2 Label-semantic self-attention

Multiple labels may be assigned to labeled documents, and
each document should encompass the contexts most relevant
to its corresponding labels. Consequently, each document
may comprise multiple components, and the words within
a document may contribute differently to each label. To
capture these distinct components of each label, a self-
attention mechanism is employed. The label-semantic (LS)
self-attention score (Q € RI€*™) is calculated as follows:

Q = softmax(Watanh(WyH™))
v = ®

where W) € R%>da and W, € RICI*db are self-attention
parameters that must be trained. dj, is a hyperparameter.
Label-specific semantic components are extracted from
text content using a novel approach that incorporates both
label-word attention U™ and label-semantic self-attention
U®. By combining these attention flows, we obtain the label-
specific document representation U = U"Y + U®, which is

calculated as the sum of U" and U®. Our approach draws
inspiration from previous works, such as [25] and [39],
which also utilized attention mechanisms. However, the dual-
attention flow module distinguishes itself based on two key
aspects. First, we focused on the interaction between doc-
uments and labels, enabling a more targeted exploration
of their relationships. Second, our calculation method is
designed to be more straightforward and efficient while still
delivering superior performance.

The resulting label-specific document representation U
serves as the input for the subsequent module: the dual-view
convolutional networks. These networks further process and
capture the interactions between the extracted semantic com-
ponents.

3.3 Dual-view graph convolutional networks

To capture the interactions between label-specific semantic
components from multiple perspectives, we employed a dual-
view interaction approach. Specifically, we utilize global
and local consistency convolutions. In the global consis-
tency convolution, we construct a global label co-occurrence
graph and apply GCN to achieve global consistency. This
convolution leverages the co-occurrence patterns between
labels captured by the global label co-occurrence graph. In
the local consistency convolution, we generated a local label
co-occurrence graph using a random walk strategy. Subse-
quently, we employed a GCN to perform local consistency
convolution. This convolution focuses on enhancing the
co-occurrence patterns between labels based on the local con-
text captured by the local label co-occurrence graph. These
convolutions consider distinct interaction views, thereby
enhancing the co-occurrence patterns between labels.

3.3.1 GlobalConv

To establish deep relationships between label-specific seman-
tic components guided by statistical label correlations, we
employ a global consistency convolution (GlobalConv). We
leverage a GCN layer to propagate messages between neigh-
boring labeled nodes, thereby enhancing their representation
of these labeled nodes. The layer-by-layer propagation rules
are defined as follows:

HG — G(D;(I/Z)AAGD;(I/z)UWG) (3)

where AC in (3) is the global label co-occurrence graph.
o (+) represents the LeakyReLU activation function. AG rep-
resents the normalized adjacency matrix of AC. Dy is the
degree matrix of A® and WG e R%>*9 denotes the trans-
formation matrix that must be learned. GlobalConv uses the
initialized components U € RI€!*% and AC as inputs and
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ultimately generates H® e RI!C1%4 where d. denotes the
dimensionality of the final node representation.

GlobalConv primarily performs a 1-hop diffusion pro-
cess in each layer by leveraging prior statistical relationships
present in the dataset. As described in a previous study
[40], this process only considers the addition of feature
vectors from neighboring nodes to account for the feature
relationships between them. However, the statistical label
correlations obtained from training data can be incomplete
and noisy, and the co-occurrence patterns between label pairs
may suffer from long-tailed distributions [15]. Recognizing
this limitation motivated us to assign a certain probability to
low-frequency co-occurring labels, indicating that they might
belong to the same text rather than being directly filtered as
noise. We enabled the model to learn more effective propa-
gation and richer co-occurrence patterns by introducing local
consistency convolution.

3.3.2 LocalConv

In addition to the graph structure information defined by
the adjacency matrix A®, we utilized positive pointwise
mutual information (PPMI) to encode the potential relation-
ship between label pairs. First, we calculated the frequency
matrix F using a random walk. Subsequently, we derived the
local graph label co-occurrence graph AL € RI€I¥ICI based
on F. Finally, we performed a local consistency convolution.

A random walk can be characterized as a Markov chain
that delineates the sequence of nodes visited by a random
walker [40]. We define a state as s(m) = v; if a random
walker is on node v; at time m. The transition probability of
moving from the current node v; to one of its neighbors v; is
denoted as p(s(m+1) = v;|s(m) = v;). In our problem set-
ting, given a prior label co-occurrence matrix AL, we assign:

G
iJ
2 AT

This assignment ensures that the transition probability is
proportional to the label co-occurrence in A%, thereby incor-
porating semantic information into the random walk process.

Algorithm 1 outlines the calculation of the frequency
matrix F using random walk. This algorithm can be paral-
lelized by simultaneously performing multiple random walks
on different parts of a graph.

Following the computation of the frequency matrix F, the
i-throw in F corresponds to the row vector F; ., while the j-th
column in F corresponds to the column vector F. ;. Specif-
ically, F; . represents the path node context for node v;, and
F. ; represents the path neighbor node contextj. Moreover,
F; j denotes the number of co-occurrences of v; and v; in
all generated paths. A higher value of F; ; indicates a greater
frequency of co-occurrence between the two nodes.

p(sim+1) = vjls(m) = v;) = “
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Algorithm 1 Calculation method of frequency matrix F'.

Require: global label co-occurrence matrix A, path length ¢, number
of iteration ¢

Ensure: frequency matrix F

1: Initialize matrix F as 0 matrix

2: for each label node v; do

3:  Set; as the starting point of the path for the random walk

4 for 1tot do

5 Generate path S = Random Walk(AC, v;, q)

6: Uniformly sample non-repeating label pairs (v;, v;) from §
7 for (v;,v;)do

8: Fij+=LFji+=1

9: end for

10:  end for

11: end for

Using the frequency matrix F, we transform it into a PPMI
matrix as follows:

= Zi,j Fij

SRR VLY, 5)
Pie= Zi,j Fij
Puj = D Fij
Zi,j Fij

We apply (6) to encode the potential relationship between
label pairs in F. Here, p; ; represents the estimated proba-
bility of node v; appearing in context context;; p;, denotes
the estimated probability of node v;, and p_; indicates the
estimated probability of the context context;. The adjacency
matrix based on the label local consistency is computed as
follows:

L Pi.j
A; i= max{PM]I; ; =log(——=—), 0} (6)
’ ’ PixDPx,j

where PM I; ; is the pointwise mutual information between
node v; and context contextj. The PPMI matrix A% repre-
sents the adjacency matrix based on label local consistency,
where any negative PMI value is set to zero.

Similar to GlobalConv, we defined an independent single-
layer GCN for LocalConv based on A”. The graph convolu-
tional networks is given by:

where AL denotes the normalized label local consistency
matrix, D> is the degree matrix of AL, and WL € Réexde jg
a training parameter. Notably, the dynamically reconstructed
AY based on random walk ensures label local consistency,
where labels that appear on the same path are reasonably
considered to belong to the same text. In addition, as the
path length increases within a reasonable range, the impor-
tance of the labels becomes more prominent. Moreover, the
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non-positive values in the PPMI matrix were automatically
filtered out, preventing low-frequency co-occurrence labels
such as noise from disturbing the model.

Both H¢ and H’ represent graph convolution-based label
representations, with the former focusing on the similarity
of global labels and the latter emphasizing the co-occurrence
plausibility from local perspectives. These representations
had different training parameters. In this task, concatenation
is employed to integrate them.

Z=H"|HC )

The label-specific document representation generated
under the guidance of global and local consistency can be
described as matrix Z € RI€/*2dc We then make label pre-
dictions using a trainable linear layer followed by a sigmoid
activation function:

A

Y =sigmoid(W3Z + b)) O]

where W3 represents the weights of the linear layer and b» is
the bias. Let y € RICI denote the true label of a document,
where y; € {0, 1}/l indicates whether label i is present in the
document. The proposed model was trained using multi-label
cross-entropy loss as follows:

N C
L=>"% yijlog(yij) + (1 —y;j)log(1 = §ij)  (10)
i=1 j=1

In (10), N represents the number of documents, C repre-
sents the number of labels, and y;; and ;; denote the true
and predicted values, respectively, for the j-th label of the
i-th document.

4 Experiment
4.1 Datasets and evaluation metrics

We evaluate the proposed model on three benchmark multi-
label text classification datasets:

RCV1!':RCV1[18] was collected and manually classified
by Reuters, which collected more than 80k news texts and
corresponding multiple labels from 1996 to 1997. Moreover,
the testing set consisted of a significantly larger number of
examples than the training set. This aspect allowed for a
comprehensive evaluation of the generalization capability of
the proposed model.

1 http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/
lyr12004_rcviv2_README.htm
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Table 1 Statistics of the datasets
Datasets N M D L L L
RCV1 804,414 23,149 781,265 101 3.18 729.67
AAPD 55,840 54,840 1000 54 241 2444.04
EUR-Lex 171,120 11,585 3,865 3,956 532 1559

where N represents the total number of documents, M is the number
of training documents, D is the number of testing documents, L is the
number of class labels, L is the average number of labels per document,
and L is the average number of documents per label

AAPD?: AAPD [19] was constructed by gathering the
abstracts and their corresponding subjects from a computer
science academic website encompassing 55,840 papers.

EUR-Lex?: EUR-Lex [41] is an extreme multi-label text
classification dataset comprising documents related to Euro-
pean Union law across 3956 subjects. The public version
includes 11585 instances for training and 3865 instances for
testing.

These datasets were meticulously chosen due to their
widespread usage and large scale, allowing us to validate
the efficiency of the proposed model. Additionally, to main-
tain consistency with prior research, we employed the same
dataset partitioning as those in earlier studies [25, 34]. These
partitions were the original ones provided by the publishers
of the datasets. Detailed statistics for the datasets are pre-
sented in Table 1.

Following the established conventions of previous studies
[24,25,33,34], we employed the accuracy of the top k (P@k)
and the normalized discounted cumulative gain of the top
k (nDCG@k) as performance evaluation metrics for all three
datasets.

The word embeddings in our model were initialized with
300-dimensional GloVe [42] word vectors that were trained
on the dataset using the Skip-gram [43] algorithm. The hid-
den sizes of the Bi-LSTM and GCN layers were set to 300
and 512, respectively. For the AAPD, we established g =
2 and t = 400. We determined that ¢ = 3 and ¢ = 450 for
RCV1. Finally, for the EUR-Lex, we set # = 3 and ¢ = 600.
We employed the Adam optimization method to minimize
cross-entropy loss. The learning rate was initialized to le-3,
and a cosine-annealing algorithm was applied to gradually
reduce the learning rate during training. To ensure a fair com-
parison with related baselines using the large language model
(LLM), we also implemented an LLM-based version of our
model. In this version, we used the word sequence token
RoBERTa [44] as the output of the label-specific attention

2 https://git.uwaterloo.ca/jimmylin/Castor-data/tree/master/datasets/
AAPD/

3 http://nlp.cs.aueb.gr/software.html
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network module in our model. The model was trained for 15
epochs with a batch size of 64. The best parameter configura-
tion was selected based on the performance of the validation
set and evaluate using a testing set.

4.2 Baselines

To demonstrate the efficiency of the proposed model, it was
compared with models that achieved state-of-the-art results
using selected datasets. For a fair comparison, we only reused
the experimental results when selecting baselines instead of
reimplementing them to maintain the recommended optimal
settings and results. In addition, for models that were not
implemented on specific datasets, we reimplemented these
models with their source codes and then evaluated them on
selected datasets.

Enhancing document-label-based methods

e XML-CNN [19]: A sequence generative model that
labels correlations as an ordered sequence.

o AttentionXML [24]: A model that constructs the label-
aware document representation solely based on the
document content.

e LSAN [25]: Label-aware attention framework based on
self-attention and label attention mechanisms.

e HTTN [7]: This proposes a head-to-tail network that
transfers meta-knowledge from head-labels to tail-labels.

e MLGN [26]: A multi-label guided network capable
of guiding document representation with multi-label
semantic information.

Label graph-based methods

e DXML [31]: A deep embedding method that simultane-
ously models the feature and label space.

e MAGNET [14]: A model based on graph attention
networks. Capturing the attention-dependent structure
between labels using features and correlation matrices
was proposed. In addition, the model uses BiLSTM to
extract text features.

e LAHA [6]: LAHA focuses on using hybrid attention to
represent documents with labels. The model comprises
three components: a multi-label self-attention mecha-
nism that identifies each word’s association with labels,
a depiction of label arrangement and document context,
and an adaptive fusion method for classification.

e LDGN [34]: A dual-graph convolution network that
incorporates category information and models adaptive
interactions among labels in a reconstructed graph.

e LiGCN [32]: A label interpretable graph model that
solves the MLTC problem by modeling tokens and labels
as nodes in a heterogeneous graph and uses the pretrained
language model BERT as a text encoder.

o LA-MLTC [39]: A label-aware network built (which we
refer to as LA-MLTC) a heterogeneous graph including
words and labels to learn the label representation and text
representation by metapath2vec.

Table2 Comparing our model

e ppare o ek Methods P@I(%)  P@3(%) P@5%)  nDCG@3(%)  nDCG@5(%)

and nDCG@k on RCV1 XML-CNN? (2018) 95.75 78.63 54.94 89.89 90.77
AttentionXML? (2019)  96.41 80.91 56.38 91.88 92.70
LSAN? (2019) 96.81 81.89 56.92 92.83 93.43
HTTN® (2021) 95.86 78.92 55.27 89.61 90.86
MLGN (2023) 96.67 82.11 57.03 9223 93.55
DXML? (2018) 94.04 78.65 54.38 89.83 90.21
MAGNET (2020) 95.16 79.34 54.26 87.34 88.61
LAHAS (2018) 96.95 81.43 56.44 92.69 93.01
LIGCN¢ (2022) 95.61 82.40 56.31 93.40 93.26
LA-MLTC® (2021) 9731 83.11 57.85 93.97 94.59
LDGN® (2021) 97.12 82.26 57.29 93.80 95.03
LR-GCNf (2023) 97.13 84.29 58.45 94.98 95.38
DV-MLTC 97.11 83.68 57.31 94.19 94.77
DV-MLTC o5 5 Ta 97.94 84.83 59.01 94.32 95.87

The best performance is highlighted in bold, and the second-best performance is highlighted in underlined
text. The following experimental results were extracted: # from [34], b from [7], ¢ from [6], ¢ from [32], ©

from [39], and f from [33]
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Table 3 Comparing ourmodel =y o 0 ¢ P@I(%)  P@3(%)  P@5%)  nDCG@3(%)  nDCG@5(%)

with baselines in terms of P@K

and nDCG@k on AAPD XML-CNN? (2018) 74.38 53.84 37.79 71.12 75.93
AttentionXML? (2019) 83.02 58.72 40.56 78.01 82.31
LSAN? (2019) 85.28 61.12 41.84 80.84 84.78
HTTNP (2021) 83.84 59.92 40.79 79.27 82.67
MLGN (2023) 84.78 60.01 42.37 80.11 83.45
DXML? (2018) 80.54 56.30 39.16 77.23 80.99
MAGNET (2020) 82.53 60.71 40.19 80.37 81.03
LAHA® (2018) 84.48 60.72 41.19 80.11 83.70
LiGCNY (2022) 82.50 61.26 41.38 80.39 83.83
LA-MLTC® (2021) 85.03 61.46 41.80 80.94 84.90
LDGN® (2021) 86.24 61.95 42.29 83.32 86.85
LR-GCN' (2023) 86.50 62.43 41.66 82.52 85.48
DV-MLTC 85.19 61.52 40.06 83.21 85.15
DV-MLTCRoBERTa 86.83 62.87 42.41 83.45 87.03

The best performance is highlighted in bold, and the second-best performance is highlighted in underlined
text. The following experimental results were extracted: * from [34], b from [7], € from [6], ¢ from [32], ©

from [39], and f from [33]

e LR-GCN [33]: A multi-label text classification model
combining a pre-trained language model and a GCN.

4.3 Performance comparison of different methods

The performances of the different models on the three
datasets are listed in Tables 2, 3, and 4 in terms of P@k
and nDCG @k, respectively. For each row, the best result is
highlighted in bold, and the second-best result is underlined.

As shown in Tables 2, 3, and 4, the proposed DV-
MLTC model outperforms previous works on all three
datasets. Specifically, the DV-MLTC-enhanced version of
Roberta achieves better or more competitive performance
on all metrics and significantly improves the previous base-
line best scores compared to those with the shared source

code. For example, on EUR-Lex, DV-MLTC improves P@ 1
and nDCG@3 from 82.59% to 83.61% and from 72.15%
to 74.62%, respectively. Compared with the best baseline
LR-GCN on RCV1 and AAPD, our proposed model still
performs better or is competitive on all metrics.
Furthermore, by observing the results in Tables 2, 3, and
4, we can see that methods that do not incorporate label
correlation to improve the learning process of textual rep-
resentations demonstrate inferior performance. Specifically,
on AAPD, AttentionXML elevated the P@1 value of DXML
from 80.54% to 83.02%, marking an increase of approx-
imately 3.08%. It is plausible that while DXML seeks to
represent information in the label space using deep embed-
ding techniqus, AttentionXML can concentrate on the more
semantically relevant document sections for each label. Nev-

Table4 Comparing our model

e paE O ay  Methods P@I(%)  P@3(%) P@5(%)  nDCG@3(%)  nDCG@5(%)

and nDCG @k on EUR-Lex XML-CNN? (2018) 70.40 54.98 44.86 58.62 53.10
AttentionXML? (2019)  67.34 52.52 47.72 56.21 50.78
LSAN? (2019) 79.17 64.99 53.67 68.32 62.47
HTTN' (2021) 81.14 67.62 56.38 70.89 64.42
MLGN (2023) 68.65 53.17 48.92 57.34 51.28
DXML? (2018) 75.63 60.13 48.65 63.96 53.60
LAHA® (2018) 78.34 64.62 53.08 68.15 62.27
LDGN¢ (2021) 81.03 67.79 56.36 71.81 66.09
LR-GCN (2023) 82.59 68.25 58.34 72.15 66.87
DV-MLTC 81.01 66.98 56.73 71.02 66.14
DV-MLTC o5 5 R Ta 83.61 70.14 59.40 74.62 68.11

The best performance is highlighted in bold, and the second-best performance is highlighted in underlined
text. The following experimental results were extracted: # from [34], b from [7], € from [6], and ¢ from [32]
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Fig. 3 The label distribution of EUR-Lex. x-axis represents the label
index sorted by frequency in the training set. f represents the label
frequency, and p represents the proportion of labels in collection to the
entire label set

ertheless, AttentionXML solely focuses on encoding text
content in the presentation layer without considering label
information, thus restricting its capacity to adjust contextual
representations through interactions.

The better performance of LSAN compared to other previ-
ous approaches for exploring document-label relationships,
such as HTTN and MLGN, may be attributed to its multi-
view learning space mechanism and the fact that LSAN
considers semantic correlations between text and labels
simultaneously. The multi-view learning mechanism helps
stabilize adaptive fusion through the attention mechanism,
which learns the text representation specific to the labels.

We observed that LR-GCN performed best on RCV1 in
terms of the nDCG@3. This can be explained by initial-
izing text embedding using the pretrained language model
Roberta, which can efficiently extract fine-grained document
information. In contrast, our model uses a simple BiLSTM
architecture to represent the input text and achieves optimal
or near-optimal results. In addition, we used Roberta’s ver-
sion of word embedding to obtain the same word embeddings
as the LR-GCN. The results of AAPD and EUR-Lex demon-
strate the effectiveness of our dual-view graph convolutional
networks module, with DV-MLTCg,pgrTs achieving the
best results compared to the competing models.

LDGN [34] demonstrated competitive performance on all
datasets, which may be attributed to its adaptive interac-
tion component, benefiting from a large number of adaptive
parameters. Inspired by LDGN, we propose an adaptive
reconstruction of the graph based on random wandering.
However, the LDGN adaptive module operates as a black
box, and its parameter guidance lacks explicit transparency.
By contrast, our dual-graph module allows parameter sharing
and provides natural interpretability. This allowed us to con-
duct further research on our model, particularly on parameter
tuning and its implications.

We also observed that the methods that utilized labeled
graphs outperformed the document-label based methods
overall, which highlights the advantage of MLTC methods
with graphs, as most of them incorporate rich interaction
information to improve multilabel text prediction. The excep-
tion is the LAHA based on simple label co-occurrence, which
we hypothesize captures only the representation of labels
from the label co-occurrence graph without further explor-
ing the deep relationships between labels.

4.4 Comparison on sparse dataset

To evaluate the performance of DV-MLTC on long-tailed
labels, we categorized the labels in EUR-Lex into three
groups based on their frequency of occurrence, following
the approach in [6, 25]. Figure 3 illustrates the distribution
of label frequencies on EUR-Lex, where f represents the
label frequency. Approximately 55% of the labels appeared
one to five times, constituting the first label collection (Col-
lection1). The labels that appeared 5-37 times were assigned
to Collection2, accounting for 35.35% of the entire label set.
The remaining 10% of frequent labels formed the final col-
lection (Collection3). Clearly, Collection 1 presents greater
difficulty compared to the other two collections due to the
lack of training data. Obviously, Collection 1 is much more
difficult than the other two collections owing to the lack of
training data.

Figure 4 shows the prediction results in terms of P@1,
P@3, and P@5 obtained using AttentionXML, DXML, and
DV-MLTC, respectively. The three methods improved from
Collectionl to Collection3, which is reasonable because
each label contained an increasing number of documents

Fig.4 Attention XML, DXML 8
and DV-MTC for three
collections on EUR-Lex in
terms of P@k
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6 =DV-MLTC

4 I I
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from Collection] to Collection3. DV-MLTC significantly
improves the predictive performance of Collectionl. Partic-
ularly, DV-MLTC achieved an average gain of over 55.83%,
96.22%, and 47.36% for AttentionXML on the three met-
rics of Collectionl, and 63.41%, 121.73%, and 44.37% for
DXML, respectively. This result demonstrates the superior-
ity of the proposed model for multi-label text data with tail
labels.

4.5 Ablation experiments

A series of ablation experiments was performed to assess
the importance and necessity of each module. We performed
ablation experiments on all three datasets and divided the
experiments into two groups: Groupl and Group2.

Groupl experiments focus on the modules related to dual-
graph convolution. The ablation components tested in this
group were as follows:

1. w/o LW: our model without LW attention
2. w/o LS: our model without LS attention
3. w/o dual attn: our model without dual attention

Group2 experiments focus on modules related to dual
attention. The ablation modules tested in this group were as
follows:

. w/o Global Conv: our model without GlobalConv

. w/o LocalConv: our model without LocalConv

. w/o DualConv: our model without dual-attention

. sharing para: GlobalConv and LocalConv share the
parameters of the GCN layer

AW N =

From the results shown in Fig. 5 of the ablation experi-
ments conducted on AAPD and RCV1, several observations
about Groupl can be made: Dual Attention Flow Module:
w/o LW and w/o LS outperformed w/odualattn, with
large margins of 3.03% and 2.21% on AAPD, indicating
that both attention flows enhance the model and are indis-
pensable. In other words, both the label-word attention and
label-semantic self-attention modules contribute to the per-
formance of proposed model. Label attention considers the
interaction between the label and word information and cap-
tures the contribution of words to labels. Self-attention, on
the other hand, focuses on the semantic information of the
labels themselves.

90

Fig.5 Ablation Experiment. (a) 90

. =w/o LW w/o LocalConv
and (b) are the experimental 80 - =wo LS 80 1 w/o GlobalConv
results of Groups 1 and 2, /o dual attn wo DualCony

. 70 70 A W sharing para
respectively, for AAPD. (c) and = DV-MLTC a DVMITC

(d) are the experimental results 60 1
of Groups 1 and 2, respectively, 50 4
for RCV1. (e) and (f) are the

experimental results of Groups 1
and 2, respectively, for EUR-Lex

P@l P@3
(a) Groupl of AAPD
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Conclusions about Group2: (1) Dual-View Convolu-
tional Modules: The experiments w/o LocalConv and
w/o Global Conv outperform w/o DualConv, such as on
RCV1, with better results of 1.98% and 1.82% on P@3.
This indicates that exploring either global label or local
consistency can effectively capture the semantic interac-
tions between label-specific components. The superiority
of w/o LocalConv over w/o GlobalConv suggests that
models with global consistency convolution have a signifi-
cant impact on classification improvement, indicating their
ability to capture semantic dependencies effectively. (2)
w/o GlobalConv improves w/o DualConv: The experi-
ment w/o GlobalConv improves the performance of the
model based on the dual attention flow, indicating that incor-
porating the new label co-occurrence relationship generated
through a random walk and mutual information can benefit
the model’s performance. (3) Sharing Parameters: The
experiment involving parameter sharing between the global
convolution and local convolution shows slightly lower per-
formance compared to the complete model. This suggests
that the two sets of GCNs, which model label correlation from
different perspectives and interactions, benefit from separate
parameter operations rather than sharing. (4) Overall Model:
The complete model, which combines dual attention flow
and dual-view convolutions while separating the parameters,
achieves the best performance. These results demonstrate the
efficacy of the suggested modules and their contributions
to the overall performance of the model in capturing label
dependencies and semantic interactions.

We visualized the label co-occurrence graph matrices A
and AL on the AAPD, as shown in Fig. 6. From the visual-
ization, we can observe that the global label co-occurrence
graph matrix A exhibits a long-tail distribution, where there
are many edges with very few co-occurrences. This distribu-
tion was based on prior statistics from a corpus. However,
these low-frequency edges may be considered noise data,
and they can lead to overfitting and negatively affect clas-

1.0 -

10

20

30

40

50

0 10 20 30 40 50 o 0 10 20

(a) AC

(b) AL (1 = 450)

sification performance. The variant without the A” matrix
(w/o Local Conv)did not perform optimally. This is because
A€ alone, which builds a co-occurrence graph based on
statistical co-occurrence, cannot provide sufficient seman-
tic confidence between the label pairs. The dynamic edge
adjustment performed by A’ through a random walk leads
to a softer performance in the visualization graph. It assigns
a certain edge weight to low-frequency co-occurring label
pairs, thereby allowing them to overcome the influence of
low-frequency noise. This adjustment is beneficial for the
GCN because it strengthens the interactions between node
pairs in the network. As for AL, the AL with an iteration num-
ber of 1000 tends to exhibit more smoothness compared to the
AL with an iteration number of 450. Over-smoothing makes it
difficult to distinguish the differences in label co-occurrence,
potentially degrading the classification performance. Our
proposed model integrates A® and A” using GlobalConv and
LocalConv, respectively, and leverages both statistical co-
occurrence information and dynamic edge adjustment based
on random walks, leading to improved classification results.

Overall, the visualization of the weight matrices con-
firmed the effectiveness of incorporating both A and AL
in capturing label dependencies and enhancing the perfor-
mance of the classification model.

4.6 Parametric analysis

We performed relevant experiments on our model using the
AAPD. We used the base version of the model in the para-
metric analysis.

4.6.1 Effect of iteration number t on classification

We investigated the effect of the number of iterations, denoted
as t, on the classification performance. The number of iter-
ations determined the number of label paths generated by
node resampling. By controlling the other parameters and
varying the value of 7, the impact on the classification per-
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Fig.6 Label graph visualization on AAPD. From left to right: global consistency label graph; local label co-occurrence graph (1=450); local label

co-occurrence graph (1=1000)
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Fig.7 Test performance (%) under varying t on AAPD

formance was analyzed, as shown in Fig. 7. The experimental
results show that when the number of iterations was small,
the performance improvement of the model was insignif-
icant. This is because the local label graph that captures
local label dependencies fails to effectively capture the key
and tail labels. Consequently, the role of all the local label
graphs becomes similar to that of a global graph, leading
to limited performance gains. As the number of iterations
increased, specifically reaching a certain scale (e.g., 450), the
local dynamics strongly enhanced the interaction between the
key and tail graphs. By leveraging the powerful information
diffusion ability of the GCN, the model achieved improved
classification performance. This indicates that a sufficient
number of iterations allows the local dynamics to capture
crucial graph dependencies, resulting in enhanced classifica-
tion accuracy.

Increasing the number of iterations beyond the optimal
value did not significantly affect the model’s performance.
This suggests that once the key and tail graph nodes are
effectively captured and the interaction between graphs is
strengthened, further increasing the number of iterations has
little effect on the model. In summary, the experimental
results demonstrate that the number of iterations, ¢, plays
a crucial role in capturing graph dependencies through local
dynamics. Finding the optimal value of ¢ allows the model
to effectively enhance graph interactions and improve clas-
sification performance.

4.6.2 Effect of path length g on classification

The path length parameter g plays a crucial role in the
classification performance of our model, particularly in the
LocalConv module. It determines the farthest distance that
the random walk can traverse based on probability, with

450

80.5

650 850 1050 250 450 650 850 1050

labels on the same path considered to belong to the same
document. In our experiments on AAPD, we investigated the
impact of ¢ on the classification accuracy while maintaining
t at an optimal value of 450. The results shown in Fig. 8 indi-
cate that the choice of ¢ significantly affects the performance
of the model, which is consistent with our expectations.
Within a reasonable range (e.g., 2 or 3), the model achieved
the best classification results, suggesting that the label paths
adaptively generated by the model have significant benefits.
However, when ¢ exceeds a certain threshold (e.g., 3), the
performance of the model begins to decline slightly. We
speculate that excessively long label paths result in exces-
sively consistent co-occurrence relationships between nodes
during the iterative process. This exacerbates the problem
of over-smoothing, ultimately interfering with the discrim-
inative power of the labels in the model. Nevertheless, by
integrating the LocalConv and GlobalConv modules, our
model maintains its robustness and achieves optimal perfor-
mance. This highlights the effectiveness and resilience of our
approach in capturing label dependencies and enhancing the
classification outcomes.

4.6.3 Effect of label-ratio

To assess the sensitivity and performance of the proposed
model under different training data proportions, we con-
ducted experiments using various ratios of training data. We
also compared our model with other competitive approaches,
namely XML-CNN [4], AttentionXML [24], LSAN [25],
and LR-GCN [33], while maintaining their respective set-
tings, as described in their papers. In the case of LSAN,
we utilized Word2vec for word embeddings because of the
absence of pretrained embeddings in its source code. Fig-
ure 9 shows the evaluation results for different data scales
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Fig.8 Test performance (%) under varying ¢ on AAPD

with proportions of 0.05, 0.10, 0.25, 0.50, and 0.75. It is
evident from the results that our model consistently achieves
competitive performance compared to the baselines. Notably,
our model outperformed the baseline models, particularly
at low data percentages (< 0.25). We conjecture that this
may be attributed to our dual-view convolution module, in
which local convolutions yield richer graph co-occurrence
patterns, particularly in the case of few labels. This finding
demonstrates that our model is robust and insensitive to the
training data ratio. Therefore, it can effectively handle sce-
narios where only a limited number of training samples are
available, making it applicable to real-world situations.

4.7 Complexity analysis

Notice that the time complexity of the model primarily arises
from F in the Algorithm 1. The time complexity is O (ctg?).
Moreover, considering that the parameters ¢ and g are set as
small integers in experiments, F' can be rapidly computed.
Additionally, the algorithm can be parallelized by conducting
multiple random walks simultaneously on different parts of

a graph. Therefore, the time complexity of the model was
deemed acceptable.

Compared with other graph-based models such as MAG-
NET, LDGN, and LR-GCN, which have shown excellent
results in comparative experiments, our model achieves a
favorable balance between complexity and efficiency. One
of the main contributors to the time complexity of the MAG-
NET is its graph attention networks. Assume that number
of nodes is ¢, the number of edges is e, and the dimensions
before and after feature transformation are d and d’, respec-
tively. The time complexity of MAGNET can be expressed
as O(cdd") + O(ed’). Owing to the potentially large num-
ber of edges (¢) and relatively large dimensions (d and d’),
the event complexity of MAGNET was relatively high. Simi-
larly, for the LDGN, the computational complexity primarily
arises from the dynamic reconstruction graph with a time
complexity of O (cdd’).In alaboratory setting, where dimen-
sions d and d’ are relatively large, the event complexity of the
LDGN is also high. In comparison, the suboptimal model LR-
GCN does not involve redundant multiplication calculations,
resulting in a slightly better time complexity than our model.
However, as mentioned previously, the time complexity of
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Fig.9 Test performance (%) with different label ratios on AAPD
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Fig. 10 Visualization of label attention weights. The attention weights of “physics.soc” for words are shaded in green, and the attention scores of

“cs.CY” and “cs.SI” are shaded in blue and red respectively

our model remains acceptable. Hence, our model achieves
a satisfactory balance between complexity and efficiency.
In summary, although other graph-based models may out-
perform our model in certain comparative experiments, the
advantageous balance between complexity and efficiency of
our model makes it a valuable choice for practical applica-
tions.

4.8 Case studies and visualizations

To further verify the effectiveness of our label attention mod-
ule and dual graph neural networks in DV-MLTC, we present
a typical case and visualize the similarity scores between
the attention weights of document words and label-specific
components using t-sne [45]. We show a testting instance
from the original AAPD dataset which belongs to three cate-
gories: “physics and society” (physics.soc-ph), “computers
and society” (¢s.CY), and “social and information networks”
(cs.SI).

4.8.1 Label attention visualization

Figure 10 shows the label attention, revealing how different
labels focus on specific parts of the document text. Each label
assigns importance to its set of words for classification. For
instance, in the “physics.soc-ph” category, words like “user
behaviors” and “evolution over time” were highlighted, cap-
turing key concepts in physics within a social context. In
the “cs.CY” category, words such as “user conversations”,
“dynamic model”, “growth dynamics and structural prop-

cs.SI

-0.4

-0.3

nlin.AO  physics.soc-ph

-0.2

-0.1

es.CY cs.SI physicé.soc-ph nlinAO
(a) Global label co-occurrence visualization

Fig. 11 Case of label co-occurrence graph visualization

erties," and "underlying rules” were emphasized, indicating
a focus on computers and society. In the “cs.SI” category,
attention was given to words such as “artificial factors”, “line
conversations”, and “social media websites”. By examining
the specific words that receive attention in each category, we
gain insights into the semantics and distinguishing aspects
of these categories. These visualizations intuitively demon-
strate the effectiveness of the model in capturing relevant
information in document text for accurate labeling.

4.8.2 Label co-occurrence graph visualization

Figure 11 visualizes the label graph, showing the roles
of GlobalConv and LocalConv in capturing the label co-
occurrence patterns. The heat maps in Fig. 11 represent the
label co-occurrence matrices AS and AL. In Fig. 11(a), the
heat map shows A based on GlobalConv. However, Glob-
alConv failed to accurately discern the relationships between
the labels in this specific test case. Notably, the co-occurrence
of “computers and society (cs.cy)” and “adaptation and
self-organizing systems (nlin.AO)” was not considered sig-
nificant. This limitation arises from relying solely on global
statistical information, which may overlook label correla-
tions in individual instances. Conversely, Fig. 11(b) displays
AL based on LocalConv. This highlights the crucial role
of LocalConv in establishing local connections between the
labels. Even for label pairs with low co-occurrence, such
as “computers and society (¢s.CY)” and “physics and soci-
ety (physics.soc-ph)”, LocalConv assigns a label correlation.
Multiple label paths generated by LocalConv generalize

1.0
9] 0.9
0.8
0.7
0.6

0.5

cs.SI

-0.4

-0.3

nlin.AO  physics.soc-ph

-0.2

es.CY cs.SI physic§.soc-ph nlin.AO

(b) Local label co-occurrence visualization
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label relationships based on model sampling, independent
of human influence. Consequently, LocalConv captures finer
label associations, providing a comprehensive understanding
of label co-occurrence patterns. In summary, the visual-
ization of the label graph demonstrates how LocalConv
effectively supplements the label correlations that Global-
Conv alone cannot capture.

5 Conclusion and future tasks

In this study, we propose a novel dual-view convolu-
tional neural network for multi-label text classification. Our
approach systematically addresses graph relationships within
co-occurrences by employing global and local consistency
perspectives. The global consistency convolution utilizes
GCNs to model the statistical relationships among graphs
based on correlation. For local consistency convolution, we
strategically generate graph paths through random walks,
reconstruct local graphs, and enrich the co-occurrence pat-
terns. The initial word embeddings were generated via a
dual attention flow. Extensive experiments revealed supe-
rior performance on RCV1 and EUR-Lex and competitive
results on AAPD, highlighting a favorable complexity-
efficiency balance. Our approach is effective in enhancing
classification performance and mitigating long-tailed issues.
Future enhancements include constructing dynamics for
sample subsets to reduce computational overhead and further
exploring the leveraging of additional graph information for
multi-graph text classification.
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