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ABSTRACT

Under stringent model type and variable distribution assumptions, differentiable
score-based causal discovery methods learn a directed acyclic graph (DAG) from
observational data by evaluating candidate graphs over an average score function.
Despite great success in low-dimensional linear systems, it has been observed
that these approaches overly exploit easier-to-fit samples, thus inevitably learning
spurious edges. Worse still, the common homogeneity assumption can be easily
violated, due to the widespread existence of heterogeneous data in the real world,
resulting in performance vulnerability when noise distributions vary. We propose
a simple yet effective model-agnostic framework to boost causal discovery per-
formance by dynamically learning the adaptive weights for the Reweighted Score
function, ReScore for short, where the weights tailor quantitatively to the im-
portance degree of each sample. Intuitively, we leverage the bilevel optimization
scheme to alternately train a standard DAG learner and reweight samples — that
is, upweight the samples the learner fails to fit and downweight the samples that
the learner easily extracts the spurious information from. Extensive experiments
on both synthetic and real-world datasets are carried out to validate the effective-
ness of ReScore. We observe consistent and significant boosts in structure learning
performance. Furthermore, we visualize that ReScore concurrently mitigates the
influence of spurious edges and generalizes to heterogeneous data. Finally, we
perform the theoretical analysis to guarantee the structure identifiability and the
weight adaptive properties of ReScore in linear systems. Our codes are available
at https://github.com/anzhang314/ReScore.

1 INTRODUCTION

Learning causal structure from purely observational data (i.e., causal discovery) is a fundamental but
daunting task (Chickering et al., 2004; Shen et al., 2020). It strives to identify causal relationships
between variables and encode the conditional independence as a directed acyclic graph (DAG).
Differentiable score-based optimization is a crucial enabler of causal discovery (Vowels et al., 2021).
Specifically, it is formulated as a continuous constraint optimization problem by minimizing the
average score function and a smooth acyclicity constraint. To ensure the structure is fully or partially
identifiable (see Section 2), researchers impose stringent restrictions on model parametric family
(e.g., linear, additive) and common assumptions of variable distributions (e.g., data homogeneity)
(Peters et al., 2014; Ng et al., 2019a). Following this scheme, recent follow-on studies (Kalainathan
et al., 2018; Ng et al., 2019b; Zhu et al., 2020; Khemakhem et al., 2021; Yu et al., 2021) extend the
formulation to general nonlinear problems by utilizing a variety of deep learning models.

However, upon careful inspections, we spot and justify two unsatisfactory behaviors of the current
differentiable score-based methods:

• Differentiable score-based causal discovery is error-prone to learning spurious edges or reverse
causal directions between variables, which derails the structure learning accuracy (He et al., 2021;
∗Xiang Wang is the corresponding author, also with the Institute of Artificial Intelligence, Hefei Compre-

hensive National Science Center.
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Figure 1: A simple example of basic chain structure that NOTEARS would learn spurious edges
while ReScore can help to mitigate the bad influence.

Ng et al., 2022). We substantiate our claim with an illustrative example as shown in Figure 1 (see
another example in Appendix D.3.1). We find that even the fundamental chain structure in a linear
system is easily misidentified by the state-of-the-art method, NOTEARS (Zheng et al., 2018).

• Despite being appealing in synthetic data, differentiable score-based methods suffer from severe
performance degradation when encountering heterogeneous data (Huang et al., 2020; 2019). Con-
sidering Figure 1 again, NOTEARS is susceptible to learning redundant causations when the dis-
tributions of noise variables vary.

Taking a closer look at this dominant scheme (i.e., optimizing the DAG learner via an average score
function under strict assumptions), we ascribe these undesirable behaviors to its inherent limitations:

• The collected datasets naturally include an overwhelming number of easy samples and a small
number of informative samples that might contain crucial causation information (Shrivastava et al.,
2016). Averagely scoring the samples deprives the discovery process of differentiating sample
importance, thus easy samples dominate the learning of DAG. As a result, prevailing score-based
techniques fail to learn true causal relationship but instead yield the easier-to-fit spurious edges.

• Noise distribution shifts are inevitable and common in real-world training, as the observations
are typically collected at different periods, environments, locations, and so forth (Arjovsky et al.,
2019). As a result, the strong assumption of noise homogeneity for differentiable DAG learner
is easily violated in real-world data (Peters et al., 2016). A line of works (Ghassami et al., 2018;
Wang et al., 2022) dedicated to heterogeneous data can successfully address this issue. However,
they often require explicit domain annotations (i.e., ideal partition according to heterogeneity un-
derlying the data) for each sample, which are prohibitively expensive and hard to obtain (Creager
et al., 2021), thus further limiting their applicability.

To reshape the optimization scheme and resolve these limitations, we propose to adaptively reweight
the samples, which de facto concurrently mitigates the influence of spurious edges and generalizes to
heterogeneous data. The core idea is to discover and upweight a set of less-fitted samples that offer
additional insight into depicting the causal edges, compared to the samples easily fitted via spurious
edges. Focusing more on less-fitted samples enables the DAG learner to effectively generalize to
heterogeneous data, especially in real-world scenarios whose samples typically come from disad-
vantaged domains. However, due to the difficulty of accessing domain annotations, distinguishing
such disadvantaged but informative samples and adaptively assigning their weights are challenging.

Towards this end, we present a simple yet effective model-agnostic optimization framework, coined
ReScore, which automatically learns to reweight the samples and optimize the differentiable DAG
learner, without any knowledge of domain annotations. Specifically, we frame the adaptive weights
learning and the differentiable DAG learning as a bilevel optimization problem, where the outer-level
problem is solved subject to the optimal value of the inner-level problem:

• In the inner loop, the DAG learner is first fixed and evaluated by the reweighted score function to
quantify the reliance on easier-to-fit samples, and then the instance-wise weights are adaptively
optimized to induce the DAG learner to the worst-case.

• In the outer loop, upon the reweighted observation data where the weights are determined by the
inner loop, any differential score-based causal discovery method can be applied to optimize the
DAG learner and refine the causal structure.
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Benefiting from this optimization scheme, our ReScore has three desirable properties. First, it is a
model-agnostic technique that can empower any differentiable score-based causal discovery method.
Moreover, we theoretically reveal that the structure identifiability is inherited by ReScore from the
original causal discovery method in linear systems (cf. Theorem 1). Second, ReScore jointly miti-
gates the negative effect of spurious edge learning and performance drop in heterogeneous data via
auto-learnable adaptive weights. Theoretical analysis in Section 3.3 (cf. Theorem 2) validates the
oracle adaptive properties of weights. Third, ReScore boosts the causal discovery performance by a
large margin. Surprisingly, it performs competitively or even outperforms CD-NOD (Huang et al.,
2020) and DICD (Wang et al., 2022), which require domain annotation, on heterogeneous synthetic
data and real-world data (cf. Section 4.2).

2 DIFFERENTIABLE CAUSAL DISCOVERY

We begin by introducing the task formulation of causal discovery and the identifiability issue. We
then present the differentiable score-based scheme to optimize the DAG learner.

Task Formulation. Causal discovery aims to infer the Structural Causal Model (SCM) (Pearl, 2000;
Pearl et al., 2016) from the observational data, which best describes the data generating procedure.
Formally, let X ∈ Rn×d be a matrix of observational data, which consists of n independent and
identically distributed (i.i.d.) random vectors X = (X1, . . . , Xd) ∈ Rd. Given X, we aim to learn
a SCM (PX ,G), which encodes a causal directed acyclic graph (DAG) with a structural equation
model (SEM) to reveal the data generation from the distribution of variables X . Specifically, we
denote the DAG by G = (V (G), E(G)), where V (G) is the variable set and E(G) collects the causal
directed edges between variables. We present the joint distribution over X as PX , which is Markov
w.r.t. G. The probability distribution function of PX is factored as p(x) =

∏d
i=1 P (xi|xpa(i)), where

pa(i) = {j ∈ V (G) : Xj → Xi ∈ E(G)} is the set of parents of variable Xi in G and P (xi|xpa(i))
is the conditional probability density function of variable Xi given Xpa(i). As a result, the SEM can
be formulated as a collection of d structural equations:

Xi = fi(Xpa(i), Ni), i = 1, · · · , d (1)

where fi : R|Xpa(i)| → R can be any linear or nonlinear function, and N = (N1, . . . , Nd) are jointly
independent noise variables.

Identifiability Issue. In general, without further assumption on the SEM (cf. Equation 1), it is not
possible to uniquely learn the DAG G by only using the observations of PX . This is the identifiability
issue in causal discovery (Lachapelle et al., 2020). Nonetheless, with the assumption of the SEM,
the DAG G is said to be identifiable over PX , if no other SEM can encode the same distribution PX

with a different DAG under the same assumption. To guarantee the identifiability, most prior studies
restrict the form of the structural equations to be additive w.r.t. to noises, i.e., additive noise models
(ANM). Assuming ANM, as long as the structural equations are linear with non-Gaussian errors
(Shimizu et al., 2006; Loh & Bühlmann, 2014), linear Gaussian model with equal noise variances
(Peters & Bühlmann, 2014), or nonlinear structural equation model with mild conditions (Hoyer
et al., 2008; Zhang & Hyvarinen, 2009; Peters et al., 2014), then the DAG G is identifiable.

Solution to Causal Discovery. Prevailing causal discovery approaches roughly fall into two lines:
constraint- and score-based methods (Spirtes & Zhang, 2016; Glymour et al., 2019). Specifically,
constraint-based methods (Spirtes et al., 1995; Spirtes & Glymour, 1991; Colombo et al., 2012)
determine up to the Markov equivalence class of causal graphs, based on conditional independent
tests under certain assumptions. Score-based methods (Vowels et al., 2021) evaluate the candidate
graphs with a predefined score function and search the DAG space for the optimal graph. Here we
focus on the score-based line.

Score-based Causal Discovery. With a slight abuse of notation, G refers to a directed graph in the
rest of the paper. Formally, the score-based scheme casts the task of DAG learning as a combinatorial
optimization problem:

min
G

S(G;X) = L(G;X) + λRsparse(G) s.t. G ∈ DAG, (2)

Here this problem consists of two ingredients: the combinatorial acyclicity constraint G ∈ DAG
and the score function S(G;X). The score function composes two terms: (1) the goodness-of-fit
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measureL(G;X) = 1
n

∑n
i=1 l(xi, f(xi)), where l(xi, f(xi)) represents the loss of fitting observation

xi; (2) the sparsity regularization Rsparse(G) stipulating that the total number of edges in G should
be penalized; And λ is a hyperparameter controlling the regularization strengths. Next, we will
elaborate on the previous implementations of these two major ingredients.

To implement S(G;X), various approaches have been proposed, such as penalized least-squares loss
(Zheng et al., 2020; 2018; Ng et al., 2019b), Evidence Lower Bound (ELBO) (Yu et al., 2019), log-
likelihood with complexity regularizers (Kalainathan et al., 2018; Van de Geer & Bühlmann, 2013;
Ng et al., 2020), Maximum Mean Discrepancy (MMD) (Goudet et al., 2018), Bayesian Information
Criterion (BIC) (Geiger & Heckerman, 1994; Zhu et al., 2020), Bayesian Dirichlet equivalence
uniform (BDeu) score (Heckerman et al., 1995), Bayesian Gaussian equivalent (BGe) score (Kuipers
et al., 2014), and others (Huang et al., 2018; Bach & Jordan, 2002; Sokolova et al., 2014).

As G ∈ DAG enforces G to be acyclic, it becomes the main obstacle to the score-based scheme. Prior
studies propose various approaches to search in the acyclic space, such as greedy search (Chickering,
2002; Hauser & Bühlmann, 2012), hill-climbing (Gámez et al., 2011; Tsamardinos et al., 2006),
dynamic programming (Silander & Myllymäki, 2006; Koivisto & Sood, 2004), A* (Yuan & Malone,
2013), integer linear programming (Jaakkola et al., 2010; Cussens, 2011).

Differentiable Score-based Optimization. Different from the aforementioned search approaches,
NOTEARS (Zheng et al., 2018) reframes the combinatorial optimization problem as a continuous
constrained optimization problem:

min
G

S(G;X) s.t. H(G) = 0, (3)

where H(G) = 0 is a differentiable equality DAG constraint.

As for the DAG constraint H(G) = 0, the prior effort (Zheng et al., 2018) turns to depict the
“DAGness” of G’s adjacency matrix A(G) ∈ {0, 1}d×d. Specifically, [A(G)]ij = 1 if the causal
edge Xj → Xi exists in E(G), otherwise [A(G)]ij = 0. Prevailing implementations of DAGness
constraints are H(G) = Tr(eA⊙A)− d (Zheng et al., 2018), H(G) = Tr[(I + αA⊙A)d]− d (Yu
et al., 2019), and others (Wei et al., 2020; Kyono et al., 2020; Bello et al., 2022; Zhu et al., 2021).
As a result, this optimization problem in Equation 3 can be further formulated via the augmented
Lagrangian method as:

min
G

S(G;X) + PDAG(G), (4)

where PDAG(G) = αH(G) + ρ
2 |H(G)|2 is the penalty term enforcing the DAGness on G, and ρ > 0

is a penalty parameter and α is the Lagrange multiplier.

3 METHODOLOGY OF RESCORE

On the basis of differentiable score-based causal discovery methods, we first devise our ReScore
and then present its desirable properties.

3.1 BILEVEL FORMULATION OF RESCORE

Aiming to learn the causal structure accurately in practical scenarios, we focus on the observational
data that is heterogeneous and contains a large proportion of easy samples. Standard differentiable
score-based causal discovery methods apply the average score function on all samples equally, which
inherently rely on easy samples to obtain high average goodness-of-fit. As a result, the DAG learner
is error-prone to constructing easier-to-fit spurious edges based on the easy samples, while ignoring
the causal relationship information maintained in hard samples. Assuming the oracle importance of
each sample is known at hand, we can assign distinct weights to different samples and formulate the
reweighted score function Sw(G;X), instead of the average score function:

Sw(G;X) = Lw(G;X) + λRsparse(G) =
n∑

i=1

wil(xi, f(xi)) + λRsparse(G), (5)

where w = (w1, . . . , wn) is a sample reweighting vector with length n, wherein wi indicates the
importance of the i-th observed sample xi.
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However, the oracle sample importance is usually unavailable in real-world scenarios. The problem,
hence, comes to how to automatically learn appropriate the sample reweighting vector w. Intuitively,
samples easily fitted with spurious edges should contribute less to the DAG learning, while samples
that do not hold spurious edges but contain critical information about causal edges should be more
importance. We therefore use a simple heuristic of downweighting the easier-to-fit but less informa-
tive samples, and upweighting the less-fitted but more informative samples. This inspires us to learn
to allocate weights adaptively, with the aim of maximizing the influence of less well-fitted samples
and failing the DAG learner. Formally, we cast the overall framework of reweighting samples to
boost causal discovery as the following bilevel optimization problem:

min
G

Sw∗(G;X) + PDAG(G),

s.t. w∗ ∈ argmax
w∈C(τ)

Sw(G;X), (6)

where C(τ) := {w : 0 < τ
n ≤ w1, . . . , wn ≤ 1

τn ,
∑n

i=1 wi = 1} for the cutoff threshold τ ∈ (0, 1).
The deviation of the weight distribution from the uniform distribution is bound by the hyperparam-
eter τ . Clearly, Equation 6 consists of two objectives, where the inner-level objective (i.e., optimize
w by maximizing the reweighted score function) is nested within the outer-level objective (i.e., op-
timize G by minimizing the differentiable score-based loss). Solving the outer-level problem should
be subject to the optimal value of the inner-level problem.

Now we introduce how to solve this bilevel optimization problem. In the inner loop, we first fix
the DAG learner which evaluates the error of each observed sample xi, ∀i ∈ {1, · · · , n}, and then
maximize the reweighted score function to learn the weight w∗

i correspondingly. In the outer loop,
upon the reweighted observations whose weights are determined in the inner loop, we minimize the
reweighted score function to optimize the DAG learner. By alternately training the inner and outer
loops, the importance of each sample is adaptively estimated based on the DAG learner’s error,
and in turn gradually guides the DAG learner to perform better on the informative samples. It is
worth highlighting that this ReScore scheme can be applied to any differentiable score-based causal
discovery method listed in Section 2. The procedure of training ReScore is outlined in Algorithm 1.

Furthermore, our ReScore has the following desirable advantages:

• As shown in Section 3.2, under mild conditions, our ReScore inherits the identifiability property
of the original differentiable score-based causal discovery method.

• ReScore is able to generate adaptive weights to observations through the bilevel optimize, so as to
distinguish more information samples and fulfill their potentials to guide the DAG learning. This
is consistent with our theoretical analysis in Section 3.3 and empirical results in Section 4.2.

• ReScore is widely applicable to various types of data and models. In other words, it is model-
agnostic and can effectively handle heterogeneous data without knowing the domain annotations
in advance. Detailed ReScore performance can be found in Section 4.

3.2 THEORETICAL ANALYSIS ON IDENTIFIABILITY

The graph identifiability issue is the primary challenge hindering the development of structure learn-
ing. As an optimization framework, the most desired property of ReScore is the capacity to ensure
graph identifiability and substantially boost the performance of the differentiable score-based DAG
learner. We develop Theorem 1 that guarantees the DAG identifiability when using ReScore.

Rendering a DAG theoretically identifiable requires three standard steps (Peters et al., 2014; Zheng
et al., 2020; Ng et al., 2022): (1) assuming the particular restricted family of functions and data
distributions of SEM in Equation 1; (2) theoretically proving the identifiability of SEM; and (3)
developing an optimization algorithm with a predefined score function and showing that learned
DAG asymptotically converges to the ground-truth DAG. Clearly, ReScore naturally inherits the
original identifiability of a specific SEM as stated in Section 2. Consequently, the key concern lies on
the third step — whether the DAG learned by our new optimization framework with the reweighted
score function Sw(G;X) can asymptotically converge to the ground-truth DAG. To address this, we
present the following theorem. Specifically, it demonstrates that, by guaranteeing the equivalence of
optimization problems (Equation 2 and Equation 6) in linear systems, the bounded weights will not
affect the consistency results in identifiability analysis. See detailed proof in Appendix C.1.
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Theorem 1. Suppose the SEM in Equation 1 is linear and the size of observational data X is n. As
the data size increases, i.e., n→∞,

argmin
G

{
Sw(G;X) + PDAG(G)

}
− argmin

G

{
S(G;X) + PDAG(G)

} a.s.−−→ 0

in the following cases:

a. Using the least-squares loss L(G;X) = 1
2n∥X− f(X)∥2F ;

b. Using the negative log-likelihood loss with standard Gaussian noise.

Remark: The identifiability property of ReScore with two most common score functions, namely
least-square loss and negative log-likelihood loss, is proved in Theorem 1. Similar conclusions can
be easily derived for other loss functions, which we will explore in future work.

3.3 ORACLE PROPERTY OF ADAPTIVE WEIGHTS

Our ReScore suggests assigning varying degrees of importance to different observational samples.
At its core is the simple yet effective heuristic: the less-fitted samples are more important than the
easier-to-fit samples, as they do not hold spurious edges but contain critical information about the
causal edges. Hence, mining hard-to-learn causation information is promising to help DAG learners
mitigate the negative influence of spurious edges. The following theorem shows the adaptiveness
property of ReScore, i.e., instead of equally treating all samples, ReScore tends to upweight the im-
portance of hard but informative samples while downweighting the reliance on easier-to-fit samples.
Theorem 2. Suppose that in the optimization phase, the i-th observation has a larger error than the
j-th observation in the sense that l(xi, f(xi)) > l(xj , f(xj)), where i, j ∈ {1, . . . , n}. Then,

w∗
i≥w∗

j ,

where w∗
i , w

∗
i are the optimal weights in Equation 6. The equality holds if and only if w∗

i = w∗
j = τ

n

or w∗
i = w∗

j = 1
τn .

See Appendix C.2 for the detailed proof. It is simple to infer that, following the inner loop that
maximizes the reweighted score function Sw(G;X), the observations are ranked by learned adaptive
weights w∗. That is, one observation equipped with a higher weight will have a greater impact on
the subsequent outer loop to dominate the DAG learning.

4 EXPERIMENTS

We aim to answer the following research questions:

• RQ1: As a model-agnostic framework, can ReScore widely strengthen the differentiable score-
based causal discovery baselines?

• RQ2: How does ReScore perform when noise distribution varies? Can ReScore effectively learn
the adaptive weights that successfully identify the important samples?

Baselines. To answer the first question (RQ1), we implement various backbone models including
NOTEARS (Zheng et al., 2018) and GOLEM (Ng et al., 2020) in linear systems, and NOTEARS-
MLP (Zheng et al., 2020), and GraN-DAG (Lachapelle et al., 2020) in nonlinear settings. To answer
the second question (RQ2), we compare GOLEM+ReScore, NOTEARS-MLP+ReScore to a SOTA
baseline CD-NOD (Huang et al., 2020) and a recently proposed approach DICD (Wang et al., 2022),
which both require the ground-truth domain annotation. For a comprehensive comparison, extensive
experiments are conducted on both homogeneous and heterogeneous synthetic datasets as well as a
real-world benchmark dataset, i.e., Sachs (Sachs et al., 2005). In Sachs, GES (Chickering, 2002), a
benchmark discrete score-based causal discovery method, is also considered. A detailed description
of the employed baselines can be found in Appendix D.1.

Evaluation Metrics. To evaluate the quality of structure learning, four metrics are reported: True
Positive Rate (TPR), False Discovery Rate (FDR), Structural Hamming Distance (SHD), and Struc-
tural Intervention Distance (SID) (Peters & Bühlmann, 2015), averaged over ten random trails.
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Table 1: Results for ER graphs of 10 nodes on linear and nonlinear synthetic datasets.
ER2 ER4

TPR ↑ FDR ↓ SHD ↓ SID ↓ TPR ↑ FDR ↓ SHD ↓ SID ↓
Random 0.08±0.07 0.93±0.18 33.2±7.3 95.6±12.2 0.09±0.17 0.93±0.09 52.3±16.7 80.3±17.7

NOTEARS 0.85±0.09 0.07±0.07 5.8±2.2 20.8±5.2 0.79±0.11 0.09±0.05 10.0±5.2 25.8±9.9

+ ReScore 0.89±0.07+5% 0.08±0.09−12% 4.6±2.3+26% 12.8±7.0+63% 0.85±0.04+8% 0.05±0.04+57% 7.2±1.9+39% 24.2±8.4+7%

GOLEM 0.87±0.06 0.22±0.11 6.5±3.4 13.0±6.7 0.63±0.03 0.16±0.03 17.2±1.3 48.0±13.3

+ ReScore 0.88±0.06+1% 0.21±0.11+2% 6.0±3.4+8% 12.4±6.3+5% 0.66±0.04+5% 0.17±0.01−5% 16.2±1.0+6% 46.7±13.3+3%

NOTEARS-MLP 0.76±0.17 0.14±0.09 7.0±3.5 17.9±10.0 0.83±0.05 0.21±0.04 10.9±1.9 28.6±12.0

+ ReScore 0.73±0.07−4% 0.10±0.09+37% 6.8±2.9+3% 20.3±9.7−11% 0.94±0.06+14% 0.15±0.06+44% 6.80±2.7+60% 8.80±12.4+225%

GraN-DAG 0.88±0.06 0.02±0.03 2.7±1.6 8.70±4.8 0.98±0.02 0.12±0.03 5.4±1.1 3.70±4.71

+ ReScore 0.90±0.05+2% 0.01±0.03+35% 2.4±1.1+13% 7.20±3.0+21% 0.99±0.01+1% 0.11±0.01+12% 4.80±0.6+13% 0.50±0.81+640%

(a) TPR w.r.t. λ (b) FDR w.r.t. λ (c) SHD w.r.t. λ (d) SID w.r.t. λ
Figure 2: Performance comparison between NOTEARS-MLP and ReScore on ER4 graphs of 10
nodes on nonlinear synthetic datasets. The hyperparameter λ defined in Equation 2 refers to the
graph sparsity. See more results in Appendix D.4

4.1 OVERALL PERFORMANCE COMPARISON ON SYNTHETIC DATA (RQ1)

Simulations. The generating data differs along three dimensions: number of nodes, the degree of
edge sparsity, and the type of graph. Two well-known graph sampling models, namely Erdos-Renyi
(ER) and scale-free (SF) (Barabási & Albert, 1999) are considered with kd expected edges (denoted
as ERk or SFk) and d = {10, 20, 50} nodes. Specifically, in linear settings, similar to (Zheng
et al., 2018; Gao et al., 2021), the coefficients are assigned following U(−2,−0.5)∪U(0.5, 2) with
additive standard Gaussian noise. In nonlinear settings, following (Zheng et al., 2020), the ground-
truth SEM in Equation 1 is generated under the Gaussian process (GP) with radial basis function
kernel of bandwidth one, where fi(·) is additive noise models with Ni as an i.i.d. random variable
following standard normal distribution. Both of these settings are known to be fully identifiable
(Peters & Bühlmann, 2014; Peters et al., 2014). For each graph, 10 data sets of 2,000 samples are
generated and the mean and standard deviations of the metrics are reported for a fair comparison.

Results. Tables 1, 9 and Tables in Appendix D.4 report the empirical results on both linear and
nonlinear synthetic data. The error bars depict the standard deviation across datasets over ten trails.
The red and blue percentages separately refer to the increase and decrease of ReScore relative to the
original score-based methods in each metric. The best performing methods are bold. We find that:

• ReScore consistently and significantly strengthens the score-based methods for structure
learning across all datasets. In particular, it achieves substantial gains over the state-of-the-art
baselines by around 3% to 60% in terms of SHD, revealing a lower number of missing, falsely
detected, and reversed edges. We attribute the improvements to the dynamically learnable adaptive
weights, which boost the quality of score-based DAG learners. With a closer look at the TPR
and FDR, ReScore typically lowers FDR by eliminating spurious edges and enhances TPR by
actively identifying more correct edges. This clearly demonstrates that ReScore effectively filters
and upweights the more informative samples to better extract the causal relationship. Figure 2
also illustrates the clear trend that ReScore is excelling over NOTEARS-MLP as the sparsity
penalty climbs. Additionally, as Table 7 indicates, ReScore only adds a negligible amount of
computational complexity as compared to the backbone score-based DAG learners.

• Score-based causal discovery baselines suffer from a severe performance drop on high-
dimensional dense graph data. Despite the advances, beyond linear, NOTEARS-MLP and
GraN-DAG fail to scale to more than 50 nodes in SF4 and ER4 graphs, mainly due to difficulties
in enforcing acyclicity in high-dimensional dense graph data (Varando, 2020; Lippe et al., 2022).
Specifically, the TPR of GraN-DAG and NOTEARS-MLP in SF4 of 50 nodes is lower than 0.2,
which indicates that they are not even able to accurately detect 40 edges out of 200 ground-truth
edges. ReScore, as an optimization framework, relies heavily on the performance of the score-
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(a) Weights on linear data at the 1st and last epochs (b) Weights on nonlinear data at the 1st and last epochs

Figure 3: Illustration of adaptive weights learned by ReScore w.r.t. sample loss on both linear and
nonlinear synthetic data. For each dataset, the left and right plots refer to the distribution of adaptive
weights at the first and last epochs in the outer loop, respectively (i.e., the value of w∗, when k1 = 0
and k1 = Kouter in Algorithm 1, respectively). The disadvantaged but more informative samples
are represented by the red dots. The dominant and easy samples, in contrast, are in blue.

based backbone model. When the backbone model fails to infer DAG on its own as the number of
nodes and edge density increase, adding ReScore will not be able to enhance the performance.

4.2 PERFORMANCE ON HETEROGENEOUS DATA (RQ2)

4.2.1 EVALUATION ON SYNTHETIC HETEROGENEOUS DATA

Motivations. It is commonplace to encounter heterogeneous data in real-world applications, of
which the underlying causal generating process remain stable but the noise distribution may vary.
Specific DAG learners designed for heterogeneous data are prone to assume strict conditions and
require the knowledge of group annotation for each sample. Group annotations, however, are ex-
tremely costly and challenging to obtain. We conjecture that a robust DAG learner is able to suc-
cessfully handle heterogeneous data without the information of group annotation.

Simulations. Synthetic heterogeneous data in both linear and nonlinear settings (n = 1000, d =
20, ER2) containing two distinct groups are also considered. 10% of observations come from the
disadvantaged group, where half of the noise variables Ni defined in Equation 1 followN (0, 1) and
the remaining half of noise variables follow N (0, 0.1). 90% of the observations, in contrast, are
generated from the dominant group where the scales of noise variables are flipped.

Results. To evaluate whether ReScore can handle heterogeneous data without requiring the group
annotation by automatically identifying and upweighting informative samples, we compare base-
line+ReScore to CD-NOD and DICD, two SOTA causal discovery approaches that rely on group
annotations and are developed for heterogeneous data. Additionally, a non-adaptive reweighting
method called baseline+IPS is taken into account, in which sample weights are inversely propor-
tional to group sizes. Specifically, we divide the whole observations into two subgroups. Obviously,
a single sample from the disadvantaged group is undoubtedly more informative than a sample from
the dominant group, as it offers additional insight to depict the causal edges.

Table 2: Results on heterogeneous data.
Linear TPR↑ FDR↓ SHD↓ Nonlinear TPR↑ FDR↓ SHD↓
GOLEM 0.79 0.33 18.7 NOTEARS-MLP 0.62 0.36 25.8
+ IPS 0.65 0.19 18.6 + IPS 0.35 0.21 28.7
+ ReScore 0.81 0.24 16.4 + ReScore 0.63 0.32 23.8

CD-NOD 0.51 0.17 24.1 CN-NOD 0.60 0.29 26.0
DICD 0.82 0.28 16.7 DICD 0.50 0.24 23.5

As Figure 3 shows, dots of different
colours are mixed and scattered at the
beginning of the training. After mul-
tiple iterations of training in inner and
outer loops, the red dots from the dis-
advantaged group are gradually iden-
tified and assigned to relatively larger weights as compared to those blue dots with the same measure-
of-fitness. This illustrates the effectiveness of ReScore and further offers insight into the reason for
its performance improvements when handling heterogeneous data. Overall, all figures show clear
positive trends, i.e., the underrepresented samples tend to learn bigger weights. These results vali-
date the property of adaptive weights in Theorem 2.

Table 2 indicates that ReScore drives impressive performance breakthroughs in heterogeneous data,
achieving competitive or even lower SHD without group annotations compared to CD-NOD and
DICD recognized as the lower bound. Specifically, both GOLEM and NOTEARS-MLP are strug-
gling from notorious performance drop when homogeneity assumption is invalidated, and posing
hurdle from being scaled up to real-world large-scale applications. We ascribe this hurdle to blindly
scoring the observational samples evenly, rather than distilling the crucial group information from
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distribution shift of noise variables. To better highlight the significance of the adaptive property,
we also take Baseline+IPS into account, which views the ratio of group size as the propensity score
and exploits its inverse to re-weight each sample’s loss. Baseline+IPS suffers from severe perfor-
mance drops in terms of TPR, revealing the limitation of fixed weights. In stark contrast, benefiting
from adaptive weights, ReScore can even extract group information from heterogeneous data that
accomplish more profound causation understanding, leading to higher DAG learning quality. This
validates that ReScore endows the backbone score-based DAG learner with better robustness against
the heterogeneous data and alleviates the negative influence of spurious edges.

4.2.2 EVALUATIONS ON REAL HETEROGENEOUS DATA.

Table 3: The performance comparison on Sachs dataset.
TPR ↑ FDR ↓ SHD ↓ SID ↓ #Predicted Edges

Random 0.076 0.899 23 63 22

GOLEM 0.176 0.026 15 53 4
+ ReScore 0.294 0.063 14 49 6

NOTEARS-MLP 0.412 0.632 16 45 19
+ ReScore 0.412 0.500 13 43 14

GraN-DAG 0.294 0.643 16 60 14
+ ReScore 0.353 0.600 15 58 15

GES 0.294 0.853 31 54 34
+ ReScore 0.588 0.722 28 50 36

CD-NOD 0.588 0.444 15 - 18

Sachs (Sachs et al., 2005) contains
the measurement of multiple phos-
phorylated protein and phospholipid
components simultaneously in a large
number of individual primary human
immune system cells. In Sachs, nine
different perturbation conditions are
applied to sets of individual cells,
each of which administers certain
reagents to the cells. With the anno-
tations of perturbation conditions, we
consider the Sachs as real-world het-
erogeneous data (Mooij et al., 2020). We train baselines on 7,466 samples, where the ground-truth
graph (11 nodes and 17 edges) is widely accepted by the biological community.

As Table 3 illustrates, ReScore steadily and prominently boosts all baselines, including both differ-
entiable and discrete score-based causal discovery approaches w.r.t. SHD and SID metrics. This
clearly shows the effectiveness of ReScore to better mitigate the reliance on easier-to-fit samples.
With a closer look at the TPR and FDR, baseline+ReScore surpasses the state-of-the-art correspond-
ing baseline by a large margin in most cases, indicating that ReScore can help successfully predict
more correct edges and fewer false edges. Remarkably, compared to CD-NOD, which is designed
for heterogeneous data and utilizes the annotations as prior knowledge, GES+ReScore obtains com-
petitive TPR without using ground-truth annotations. Moreover, GraN-DAG+ReScore can reach
the same SHD as CD-NOD when 15 and 18 edges are predicted, respectively. These findings vali-
date the potential of ReScore as a promising research direction for enhancing the generalization and
accuracy of DAG learning methods when dealing with real-world data.

5 CONCLUSION

Today’s differentiable score-based causal discovery approaches are still far from being able to ac-
curately detect the causal structures, despite their great success on synthetic linear data. In this
paper, we proposed ReScore, a simple-yet-effective model-agnostic optimization framework that
simultaneously eliminates spurious edge learning and generalizes to heterogeneous data by utiliz-
ing learnable adaptive weights. Grounded by theoretical proof and empirical visualization studies,
ReScore successfully identifies the informative samples and yields a consistent and significant boost
in DAG learning. Extensive experiments verify that the remarkable improvement of ReScore on a
variety of synthetic and real-world datasets indeed comes from adaptive weights.

Two aspects of ReScore’s limitations will be covered in subsequent works. First, the performance
of ReScore is highly related to the causal discovery backbone models, which leads to minor im-
provements when the backbone methods fail. Second, having empirically explored the sensitivity
to pure noise samples in D.3.2, we will theoretically analyze and further enhance the robustness
of ReScore against these noises. It is expected to substantially improve the DAG learning quality,
as well as distinguish true informative samples from pure noise samples. We believe that ReScore
provides a promising research direction to diagnose the performance degradation for nonlinear and
heterogeneous data in the structure learning challenge and will inspire more works in the future.
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Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant pre-
diction: identification and confidence intervals. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 78(5):947–1012, 2016.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal
protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):
523–529, 2005.

Xinpeng Shen, Sisi Ma, Prashanthi Vemuri, and Gyorgy Simon. Challenges and opportunities with
causal discovery algorithms: application to alzheimer’s pathophysiology. Scientific reports, 10
(1):1–12, 2020.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti J. Kerminen. A linear non-gaussian
acyclic model for causal discovery. Journal of machine learning research, 7:2003–2030, 2006.

Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick. Training region-based object detectors
with online hard example mining. In CVPR, pp. 761–769. IEEE Computer Society, 2016.
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A RELATED WORK

Differentiable score-based causal discovery methods. Learning the directed acyclic graph (DAG)
from purely observational data is challenging, owing mainly to the intractable combinatorial nature
of acyclic graph space. A recent breakthrough, NOTEARS (Zheng et al., 2018), formulates the dis-
crete DAG constraint into a continuous equality constraint, resulting in a differentiable score-based
optimization problem. Recent subsequent works extends the formulation to deal with nonlinear
problems by using a variety of deep learning models, such as neural networks (NOTEARS+ (Zheng
et al., 2020), GraN-DAG (Lachapelle et al., 2020), CASTLE (Kyono et al., 2020), MCSL (Ng et al.,
2019a), DARING (He et al., 2021)), generative autoencoder (CGNN (Goudet et al., 2018), Causal-
VAE (Yang et al., 2021), ICL (Wang et al., 2020), DAG-GAN (Gao et al., 2021)), graph neural
network (DAG-GNN (Gao et al., 2021), GAE (Ng et al., 2019b)), generative adversarial network
(SAM (Kalainathan et al., 2018), ICL (Wang et al., 2020)), and reinforcement learning (RL-BIC
(Zhu et al., 2020)).

Multi-domain causal structure learning. Most multi-domain causal structure learning methods
are constraint-based and have diverse definition of domains. In our paper, the multi-domain or
multi-group refers to heterogeneous data whose underlying causal generating process remain stable
but the distributions of noise variables may vary. In literature, our definition of multi-domain is
consistent with MC (Ghassami et al., 2018), CD-NOD (Huang et al., 2020), LRE (Ghassami et al.,
2017), DICD (Wang et al., 2022), and others (Peters et al., 2016). In addition to the strict restriction
of knowing the domain annotation in advance, the majority of structure learning models dedicated
to heterogeneous data exhibit limited applicability, due to linear case assumption (Ghassami et al.,
2018; 2017), causal direction identification only (Huang et al., 2019; Cai et al., 2020), and time-
consuming (Huang et al., 2020).

B ALGORITHM OF RESCORE

Algorithm 1 ReScore Algorithm for Differentiable Score-based Causal Discovery

Input: observational data D: {xi : i = 1, 2, ..., n}, DAG learner parameters θG , reweighting
model parameters θw, cutoff threshold τ , epoch to start reweighting Kreweight, maximum epoch
in the inner loop Kinner, maximum epoch in the outer loop Kouter

Initialize: initialize θw to uniformly output 1
n , k1 = 0, k2 = 0

for k1 ≤ Kouter do
Fix reweighting model parameters θw
Calculate w∗ by applying threshold [ τn ,

1
nτ ]

Optimize θG by minimizing Sw∗(G;X) + PDAG(G) # Outer optimization in Equation 6
if k1 ≥ kreweight then

for k2 ≤ Kinner do
Fix the DAG learner’s parameters θG
Get w from θw by applying threshold [ τn ,

1
nτ ]

Optimize θw by maximizing Sw(G;X) # Inner optimization in Equation 6
k2 ← k2 + 1

end for
k1 ← k1 + 1
k2 ← 0

end if
end for
return predicted G from DAG learner
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C IN-DEPTH ANALYSIS OF RESCORE

C.1 PROOF OF THEOREM 1

Theorem 1. Suppose the SEM in Equation 1 is linear and the size of observational data X is n. As
the data size increases, i.e., n→∞,

argmin
G

{
Sw(G;X) + PDAG(G)

}
− argmin

G

{
S(G;X) + PDAG(G)

} a.s.−−→ 0

in the following cases:

a. Using the least-squares loss L(G;X) = 1
2n∥X− f(X)∥2F ;

b. Using the negative log-likelihood loss with standard Gaussian noise.

Proof. Let B = (β1, . . . , βd) ∈ Rd×d be the weighted adjacent matrix of a SEM, the linear SEM
can be written in the matrix form:

X = XB +N (7)

where E(N |X) =
−→
0 , Var(N |X) = diag(σ2

1 , . . . , σ
2
d), and Bii = 0 since Xi cannot be the parent

of itself. Let X ∈ Rn×d be the observational data and N ∈ Rn×d be the corresponding errors, then

X = XB + N.

The original and reweighted functions for optimization are

S(B;X) + PDAG(B) = L(B;X) + λRsparse(B) + P(B),

Sw(B;X) + PDAG(B) = Lw(B;X) + λRsparse(B) + PDAG(B).

Comparing the above functions, only the first goodness-of-fit term are different, we will only con-
sider this term.

For the least-squares loss case, the optimization problem is

min
B
Lw(B;X) = min

B

n∑
i=1

wil(xi, xiB),

s.t. Bii = 0, i = 1, . . . , d.

Let W = diag(w1, . . . , wn) be the n-dimensional matrix, and rewrite the loss function as

Lw(B;X) =

n∑
i=1

wi∥xi − xiB∥22

=

n∑
i=1

wi(xi − xiB)(xi − xiB)⊤

=

n∑
i=1

d∑
j=1

wi(Xij − xiβj)
2

=

d∑
j=1

(xj −Xβj)
⊤W (xj −Xβj),

where xj is the j-th column in matrix X. Let Dj be the d-dimensional identify matrix by setting j-th
element as 0, for j = 1, . . . , d. The above optimization is able to be written without the restriction:

min
B
L̃w(B;X) = min

B

d∑
j=1

(xj −XDjβj)
⊤W (xj −XDjβj)

= min
B

d∑
j=1

(
(xj)⊤Wxj − 2(xj)⊤WXDjβj + β⊤

j D⊤
j X

⊤WXDjβj

)
.
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The partial derivative of the loss function with respect to βj is

∂L̃w(B;X)

∂βj
=

∂

[∑d
j=1

(
(xj)⊤WXj − 2(xj)⊤WXDjβj + β⊤

j D⊤
j X

⊤WXDjβj

)]
∂βj

=
∂
(
(xj)⊤Wxj − 2(xj)⊤WXDjβj + β⊤

j D⊤
j X

⊤WXDjβj

)
∂βj

= −2D⊤
j X

⊤Wxj + 2D⊤
j X

⊤WXDjβj .

Setting the partial derivative to zero produces the optimal parameter:

β̂j = D⊤
j (X

⊤WX)−1DjD
⊤
j X

⊤Wxj

= D⊤
j (X

⊤WX)−1DjD
⊤
j X

⊤W (XDjβj +Nj)

= Djβj +Dj(X
⊤WX)−1X⊤WNj , (8)

where Nj ∈ Rn is the j-th column in matrix N. In the above equation, the second equality holds
because xj = XDjβj + Nj . Similarly, one can easily obtain that the optimum parameter for
ordinary mean-squared loss is

β̃j = Djβj +Dj(X
⊤X)−1X⊤Nj . (9)

It is obvious that the difference between Equation 8 and Equation 9 is the second term. Compute the
mean and variance matrix of the second term in Equation 8, we can get

E
[
(X⊤WX)−1X⊤WNj

]
= E

(
E
[
(X⊤WX)−1X⊤WNj |X

])
= E

(
(X⊤WX)−1X⊤W · E

[
Nj |X

])
=
−→
0 ,

and

Var
[
(X⊤WX)−1X⊤WNj

]
= E

(
(X⊤WX)−1X⊤WNj(Nj)⊤W⊤X(X⊤WX)−1

)
−
(
E
[
(X⊤WX)−1X⊤WNj

])(
E
[
(X⊤WX)−1X⊤WNj

])⊤

= E
(
E
[
(X⊤WX)−1X⊤WNj(Nj)⊤WX(X⊤WX)−1

∣∣X])
= E

[
(X⊤WX)−1X⊤W · E

[
Nj(Nj)⊤|X

]
·WX(X⊤WX)−1

]
= E

[
(X⊤WX)−1X⊤W · E

[
Nj(Nj)⊤|X

]
·WX(X⊤WX)−1

]
= σ2

jE
[
(X⊤WX)−1X⊤W 2X(X⊤WX)−1

]
.

The last equality holds because E(NN⊤|X) = Var(N |X) + E(N |X)[E(N |X)]⊤ =
diag(σ2

1 , . . . , σ
2
d).

Since w ∈ C(τ), it is easy to know that the variance matrix is finite. By the Kolmogorov’s strong
law of large numbers, the second term converges to zero, thus

β̂j
a.s.−−→Djβj ,
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which is same as the ordinary case. Since noise N = (N1, . . . , Nd) are jointly independent, the pre-
vious process can be apply to the other j ∈ {1, . . . , d}. Let B̂ = (β̂1, . . . , β̂d) and B̃ = (β̃1, . . . , β̃d),
then

B̂ − B̃
a.s.−−→ 0.

Therefore, the convergence has been shown for ‘case a.’

Since the noise follows a Gaussian distribution, i.e.

X −XB = N = (N1, . . . , Nd) ∼ N
(−→
0 , diag(σ2

1 , . . . , σ
2
d)
)
,

the loss function (negative log-likelihood function) is

Lw(B;X) = −
n∑

i=1

wi

d∑
j=1

[
log

(
1

σj

√
2π

)
− (Xij − xiβj)

2

2σ2
j

]

=

d∑
j=1

n∑
i=1

wi log
(
σj

√
2π

)
+

d∑
j=1

n∑
i=1

wi

2σ2
j

(Xij − xiβj)
2

=

d∑
j=1

n∑
i=1

wi log
(
σj

√
2π

)
+

d∑
j=1

1

2σ2
j

(xj −Xβj)
⊤W (xj −Xβj). (10)

To minimize the loss function above w.r.t. B, it is equivalent to minimize the second term in Equa-
tion 10:

min
B
Lw(B;X) ⇐⇒ min

B

d∑
j=1

1

2σ2
j

(xj −Xβj)
⊤W (xj −Xβj).

It can be seen that the RHS above is similar to the loss function in ‘case a.’ except the coefficients
1

2σ2
j
, j = 1, . . . , d. Therefore, one can use same approaches to get the equivalence result for ‘case

b.’

Consequently, the proofs of the two special cases have been done.

C.2 PROOF OF THEOREM 2

Theorem 2. Suppose that in the optimization phase, the i-th observation has a larger error than the
j-th observation in the sense that l(xi, f(xi)) > l(xj , f(xj)), where i, j ∈ {1, . . . , n}. Then,

w∗
i≥w∗

j ,

where w∗
i , w

∗
i are the optimal weights in Equation 6. The equality holds if and only if w∗

i = w∗
j = τ

n

or w∗
i = w∗

j = 1
τn .

Proof. We will show the theorem by contradiction. Without loss of generality, let i = 1, j = 2, and
suppose w∗

1<w∗
2 . Since w∗ ∈ C(τ), one can find a small constant ε ∈

(
0,min{w∗

1− τ
n ,

1
τn −w∗

2}
)
,

such that

w∗∗ = (w∗
1 + ε, w∗

2 − ε, w∗
3 . . . , w

∗
n) ∈ C(τ). (11)

Therefore,

Sw∗(G;X)− Sw∗∗(G;X)

=
[
w∗

1 · l(x1, f(x1)) + w∗
2 · l(x2, f(x2))

]
−

[
(w∗

1 + ε) · l(x1, f(x1)) + (w∗
2 − ε) · l(x2, f(x2))

]
= ε · [l(x2, f(x2))− l(x1, f(x1))] < 0,

which contradicts w∗ ∈ argmaxw Sw(G;X). Thus, by contradiction, we can get w∗
1 ≥ w∗

2 as stated
in the theorem.

When τ
n < w∗

1 = w∗
2 < 1

τn , we can also find a small ε ∈
(
0,min{w∗

1 − τ
n ,

1
τn − w∗

2}
)

such
that Equation 11 holds. Similarly, we can get Sw∗(G;X) < Sw∗∗(G;X), and w∗

1 = w∗
2 = τ

n or
w∗

1 = w∗
2 = 1

τn by contradiction.
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D SUPPLEMENTARY EXPERIMENTS

D.1 BASELINES

We select seven state-of-the-art causal discovery methods as baselines for comparison:

• NOTEARS (Zheng et al., 2018) is a breakthrough work that firstly recasts the combinatorial graph
search problem as a continuous optimization problem in linear settings. NOTEARS estimates the
true causal graph by minimizing the reconstruction loss with the continuous acyclicity constraint.

• NOTEARS-MLP (Zheng et al., 2020) is an extension of NOTEARS for nonlinear settings, ap-
proximating the generative SEM model by MLP while only applying the continuous acyclicity
constraint to the first layer of the MLP.

• GraN-DAG (Lachapelle et al., 2020) adapts the continuous constrained optimization formulation
to allow for nonlinear relationships between variables using neural networks and makes use of a
final pruning step to remove spurious edges, thus achieving good results in nonlinear settings.

• GOLEM (Ng et al., 2020) improves on the least squares score function (Zheng et al., 2018) by
proposing a score function that directly maximizes the data likelihood. They show the likelihood-
based score function with soft sparsity regularization is sufficient to asymptotically learn a DAG
equivalent to the ground-truth DAG.

• DICD (Wang et al., 2022) aims to discover the environment-invariant causation while removing
the environment-dependent correlation based on ground truth domain annotation.

• CD-NOD (Huang et al., 2020) is a constrained-based causal discovery method that is designed for
heterogeneous data, i.e., datasets from different environments. CD-NOD utilizes the independent
changes across environments to predict the causal orientations and proposes constrained-based
and kernel-based methods to find the causal structure.

• GES (Chickering, 2002) is a score-based search algorithm that searches over the space of equiva-
lence classes of Bayesian network structures.

D.2 EXPERIMENTAL SETTINGS

For NOTEARS, we follow the original linear implementation. For GOLEM, we adopt the GOLEM-
NV setting from the original repo. For NOTEARS-MLP, we follow the original non-linear imple-
mentation which consist a Multilayer Perceptron (MLP) comprising of two hidden layers with ten
neurons each and ReLU activation functions (except for the Sachs dataset, which uses only one
hidden layer, inherent the settings from Zheng et al. (2020)). For GraN-DAG, we employ the pns,
training, and cam-pruning stages from the original code and tune three pipeline stages together for
best performance. The ReScore adaptive weights learning model for all nonlinear baselines consists
of two hidden layer and ReLU activation, and for linear baselines the layer size is reduced to one.
All Experiments are conducted on a single Tesla V100 GPU. Detailed hyperparameter search space
for different methods is shown in Table 4.

D.3 STUDY ON RESCORE

D.3.1 ILLUSTRATIVE EXAMPLES OF RESCORE

Motivations. To fully comprehend the benefits of reweighting, two research hypotheses need to
be verified. First, we have to determine the validity of the fundamental understanding of ReScore,
which states that real-world datasets inevitably include samples of varying importance. In other
words, there are many informative samples that come from disadvantaged groups in real-world
scenarios. Additionally, we must confirm that the adaptive weights learned by ReScore are the
faithful reflection of sample importance, i.e., less-fitted samples typically come from disadvantaged
groups, which are more important than those well-fitted samples.

Simulations. Real-world Sachs (Sachs et al., 2005) dataset naturally contains nine groups, where
each group corresponds with a different experimental condition. We first rank the importance of
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Table 4: Hyperparameter search spaces for each algorithm.

Hyperparameter space

NOTEARS /
NOTEARS+ReScore

λ ∼ {0.002, 0.005, 0.01, 0.015, 0.02, 0.03, 0.09, 0.1, 0.25}
Gumbel softmax temperature ∼ {0.1, 1, 5, 10, 20, 30, 40, 50, 100}
Cut-off threshold τ ∼ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}
Constraint convergence tolerance ∼ {10−6, 10−8, 10−10}
Log(learning rate of ReScore) ∼ U [−1,−5]

GOLEM /
GOLEM+ReScore

λ ∼ {0.002, 0.005, 0.01, 0.015, 0.02, 0.03, 0.09, 0.1, 0.25}
Gumbel softmax temperature ∼ {0.1, 1, 5, 10, 20, 30, 40, 50, 100}
Cut-off threshold τ ∼ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}
Log(learning rate of ReScore) ∼ U [−1,−5]

NOTEARS-MLP /
NOTEARS-MLP+ReScore

λ ∼ {0.002, 0.005, 0.01, 0.015, 0.02, 0.03, 0.09, 0.1, 0.25}
Gumbel softmax temperature ∼ {0.1, 1, 5, 10, 20, 30, 40, 50, 100}
# hidden units of ReScore ∼ {1, 10, 20, 50, 80, 100}
# hidden layers of ReScore ∼ {1, 2, 3, 4}
# hidden units of NOTEARS-MLP ∼ {1, 10, 20, 50, 80, 100}
# hidden layers of ReScore ∼ {1, 2, 3}
Cut-off threshold τ ∼ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}
Constraint convergence tolerance ∼ {10−6, 10−8, 10−10}
Log(learning rate of ReScore) ∼ U [−1,−5]

GraN-DAG /
GraN-DAG+ReScore

λ ∼ {0.002, 0.005, 0.01, 0.015, 0.02, 0.03, 0.09, 0.1, 0.25}
Gumbel softmax temperature ∼ {0.1, 1, 5, 10, 20, 30, 40, 50, 100}
# hidden units of ReScore ∼ {1, 10, 20, 50, 80, 100}
# hidden layers of ReScore ∼ {1, 2, 3, 4}
Log(learning rate of ReScore) ∼ U [−1,−5]
PNS threshold ∼ {0.5, 0.75, 1, 2}
Log(Pruning cutoff) ∼ {0.001, 0.005, 0.01, 0.03, 0.1, 0.2, 0.3}

GES /
GES+ReScore

λ ∼ {0.002, 0.005, 0.01, 0.015, 0.02, 0.03, 0.09, 0.1, 0.25}
Gumbel softmax temperature ∼ {0.1, 1, 5, 10, 20, 30, 40, 50, 100}
# hidden units of ReScore ∼ {1, 10, 20, 50, 80, 100}
# hidden layers of ReScore ∼ {1, 2, 3, 4}
Cut-off threshold τ ∼ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}

Table 5: Performance comparison for removing samples in different groups

Group Index 3 5 7 1 2 6 4 8 0

Avg. ranking 578.4 2856.7 3368.1 3877.0 3949.4 4549.4 4573.2 4590.6 4910.1
SHD w/o group 16 16 17 16 16 17 17 19 19
TPR w/o group 0.529 0.412 0.412 0.412 0.412 0.412 0.412 0.353 0.294

each group in Sachs by using the average weights for each group learned by ReScore as the criterion.
Then we eliminate 500 randomly selected samples in one specific group, perform NOTEARS-MLP,
and show its DAG accuracy inferred from the remaining samples. Note that the sample size in each
group, which ranges from 700 to 900, is fairly balanced.

Results. Table 5 clearly shows a declining trend w.r.t. SHD and TPR metrics as the significance of
deleting groups grows. Specifically, removing samples from disadvantaged groups such as Groups 8
and 0, which have the highest average weights, will significantly influence the DAG learning quality.
In contrast, the SHD and TPR of NOTEARS-MLP can even be maintained or slightly decreased
by excluding the samples from groups with relatively low average weights. This illustrates that
samples of different importance are naturally present in real-world datasets, and ReScore is capable
of successfully extracting this importance.
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Table 6: SHD for pcorrupt percentage noise samples.

0 0.01 0.02 0.05 0.08 0.1 0.2 0.3 0.5

NOTEARS-MLP 14.9 15.2 15.3 18.9 19.8 21.3 23.9 23.8 28.3
+ ReScore (τ → 0) 13.8 14.2 15.0 18.3 19.5 20.7 24.0 24.4 29.3
+ ReScore (Optimal τ ) 13.7 14.1 15.0 18.1 19.2 19.9 21.9 24.0 28.9
Imp. % +8% +7% +2% +4% +3% +7% +8% -1% -2%

D.3.2 SENSITIVITY TO PURE NOISE SAMPLES

Motivations. A basic assumption of ReScore is that no pure noise outliers are involved in the
training process. Otherwise, the DAG learner might get overwhelmed by arbitrarily up-weighting
less well-fitted samples, in this case, pure noise data. The good news is that the constraint of the
cutoff threshold τ ∈ C(τ) = {w : 0 < τ

n ≤ w1, . . . , wn ≤ 1
τn ,

∑n
i=1 wi = 1} prevents over-

exploitation of pure noise samples, which further strengthens ReScore’s ability to withstand outliers.
To evaluate the robustness of ReScore against pure noise samples, the following experiments are
conducted.

Simulations. We produce pcorrupt percentage pure noise samples in nonlinear settings (n = 2000,
d = 20, ER2), where those noise samples are generated from a different structural causal model.
We try out a broad range of pcorrupt = {0, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5}.
Results. Table 6 reports the comparison of performance in NOTEARS-MLP and two ReScore meth-
ods (no cut-off threshold and optimal τ ) when encountering pure noise data. The best-performing
methods are bold; Imp.% measures the relative improvements of ReScore (Optimal τ ) over the
backbone NOTEARS-MLP. We observe that ReScore (Optimal τ ) consistently yields remarkable
improvements compared with NOTEARS-MLP in the case that less than 20% of samples are cor-
rupted. These results demonstrate the robustness of ReScore when handling data that contains a
small proportion of pure noise data. Surprisingly, when the cutoff threshold τ is set to be close to
0, the ReScore can still achieve relative gains over the baseline when less than 10% of the samples
are pure noise. Although it is more sensitive to noise samples than the optimum cutoff threshold
τ . These surprising findings support the effectiveness of adaptive weights and show the potential of
ReScore.

D.3.3 EFFECT OF HYPERPARAMETER τ .

We investigate the effect of cut-off threshold τ on the performance of ReScore. Intuitively, ReScore
relies on the hyperparameter τ to control the balance between hard sample mining and robustness
towards extremely noisy samples. On one hand, setting the threshold closer to 0 results in no weight-
clipping and leaves the model susceptible to noises, which results in sub-optimal performance. On
the other hand, setting the threshold closer to 1 disables the reweighting scheme and eventually
reduces ReScore performance to its backbone model.

We conduct experiments under different settings of τ using n = 2000 samples generated from GP
model on ER4 graphs with d = 20 nodes. The weight distribution under best performing threshold
tau = 0.9 and the trend of SHD w.r.t. to τ is shown in Figure 4. One can observe that ReScore
obtains its best performance at τ = 0.9, while a smaller or bigger threshold results in sub-optimal
performance. Furthermore, we find that in different settings, the optimal threshold τ usually falls
in the range of [0.7, 0.99]. This indicates that ReScore performs best when adaptive reweighting is
conducted within a restricted range.

D.3.4 SENSITIVITY TO NEURAL NETWORK COMPLEXITY.

We also investigated the effect of number of hidden units in our adaptive weights learning model for
ReScore. We plot the TPR, FDR, SHD, SID with varing number of hidden units ranging from 10 to
100 units in nonlinear settings, using n = 600 and n = 2, 000 samples generated from GP model
on ER4 graph with d = 10 nodes. Detailed results could be found in Figure 5. One can first observe
our model is stable when increasing the neurons, illustrating the insensitivity of ReScore w.r.t. the
number of neurons in adaptive weights learning model. On the other hand, more observational
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(a) weight distribution with τ = 0.9 (b) SHD w.r.t. threshold τ

Figure 4: Study of varying τ in ReScore model.

(a) TPR w.r.t. neurons (b) FDR w.r.t. neurons (c) SHD w.r.t. neurons (d) SID w.r.t. neurons

Figure 5: Performance with varying neurons in ReScore model.

samples to estimate the parameters could help the ReScore achieve higher performance, indicating
rich samples bring benefit.

D.3.5 TRAINING COSTS.

In terms of time complexity, as shown in Table 7, we report the time for each baseline and ReScore
on Sachs. Compared with backbone methods, ReScore adds very little computing cost to training.

D.4 MORE EXPERIMENTAL RESULTS FOR RQ1

Discussions. More experimental results on both the linear and nonlinear synthetic data are reported
in Figures 6 - 8 and Tables 8 - 11. The error bars depict the standard deviation across datasets over
ten trails. The red and blue percentages separately refer to the increase and decrease of ReScore
relative to the original score-based causal discovery methods in each metric. The best performing
methods per task are bold.
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Table 7: Training cost on Sachs (seconds per iteration/in total).

NOTEARS 0.74 / 2.97
+ ReScore 3.8 / 15.3
NOTEARS-MLP 0.87 / 3.48
+ ReScore 4.3 / 17.0
GOLEM 13.4 / 53.5
+ ReScore 14.6 / 58.2
GraN-DAG 4.9 / 197.3
+ ReScore 5.5 / 221.6

(a) TPR w.r.t. λ (b) FDR w.r.t. λ (c) SHD w.r.t. λ (d) SID w.r.t. λ

Figure 6: Performance comparison between NOTEARS-MLP and ReScore on ER2 graphs of 10
nodes on nonlinear synthetic datasets. The hyperparameter λ defined in Equation 2 refers to the
graph sparsity.

(a) TPR w.r.t. λ (b) FDR w.r.t. λ (c) SHD w.r.t. λ (d) SID w.r.t. λ

Figure 7: Performance comparison between NOTEARS-MLP and ReScore on ER2 graphs of 20
nodes on nonlinear synthetic datasets. The hyperparameter λ defined in Equation 2 refers to the
graph sparsity.

(a) TPR w.r.t. λ (b) FDR w.r.t. λ (c) SHD w.r.t. λ (d) SID w.r.t. λ

Figure 8: Performance comparison between NOTEARS-MLP and ReScore on ER4 graphs of 20
nodes on nonlinear synthetic datasets. The hyperparameter λ defined in Equation 2 refers to the
graph sparsity.

Table 8: Results for ER graphs of 20 nodes on linear and nonlinear synthetic datasets.

ER2 ER4
TPR ↑ FDR ↓ SHD ↓ SID ↓ TPR ↑ FDR ↓ SHD ↓ SID ↓

Random 0.11±0.09 0.89±0.08 56.8±8.7 292.3±45.7 0.07±0.03 0.90±0.08 86.9±7.0 387.5±52.3

NOTEARS 0.85±0.08 0.09±0.03 9.2±3.8 55.4±31.1 0.74±0.02 0.23±0.03 39.4±7.9 185.8±38.1

+ ReScore 0.87±0.07+2% 0.11±0.05−17% 8.8±3.5+5% 50.6±26.3+9% 0.79±0.05+7% 0.28±0.05−17% 36.8±7.9+7% 180.8±43.5+3%

GOLEM 0.75±0.07 0.20±0.11 17.0±6.1 78.2±22.6 0.46±0.06 0.50±0.06 73.6±7.9 249.8±7.8

+ ReScore 0.76±0.06+2% 0.20±0.10+1% 15.8±5.8+8% 77.0±21.5+2% 0.48±0.06+3% 0.43±0.06+16% 70.2±8.3+5% 246.2±11.4+1%

NOTEARS-MLP 0.70±0.12 0.13±0.07 14.9±5.4 98.4±22.5 0.44±0.09 0.26±0.10 55.0±9.2 176.3±33.3

+ ReScore 0.73±0.09+3% 0.11±0.05+7% 13.7±5.1+8% 88.8±23.3+11% 0.41±0.07−6% 0.17±0.08+54% 51.6±6.4+7% 179.9±33.7−2%

GraN-DAG 0.81±0.15 0.08±0.08 9.3±5.4 53.4±24.4 0.20±0.07 0.18±0.08 57.4±4.6 131.5±21.4

+ ReScore 0.81±0.14+0% 0.05±0.04+64% 8.5±5.7+9% 51.0±24.6+5% 0.21±0.07+5% 0.17±0.09+8% 56.2±4.6+2% 125.4±23.3+5%
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Table 9: Results for ER graphs of 50 nodes on linear and nonlinear synthetic datasets.

ER2 ER4
TPR ↑ FDR ↓ SHD ↓ SID ↓ TPR ↑ FDR ↓ SHD ↓ SID ↓

Random 0.04±0.02 0.90±0.03 397.3±12.7 1082.0±182.2 0.09±0.08 0.92±0.08 998.2±45.9 3399.1±489.2

NOTEARS 0.79±0.06 0.09±0.03 27.6±7.7 427.0±186.1 0.51±0.12 0.27±0.10 133.4±29.5 1643.8±172.2

+ ReScore 0.88±0.06+11% 0.15±0.04−39% 26.2±7.6+5% 266.0±146.4+61% 0.52±0.21+3% 0.29±0.07−7% 130.2±37.4+2% 1453.6±336.5+13%

GOLEM 0.80±0.09 0.35±0.09 68.6±19.7 433.5±215.6 0.31±0.11 0.68±0.06 150.6±25.1 1775.4±161.6

+ ReScore 0.82±0.15+3% 0.33±0.14+5% 63.4±27.9+8% 430.2±155.5+1% 0.39±0.06+24% 0.66±0.06+3% 146.3±26.3+3% 1643.6±114.8+8%

NOTEARS-MLP 0.32±0.04 0.13±0.08 69.5±4.7 884.4±172.8 0.17±0.02 0.06±0.04 167.0±4.1 1607.6±97.0

+ ReScore 0.51±0.08+59% 0.10±0.07+30% 53.5±8.7+30% 628.1±120.6+41% 0.26±0.04+52% 0.11±0.05−51% 154.4±6.4+8% 1437.7±111.1+12%

GraN-DAG 0.52±0.09 0.15±0.05 51.6±9.3 632.8±140.3 0.32±0.04 0.08±0.16 141.6±8.2 1379.0±91.3

+ ReScore 0.53±0.06+3% 0.11±0.02+36% 46.0±6.0+12% 581.0±104.7+9% 0.31±0.03−4% 0.06±0.04+32% 138.8±7.5+2% 1351.0±98.2+2%

Table 10: Results for SF graphs of 10 nodes on linear and nonlinear synthetic datasets.

SF2 SF4
TPR ↑ FDR ↓ SHD ↓ SID ↓ TPR ↑ FDR ↓ SHD ↓ SID ↓

Random 0.05±0.03 0.91±0.09 32.2±7.97 35.1±7.3 0.13±0.01 0.93±0.15 57.2±10.3 79.1±8.7

NOTEARS 0.98±0.02 0.02±0.03 0.8±0.5 1.0±2.0 0.95±0.03 0.03±0.02 12.2±1.2 6.2±5.3

+ ReScore 0.99±0.02+1% 0.04±0.04−45% 0.4±0.7+100% 1.0±0.9+0% 0.97±0.03+2% 0.03±0.03+27% 10.2±1.5+20% 3.0±1.9+107%

GOLEM 0.96±0.07 0.07±0.12 1.8±3.1 1.2±2.4 0.85±0.03 0.12±0.08 7.0±2.3 12.8±7.9

+ ReScore 0.97±0.07+1% 0.07±0.12+3% 1.4±2.9+29% 1.2±2.4+0% 0.87±0.06+3% 0.10±0.08+17% 5.8±2.9+21% 9.8±8.2+31%

NOTEARS-MLP 0.84±0.17 0.25±0.12 6.7±3.4 8.1±7.3 0.73±0.14 0.23±0.05 12.0±3.9 19.4±7.4

+ ReScore 0.82±0.22−2% 0.17±0.08+45% 5.8±3.3+16% 6.0±3.8+35% 0.88±0.09+20% 0.27±0.07−16% 11.0±3.4+9% 12.8±9.3+52%

GraN-DAG 0.69±0.20 0.05±0.05 5.9±3.0 12.0±8.2 0.82±0.11 0.11±0.08 8.7±1.8 8.4±4.1

+ ReScore 0.72±0.17+4% 0.04±0.03+28% 5.3±2.8+11% 10.5±8.7+14% 0.86±0.12+5% 0.12±0.08−12% 8.1±2.0+7% 7.0±6.7+20%

Table 11: Results for SF graphs of 20 nodes on linear and nonlinear synthetic datasets.

SF2 SF4
TPR ↑ FDR ↓ SHD ↓ SID ↓ TPR ↑ FDR ↓ SHD ↓ SID ↓

Random 0.11±0.10 0.89±0.03 43.2±5.4 96.8±10.4 0.09±0.05 0.88±0.05 108.2±12.9 155.6±37.2

NOTEARS 0.90±0.06 0.02±0.01 4.0±1.9 19.8±12.8 0.90±0.05 0.12±0.06 45.2±7.0 28.6±20.2

+ ReScore 0.95±0.04+6% 0.06±0.04−70% 3.6±1.8+11% 9.8±8.1+102% 0.93±0.03+3% 0.02±0.07+624% 45.0±6.8+0% 25.6±12.1+12%

GOLEM 0.96±0.03 0.19±0.06 9.0±3.2 10.4±7.0 0.83±0.05 0.35±0.09 42.8±13.0 41.4±14.8

+ ReScore 0.96±0.02+0% 0.18±0.06+4% 8.6±3.1+5% 10.4±7.0+0% 0.85±0.43+2% 0.34±0.09+5% 39.8±14.0+8% 37.6±12.8+10%

NOTEARS-MLP 0.42±0.13 0.23±0.13 25.5±4.5 49.9±7.4 0.20±0.03 0.22±0.12 58.9±3.1 115.6±25.0

+ ReScore 0.41±0.13−2% 0.10±0.10+121% 23.5±4.5+9% 47.6±9.4+5% 0.21±0.04+3% 0.09±0.09+131% 56.4±2.2+4% 109.0±21.8+6%

GraN-DAG 0.03±0.15 0.24±0.17 27.1±4.15 77.0±28.0 0.20±0.06 0.18±0.12 56.8±4.5 133.4±21.0

+ ReScore 0.03±0.15−6% 0.15±0.10+63% 25.7±4.4+5% 72.8±26.0+6% 0.21±0.07+2% 0.17±0.08+8% 56.4±4.6+1% 125.4±23.3+6%

Table 12: Results for SF graphs of 50 nodes on linear and nonlinear synthetic datasets.

SF2 SF4
TPR ↑ FDR ↓ SHD ↓ SID ↓ TPR ↑ FDR ↓ SHD ↓ SID ↓

Random 0.10±0.08 0.89±0.07 334.2±16.9 1093.3±145.4 0.12±0.11 0.89±0.04 1023.5±49.5 1903.9±194.3

NOTEARS 0.82±0.03 0.07±0.05 23.6±6.2 135.4±47.5 0.71±0.18 0.25±0.07 97.6±36.9 276.2±131.0

+ ReScore 0.94±0.03+15% 0.15±0.06−55% 21.6±9.1+9% 61.2±22.6+121% 0.73±0.05+3% 0.10±0.03+138% 67.6±12.3+44% 275.2±55.0+0%

GOLEM 0.77±0.07 0.19±0.11 38.6±16.7 161.6±53.2 0.62±0.17 0.21±0.09 114.2±37.5 384.0±107.4

+ ReScore 0.79±0.09+2% 0.24±0.12−20% 32.2±11.1+20% 143.4±63.0+13% 0.68±0.17+9% 0.21±0.09+1% 113.7±37.5+0% 366.4±107.0+5%

NOTEARS-MLP 0.22±0.04 0.04±0.04 75.8±4.0 266.8±46.0 0.11±0.02 0.03±0.02 168.8±3.8 461.6±54.9

+ ReScore 0.23±0.05+4% 0.07±0.07−47% 75.6±4.3+0% 267.2±36.6−0% 0.13±0.04+10% 0.07±0.06−52% 167.7±7.0+1% 453.4±57.7+2%

GraN-DAG 0.19±0.03 0.28±0.05 80.2±3.5 380.8±56.1 0.11±0.03 0.25±0.11 171.4±6.3 549.6±84.9

+ ReScore 0.20±0.03+5% 0.24±0.05+17% 79.8±0.3+1% 349.2±49.6+9% 0.11±0.02+0% 0.24±0.10+5% 170.8±4.0+0% 548.0±91.4+0%

23


	Introduction
	Differentiable Causal Discovery
	Methodology of ReScore
	Bilevel Formulation of ReScore
	Theoretical Analysis on Identifiability
	Oracle Property of Adaptive Weights

	Experiments
	Overall Performance Comparison on Synthetic Data (RQ1)
	Performance on Heterogeneous Data (RQ2)
	Evaluation on Synthetic Heterogeneous Data
	Evaluations on Real Heterogeneous Data.


	Conclusion
	Related Work
	Algorithm of ReScore
	In-depth Analysis of ReScore
	Proof of Theorem 1
	Proof of Theorem 2

	Supplementary Experiments
	Baselines
	Experimental Settings
	Study on ReScore
	Illustrative Examples of ReScore
	Sensitivity to Pure Noise Samples
	Effect of Hyperparameter .
	Sensitivity to Neural Network Complexity.
	Training Costs.

	More Experimental Results for RQ1


