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Abstract

Topic models and all their variants analyse
text by learning meaningful representations
through word co-occurrences. As pointed out
by Williamson et al. (2010), such models im-
plicitly assume that the probability of a topic
to be active and its proportion within each doc-
ument are positively correlated. This correla-
tion can be strongly detrimental in the case of
documents created over time, simply because
recent documents are likely better described by
new and hence rare topics. In this work we
leverage recent advances in neural variational
inference and present an alternative neural ap-
proach to the Focused Topic Model and its dy-
namic extensions. Indeed, we develop a neu-
ral model for topic evolution which exploits a
compound Bernoulli structure in order to track
the appearances of topics, thereby decoupling
their activities from their proportions. On
three different corpora namely, the UN general
debates, the collection of NeurIPS papers,
and the ACL Anthology dataset, our model out-
performs competing neural variational topic
models.

1 Introduction

Probabilistic topic models, the likes of Latent
Dirichlet Allocation (LDA) (Blei et al., 2003),
are generative models of word co-occurrence that
analyse large document collections by learning la-
tent representations (topics) encoding their themes.
These models represent the documents of the col-
lection as mixtures of latent topics, and group
semantically related words into single topics by
means of word-pair frequency information within
the collection. Such a generic generative structure
has been successfully applied to problems from
information retrieval, visualization and multilin-
gual modelling to linguistic understanding in fic-
tion and non-fiction, scientific publications and po-
litical texts (see e.g. Boyd-Graber et al. (2017) for a
review) and keeps being extended to new domains
(Rezaee and Ferraro, 2020; Zhao et al., 2021).

Topic models implicitly assume that the docu-
ments within a given collection are exchangeable.
Yet document collections such as magazines, aca-
demic journals, news articles and social media
content not only feature trends and themes that
change with time, but also employ their language
differently as time evolves (Danescu-Niculescu-
Mizil et al., 2013). The exchangeability assump-
tion along the time component is hence inappro-
priate in these cases and topic models have been
extended to account for changes in both topic (Blei
and Lafferty, 2006; Wang et al., 2012; Jdhnichen
et al., 2018) and word (Bamler and Mandt, 2017;
Rudolph and Blei, 2018; Dieng et al., 2019) dis-
tributions among documents collected over long
periods of time.

It is easy to imagine, however, that if one analy-
ses the collection’s content as one moves forward
in time, one would find that (some of) the top-
ics describing those documents appear, disappear
or reappear with time. This simple intuition en-
tails that one should not only model the time- and
document-dependent topic proportions, but also the
probabilities for the topics to be active, and how
such probabilities change with time. Previous work
has already pointed out that existing topic models
implicitly assume that the probability of a topic be-
ing active and its proportion within each document
are positively correlated (Williamson et al., 2010;
Perrone et al., 2016). This assumption is generally
unwanted, simply because rare topics may account
for a large part of the words in the few documents in
which they are active. It is particularly detrimental
(for both modelling and prediction) in a dynamic
setting, because recent documents are likely better
described by new and hence rare topics.

Indeed, whenever the topic distribution over doc-
uments is strongly skewed, topic models tend to
learn the more general topics held by the big ma-
jority of documents in the collection, rather than
the rare topics contained only by fewer documents



(Jagarlamudi et al., 2012; Tang et al., 2014; Zuo
et al., 2014). Document collections that reflect
evolving content typically feature skew topic dis-
tribution over its documents, with the newly added
documents being well described by new, rare top-
ics. Dynamic topic models that feature the topic
proportion-activity coupling are then expected to
perform badly, simply because these will not be
able to infer the new topics characteristic of recent
documents. To properly model such recent docu-
ments one should therefore allow rarely seen topics
to be active with high proportion and frequently
seem topics to be active with low proportion.

In this work we seek to decouple the proba-
bility for a topic to be active from its proportion
with the introduction of a sparse Bernoulli variable,
which selects the active topics for a given docu-
ment at a particular instant of time. Earlier models
attained such a decoupling via non-parametric pri-
ors, such as the Indian Buffet Process prior over
infinite binary matrices, in both static (Williamson
et al., 2010) and dynamic (Perrone et al., 2016)
cases. Our construction follows the same logic and
also deploys the Indian Buffet prior, but leverages
the reparametrization trick to perform neural varia-
tional inference (Kingma and Welling, 2013). The
result is a scalable model whose non-parametric
nature allows the instantaneous number of active
topics per document to fluctuate and infers the total
number of topics in the collection directly from the
data.

We introduce the Neural Dynamic Focused
Topic Model (NDF-TM) which builds on top of
Neural Variational Topic models (Miao et al.,
2016), uses Deep Kalman Filters (Krishnan et al.,
2015) to model the topic dynamics, and the stick-
breaking Variation Autoencoder (Nalisnick and
Smyth, 2016) to infer the Bernoulli variable select-
ing the active topics. We show below that NDF—TM
explicitly decouples the topic proportion from its
activity and outperforms competing neural models
on different metrics.

2 Related Work

The NDF-TM model merges concepts from dy-
namic topic models, dynamic embeddings and neu-
ral topic models.

Dynamic topic models. The seminal work of
Blei and Lafferty (2006) introduced the Dynamic
Topic Model (DTM), which uses a state space
model on the natural parameters of the distribution

representing the topics, thus allowing the latter to
change with time. The DTM methodology was first
extended by Caron et al. (2007) to a nonparamet-
ric setting, via the correlation of Dirichlet process
mixture models in time. Later Wang et al. (2012)
replaced the discrete state space model of DTM
with a Diffusion process, thereby extending the
approach to a continuous time setting. Jihnichen
et al. (2018) further extended DTM by introducing
Gaussian process priors that allowed for a non-
Markovian representation of the dynamics. Other
recent work on dynamic topic models is that of
Hida et al. (2018)

Dynamic embeddings. Rather than modelling
the content evolution of document collections like
DTM, other works focus on modelling how word
semantics change with time (Bamler and Mandt,
2017; Rudolph and Blei, 2018). These works use
continuous representation of words capturing their
semantics (as e.g. those of Pennington et al. (2014))
and evolve such representation via diffusion pro-
cesses. More recently, Dieng et al. (2019) represent
topics as dynamic embeddings, and model words
via categorical distributions whose parameters are
given by the inner product between the static word
embeddings and the dynamic topic embeddings.
As such, this model corresponds to the dynamic
extension of Dieng et al. (2020).

Neural topic models. Another line of research
leverages neural networks to improve the perfor-
mance of topic models, the so-called neural topic
models (Miao et al., 2016; Srivastava and Sutton,
2017; Zhang et al., 2018; Dieng et al., 2020, 2019)
which deploy neural variational inference (Kingma
and Welling, 2013) for training.

Decoupling topic activity from its proportion.
Williamson et al. (2010) noted the implicit and
undesirable correlation between topic activity and
proportion assumed by standard topic models and
introduced the Focused Topic Model (FTM). FTM
uses the Indian Buffet Process (IBP) to decouple
across-data prevalence and within-data proportion
in mixed membership models. Later Perrone et al.
(2016) extended FTM to a dynamic setting by using
the Poisson Random Fields model from population
genetics to generate dependent IBPs, which allow
them to model temporal correlations in data.

Both of these models are trained using complex
sampling schemes, which can make the fast and ac-
curate inference of their model parameters difficult
(Miao et al., 2017). In what follows we propose
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Figure 1: Graphical model representation of NDF—-TM.

an alternative neural approach to the dynamic Fo-
cused Topic model of Perrone et al. (2016), train-
able via backpropagation, which learns to decouple
the dynamic topic activity from its dynamic topic
proportion.

3 Neural Bernoulli-Beta Topic Model

Suppose we are given an ordered collection of cor-
pora D = {Dy, Dy,...,Dr}, so that the tth cor-
pus D; is composed of N; documents, all received
within the tth time window. Let W; denote the
Bag-of-word (BoW) representation for the whole
document set within D; and let w; 4 denote the
BoW representation of the d-th document in D;.

Let us now suppose that the corpora collection
is described by a set of K unknown topics. We
then assume there are two sequences of continu-
ous hidden variables n¢,...,np € RAM) and
&,...,&r € RIM(E) which encode, respectively,
how the topic proportions and the topic activities
change among corpora as time evolves (i.e. as one
moves from Dy to D¢y 1). Thatis, 1, and &, encode
the global dynamics of semantic content. We also
assume there are two local hidden variables, con-
ditioned on the global ones, namely a continuous
variable ¢, 4 € R which encodes the content of
the dth document in Dy, in terms of the available
topics, and a binary variable by 4 € {0, 1}% which
encodes which topics are active in the document
in question. We combine these local variables to
compute the topic proportions 8, 4 € [0, 1]¥ from
which each document in D; is generated.

3.1 Generation

Let us denote with v the set of parameters of our
generative model. We are first of all interested in
learning the number of active topics per document

at each time step from the data directly. To do so,
we model the time-dependent Bernoulli variable
b; 4 using the stick-breaking prior of the Indian
Buffet Process (IBP) (Teh et al., 2007). Explicitly,
we generate by 4 as follows

& ~ N(ki&0).01), M
a; = apSigmoid (W, &, +¢,), (2)
vy ~ Beta(as1), 3)
k
Trt,k = Hyt,ka k:{177K}5 (4)
j=1
b;q ~ Bernoulli(7r;), 5)

where equation 3-5 correspond to the stick-
breaking construction of the IBT (Teh et al., 2007)
and ay is a hyperparameter controlling the aver-
age number of active topics. Likewise W, €
RE* dim(€) ¢ e RX C 4 are trainable param-
eters. Also note that, just as in Deep Kalman Fil-
ters (Krishnan et al., 2015), &, is Markovian and
evolves under a Gaussian noise with mean ,uf;}, de-
fined via a neural network with parameters in 1),
and variance §. We choose &; ~ N(0,1).

We model by 4 via the stick-breaking construc-
tion of the IBT to allow the number of active topics
(of document d at time t) to be inferred directly
from the data. As a consequence, the instantaneous
number of topics per document is allowed to fluctu-
ate and the total number of topics in the collection
is allowed to grow with the collection’s size (up to
K).

Analogously, we generate the topic proportions
0,4 as

m o~ N(ulmo).01),  ©
Ct,d ~ N (WC n =+ C¢, 1) ’ (7)
0 — bra © exp (¢t q) @)

Zf bf;d ® exp (@,d)

where by 4 is defined in equation 5 and © labels
element-wise product, W, € REx dim() ¢. ¢
RX C 4 are trainable, and ,ul is modelled via a
neural network. Here 7, is also Markovian and we
set ; ~ N (0, 1). Note that the topic proportion
thus defined are sparse vectors.

Once we have 6, ; we generate the corpora se-
quence by sampling

Yt.dn ~ Categorical(6; ), 9)

Wedn ~ Categorical(ﬁymm ), (10)



where y; 4 ,, is the time-dependent topic assignment
for wy 4., which labels the nth word in document
d € Dy, and B € REXV is a learnable topic distri-
bution over words. We define the latter as

B = softmax(a ® p), (11)

with o € REXF p € RV*F learnable topic and

word embeddings, respectively, for some embed-

ding dimension F/, and ® denoting tensor product.
The NDF-TM is summarized in Figure 1.

3.2 Inference

The generative model above involves two inde-
pendent global hidden variables &,,n,, together
with the intermediate (global) Beta variable v
(see Eq. 3) and the local variables Ct’d and by 4.
Our task is to infer the posterior distributions of
all these variables. ! Denoting with I'; ; the
set {&, M4, Vi, Gt 4> br.a}» We approximate the true
posterior distribution of the model with a varia-
tional posterior of the form

T
QQo(Ft,d‘Wt,dawlzT) = HQ<,0(Vt|Wtu€t)
t
X qo(MIM—1, Wir) 4o (§41€1.0—1, WiT)
Nt

X H 4 (Cr.alWed> M) 4o (bralwia,ve), (12)
d

where Wi.p = (Wy,..., Wr) is the ordered se-
quence of BoW representations for the corpus col-
lection and ¢ labels the variational parameters.

Local variables. The posterior distribution over
the local variables ¢, 4, bt 4 are chosen as Gaussian
and Bernoulli, respectively, each parametrized by
neural networks. Explicitly, we write

¢

9o (Cralwea,m) = N(ps,03),  (13)

where HE@ and a’& are both functions of wy 4,7,
and are modelled via neural networks. Likewise

4o (br,d| W d, &) = Bernoulli(m, (w4, &;)),
(14)
where 7, lives on the K-simplex and is modelled
with a neural network with a Softmax function
as output nonlinearity.
Global variables. The posterior distribution
over the dynamic global variables &,, ), are also
"Note in passing that we do not need to perform infer-

ence of the latent topics y¢ 4,», simply because these can be
integrated out.

Gaussian, but now depend not only on the previous
latent variables at time ¢ — 1, but also on the entire
sequence of BoW representations W.p. This fol-
lows directly from the graphical model in Figure
1, as noted by Krishnan et al. (2015). We shall
use LSTM networks (Hochreiter and Schmidhuber,
1997) to model these dependencies. Specifically let

Qo (€& 1, Wr) = N(p,, 0%), (15)

where ufp, 0'57 are neural networks which take as
input the pair &,_;, hf, with hf a hidden repre-
sentation encoding the sequence W.p. Similarly

Qo(mm—1, W) = N(ul, o),  (16)

where pb, o), again neural networks, take as input
the pair n,_1, h/, with h{ a second hidden repre-
sentation also encoding W.r.

These hidden representations hi, with i =
{&,m}, correspond to the hidden states of LSTM
networks whose update equation read

h; = f,(Wy, hy_y). (17)

Finally, since the Beta distribution does not
have a non-centered parametrization, we follow
Nalisnick and Smyth (2016) and choose the Ku-
maraswamy distribution (Kumaraswamy, 1980)

Kumar(z; a,b) = abz® 11— 2%)71,  (18)
forx € (0,1) and a,b > 0, which has a closed-
form CDF, as the posterior of v;. Explicitly we

write

4o (Vi|Wi, &) = Kumar (v4;¢f,dY),  (19)

where the functions ¢/, d take the pair Wy, &, as

input and are each modelled with a neural network,

with a Softplus function as output nonlinearity.
Note that we can sample Eq. 19 thus

L1
(1_ud:§)c5’

(20)

vy =
with u ~ Uniform(0, 1).

3.3 Training Objective

To optimize the model parameters {1, ¢} we mini-
mize the variational lower bound on the logarithm
of the marginal likelihood p, (w¢ 4.,|3). Follow-
ing standard methods (Bishop, 2006) the latter can
readily be shown to be



UN NeurIPS ACL
Models PPL-DC P-NLL PPL-DC P-NLL PPL-DC P-NLL
DTM* 2393.5 - - - 4324 -
DTM-REP 3012 £ 14 8334+ 0.003 6107£907 85+£04 6503 £ 875 85£05
D-ETM 2275 £13 7918 £0.002  5404+418 9+1 2733+£109  7.99 £ 0.02
NDF-TM 2899 £24  8.192+0.004 3768+223 8.32+£0.02 23651146 7.7+ 0.6
NDF-TM-DE | 2644 + 11 8.00 £ 0.03 36651312 17+£5 2727+187  8.03 £ 0.08

Table 1: Perplexity on document completion (PPL-DC) and predictive negative log likelihood (P-NLL). Lower
is better. PPL-DC is calculated by conditioning the model on the first half of the document and evaluate the
perplexity on the second half of the document. P-NLL is estimated using equation 26). (*) Results are taken from
(Dieng et al., 2019). All other results are obtained by training the models on 10 different random splits of the

datasets.

T Nt Ng

£B,%,¢1 = >3 > Er{logps(wianl8,T) }

t=1d=1n=1

— KL gy (1, IW1.r); p(1,)] — KL [ (&1 [W1.r); p(§,)]

- Z KL [(Isa(nt|771:t717 Wl:T);pzp(thfl)]
t=2
T

- Z KL [qw(£t|€1:t71> Wl:T)§pw(€t‘£t71)]
t=2

3B, {KL g (v Wi, £ puil€ )] }

-2

t=1d=1

+ E&,, {KL [Q<p(bt,d|wt,d7 &);Pw(bt,d|€t)] }) ’ (21)

z

<Em {KL I:qSD (Ct,d‘wt,dv 1:); Dy (Ct,dmt)] }

where KL labels the Kullback-Leibler divergence
and (3 is given in equation 11. Note that to com-
pute the KL between the Kumaraswamy posterior
¢,(v¢) and the Beta prior py, (1) we approximate
the infinite sum as done in Nalisnick and Smyth
(2016).

4 Experiments

In this section we introduce our datasets and de-
fine our baselines. Details about preprocessing and
experimental setup can be found in the Appendix.
However two important parameters in our model
are the maximum topic number K and the hyper-
parameter controlling the average number of active
topics «g. Both these hyperpameters are chosen
via cross-validation, with K = 50 and a9 = 10
given the best results’.

4.1 Datasets

We evaluate our model on three datasets, namely
the collection of UN speeches, NeurIPS papers and

2K was chosen from the set 30, 50 and 200. We found 50
to be the best value for all models, i.e. including the baselines

the ACL Anthology. The UN? dataset (Baturo et al.,
2017) contains the transcription of the speeches
given at the UN General Assembly during the pe-
riod between the years 1970 and 2016. It consists
of about 230950 documents. The NeurIPS papers
dataset contains the collection of papers published
in NeurIPS* between the years 1987 and 2016. It
consists of about of about 6562 documents. Finally,
the ACL Anthology (Bird et al., 2008) contains
a collection of computational linguistic and natu-
ral language processing papers published between
1973 and 2006. It consists of about 10514 docu-
ments.

4.2 Baselines

Our main aim is to study the effect of the topic
proportion-activity decoupling in the performance
of dynamic topic models® on data collections dis-
playing evolving content. To do so we compare
against three models:

(1) DTM — the Dynamic Topic Model (Blei
and Lafferty, 2006), which uses Kalman Filters
to model the topic dynamics.

(2) DTM—-REP — the neural extension of DTM,
fitted using neural variational inference (Dieng
et al., 2019). This model uses a logistic-normal
distribution, parametrized with feedforward neu-
ral networks, as posterior for the topic proportion
distribution as in Miao et al. (2017). It also uses
Kalman Filters to model the topic dynamics, but
parametrizes the posterior distribution over the dy-
namic latent variables with LSTM networks, as in
Deep Kalman Filters (Krishnan et al., 2015). As
such, DTM-REP works as the dynamic extension
of Miao et al. (2017). Comparing our model with
DTM-REP should show the effect of adding the

3https://www.kaggle.com/unitednations/un-general-
debates

*https://www.kaggle.com/benhamner/nips-papers

5This means we do not consider static topic models



UN NeurIPS ACL
Models TC TD TC TD TC TD
DTM* 0.1317 0.0799 - - 0.1429 0.5904
DTM-REP 0.108 £ 0.003  0.59 £0.001 -0.022£0.007  0.15+0.01  0.007 £0.008 0.55 +0.02
D-ETM 0.201 + 0.002  0.68 £0.006 -0.019£0.008 0.28 +£0.05  0.137£0.004 0.61£0.02
NDF-TM 0.173 £ 0.002  0.62 £ 0.003 0.01-£0.02 0.37+£0.01 0.20£0.02 0.82+0.01
NDF-TM-DE | 0.191 £0.007 0.51 £0.002 -0.071+0.034  0.38+0.05  0.13540.009 0.64+0.03

Table 2: Topic coherence (TC) and Topic diversity (TD) for all models. Higher is better. TC is calculated by
taking the average pointwise mutual information between two words drawn randomly from the same topic. TD is
the percentage of unique words in the top 25 words of all topics. (*) Results taken from (Dieng et al., 2019). All
other results are obtained by training the models on 10 different random splits of the datasets.

activity-coupling to neural topic models.

(3) D-ETM — the Dynamic Embedded Topic
Model (Dieng et al., 2019), which captures the evo-
lution of topics in such a way that both the content
of topics and their proportions evolve over time.
Thus, this model adds complexity to DTM-REP
by modelling words via categorical distributions
whose parameters are given by the inner product be-
tween the static word embeddings and the dynamic
topic embeddings.

To better compare with D-ETM, we also al-
low NDF-TM to capture time-varying topic con-
tent by learning a posterior distribution over time-
dependent embeddings. We label this model
NDF-TM-DE. In practice this means our topic em-
beddings are now indexed by time oy € RE*F for
t=A{1,...,T}.

Generation in NDF—TM-DE — To train the oy
we augment the generative model, equations 1-8,
with the following prior on the evolution of topic
embeddings

at,k‘ ~ N(at—l,k‘a 51)) (22)

where a1, ~ N (0,1) for k= {1,..., K}.

Inference in NDF-TM-DE — For inference we
use a mean-field solution of the form

T K
qo(ar 1K) = H H/\/ o, 61),  (23)

t=1k=1

where the «; ;. are learnable. This last expression
is to be multiplied to equation 12 above.

Training Objective in NDF—TM-DE — The ex-
tended model has an additional term added to its
loss functions, namely the Kullback-Leibler diver-
gence between the prior and posterior distribution
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Figure 2: Evolution of topic proportion and activity
probability for the topic middle east inferred from the
UN dataset via NDF —~TM-DE.

of a;. Explicitly we have

Llp, b, = qso(am){z[alf,p,w}

- Z Z KL[Qw(at);

t=1 k=1

plew)]l, (24)

where p are the learnable word embeddings of
above.

5 Results

In order to quantify the performance of our models,
we first focus on two aspects, namely its prediction
capabilities and its ability to generalize to unseen
data. Later we also (qualitatively) discuss how the
model actually performs the decoupling between
topic activities and proportions.

(1) To test how well our models perform on a
prediction task we compute the predictive negative
log likelihood (P-NLL). Since to our knowledge
the latter does not appear explicitly in the dynamic
topic model literature, we briefly revisit how to
estimate it in what follows.

In order to predict IV steps into the future we rely
on the generative process of our model, albeit con-
ditioned on the past. Essentially, one must generate
Monte Carlo samples from the posterior distribu-
tion and propagate the latent representations (&,



and 77, in our model) into the future with the help
of the prior transition function (equations 1 and 6,
respectively)®. This procedure is depicted on the
conditional predictive distribution of our model

(Wi W) = / po (Wit |Trs)
X Py (P41 |T7)qe (Tr.7|Wir)dT 1, (25)

where we replaced the true (intractable) posterior
with the approximate posterior g, (I'1.7|Wi.r),
and where I'; 4 labels the set {&;, 1y, V¢, (1 4, bra}
as before.

We can now define the predictive log likelihood
as

P-NLL = Ep(I‘T+1|FT)Eq(F1;T|W1:T){
logpw(WT+1\FT+1)}- (26)

(2) To test generalization we use three metrics
namely, perplexity (PPL) on document completion,
topic coherence (TC) and topic diversity (TD).

The document completion PPL is calculated on
the second half of the documents in the test set,
conditioned on their first half (Rosen-Zvi et al.,
2012).

The TC is calculated by taking the average point-
wise mutual information between two words drawn
randomly from the same topic (Lau et al., 2014)
and measures the interpretability of the topic. In
contrast, TD is the percentage of unique words in
the top 25 words of all topics (Dieng et al., 2020).
Note that one also often finds in the literature the
topic quality metric (TQ), defined as the product of
TC with TD.

5.1 Comparison with baselines

The results on both P-NLL and PPL tasks are
shown in Table 1. Both our models (NDF-TM and
NDF-TM-DE) outperformed all baselines on the
NeurIPS and ACL datasets, but are only second
and third to D-ETM in the UN dataset.

One could argue that NeurIPS and ACL feature
more emergent and volatile topics (wrt. their ac-
tivity), as compared to those characteristic of the
UN dataset (see for example Table 5 in the Ap-
pendix, which shows six randomly sampled topics
from each dataset as inferred by NDF—-TM. Note

®Note that one is effectively performing a sequential Monte
Carlo sample (Speekenbrink, 2016), in which future steps are
particles sampled from the posterior and propagated by the
prior.

how those inferred from the UN dataset seem to
circle about war and peace).

It is easy to imagine that the more generic top-
ics in the UN dataset (like war, climate, etc) have
reached some type of equilibrium and thus display
overall a less skewed distribution over the docu-
ment collection. If this were the case, explicitly
decoupling topic proportion from its activity would
have little role on the effective modelling of the
dataset. That is, rare topics would be less relevant
in the UN dataset.

In sharp contrast, topic models trained on say
NeurIPS typically infer topics about Neural Net-
works and their training, as well as about Rein-
forcement Learning (see e.g. Topic 1, 5 and 4 in
Table 5 of the Appendix). Such topic easily display
a strongly skewed distribution on the NeurIPS col-
lection, which would explain the good predictive
performance of our models.

Figure 3 shows the (Shannon) entropy of the
topic distribution, averaged over documents as time
evolves as inferred by all models 7. Note how the
entropy inferred by DTM-REP for UN is close to
zero, meaning that DTM—-REP usually describes the
documents with few topics, whereas for NeurIPS
the entropy of the average topic distribution is close
to its maximum value (log(K = 50) ~ 3.9), mean-
ing that it allocates almost equal probability for
all K topics, as expected for a skew topic distri-
butions. In contrast, NDF—TM uses the additional
Bernoulli variable to redistribute the noise in the
topic dynamics. See e.g. Figure 4 which shows the
topic activity probability, average all documents as
time evolves, as inferred from NDF—TM on the UN
dataset. We refer the reader to the Appendix for
further data visualization of the entropy dynamics
for all our datasets and all models.

The results on both TC and TD shown in Table 2
reflect a similar story: NDF-TM and NDF—~TM-DE
perform well on NeurIPS and ACL, but are outper-
formed by D-ETM on the UN dataset.

Note that D-ETM learns different embeddings
for each topic at each time step (i.e. K x T em-
beddings in total). In comparison, NDF-TM learns
only K topic embeddings, whereas NDF—TM-DE,
although with K * T available embeddings, has
only about ag active embeddings (in average) at
each time step. Interestingly enough NDF—-TM, al-

"The Shannon entropy of the topic distribution per docu-
ment and time is defined here by H; g = — Zf( 9&)1 log Ggf‘)i,

where 053 is the ith component of 6, 4.



beit with less capacity, is consistently better in both
NeurIPS and ACL than NDF—-TM-DE. In contrast,
NDF-TM-DE is better than NDF—TM in the UN.
Here again we can argue that topic embeddings are
more useful for modelling the UN dataset than the
topic activity-proportion decoupling.

5.2 Qualitative results

4 UN
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Figure 3: Entropy of topic distribution inferred by
DTM-REP, D-ETM and NDF-TM, averaged over doc-
uments as time evolves. Values shown with one stan-
dard deviation for both UN (above) and NeurIPS (be-
low) datasets. Note that the maximum entropy value is
log(K = 50) ~ 3.9.

One of our main claims is that decoupling topic
activity from topic proportion helps the model bet-
ter describe sequentially collected data. We have
seen above this is indeed the case from a quanti-
tative point of view. Nevertheless, one could ask
whether (or how) this decoupling is effectively tak-
ing place as time evolves. To study how the model
encodes the temporal aspects of the data, we track
the time evolution of (i) the topic proportion, (ii) ac-
tivity probabilities and (iii) most important words
for some inferred topics. Figure 2 shows our re-
sults for the topic inferred from the UN dataset,
namely middle east. Note, for example, that the
topic proportion for middle east peaks in the year
1990, which coincides with the Gulf War (see also
year 1990 in Table 4) to then drop right after. Such
a drop is also reflected in the topic activity. Later,
in 2011, the Syrian Civil War started. This event is
captured by the topic activity which peaks at 2011,

even though the topic proportion probability is de-
creasing. That is, even when the proportion of the
middle east topic is low within the documents of
that year, it must remain active to properly describe
the data. Figure 5 in the Appendix shows similar
behavior in the climate topic time series.

Also compare the dynamics of the topic mid-
dle east with that of all topic activities in Figure
4. Also note Table 4 in Appendix, which shows
the evolution of the most important five words of
the topic middle east over time. Clearly the topic
remains coherent as time evolves and follows his-
torical events (e.g. the 1974 coup, Turkish invasion
and division of Cyprus).
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40 0.2
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Year

Figure 4: Average topic activity by 4 as time evolves
for all K topics in NDF—-TM for UN dataset.

6 Conclusion

We have introduced the Neural Bernoulli-Beta
topic model for sequentially collected data, which
explicitly decouples the dynamic topic proportions
from the topic activities through the addition of a
Bernoulli variable modelled with a nonparametric
prior. We have shown that our approach consis-
tently yields coherent and diverse topics, which
correctly capture historical events. Future work
includes using NDF—-TM together with Variational
Autoencoders for topic-guided text generation or
classification.
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A Dataset

A.1 Data preprocessing

We first tokenized and then removed all the num-
bers, punctuation and stop words in all datasets.
Additionally, we removed all words with high doc-
ument frequency (above 70%), as well as words
with low frequency. The latter are defined as words
that appear in less than 30 documents for UN and
less than 10 documents for both NeurIPS and ACL.
Furthermore, for UN we split the speeches into
paragraph, and consider each paragraph as a doc-
ument, as done in (Lefebure, 2018). For NeurIPS
we took the first 120 sentence of each paper as a
document. We then create ten (10) random splits of
each dataset, where each split contains train (85%),
validation (5%), and test (15%) set. Table 3 shows
the statistics of each dataset. The preprocessing
and the instruction how to run it is encoded in the
source code provided as resources.

A.2 Experimental Setup

Choosing the hyperparameters was used grid
search with manual tuning and used the perplexity
as metric to choose the best ones. The search space
for the different hyperparameters is the following:
K = [20,50,200] and oy = [10, 20, 50].

For all models we used K = 50 topics. We set
ap = 10 and 6 = 0.005. We use 300 dimensional
pretrained G1oVe vectors (Pennington et al., 2014)
as word embeddings.

To fairly compare with the models in Dieng
et al. (2019) we set our parameter numbers sim-
ilar to those of D~EMB. The inference models for
0:4,b;q and v, 4 consists of feed-forward neu-
ral networks with 2 hidden layers of size 800 and
ReLU activation functions. The inference models
for ), and &, consists of 4-layer LSTM networks
with 400 hidden units per layer. Their bag-of-words
W, input is first map to a 400 dimensional space
using a linear transformation. The output of the
LSTMs is mapped to K -dimensional space to get
the values of the means and log-variances for each
7y and &;.

We used SGD optimizer with learning rate of
0.001 and batch size of 200 for all datasets. We
also applied gradient clipping with maximum norm
of 2 and used early stopping during training.

The exact details can be also found in the code®.

8Uploaded as resources
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B Additional Results

In order to see the evolution of the important words
per topic over time, we present in Table 4 the topic
middel east with the top five most important words
over time. Additionally, we present in Figure 5 the
evolution of the 6 topic proportion and the corre-
sponding Bernoulli variable b for the climate topic
over time. One can see that even though the topic
proportion is decreasing (f variable) in the period
1970 until 2000, the importance of the topic (b
variable) is still high.
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Figure 5: Evolution of topic proportion and activity
probability for the topic climate inferred from the UN
dataset via NDF—TM-DE.

In order to depict the change of the topic impor-
tance over time, we calculate the topics entropy
per document per time-step. From there we calcu-
late a histogram of the document entropy for each
time-step (as well as aggregated entropy i.e. all the
documents up until time step ¢) and we plot is as a
time series of histogram (see Figure 6, 7 and 8).



Table 4: Time evolution of the top five most important words for the topic middle east, as inferred from the UN

Datasets # Train Docs  # Val Docs  # Test Docs  # Time Steps ~ Vocabulary

UN 196,290 11,563 23,097 46 12,466

NeurIPS 5,249 329 984 30 6,958

ACL 8,936 527 1,051 31 35,108
Table 3: Dataset statistics.

1971 1975 1982 1985 1990 2014
solution cyprus east east kuwait peace
problem solution solution peace arab israel

settlement problem middle israel iraq east
parties settlement peace middle security  palestinian
concerned  sovereignty  security palestinian east state

dataset via NDF-TM-DE. Note how the topic remains coherent as time evolves.

Datasets Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
nuclear east war terrorism problems peace
weapons middle conflicts acts international region
UN disarmament israel violence fight crisis hope
treaty arab tension drug debt efforts
iraq palestinian power crime financial stability
layers graph game state gradient ranking
gradient nodes decision action optimization query
NeurIPS nets variables human reward stochastic pairwise
stochastic inference player policy convergence search
descent structure response agent descent pages
speech annotation  interpretation tag question speech
recognition entity semantics corpus answer prosodic
ACL spoken names representation pos correct phrase
speaker annotated sentence tagging knowledge  boundary
dialogue corpus expressions morphological candidate pitch

Table 5: Top five words from six randomly sampled topics for each dataset. The topics are learned using NDF—TM.
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Figure 6: Histogram of document entropy per time step for the UN dataset.
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Figure 7: Histogram of document entropy per time step for the NIPS dataset.
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Figure 8: Histogram of document entropy per time step for the ACL dataset.
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