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Abstract
Topic models and all their variants analyse001
text by learning meaningful representations002
through word co-occurrences. As pointed out003
by Williamson et al. (2010), such models im-004
plicitly assume that the probability of a topic005
to be active and its proportion within each doc-006
ument are positively correlated. This correla-007
tion can be strongly detrimental in the case of008
documents created over time, simply because009
recent documents are likely better described by010
new and hence rare topics. In this work we011
leverage recent advances in neural variational012
inference and present an alternative neural ap-013
proach to the Focused Topic Model and its dy-014
namic extensions. Indeed, we develop a neu-015
ral model for topic evolution which exploits a016
compound Bernoulli structure in order to track017
the appearances of topics, thereby decoupling018
their activities from their proportions. On019
three different corpora namely, the UN general020
debates, the collection of NeurIPS papers,021
and the ACLAnthology dataset, our model out-022
performs competing neural variational topic023
models.024

1 Introduction025

Probabilistic topic models, the likes of Latent026

Dirichlet Allocation (LDA) (Blei et al., 2003),027

are generative models of word co-occurrence that028

analyse large document collections by learning la-029

tent representations (topics) encoding their themes.030

These models represent the documents of the col-031

lection as mixtures of latent topics, and group032

semantically related words into single topics by033

means of word-pair frequency information within034

the collection. Such a generic generative structure035

has been successfully applied to problems from036

information retrieval, visualization and multilin-037

gual modelling to linguistic understanding in fic-038

tion and non-fiction, scientific publications and po-039

litical texts (see e.g. Boyd-Graber et al. (2017) for a040

review) and keeps being extended to new domains041

(Rezaee and Ferraro, 2020; Zhao et al., 2021).042

Topic models implicitly assume that the docu- 043

ments within a given collection are exchangeable. 044

Yet document collections such as magazines, aca- 045

demic journals, news articles and social media 046

content not only feature trends and themes that 047

change with time, but also employ their language 048

differently as time evolves (Danescu-Niculescu- 049

Mizil et al., 2013). The exchangeability assump- 050

tion along the time component is hence inappro- 051

priate in these cases and topic models have been 052

extended to account for changes in both topic (Blei 053

and Lafferty, 2006; Wang et al., 2012; Jähnichen 054

et al., 2018) and word (Bamler and Mandt, 2017; 055

Rudolph and Blei, 2018; Dieng et al., 2019) dis- 056

tributions among documents collected over long 057

periods of time. 058

It is easy to imagine, however, that if one analy- 059

ses the collection’s content as one moves forward 060

in time, one would find that (some of) the top- 061

ics describing those documents appear, disappear 062

or reappear with time. This simple intuition en- 063

tails that one should not only model the time- and 064

document-dependent topic proportions, but also the 065

probabilities for the topics to be active, and how 066

such probabilities change with time. Previous work 067

has already pointed out that existing topic models 068

implicitly assume that the probability of a topic be- 069

ing active and its proportion within each document 070

are positively correlated (Williamson et al., 2010; 071

Perrone et al., 2016). This assumption is generally 072

unwanted, simply because rare topics may account 073

for a large part of the words in the few documents in 074

which they are active. It is particularly detrimental 075

(for both modelling and prediction) in a dynamic 076

setting, because recent documents are likely better 077

described by new and hence rare topics. 078

Indeed, whenever the topic distribution over doc- 079

uments is strongly skewed, topic models tend to 080

learn the more general topics held by the big ma- 081

jority of documents in the collection, rather than 082

the rare topics contained only by fewer documents 083
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(Jagarlamudi et al., 2012; Tang et al., 2014; Zuo084

et al., 2014). Document collections that reflect085

evolving content typically feature skew topic dis-086

tribution over its documents, with the newly added087

documents being well described by new, rare top-088

ics. Dynamic topic models that feature the topic089

proportion-activity coupling are then expected to090

perform badly, simply because these will not be091

able to infer the new topics characteristic of recent092

documents. To properly model such recent docu-093

ments one should therefore allow rarely seen topics094

to be active with high proportion and frequently095

seem topics to be active with low proportion.096

In this work we seek to decouple the proba-097

bility for a topic to be active from its proportion098

with the introduction of a sparse Bernoulli variable,099

which selects the active topics for a given docu-100

ment at a particular instant of time. Earlier models101

attained such a decoupling via non-parametric pri-102

ors, such as the Indian Buffet Process prior over103

infinite binary matrices, in both static (Williamson104

et al., 2010) and dynamic (Perrone et al., 2016)105

cases. Our construction follows the same logic and106

also deploys the Indian Buffet prior, but leverages107

the reparametrization trick to perform neural varia-108

tional inference (Kingma and Welling, 2013). The109

result is a scalable model whose non-parametric110

nature allows the instantaneous number of active111

topics per document to fluctuate and infers the total112

number of topics in the collection directly from the113

data.114

We introduce the Neural Dynamic Focused115

Topic Model (NDF-TM) which builds on top of116

Neural Variational Topic models (Miao et al.,117

2016), uses Deep Kalman Filters (Krishnan et al.,118

2015) to model the topic dynamics, and the stick-119

breaking Variation Autoencoder (Nalisnick and120

Smyth, 2016) to infer the Bernoulli variable select-121

ing the active topics. We show below that NDF-TM122

explicitly decouples the topic proportion from its123

activity and outperforms competing neural models124

on different metrics.125

2 Related Work126

The NDF-TM model merges concepts from dy-127

namic topic models, dynamic embeddings and neu-128

ral topic models.129

Dynamic topic models. The seminal work of130

Blei and Lafferty (2006) introduced the Dynamic131

Topic Model (DTM), which uses a state space132

model on the natural parameters of the distribution133

representing the topics, thus allowing the latter to 134

change with time. The DTM methodology was first 135

extended by Caron et al. (2007) to a nonparamet- 136

ric setting, via the correlation of Dirichlet process 137

mixture models in time. Later Wang et al. (2012) 138

replaced the discrete state space model of DTM 139

with a Diffusion process, thereby extending the 140

approach to a continuous time setting. Jähnichen 141

et al. (2018) further extended DTM by introducing 142

Gaussian process priors that allowed for a non- 143

Markovian representation of the dynamics. Other 144

recent work on dynamic topic models is that of 145

Hida et al. (2018) 146

Dynamic embeddings. Rather than modelling 147

the content evolution of document collections like 148

DTM, other works focus on modelling how word 149

semantics change with time (Bamler and Mandt, 150

2017; Rudolph and Blei, 2018). These works use 151

continuous representation of words capturing their 152

semantics (as e.g. those of Pennington et al. (2014)) 153

and evolve such representation via diffusion pro- 154

cesses. More recently, Dieng et al. (2019) represent 155

topics as dynamic embeddings, and model words 156

via categorical distributions whose parameters are 157

given by the inner product between the static word 158

embeddings and the dynamic topic embeddings. 159

As such, this model corresponds to the dynamic 160

extension of Dieng et al. (2020). 161

Neural topic models. Another line of research 162

leverages neural networks to improve the perfor- 163

mance of topic models, the so-called neural topic 164

models (Miao et al., 2016; Srivastava and Sutton, 165

2017; Zhang et al., 2018; Dieng et al., 2020, 2019) 166

which deploy neural variational inference (Kingma 167

and Welling, 2013) for training. 168

Decoupling topic activity from its proportion. 169

Williamson et al. (2010) noted the implicit and 170

undesirable correlation between topic activity and 171

proportion assumed by standard topic models and 172

introduced the Focused Topic Model (FTM). FTM 173

uses the Indian Buffet Process (IBP) to decouple 174

across-data prevalence and within-data proportion 175

in mixed membership models. Later Perrone et al. 176

(2016) extended FTM to a dynamic setting by using 177

the Poisson Random Fields model from population 178

genetics to generate dependent IBPs, which allow 179

them to model temporal correlations in data. 180

Both of these models are trained using complex 181

sampling schemes, which can make the fast and ac- 182

curate inference of their model parameters difficult 183

(Miao et al., 2017). In what follows we propose 184
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Figure 1: Graphical model representation of NDF-TM.

an alternative neural approach to the dynamic Fo-185

cused Topic model of Perrone et al. (2016), train-186

able via backpropagation, which learns to decouple187

the dynamic topic activity from its dynamic topic188

proportion.189

3 Neural Bernoulli-Beta Topic Model190

Suppose we are given an ordered collection of cor-191

pora D = {D1, D2, . . . , DT }, so that the tth cor-192

pus Dt is composed of Nt documents, all received193

within the tth time window. Let Wt denote the194

Bag-of-word (BoW) representation for the whole195

document set within Dt and let wt,d denote the196

BoW representation of the d-th document in Dt.197

Let us now suppose that the corpora collection198

is described by a set of K unknown topics. We199

then assume there are two sequences of continu-200

ous hidden variables η1, . . . ,ηT ∈ Rdim(η) and201

ξ1, . . . , ξT ∈ Rdim(ξ) which encode, respectively,202

how the topic proportions and the topic activities203

change among corpora as time evolves (i.e. as one204

moves fromDt toDt+1). That is, ηt and ξt encode205

the global dynamics of semantic content. We also206

assume there are two local hidden variables, con-207

ditioned on the global ones, namely a continuous208

variable ζt,d ∈ RK which encodes the content of209

the dth document in Dt, in terms of the available210

topics, and a binary variable bt,d ∈ {0, 1}K which211

encodes which topics are active in the document212

in question. We combine these local variables to213

compute the topic proportions θt,d ∈ [0, 1]K from214

which each document in Dt is generated.215

3.1 Generation216

Let us denote with ψ the set of parameters of our217

generative model. We are first of all interested in218

learning the number of active topics per document219

at each time step from the data directly. To do so, 220

we model the time-dependent Bernoulli variable 221

bt,d using the stick-breaking prior of the Indian 222

Buffet Process (IBP) (Teh et al., 2007). Explicitly, 223

we generate bt,d as follows 224

ξt ∼ N
(
µξψ(ξt−1), δ I

)
, (1) 225

at = α0 Sigmoid (Wa ξt + ca) , (2) 226

νt ∼ Beta(at, 1), (3) 227

πt,k =
k∏
j=1

νt,k, k = {1, . . . ,K}, (4) 228

bt,d ∼ Bernoulli(πt), (5) 229

where equation 3–5 correspond to the stick- 230

breaking construction of the IBT (Teh et al., 2007) 231

and α0 is a hyperparameter controlling the aver- 232

age number of active topics. Likewise Wa ∈ 233

RK× dim(ξ), ca ∈ RK ⊂ ψ are trainable param- 234

eters. Also note that, just as in Deep Kalman Fil- 235

ters (Krishnan et al., 2015), ξt is Markovian and 236

evolves under a Gaussian noise with mean µξψ, de- 237

fined via a neural network with parameters in ψ, 238

and variance δ. We choose ξ1 ∼ N (0, 1). 239

We model bt,d via the stick-breaking construc- 240

tion of the IBT to allow the number of active topics 241

(of document d at time t) to be inferred directly 242

from the data. As a consequence, the instantaneous 243

number of topics per document is allowed to fluctu- 244

ate and the total number of topics in the collection 245

is allowed to grow with the collection’s size (up to 246

K). 247

Analogously, we generate the topic proportions 248

θt,d as 249

ηt ∼ N
(
µηψ(ηt−1), δ I

)
, (6) 250

ζt,d ∼ N (Wζ ηt + cζ , 1) , (7) 251

θt,d =
bt,d � exp

(
ζt,d
)

∑K
k b

k
t,d � exp

(
ζkt,d

) , (8) 252

where bt,d is defined in equation 5 and � labels 253

element-wise product, Wζ ∈ RK× dim(η), cζ ∈ 254

RK ⊂ ψ are trainable, and µηψ is modelled via a 255

neural network. Here ηt is also Markovian and we 256

set η1 ∼ N (0, 1). Note that the topic proportion 257

thus defined are sparse vectors. 258

Once we have θt,d we generate the corpora se- 259

quence by sampling 260

yt,d,n ∼ Categorical(θt,d), (9) 261

wt,d,n ∼ Categorical(βyt,d,n), (10) 262
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where yt,d,n is the time-dependent topic assignment263

for wt,d,n, which labels the nth word in document264

d ∈ Dt, and β ∈ RK×V is a learnable topic distri-265

bution over words. We define the latter as266

β = softmax(α⊗ ρ), (11)267

with α ∈ RK×E ,ρ ∈ RV×E learnable topic and268

word embeddings, respectively, for some embed-269

ding dimension E, and ⊗ denoting tensor product.270

The NDF-TM is summarized in Figure 1.271

3.2 Inference272

The generative model above involves two inde-273

pendent global hidden variables ξt,ηt, together274

with the intermediate (global) Beta variable νt275

(see Eq. 3) and the local variables ζt,d and bt,d.276

Our task is to infer the posterior distributions of277

all these variables. 1 Denoting with Γt,d the278

set {ξt,ηt,νt, ζt,d,bt,d}, we approximate the true279

posterior distribution of the model with a varia-280

tional posterior of the form281
282

qϕ(Γt,d|wt,d,W1:T ) =

T∏
t

qϕ(νt|Wt, ξt)283

× qϕ(ηt|η1:t−1,W1:T ) qϕ(ξt|ξ1:t−1,W1:T )284

×
Nt∏
d

qϕ(ζt,d|wt,d,ηt) qϕ(bt,d|wt,d,νt), (12)285

where W1:T = (W1, . . . ,WT ) is the ordered se-286

quence of BoW representations for the corpus col-287

lection and ϕ labels the variational parameters.288

Local variables. The posterior distribution over289

the local variables ζt,d,bt,d are chosen as Gaussian290

and Bernoulli, respectively, each parametrized by291

neural networks. Explicitly, we write292

qϕ(ζt,d|wt,d,ηt) = N (µζϕ,σ
ζ
ϕ), (13)293

where µζϕ and σζϕ are both functions of wt,d,ηt294

and are modelled via neural networks. Likewise295

qϕ(bt,d|wt,d, ξt) = Bernoulli(πϕ(wt,d, ξt)),
(14)296

where πϕ lives on the K-simplex and is modelled297

with a neural network with a Softmax function298

as output nonlinearity.299

Global variables. The posterior distribution300

over the dynamic global variables ξt,ηt are also301

1Note in passing that we do not need to perform infer-
ence of the latent topics yt,d,n, simply because these can be
integrated out.

Gaussian, but now depend not only on the previous 302

latent variables at time t− 1, but also on the entire 303

sequence of BoW representations W1:T . This fol- 304

lows directly from the graphical model in Figure 305

1, as noted by Krishnan et al. (2015). We shall 306

use LSTM networks (Hochreiter and Schmidhuber, 307

1997) to model these dependencies. Specifically let 308

qϕ(ξt|ξt−1,W1:T ) = N (µξϕ,σ
ξ
ϕ), (15) 309

where µξϕ, σξϕ are neural networks which take as 310

input the pair ξt−1, hξt , with hξt a hidden repre- 311

sentation encoding the sequence W1:T . Similarly 312

313

qϕ(ηt|ηt−1,W1:T ) = N (µηϕ,σ
η
ϕ), (16) 314

where µηϕ,σ
η
ϕ, again neural networks, take as input 315

the pair ηt−1,h
η
t , with hηt a second hidden repre- 316

sentation also encoding W1:T . 317

These hidden representations hit, with i = 318

{ξ, η}, correspond to the hidden states of LSTM 319

networks whose update equation read 320

hit = f iϕ(Wt,h
i
t−1). (17) 321

Finally, since the Beta distribution does not 322

have a non-centered parametrization, we follow 323

Nalisnick and Smyth (2016) and choose the Ku- 324

maraswamy distribution (Kumaraswamy, 1980) 325

Kumar(x; a, b) = abxa−1(1− xa)b−1, (18) 326

for x ∈ (0, 1) and a, b > 0, which has a closed- 327

form CDF, as the posterior of νt. Explicitly we 328

write 329

qϕ(νt|Wt, ξt) = Kumar
(
νt; c

ν
ϕ,d

ν
ϕ

)
, (19) 330

where the functions cνϕ,d
ν
ϕ take the pair Wt, ξt as 331

input and are each modelled with a neural network, 332

with a Softplus function as output nonlinearity. 333

Note that we can sample Eq. 19 thus 334

νt = (1− u
1

dν
ϕ )

1
cνϕ , (20) 335

with u ∼ Uniform(0, 1). 336

3.3 Training Objective 337

To optimize the model parameters {ψ,ϕ} we mini- 338

mize the variational lower bound on the logarithm 339

of the marginal likelihood pψ(wt,d,n|β). Follow- 340

ing standard methods (Bishop, 2006) the latter can 341

readily be shown to be 342
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UN NeurIPS ACL
Models PPL-DC P-NLL PPL-DC P-NLL PPL-DC P-NLL
DTM* 2393.5 - - - 4324 -
DTM-REP 3012 ± 14 8.334 ± 0.003 6107±907 8.5 ± 0.4 6503 ± 875 8.5 ± 0.5
D-ETM 2275 ± 13 7.918 ± 0.002 5404±418 9 ± 1 2733±109 7.99 ± 0.02
NDF-TM 2899 ± 24 8.192 ± 0.004 3768±223 8.32 ± 0.02 2365±146 7.7 ± 0.6
NDF-TM-DE 2644 ± 11 8.00 ± 0.03 3665±312 17 ± 5 2727±187 8.03 ± 0.08

Table 1: Perplexity on document completion (PPL-DC) and predictive negative log likelihood (P-NLL). Lower
is better. PPL-DC is calculated by conditioning the model on the first half of the document and evaluate the
perplexity on the second half of the document. P-NLL is estimated using equation 26). (*) Results are taken from
(Dieng et al., 2019). All other results are obtained by training the models on 10 different random splits of the
datasets.

343

L[β, ψ, ϕ] =
T∑
t=1

Nt∑
d=1

Nd∑
n=1

EΓ

{
log pψ(wt,d,n|β,Γ)

}
344

− KL [qϕ(η1|W1:T ); p(η1)]− KL [qϕ(ξ1|W1:T ); p(ξ1)]345

−
T∑
t=2

KL
[
qϕ(ηt|η1:t−1,W1:T ); pψ(ηt|ηt−1)

]
346

−
T∑
t=2

KL
[
qϕ(ξt|ξ1:t−1,W1:T ); pψ(ξt|ξt−1)

]
347

−
T∑
t=1

Eξt

{
KL [qϕ(νt|Wt, ξt); pψ(νt|ξt)]

}
348

−
T∑
t=1

Nt∑
d=1

(
Eηt

{
KL
[
qϕ(ζt,d|wt,d,ηt); pψ(ζt,d|ηt)

] }
349

+ Eξt

{
KL [qϕ(bt,d|wt,d, ξt); pψ(bt,d|ξt)]

})
, (21)350

where KL labels the Kullback-Leibler divergence351

and β is given in equation 11. Note that to com-352

pute the KL between the Kumaraswamy posterior353

qϕ(νt) and the Beta prior pψ(νt) we approximate354

the infinite sum as done in Nalisnick and Smyth355

(2016).356

4 Experiments357

In this section we introduce our datasets and de-358

fine our baselines. Details about preprocessing and359

experimental setup can be found in the Appendix.360

However two important parameters in our model361

are the maximum topic number K and the hyper-362

parameter controlling the average number of active363

topics α0. Both these hyperpameters are chosen364

via cross-validation, with K = 50 and α0 = 10365

given the best results2.366

4.1 Datasets367

We evaluate our model on three datasets, namely368

the collection of UN speeches, NeurIPS papers and369

2K was chosen from the set 30, 50 and 200. We found 50
to be the best value for all models, i.e. including the baselines

the ACL Anthology. The UN3 dataset (Baturo et al., 370

2017) contains the transcription of the speeches 371

given at the UN General Assembly during the pe- 372

riod between the years 1970 and 2016. It consists 373

of about 230950 documents. The NeurIPS papers 374

dataset contains the collection of papers published 375

in NeurIPS4 between the years 1987 and 2016. It 376

consists of about of about 6562 documents. Finally, 377

the ACL Anthology (Bird et al., 2008) contains 378

a collection of computational linguistic and natu- 379

ral language processing papers published between 380

1973 and 2006. It consists of about 10514 docu- 381

ments. 382

4.2 Baselines 383

Our main aim is to study the effect of the topic 384

proportion-activity decoupling in the performance 385

of dynamic topic models5 on data collections dis- 386

playing evolving content. To do so we compare 387

against three models: 388

(1) DTM — the Dynamic Topic Model (Blei 389

and Lafferty, 2006), which uses Kalman Filters 390

to model the topic dynamics. 391

(2) DTM-REP — the neural extension of DTM, 392

fitted using neural variational inference (Dieng 393

et al., 2019). This model uses a logistic-normal 394

distribution, parametrized with feedforward neu- 395

ral networks, as posterior for the topic proportion 396

distribution as in Miao et al. (2017). It also uses 397

Kalman Filters to model the topic dynamics, but 398

parametrizes the posterior distribution over the dy- 399

namic latent variables with LSTM networks, as in 400

Deep Kalman Filters (Krishnan et al., 2015). As 401

such, DTM-REP works as the dynamic extension 402

of Miao et al. (2017). Comparing our model with 403

DTM-REP should show the effect of adding the 404

3https://www.kaggle.com/unitednations/un-general-
debates

4https://www.kaggle.com/benhamner/nips-papers
5This means we do not consider static topic models
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UN NeurIPS ACL
Models TC TD TC TD TC TD
DTM* 0.1317 0.0799 - - 0.1429 0.5904
DTM-REP 0.108 ± 0.003 0.59 ± 0.001 -0.022±0.007 0.15±0.01 0.007 ± 0.008 0.55 ± 0.02
D-ETM 0.201 ± 0.002 0.68 ±0.006 -0.019±0.008 0.28 ±0.05 0.137±0.004 0.61±0.02
NDF-TM 0.173 ± 0.002 0.62 ± 0.003 0.01±0.02 0.37±0.01 0.20±0.02 0.82±0.01
NDF-TM-DE 0.191 ± 0.007 0.51 ± 0.002 -0.071±0.034 0.38±0.05 0.135±0.009 0.64±0.03

Table 2: Topic coherence (TC) and Topic diversity (TD) for all models. Higher is better. TC is calculated by
taking the average pointwise mutual information between two words drawn randomly from the same topic. TD is
the percentage of unique words in the top 25 words of all topics. (*) Results taken from (Dieng et al., 2019). All
other results are obtained by training the models on 10 different random splits of the datasets.

activity-coupling to neural topic models.405

(3) D-ETM — the Dynamic Embedded Topic406

Model (Dieng et al., 2019), which captures the evo-407

lution of topics in such a way that both the content408

of topics and their proportions evolve over time.409

Thus, this model adds complexity to DTM-REP410

by modelling words via categorical distributions411

whose parameters are given by the inner product be-412

tween the static word embeddings and the dynamic413

topic embeddings.414

To better compare with D-ETM, we also al-415

low NDF-TM to capture time-varying topic con-416

tent by learning a posterior distribution over time-417

dependent embeddings. We label this model418

NDF-TM-DE. In practice this means our topic em-419

beddings are now indexed by time αt ∈ RK×E for420

t = {1, . . . , T}.421

Generation in NDF-TM-DE — To train the αt422

we augment the generative model, equations 1–8,423

with the following prior on the evolution of topic424

embeddings425

αt,k ∼ N (αt−1,k, δI), (22)426

where α1,k ∼ N (0, I) for k = {1, . . . ,K}.427

Inference in NDF-TM-DE — For inference we428

use a mean-field solution of the form429

qϕ(α1:T,1:K) =

T∏
t=1

K∏
k=1

N (αt,k, δI), (23)430

where the αt,k are learnable. This last expression431

is to be multiplied to equation 12 above.432

Training Objective in NDF-TM-DE — The ex-433

tended model has an additional term added to its434

loss functions, namely the Kullback-Leibler diver-435

gence between the prior and posterior distribution436
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Figure 2: Evolution of topic proportion and activity
probability for the topic middle east inferred from the
UN dataset via NDF-TM-DE.

of αt. Explicitly we have 437
438

L[ρ, ψ, ϕ] = Eqϕ(α1:T )

{
L[α1:T ,ρ, ψ, ϕ]

}
439

−
T∑
t=1

K∑
k=1

KL[qϕ(αt); p(αt)], (24) 440

where ρ are the learnable word embeddings of 441

above. 442

5 Results 443

In order to quantify the performance of our models, 444

we first focus on two aspects, namely its prediction 445

capabilities and its ability to generalize to unseen 446

data. Later we also (qualitatively) discuss how the 447

model actually performs the decoupling between 448

topic activities and proportions. 449

(1) To test how well our models perform on a 450

prediction task we compute the predictive negative 451

log likelihood (P-NLL). Since to our knowledge 452

the latter does not appear explicitly in the dynamic 453

topic model literature, we briefly revisit how to 454

estimate it in what follows. 455

In order to predictN steps into the future we rely 456

on the generative process of our model, albeit con- 457

ditioned on the past. Essentially, one must generate 458

Monte Carlo samples from the posterior distribu- 459

tion and propagate the latent representations (ξt 460
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and ηt in our model) into the future with the help461

of the prior transition function (equations 1 and 6,462

respectively)6. This procedure is depicted on the463

conditional predictive distribution of our model464
465

p(WT+1|W1:T ) =

∫
pψ(WT+1|ΓT+1)466

× pψ(ΓT+1|ΓT )qϕ(Γ1:T |W1:T )dΓ1:T , (25)467

where we replaced the true (intractable) posterior468

with the approximate posterior qϕ(Γ1:T |W1:T ),469

and where Γt,d labels the set {ξt,ηt,νt, ζt,d,bt,d}470

as before.471

We can now define the predictive log likelihood472

as473
474

P-NLL = Ep(ΓT+1|ΓT )Eq(Γ1:T |W1:T )

{
475

log pψ(WT+1|ΓT+1)
}
. (26)476

(2) To test generalization we use three metrics477

namely, perplexity (PPL) on document completion,478

topic coherence (TC) and topic diversity (TD).479

The document completion PPL is calculated on480

the second half of the documents in the test set,481

conditioned on their first half (Rosen-Zvi et al.,482

2012).483

The TC is calculated by taking the average point-484

wise mutual information between two words drawn485

randomly from the same topic (Lau et al., 2014)486

and measures the interpretability of the topic. In487

contrast, TD is the percentage of unique words in488

the top 25 words of all topics (Dieng et al., 2020).489

Note that one also often finds in the literature the490

topic quality metric (TQ), defined as the product of491

TC with TD.492

5.1 Comparison with baselines493

The results on both P-NLL and PPL tasks are494

shown in Table 1. Both our models (NDF-TM and495

NDF-TM-DE) outperformed all baselines on the496

NeurIPS and ACL datasets, but are only second497

and third to D-ETM in the UN dataset.498

One could argue that NeurIPS and ACL feature499

more emergent and volatile topics (wrt. their ac-500

tivity), as compared to those characteristic of the501

UN dataset (see for example Table 5 in the Ap-502

pendix, which shows six randomly sampled topics503

from each dataset as inferred by NDF-TM. Note504

6Note that one is effectively performing a sequential Monte
Carlo sample (Speekenbrink, 2016), in which future steps are
particles sampled from the posterior and propagated by the
prior.

how those inferred from the UN dataset seem to 505

circle about war and peace). 506

It is easy to imagine that the more generic top- 507

ics in the UN dataset (like war, climate, etc) have 508

reached some type of equilibrium and thus display 509

overall a less skewed distribution over the docu- 510

ment collection. If this were the case, explicitly 511

decoupling topic proportion from its activity would 512

have little role on the effective modelling of the 513

dataset. That is, rare topics would be less relevant 514

in the UN dataset. 515

In sharp contrast, topic models trained on say 516

NeurIPS typically infer topics about Neural Net- 517

works and their training, as well as about Rein- 518

forcement Learning (see e.g. Topic 1, 5 and 4 in 519

Table 5 of the Appendix). Such topic easily display 520

a strongly skewed distribution on the NeurIPS col- 521

lection, which would explain the good predictive 522

performance of our models. 523

Figure 3 shows the (Shannon) entropy of the 524

topic distribution, averaged over documents as time 525

evolves as inferred by all models 7. Note how the 526

entropy inferred by DTM-REP for UN is close to 527

zero, meaning that DTM-REP usually describes the 528

documents with few topics, whereas for NeurIPS 529

the entropy of the average topic distribution is close 530

to its maximum value (log(K = 50) ≈ 3.9), mean- 531

ing that it allocates almost equal probability for 532

all K topics, as expected for a skew topic distri- 533

butions. In contrast, NDF-TM uses the additional 534

Bernoulli variable to redistribute the noise in the 535

topic dynamics. See e.g. Figure 4 which shows the 536

topic activity probability, average all documents as 537

time evolves, as inferred from NDF-TM on the UN 538

dataset. We refer the reader to the Appendix for 539

further data visualization of the entropy dynamics 540

for all our datasets and all models. 541

The results on both TC and TD shown in Table 2 542

reflect a similar story: NDF-TM and NDF-TM-DE 543

perform well on NeurIPS and ACL, but are outper- 544

formed by D-ETM on the UN dataset. 545

Note that D-ETM learns different embeddings 546

for each topic at each time step (i.e. K ∗ T em- 547

beddings in total). In comparison, NDF-TM learns 548

only K topic embeddings, whereas NDF-TM-DE, 549

although with K ∗ T available embeddings, has 550

only about α0 active embeddings (in average) at 551

each time step. Interestingly enough NDF-TM, al- 552

7The Shannon entropy of the topic distribution per docu-
ment and time is defined here by Ht,d = −

∑K
i θ

(i)
t,d log θ

(i)
t,d,

where θ(i)t,d is the ith component of θt,d.
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beit with less capacity, is consistently better in both553

NeurIPS and ACL than NDF-TM-DE. In contrast,554

NDF-TM-DE is better than NDF-TM in the UN.555

Here again we can argue that topic embeddings are556

more useful for modelling the UN dataset than the557

topic activity-proportion decoupling.558

5.2 Qualitative results559
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E
nt

ro
py

UN

DTM D-ETM NDF-TM

1987 1992 1997 2002 2007 2012 2017
Year

0

2

E
nt

ro
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NeurIPS

DTM D-ETM NDF-TM

Figure 3: Entropy of topic distribution inferred by
DTM-REP, D-ETM and NDF-TM, averaged over doc-
uments as time evolves. Values shown with one stan-
dard deviation for both UN (above) and NeurIPS (be-
low) datasets. Note that the maximum entropy value is
log(K = 50) ≈ 3.9.

One of our main claims is that decoupling topic560

activity from topic proportion helps the model bet-561

ter describe sequentially collected data. We have562

seen above this is indeed the case from a quanti-563

tative point of view. Nevertheless, one could ask564

whether (or how) this decoupling is effectively tak-565

ing place as time evolves. To study how the model566

encodes the temporal aspects of the data, we track567

the time evolution of (i) the topic proportion, (ii) ac-568

tivity probabilities and (iii) most important words569

for some inferred topics. Figure 2 shows our re-570

sults for the topic inferred from the UN dataset,571

namely middle east. Note, for example, that the572

topic proportion for middle east peaks in the year573

1990, which coincides with the Gulf War (see also574

year 1990 in Table 4) to then drop right after. Such575

a drop is also reflected in the topic activity. Later,576

in 2011, the Syrian Civil War started. This event is577

captured by the topic activity which peaks at 2011,578

even though the topic proportion probability is de- 579

creasing. That is, even when the proportion of the 580

middle east topic is low within the documents of 581

that year, it must remain active to properly describe 582

the data. Figure 5 in the Appendix shows similar 583

behavior in the climate topic time series. 584

Also compare the dynamics of the topic mid- 585

dle east with that of all topic activities in Figure 586

4. Also note Table 4 in Appendix, which shows 587

the evolution of the most important five words of 588

the topic middle east over time. Clearly the topic 589

remains coherent as time evolves and follows his- 590

torical events (e.g. the 1974 coup, Turkish invasion 591

and division of Cyprus). 592
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Figure 4: Average topic activity bt,d as time evolves
for all K topics in NDF-TM for UN dataset.

6 Conclusion 593

We have introduced the Neural Bernoulli-Beta 594

topic model for sequentially collected data, which 595

explicitly decouples the dynamic topic proportions 596

from the topic activities through the addition of a 597

Bernoulli variable modelled with a nonparametric 598

prior. We have shown that our approach consis- 599

tently yields coherent and diverse topics, which 600

correctly capture historical events. Future work 601

includes using NDF-TM together with Variational 602

Autoencoders for topic-guided text generation or 603

classification. 604
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A Dataset756

A.1 Data preprocessing757

We first tokenized and then removed all the num-758

bers, punctuation and stop words in all datasets.759

Additionally, we removed all words with high doc-760

ument frequency (above 70%), as well as words761

with low frequency. The latter are defined as words762

that appear in less than 30 documents for UN and763

less than 10 documents for both NeurIPS and ACL.764

Furthermore, for UN we split the speeches into765

paragraph, and consider each paragraph as a doc-766

ument, as done in (Lefebure, 2018). For NeurIPS767

we took the first 120 sentence of each paper as a768

document. We then create ten (10) random splits of769

each dataset, where each split contains train (85%),770

validation (5%), and test (15%) set. Table 3 shows771

the statistics of each dataset. The preprocessing772

and the instruction how to run it is encoded in the773

source code provided as resources.774

A.2 Experimental Setup775

Choosing the hyperparameters was used grid776

search with manual tuning and used the perplexity777

as metric to choose the best ones. The search space778

for the different hyperparameters is the following:779

K = [20, 50, 200] and α0 = [10, 20, 50].780

For all models we used K = 50 topics. We set781

α0 = 10 and δ = 0.005. We use 300 dimensional782

pretrained GloVe vectors (Pennington et al., 2014)783

as word embeddings.784

To fairly compare with the models in Dieng785

et al. (2019) we set our parameter numbers sim-786

ilar to those of D-EMB. The inference models for787

θt,d,bt,d and νt,d consists of feed-forward neu-788

ral networks with 2 hidden layers of size 800 and789

ReLU activation functions. The inference models790

for ηt and ξt consists of 4-layer LSTM networks791

with 400 hidden units per layer. Their bag-of-words792

Wt input is first map to a 400 dimensional space793

using a linear transformation. The output of the794

LSTMs is mapped to K-dimensional space to get795

the values of the means and log-variances for each796

ηt and ξt.797

We used SGD optimizer with learning rate of798

0.001 and batch size of 200 for all datasets. We799

also applied gradient clipping with maximum norm800

of 2 and used early stopping during training.801

The exact details can be also found in the code8.802

8Uploaded as resources

B Additional Results 803

In order to see the evolution of the important words 804

per topic over time, we present in Table 4 the topic 805

middel east with the top five most important words 806

over time. Additionally, we present in Figure 5 the 807

evolution of the θ topic proportion and the corre- 808

sponding Bernoulli variable b for the climate topic 809

over time. One can see that even though the topic 810

proportion is decreasing (θ variable) in the period 811

1970 until 2000, the importance of the topic (b 812

variable) is still high. 813
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Figure 5: Evolution of topic proportion and activity
probability for the topic climate inferred from the UN
dataset via NDF-TM-DE.

In order to depict the change of the topic impor- 814

tance over time, we calculate the topics entropy 815

per document per time-step. From there we calcu- 816

late a histogram of the document entropy for each 817

time-step (as well as aggregated entropy i.e. all the 818

documents up until time step t) and we plot is as a 819

time series of histogram (see Figure 6, 7 and 8). 820
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Datasets # Train Docs # Val Docs # Test Docs # Time Steps Vocabulary
UN 196,290 11,563 23,097 46 12,466
NeurIPS 5,249 329 984 30 6,958
ACL 8,936 527 1,051 31 35,108

Table 3: Dataset statistics.

1971 1975 1982 1985 1990 2014
solution cyprus east east kuwait peace
problem solution solution peace arab israel

settlement problem middle israel iraq east
parties settlement peace middle security palestinian

concerned sovereignty security palestinian east state

Table 4: Time evolution of the top five most important words for the topic middle east, as inferred from the UN
dataset via NDF-TM-DE. Note how the topic remains coherent as time evolves.

Datasets Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
nuclear east war terrorism problems peace

weapons middle conflicts acts international region
UN disarmament israel violence fight crisis hope

treaty arab tension drug debt efforts
iraq palestinian power crime financial stability

layers graph game state gradient ranking
gradient nodes decision action optimization query

NeurIPS nets variables human reward stochastic pairwise
stochastic inference player policy convergence search
descent structure response agent descent pages
speech annotation interpretation tag question speech

recognition entity semantics corpus answer prosodic
ACL spoken names representation pos correct phrase

speaker annotated sentence tagging knowledge boundary
dialogue corpus expressions morphological candidate pitch

Table 5: Top five words from six randomly sampled topics for each dataset. The topics are learned using NDF-TM.
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Figure 6: Histogram of document entropy per time step for the UN dataset.
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Figure 7: Histogram of document entropy per time step for the NIPS dataset.
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Figure 8: Histogram of document entropy per time step for the ACL dataset.
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