© ® N O o A~ W N =

21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36

GriNNder: Large-Scale Full-Graph Training of Graph
Neural Networks on a Single GPU with Storage

Anonymous Author(s)
Affiliation
Address

email

Abstract

Full-graph training of graph neural networks (GNNs) processes the entire graph at
once, preserving all input information and enabling straightforward validation of
algorithmic gains. However, it typically needs multiple GPUs/servers, increasing
costs and inter-server communication. Although single-server methods reduce ex-
penses, they remain constrained by limited GPU/host memory as graph sizes grow.
Furthermore, naively applying storage-based methods from other domains to miti-
gate such a limit is infeasible for handling large-scale graphs. Here, we introduce
GriNNder, the first storage-based framework (e.g., using NVMe SSDs) for scalable
and efficient full-graph GNN training. GriNNder alleviates GPU memory bottle-
necks by offloading data to storage, while keeping read/write traffic to and from the
storage device minimal. To achieve this, from the observation that cross-partition
dependencies follow a power-law distribution, we introduce an efficient partition-
wise caching strategy for handling intermediate activations/gradients of full-graph
dependencies with host memory. Also, we design a regathering mechanism for the
gradient engine that minimizes storage traffic and propose a lightweight partition-
ing scheme that overcomes the memory limitations of existing methods. GriNNder
achieves up to 9.78 x speedup over the state-of-the-art baseline and comparable
throughput to distributed baselines while enabling previously infeasible large-scale
full-graph training with a single GPU.

1 Introduction

Graph neural networks (GNNs) are powerful tools for learning from graph-structured data, applicable
to social networks [23]], protein analysis [27], and even classic vision tasks [13]]. Since graphs can
represent almost any unstructured relationship, GNNs hold broad potential across diverse domains.

Most GNNs are trained with full-graph or mini-batch training. Full-graph training [90, |89 42, 25|
79.[72] iteratively processes the entire graph information, which simplifies identifying algorithmic
gains. However, this requires storing all intermediate activations/gradients, which can easily overflow
GPU memory. While scaling GPUs is an option, it incurs significant hardware costs/communication
overhead, often leading to poor efficiency. Mini-batch training [[11}114}133}/99] utilizes graph sampling
to resize the input to fit GPU memory capacity. However, it often results in information loss (e.g.,
neighbors’ features). Moreover, it also requires extensive tuning of sampling strategies and hyperpa-
rameters, which complicates finding the optimal performance of the developers’ algorithms [6]].

Aforementioned limitations, which come from the hardware constraints, hinder researchers from
developing their algorithms flexibly. Our survey on recent conference GNN papers (Appendix [A)
confirms the appeal of full-graph training for its simplicity and fidelity. Around half of them opted
for full-graph training, but many of them reported out-of-memory with large graphs. To address
this, some single-server full-graph training methods [97, 92] have been proposed, but suffer from

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39

40
41
42
43
44
45
46
47
48

49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64

65
66

67
68
69
70
71
72
73

74
75
76
77
78

79

80
81
82
83
84

85
86
87

88

GPU/host memory limit as graph sizes grow (Appendix [B]). Thus, we devise a novel approach that
enables full-graph training of large graphs under limited resources (i.e., a single GPU) with storage
(e.g., NVMe SSD).

One might think that existing storage-based solutions can compensate for limited GPU and host
memory. However, such solutions have fundamental limitations and cannot be directly applied to
full-graph GNN training. For instance, in the context of large language models (LLMs), several
solutions utilize storage [74, /8] by offloading weight parameters/optimizer states to NVMe devices.
Unlike LLMs, which typically have large weights and hence large optimizer states, GNN weights are
shared among all vertices, with only a few (e.g., 2-5) layers. This indicates a need for offloading vertex
activations/gradients instead, but this brings a non-trivial challenge of addressing the complicated
dependency (i.e., edges) between layers. These dependencies cause frequent random accesses, which
put a significant I/O burden on the channel between the GPU and storage.

In the case of mini-batch GNN training, storage-based methods [70} 88} 59, |44]] primarily focus on
efficiently constructing mini-batches while leveraging storage to hold initial graph-related features.
However, extending storage-based mini-batch training [[70} 88} 159, 44] to full-graph training (called
micro-batch training [97]]) also faces the limitations because it only focuses on handling initial
features (not intermediate activations/gradients), and further suffers from the GPU out-of-memory
due to neighbor explosion (Appendix [C).

Specifically, following are three key challenges when employing storage for full-graph GNN training:

1. Storage I/0 Bottlenecks: Despite the improved bandwidth of NVMe SSDs, they are far slower
than host memory and suffer from inefficient I/O due to the storage page granularity.

2. Data Amplification: Existing methods [[71} 26} 92]] utilize activation snapshots to enable sequential
storage access to activations. However, this approach becomes impractical when employing
storage, since it inflates memory usage and I/O traffic.

3. Impractical Partitioning: We need to iteratively conduct graph partitioning until the required
memory size is met to fit the GPU memory size. However, since existing approaches [97,(92]] rely
on standard partitioning algorithms [47, 49 53], they often exceed host memory limits with large
graphs, requiring a separate large-memory cluster/server.

Here, we introduce GriNNder, the first framework enabling fast full-graph GNN training under tight
resources, using an NVMe SSD and a single GPU. It tackles the above challenges with the following:

* Partition-aware graph caching: From the observation that the cross-partition dependencies also
follow a power-law distribution, we exploit this characteristic and utilize host memory as an
efficient partition-wise cache with optimized I/O policies, minimizing inefficient storage 1/O.

* Grad-engine activation regathering: A method to minimize redundant data storage in the automatic
gradient computation engine, mitigating the data amplification in the existing offloading solutions.

» Switching-aware partitioning: A fast, memory-efficient partitioning algorithm for limited-resource
settings, avoiding the high memory footprint of standard partitioners.

We implemented GriNNder as PyGriNNder, allowing users to easily utilize PyTorch Geometric [26]]
code by inheriting the model class. Notably, GriNNder does not alter any of the model/training
algorithm, ensuring seamless migration without the risk of accuracy drop. Experiments show that
GriNNder achieves throughput comparable to distributed baselines and up to 9.78x speedup over the
state-of-the-art, enabling previously infeasible large-scale graph training only with a single GPU.

2 Background: full-graph GNN training

Figure [T shows full-graph training of a two-layer GNN on a toy graph depicted in Figure [Th. From
the topology, the two-layer dependency can be drawn as in Figure [Tp. Starting from the input
features denoted with circled vertex ids, the features are passed by message passing to the features of
destination vertices in the intermediate layer. The message passing of the second layer proceeds with
the same dependency, which creates the output embeddings for the vertices.

Figure[Tk illustrates the typical layer-by-layer procedure of conducting full-graph training on the GNN.
To compute an output feature vector of a vertex, the features of source vertices from the previous
layers need to be aggregated (e.g., average). For example, vertex feature (a) has dependencies from

vertex features (a), ®), and (®), including an implicit self-directed edge. Similarly, vertex feature €

89
90
91
92
93

94
95
96
97

98
99
100
101

102
103
104
105
106

107

108
109
110
111

112
113
114
115
116
117
118
119

Messageﬁfng Forward Backward
i’ I) | T T 4 } ¢ Snapshot
g @@ @—D— @ — o> OO —_—
@0 ©—0 _g-f ®7%. ! - ©@ ' ' O g i ® Act. Gather
Q@—b s g @/ > 2 @ L@ N b, 9 Scatter Acc
? 9 0 E Aggregate: E : : : : ; : : Scatter Accum.
B @ ' HO i i 2 @
(a) Toy graph - A\ | ! ' 3 LB Gathered
O—® 2 020 (): st Layer
(b) Full-graph dependency | S R— A (O : 2nd Layer
& message passing (c) Full-graph training procedure

Figure 1: Example full-graph training procedure with a two-layer GNN.

has dependencies from vertex features (£), (h), and (). After the aggregation, multiplying them with
the shared weight matrix (i.e., W) followed by misc operations such as normalization and activation
produces the final output features for the layer (denoted by (). For the next layer, the output features
are gathered to make inputs for aggregation under the same dependency (blue arrows). The gathered
activations are saved (i.e., snapshots) in the GPU/host memory for later use in the backward pass.

In the backward, the dependency is inverted, where the output of vertex feature/gradient (a) is
delivered to (a), (b), and (g) to compute their gradients. For this, the previously memory-stored
snapshots are loaded (red arrows), and the computed gradients of the corresponding source vertex
features are scatter-accumulated to the vertices of the previous layer (green arrows).

For workloads that fit on a GPU memory, this procedure ensures fast training by utilizing massive
parallelism and high memory bandwidth. However, this comes at the cost of capacity pressure,
because the entire GNN with all its intermediate data has to fit within GPU memory. A straightforward
solution is to scale out [85}[72], but it often suffers from high system cost and slow network throughput.

To address such issues, several methods targeting tight resource constraints (i.e., limited GPU memory
capacity) have been proposed [97, 92]]. However, they still suffer from GPU/host memory limit and
impractical partitioning, which are discussed in Appendix [B] Also, extending storage-based mini-
batch training to full-graph training faces GPU memory limit due to neighbor explosion (Appendix [C).
On the other hand, GriNNder addresses such issues by employing storage with efficient strategies.

3 Full-graph GNN training workflow with storage employment

— Forward ¥ Backward | Save psh S h Act. Gather Scatter Accum. (Gathered

e
H3
3

(O :Redundancy (: 1st Layer Act/Grad () : 2nd Layer Act/Grad

For Each Layer [

Forward-Pass

Partition-Wise |Gather

Cache Manager] 1 1
(Sec. 4.1) G |GAy Ap

Partition-Wise Caching Direct Offload IA,',
[(Act. of 11 A}][Act. of 1 4; |

GriNNder
Partitioner

w

S

® L

Random Gather
Y
<&

i% l

®

0O

(Sec. 4.2)

GPU
%%
hd
D)
R N
e
A
®.
3 |
5 X
g:
®
-_Y

Storage

Storage| Graph G || Partitions T,

(a) Straightforward and naive storage extension (b) Simplified workflow of GriNNder on the forward pass

Figure 2: Workflow of GriNNder compared to the naive storage extension of full-graph training.

Given the full-graph training from Figure[] a straightforward method would be to place the small
weights (and their gradients) on the GPU and the large activations (and their gradients) on the storage.
Figure @a illustrates an example procedure for processing a single vertex, (a). Since the neighbors of
(@) ((a), (b), and (g)) are small enough to fit within the GPU memory, the training can be conducted.

However, this approach yields sub-optimal performance for three main reasons: (D It is non-trivial to
ensure that the neighbors of a target vertex are small enough to fit within GPU memory, which is
necessary for enabling full-graph GNN training on a single GPU. 2) Gathering the feature vectors
of (a), (b), and (g) requires random reads from storage. Since storage devices typically operate at
page granularity (e.g., 16 KiB), such random access leads to substantial inefficiencies. (3) While
the existing snapshot feature in PyTorch [71] and an existing method [92] enables sequential access
patterns, it introduces significant redundancy, resulting in inflated write traffic. For instance, @
appears redundantly in the snapshots of all its neighboring vertices—a), (h), and (7).

120
121
122

123
124

125
126
127
128
129
130
131
132
133

134

135

136
137

138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154

156
157
158
159
160
161
162
163

To address the above limitations, we propose GriNNder, the first framework that enables storage-
offloaded full-graph GNN training in environments with limited GPU and host memory. The overall
workflow of GriNNder is illustrated in Figure 2b (see Appendix [D]for the full detailed algorithm).

To mitigate the above three challenges, we introduce solutions for each. @ Before training begins,
the entire graph G is partitioned into small graphs denoted T;, such that its activation Aé and its

dependency activations GA]lg_1 for layer [fit in the GPU memory. This partitioning procedure needs to
be iteratively conducted until an adequate number of partitions is found to fit such memory usage to the
GPU. Thus, we propose a lightweight partitioning method, which is suitable in limited environments
(Section . @ GriNNder iterate over each T, for every layer, loading the corresponding input
activation GAé_l, computing Al and writing the result to storage. To avoid fine-grained access
patterns, the host-memory cache is managed at the partition granularity. Furthermore, to minimize
storage I/O traffic, the host memory caches the input activations required for the current layer’s
computation (Section . © GriNNder redesigns the gradient engine to regather input activations
(GAﬁjl) on demand, rather than redundantly snapshotting them (Section

4 GriNNder design

4.1 Partition-aware graph caching

50K £
40K Pt~0|:

es

w
&
S
#Required Vert
from Others

5
R

0 - T o]
// 50 Expansion Ratio . : Partition-Wise Upload
S B Partition 0 Partition 1 o : o
05 o8 = 200 O EO OO 26 LAY E® O®
of & = -
SrredParm,:nO/D:O 60 O e 2|02 22 22 22| 2 22 22 22
(a) Partition dependency profile (b) Expansion & intra-layer reuse (c) Partition-wise cache management

Figure 3: Details and rationales of partition-aware graph caching. Pt .1 denotes the Partition 1.

Key takeaway: Similar to the behavior of vertices in a graph, cross-partition dependencies also
follow a power-law distribution. We can exploit this characteristic to address inefficient storage I/O.

We observe that, just as vertex degrees in real-world graphs typically follow a power-law distribution,
cross-partition access patterns exhibit similar behavior. This arises from the well-known tendency of
real-world graphs to form clusters [55]]. Figure [3h shows that such characteristics exist in practice. It
shows statistics from each partition of the IGBM dataset (represented on the y-axis as Partitions).
For each partition, we count how many vertices are required from other partitions. These counts are
sorted along the x-axis (Sorted Partition IDs). The plot shows that out of 64 partitions, most
of the dependencies are confined to ~10 partitions (see Appendix [E] for more datasets). From this
observation, we design the following two key mechanisms.

Layer-wise partition caching: Within a layer, many partitions share activations/gradients. For
instance, in Figure [3b, vertex e’s activation is used in both partitions 0 and 1. When the average
expansion ratio (#required/#target) is «, the activations are reused o — 1 times on average within
that layer. This leads to redundant data accesses to the storage device. To mitigate this inefficiency,
we introduce a strategy called intra-layer reuse, where frequently reused partitions within a GNN
layer are cached in host memory. For the other data that have less or no intra-layer reuse (e.g., graph
topology/output activations), we choose to bypass the host memory with GPUDirect Storage [[67]]
(GDS). This has the effect of reducing the I/O traffic and avoiding cache conflict at the host side.
Please note that GriNNder can be generally used even when GDS is unavailable (see Appendix [T).

Partition-wise cache management: To support the aforementioned feature, GriNNder uses a
partition as the load/evict granularity for the host-memory caches. One naive alternative would be to
load/evict at a vertex granularity. However, in this way, every time a cache miss occurs, reading a
single vertex feature (64~1,024B) from the storage device is needed. Since storage devices access
data at a page granularity (e.g., 16KiB), this would incur a substantial amount of unnecessary 1/O.
In contrast, loading and evicting at a partition granularity alleviates such overhead, because the size
of a partition is typically a few GBs. For example, processing partition O (vertices a and b) has
dependencies to vertices a, b, e, g, and h, which loads three partitions to the host memory: 0, 2, and
3 as illustrated in Figure Eb Then, when it proceeds to partition 1, it has dependencies to ¢, d, e,

164
165
166
167
168
169
170
171
172

173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204

205

206
207

208
209
210
211

212
213
214
215
216
217

and f that span over partitions 1 and 2. For this, we reuse partition 2, which is already cached in
memory. For loading partition 1, we evict an unused partition (partition O in this example, assuming
there is not enough host memory space). This way, the vertex features are reused without causing
fine-grained random accesses to the storage. In the worst case, partition-wise management could only
cause overhead if the dependencies are uniformly spread over many partitions. However, in the above
observation, the dependencies of a partition are confined to only a few other partitions. Therefore, it
can show stable caching performance. For the detailed comparison between the partition-wise and
vertex-wise management, see Appendix [F} We also minimize the latency by overlapping processing
and cache management, and maximizing the sequential access in the GPU (Appendix [G).

Detailed procedure. Figure[dillustrates the brief forward/backward procedure with more details.

Figure Eh depicts the forward A/VA Act./Grad. — Intra-Device Op. —> Host - Storage —>Host- GPU —>GPU - Storage

pass for partition 0 of layer 1. @' ® (Forward) o @ Backward

@ Layer 0’s activations (A0) _ GAO N S 0] O @ [h(von)
are loaded into the host-memory & 0 S @ & I"’ Gradient

cache at the partition granularity. Weight Snapfhm VAL P Scatter &
@ The partitioned graph struc- |__, AL A1 VAL GO vaRo | Accum

ture Tp (topology 0) is uploaded —

Host Memory Cache

Gath @00 |00
THo@OO®® OO0 |®@OO®
oy @ wy O®f[way O

® Jveriex Activations D Vertex Activationso Vertex Gradients| ®
Partition-Wise Caching @ Partition-Wise Caching
] I T T

Host Memory Cache

Act. @@@@

directly to the GPU.)’ The re-
quired vertex activations GAOQ is
sent from the cache to the GPU.
(3 The GPU executes the for-
ward pass to output the next acti- 2]
vation Al. @ Computed activa-
tions A1l are offloaded to storage

Host
Host

—
1 1 I T T I
(_ Storage-based Dataloader) (Storage-based Dataloader)

T T ¥
via GDS as they are not needed % 8| 0000 % 00600 |||leee®
again for the current layer. We 2 ®O0O® g PO | (|eOO®
skip the snapshot to reduce re- PLO wo-ry) O rro_| [0-a3) O [J| war-va0©
dundanc (Section @ Topologies Vertex Activations Topologies Vertex Activations Vertex Gradients
y ’ (a) Forward pass of GriNNder. (b) Backward pass of GriNNder.
Figure fib further illustrates the Figure 4: GriNNder forward/backward for layer 1.

backward for the same partition

of layer 1. The procedure mirrors the forward, but in reverse order, with slightly added complexity
from activation gradients (VA1 and VGA0). @ Similar to the forward, the activations (AQ) are
cached in host memory partition-wise for frequent reuse. @ In the backward pass, the activations
Al and activation gradients V A1 have to be directly loaded from the storage, in addition to the
partitions. Unlike the forward, whose objective is to compute A1, the backward takes A1, VA1,
and G A0 as inputs and produces VG AO. @’ Again, similar to the forward, GAO is fetched from
the host memory cache through regathering, not from snapshots (Section |4.2). @ Using the loaded
activations/gradients, the GPU computes the activation gradients (VG A0). @ The source vertices’
gradients (VG A0) are updated in host memory with a scattered accumulation, ensuring correctness
for vertices shared across partitions. During this, host memory works as a write-back buffer for vertex
activation gradients. @ Once the entire layer is processed, gradients are offloaded to the storage.

4.2 Grad-engine activation regathering

Key takeaway: PyTorch has limitations in supporting the aforementioned partition-wise cache
management during training, particularly due to its requirement to store redundant snapshots.

One of the key challenges for employing storage in full-graph GNN training is data amplification,
where repeated snapshots of input activations inflate both memory capacity and storage I/O demands.
As described in the previous subsection, the strategy of GriNNder is to partition the graph and cache
graph features/gradients in the host memory at the partition granularity.

Unfortunately, the autograd engine of existing frameworks such as PyTorch’s torch.autograd [71}
26l is not designed with such optimizations, and requires a significant amount of host memory
when employing offloading, as drawn in (Figure[Sh). The vanilla autograd engine stores activation
snapshots (‘Snap.’) and intermediate snapshots of all operations (‘Intermed.’), such as normalization
(10), and activation function (10"). While this is a reasonable design for vision or language models, it
struggles on GNNs with limited memory capacity and huge activation sizes.

218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251

252

253
254

255
256
257
258
259

261

262

263
264

To mitigate this limitation, we intro- @ Forward Backward ® O
duce grad-engine activation regath- % g % 5 % % @ @ '. a. %_. %
ering, illustrated in Figure [5] which @ 10 = o A |—>A1 o = -0 @
elimingtes .these inefficiencies. .First, & Stos ntomed . @@ @ — Lokt G®AO ve%
the activation snapshot GAO is es- T_L(,ld Features § M@@ J
sentially a reorganization of the ac- Snapshot Store Feat, gnap l,mmd Snapshot Load
tivations AQ. Based on this observa- (a) PyTorch autograd engine
tion, we regather the activation justin @ Forward Bankwwrd ® 6
time to build G'A0 each time they are @ g @ g @ L 5. @ _ ®
. @ < ® 2 2 SECEEC]
needed. This removes the unnecessary @ 10 >A1 VA1 IO ® ©
time and memory space for activation & e Recomp. G®AO VG%
snapshots. While this adds some ex- 1 | .4 reatures Load -3

@
®
= ®
®
Snap. Interned:

Regather
(b) Grad-engine activation regathering (Ours)

Features

tra regathering overheads at the host,
storing all the snapshots would eas-
ily overflow the memory, increasing
the storage bandwidth demand. Sec-
ond, the intermediate values are also
removed from the host memory and recomputed just in time from the regathered GAQ. In the
figure, 10 is recomputed by aggregation using the topology, and 10’ is obtained by further applying
normalization. This is analogous to checkpointing techniques [92} [12]]. Finally, the output feature A1
is removed from the memory by bypassing the host memory and is directly written to the storage. We
further compare it with another method [92] in Appendix

€

Figure 5: Advantages of grad-engine activation regathering

I/O volume and memory footprint. Let D = |V||H|. During the forward on a layer, the baseline
autograd engine consumes (2« + 3) D traffic between the GPU and the host, for the snapshots (2aD),
intermediate values (2D), and outputs (D). Since the baseline easily exceeds the host memory limit,
it mandates the employment of OS swap memory with storage, and most of that traffic becomes the
traffic between the GPU/host and the storage. GriNNder only consumes oD between the GPU and
the host, D between the GPU and the storage, and D between the host and the storage while caching
(when only cold misses exist). In other words, while the baseline suffers from huge and slow storage
traffic proportional to o, grad-engine activation regathering only requires a 2D amount of storage
traffic. In terms of the memory footprint during the forward, the baseline stores snapshots (a.D),
activations (D), and intermediate values (2D) per layer. On the other hand, grad-engine activation
regathering only occupies D space on the host memory, and D on the storage for the outputs without
redundancy. For more in-depth analyses with another baseline [92]], please refer to Appendix [I}

4.3 Switching-aware partitioning

PLO @3 Ptl
Thread 012012 @ [@
& 1000 Vertextd@ - @) --- : s Yy o"e
£ 800 Partition Vert_e’dd@
8 600 SrcPtr Partition[0] - Source-Level
& 400 srcPr [0] - Parallelism
£ 200 |Host Limit Dstidx [1]2]5]7]4]3] -[8]tq[9] -
= i Dstldx [1]2]5][7]4]3] [8[i[9]
0 g pariton 22201311 [2[A[2] - Dst's
Products IGBM Papers partitionl2L212[0T1]1] [2]1]2]-

1st Pref)

(a) METIS mem. requirement (b) Intermediate partition and data structure (c) Parallelized preference calculation

Figure 6: Motivation and a high-level overview of switching-aware partitioning.

Key takeaway: Existing partitioning algorithms (e.g., METIS-based) often incur significant hardware
costs, making them impractical for GNN training in resource-constrained environments.

Graph partitioning is an important enabler that allows GriNNder to efficiently utilize GPU memory
and manage caches with minimal storage bandwidth demand. Although existing partitioners used in
GNN domains (e.g., METIS-based [47. 149, 53}, 191} |60]) output near-optimal partitions, they often
exceed single-server memory limits (Figure [6p) for large datasets such as Papers [38] (Appendix[J).
If partitioning has to be performed on external servers for this, it breaks the purpose of training
GNNs on a single machine/GPU. Since the partitioning needs to be repeatedly iterated to find the
adequate number of partitions to fit in the GPU, this issue is critical. This clearly shows the need for
a lightweight partitioning method.

Inspired by streaming partitioning (Spinner [63], opted for distributed cloud systems), we devise
a lightweight switching-aware partitioning, which has low memory consumption and is suited for

265
266
267
268

269
270
271
272
273

274
275
276
277
278
279
280
281
282

283
284

286
287

289

290
291
292

293

294

295

296
297
298
299

300
301
302
303
304
305

306
307
308
309
310
311
312
313
314

GriNNder. The key is to minimize the use of auxiliary data structure, whose size often largely
surpasses that of the graph itself. From an arbitrary partition, we iteratively refine them to reduce
the number of dependent partitions until convergence. Detailed procedures and design insights are
provided in Appendix [Kl and we illustrate the brief overview in the following paragraphs.

Figure[6b outlines an example intermediate state along with the data structure. The data structure
follows the compressed sparse row (CSR), which comprises source pointers (SrcPtr) and destination
indices (DstIdx). On top of this, we manage another array (Dst’s Partition) and fill this with the
partition IDs of each destination index in DstIdx. In Figure [6p, the vertex 0 has neighbors of vertex
{1,2,5,7,4,3}. For each neighbor, we fill the Dst’s Partition with its partition {2,2,2,0,1,1}.

In a high-level view, the algorithm attempts to move to the partition with the most neighbors to reduce
the number of dependent partitions, while keeping the sizes of partitions similar. In Figure [6b, the
vertex 0 prefers the partition 2 (denoted by ‘st Pref.” in Figure [c) because its neighbors are mainly
placed in partition 2. We search for such preferences on each source vertex (called source) in a multi-
threaded manner and move each source vertex to the preferred partition as illustrated in Figure 6.
By updating the preferred partitions iteratively following the above procedure until convergence, we
can minimize the average expansion ratio («) of the partitions. In addition, we also consider the
balance between the partitions along with second-order preferences. For detailed decision-making
and parallelized preference calculation and partition update, please refer to Appendix [K]

Memory Efficiency: Switching-aware partitioning uses only a standard CSR representation—
SrcPtr, DstIdx—plus aDst’s Partition array to record each neighbor’s current partition. This
totals O(|V'| 4+ |E|) space, much smaller than METIS’s large coarsening data structures.

Integration with Full-Graph Training: We use METIS when host memory is sufficient. Otherwise,
switching-aware partitioning offers a fast and memory-efficient alternative with good partition quality.
For comparison with Spinner [63] and SOTA out-of-core partitioner (2PS-L [64]), see Appendix [P

4.4 Implementation: PyGriNNder

Users with PyG [26] code can utilize GriNNder by simply inheriting the GriNNderGNN module.
Users only need to implement the layer_forward method in addition to the default forward
method. See Appendix [[]for the API example, framework structure, and implementation details.

5 Evaluation

5.1 Experimental settings and baselines

We provide a brief overview of experimental settings and baselines. For more details, see Appendix[M]

Models/datasets: We use 3-/5-layer GCN [52]] with a hidden dimension of 256. We also test GAT [87]]
and GraphSAGE [33]]. Datasets range from medium to large scale: Products [38]], IGBM [51]], and
Papers [38]. We also utilized Kronecker graphs [54] (average degree=10) with the random initial
feature of dimension 128 and #classes of ten.

Hardware: We run main experiments on a workstation with an AMD Ryzen9 7950X 3D CPU (16C
32T), 128GB DDR5-5600 RAM, one RTX A5000 (24GB) GPU, a PCle 5.0 NVMe SSD (4TB), and a
total 4TB swap space for swap-based experiments. For distributed baselines, we use a 4-server cluster;
each node has four RTX A6000 GPUs interconnected by NVLink [69]] and Infiniband SDR [68]]. For
IGBM/Papers, we needed all 16 GPUs to fit the data in the GPU memory. For Products, using fewer
GPUs could yield better performance, but we used all GPUs to maintain consistency among datasets.

Baselines: (Training) We compare GriNNder (GRD) against various single-server/distributed meth-
ods: (D Micro-batch training (Betty [97]), @ Micro-batch training with storage extension (Ginex
[70]), ® Host memory offloaded training (HongTu [92]]) with OS swap memory, @ Distributed
full-graph training (CAGNET [83]), (3 Distributed full-graph training with communication skipping
(Sancus [[72]), (® Naive storage extension of full-graph training (ROC [42]). For details of micro-
batch and host memory offloaded training, see Appendix Bl We showed (6 only in Appendix
due to its much slower performance. In the appendix, we also tested two storage-based mini-batch
training ((7) DiskGNN [59], (® GNNDrive [44]) with micro-batch extension (Appendix . For out-
of-memory issues in distributed baselines, we add host-memory checkpointing (*) to enable execution.

315
316
317
318
319

320

321
322
323
324
325
326

327
328
329
330
331

333
334

335
336
337

338
339
340
341

342
343
344
345

347
348
349
350

351
352

353

354
355
356

358
359
360
361
362
363

365
366

GriNNder achieves equal final accuracy with all the baselines (see Appendix @) except (3, which is
non-exact due to its staleness. All baselines use the state-of-the-art partitioner MT-METIS [53]]. For
fairness, if METIS exceeds our setting’s memory, we assume it was preprocessed elsewhere following
the standard practice, except for partitioning experiments. (Partitioning) For comparisons with
lightweight partitioners, we benchmarked Spinner [63]] and an out-of-core partitioner (2PS-L [[64])).

5.2 Large graph training results Table 1: Results of training time (min)/epoch.
Table[T]presents per-epoch training time for #nodes 24M 10M 100M
GriNNder (GRD) compared to five base- Method PRODUCTS IGBM PAPERS
lines—Betty, Ginex, HongTu, CAGNET, BETTY 0.61 28.71 GPU OOM
and Sancus—using 3-/5-layer GCNs (hid- = 2 g'NEXT g?g Gpgng s 17'(7)%)M
den dimension 256) on Products, IGBM, %‘E G%I)G v 0.12 0.93 b
and Papers. 2 CAGNET 0.21 1.41 *10.01
Micro-batch (Betty, Ginex): Despite 2 SANcus 0.19 *0.77 *GPU OOM
Betty’s memory-only design (no storage), BETTY 1.05 GPUOOM GPUOOM
GRD achieves up to 30.98x faster train- w» 3 GINEX 15.10 GPUOOM GPU OOM
.) . | '8 HONGTU 0.32 14.90 Swap OOM
ing, largely due to 'Betty s repeated neigh- =3 GRD 0.23 1.52 12.03
bor expansions. Ginex uses storage to ex- — CAGNET 038 210 “GPU OOM
tract MFG, yet still suffers from redundant A SANCUS 0.36 141 *GPU OOM

computation caused by neighbor explosion,

. . SANCUS: Non-exact full-graph (with staleness)
which GRD improves up to 77.92x.

Products (Medium): Since HongTu can fit Products entirely in host memory, one might expect it to
outperform storage-based GRD. In practice, HongTu’s redundant snapshots slow it down, allowing
GRD to beat it by 1.44/1.40x on 3-/5-layer GCNss.

IGBM (Large): Micro-batch methods suffer from GPU OOM on deeper models—Betty/Ginex often
cannot handle the neighbor explosion. HongTu must manage large volumes of data in host memory,
drastically increasing overhead. In contrast, GRD is 6.97/9.78 x faster than HongTu with caching
and non-redundancy. Even against multi-GPU CAGNET, GRD achieves faster speed (1.52/1.38 x).

Papers (100M): This highlights GRD’s scalabil- Table 2: Training time (min)/epoch sensitivity
ity. Betty and Ginex often fail on deeper mod- for graph sizes with synthetic graphs. For more
els with OOM from neighbor explosion, and ~results with ablation, see Appendix [N}

HongTu from activation snapshots. GRD avoids
these with efficient caching and no redundant
snapshots. Ginex can run the 3-layer model [HONGTU 043 0.83 7.25 36.31

#nodes 4.2M 8.4M 16.8M 33.6M

but is 1.95x slower than GRD. Notably, GRD’s — XD 029 05 193 373
speed is faster than CAGNET (1.10x) despite 1 goxd™ 0% 14 s e

using a single GPU.

Additional-synthetic: In Table 2] we tested various-sized Kronecker graphs to validate scalability.
GriNNder provides stable speedup over HongTu (1.41-12.50%).

5.3 Ablation by decreasing effective cache size and cache hit rate

Table [3]analyzes GriNNder ’s sensitivity to effective Taple 3: Sensitivity on effective cache size

cache size by varying the hidden dimension on IGBM. with ablation (training time (min)/epoch).
We ablated GriNNder: HongTu, HongTu + grad-
engine activation regathering (GRD-G), and GRD-G # hiddens |H|=384 |H|=512 |H|=1024

+ partition-aware graph caching (GRD-GC). GriN- _ Methed 0.75$S1zE 0.5§ Size 025§ Size
Nder outperforms HongTu by 6.84-12.34x. When gg’;’fé” 112-2503 1185617 gggé
host memory can cache most data (in 3 layers), GRD- GRD-GC 141 Lo1 3.08

G alone yields improvements over HongTu. However, 25,07 3181 9342

in 5-layer settings, host memory becomes a bottle- 10.26 12.50 42.14
neck, making cache replacement crucial. Thus, GRD- GRD-GC 2.54 3.37 13.65

GC gains 3.09-4.04 x speedup over GRD-G. Overall,

GriNNder is robust on cache sizes. Also, we reported the cache hit rates in Appendix [O] Larger
datasets incur more reuse from the higher #partitions, making the hit rates significant (53.70-92.77%).

3

IL|

1]=5
25
o3
Q-
[}

367

368
369
370
371
372
373
374
375
376
377

378

380
381

383
384
385
386
387
388

389
390

392
393
394
395

396

397
398
399
400
401
402

404
405
406

54 Analysis on host memory usage GRD-G : +Grad-Engine Activation Regathering
GRD-GC: GRD-G + Cached Storage Offloading

3 h : . =Dataload #Act/Grad #Snap. _——HongTu GRD-G GRD-GC
Figure[7h shows an ablation study on 2 300 % 200
how GriNNder reduces host memory =200 | % S 200
consumption. We compare GRD-G %E, 108 A s o | B 108

! e e g -~
(e, Hor;g’lfu + gf‘éﬁ?)glgé aéURVS % HongTu GRD-G GRD-GC g Init FO Fi F2 B2 Bl BO
tion regathering) an - (" = (a) Max. Host Memory Usage £ (b) Host Memory Usage Timeline

G + partition-aware graph caching).
HongTu suffers from snapshots, while
GRD-G eliminates them. GRD-GC’s
layer-wise up/offload further cuts the peak usage from HongTu by 5.75 x. Figure|/b shows the host
memory usage timeline. With GDS and caching, GRD-GC shows significantly low memory usage.

Figure 7: Host memory usage of GriNNder on the IGBM.

5.5 Analysis on partitioning algorithms

Table 4: Memory usage (GB) of partitioning. Table 5: Effect of partitioning (left) and model
type (right) on training time/epoch (sec).

Dataset Method GraphPart. Label Add. Total
MT-METIS 1.01 0.01 9.93 10.95 Method ProbpuUcTsIGBM Model |L| HongTu GRD

PRrRODUCTS

GRD .01 001 052 1.54
MT-METIS 693 5562 GAT 3 74107 R
1GBM MTMETIS 112 004 2834 29.50 . . . s 1153.82 108.01
GRD 112 004 087 2.03
Random 14.73 353.06 3 58476 69.24
papprs MTMETIS 2671 044 867.84895.00 SAGE : .
GRD 2671 044 956 3672 ORD 926 12587 5 794.13 112.70

Memory usage: Table [4] shows that GriNNder ’s partitioning greatly reduces memory usage by
7.10-24.37x compared to METIS. METIS requires additional memory for coarsening-phase inter-
mediates. In contrast, switching-aware partitioning only needs O(|E|) extra space.

Convergence/practical overhead/comparison with other partitioners: We also reported the
trend of partitioning quality improvement (convergence) and practical overhead of switching-aware
partitioning in Appendix [Q] We observed that at most 50 iterations are enough for convergence. Also,
the practical overhead of partitioning in the actual training was only 0.07/0.02/0.39% of the total
training time on Products/IGBM/Papers, respectively. We additionally benchmarked the (time-to)
quality of GriNNder compared to lightweight partitioners (Spinner and 2PS-L) (see Appendix [P).
Switching-aware partitioning quickly results in higher-quality partitions for both cases.

Partition/training time: Among datasets, only Papers exceeded the host memory capacity. Par-
titioning it into 16 parts with METIS triggers host swap due to its large memory demand and
took 77.26 (min), making switching-aware partitioning 10.51x faster (7.35 (min)). Table E] (left)
evaluates how partitions affect the training of 3-layer GCNs on Products and IGBM. Although
METIS—with near-optimal partitions—yields the shortest training time, it uses significantly more
memory. Switching-aware partitioning needs far less memory while improving training speed by
1.59x on Products and 2.80x on IGBM over random partitioning.

5.6 Other sensitivity studies (model, configuration, and multi-GPU sensitivity)

Table E] (right) shows GriNNder with GAT [87]] and GraphSAGE [33]], using IGBM. GriNNder
maintains 7.05-11.31 x speedup over HongTu, demonstrating its efficiency beyond GCN. We examine
the impact of #partitions configuration on the 3-layer setting in Appendix [R} Compared to HongTu,
from the efficient caching and redundancy elimination, GriNNder is much more robust on the
configuration. We also tested the multi-GPU scalability in Appendix [S] Although GriNNder was not
designed for multi-GPU environments, it is scalable to some degree (up to 2.44 x with four GPUs).

6 Conclusion

To our knowledge, GriNNder is the first work on full-graph GNN training with storage offloading in
limited resources. Its careful optimizations enable full-graph training of large datasets previously
impossible in conventional frameworks. We will open-source GriNNder to facilitate its use.

407

408

409

410

411

412
413
414

415
416
417

418
419
420

421
422
423

424
425

426
427

428
429

430
431

432
433
434

435
436
437

439
440

441
442
443

444
445
446

447
448

449
450

451
452

454
455

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

AlO, 2018. https://pagure.io/libaio, visited on 2024-05-22.

tensorNVMe, 2023. https://github.com/hpcaitech/TensorNVMe, visited on 2024-05-22.
Kvikio, 2024. https://github. com/rapidsai/kvikio, visited on 2024-05-22.

pybindl11, 2024. https://github.com/pybind/pybind11, visited on 2024-05-22.

Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Engineering a direct k-way
hypergraph partitioning algorithm. In Workshop on Algorithm Engineering and Experiments (ALENEX),
2017.

Saurabh Bajaj, Hojae Son, Juelin Liu, Hui Guan, and Marco Serafini. Graph Neural Network Train-
ing Systems: A Performance Comparison of Full-Graph and Mini-Batch. Proceedings of the VLDB
Endowment (VLDB), 2025.

Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for memory-
optimized training of dnns. In IEEE conference on computer vision and pattern recognition (CVPR),
2018.

Venkatesan T Chakaravarthy, Shivmaran S Pandian, Saurabh Raje, Yogish Sabharwal, Toyotaro Suzumura,
and Shashanka Ubaru. Efficient scaling of dynamic graph neural networks. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 2021.

Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-efficient
network training. Advances in Neural Information Processing Systems (NeurIPS), 2019.

Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng. G-Miner: an efficient
task-oriented graph mining system. In European Conference on Computer Systems (EuroSys), 2018.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations (ICLR), 2018.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-label image recognition with graph
convolutional networks. In IEEE/CVF conference on computer vision and pattern recognition (CVPR),
2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), 2019.

Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-free
quantization with synthetic boundary supporting samples. Advances in Neural Information Processing
Systems (NeurlPS), 2021.

Kanghyun Choi, Hye Yoon Lee, Deokki Hong, Joonsang Yu, Noseong Park, Youngsok Kim, and Jinho
Lee. It’s all in the teacher: Zero-shot quantization brought closer to the teacher. In IEEE/CVF conference
on computer vision and pattern recognition (CVPR), 2022.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing systems
(NeurIPS), 2015.

Timothy A. Davis, William W. Hager, Scott P. Kolodziej, and S. Nuri Yeralan. Algorithm 1003: Mongoose,
a Graph Coarsening and Partitioning Library. ACM Transactions on Mathematical Software, 2020.

Gunduz Vehbi Demirci, Aparajita Haldar, and Hakan Ferhatosmanoglu. Scalable Graph Convolutional
Network Training on Distributed-Memory Systems. Proceedings of the VLDB Endowment (VLDB), 2022.

Jialin Dong, Da Zheng, Lin F. Yang, and George Karypis. Global neighbor sampling for mixed cpu-gpu
training on giant graphs. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
2021.

Ghizlane Echbarthi and Hamamache Kheddouci. Streaming METIS partitioning. In IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2016.

10

https://pagure.io/libaio
https://github.com/hpcaitech/TensorNVMe
https://github.com/rapidsai/kvikio
https://github.com/pybind/pybind11

456
457
458
459

460
461

462
463

464
465
466

467
468

469
470

471
472

473
474

475
476
477

478
479

481
482

483
484

485
486
487

488
489
490

491
492

493
494

495
496
497

498
499

500

501

503
504

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere, Raghuraman Krishnamoorthi,
Krishnakumar Nair, Misha Smelyanskiy, and Murali Annavaram. Check-N-Run: A checkpointing system
for training deep learning recommendation models. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2022.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph Neural Networks
for Social Recommendation. In The World Wide Web Conference (WWW), 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec. GNNAutoScale: Scalable and expressive graph
neural networks via historical embeddings. In International Conference on Machine Learning (ICML),
2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. /CLR
Workshop on Representation Learning on Graphs and Manifolds (ICLRW), 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. In Advances in Neural Information Processing Systems (NeurlPS), 2017.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed deep graph learning at scale. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2021.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual net-
work: Backpropagation without storing activations. Advances in neural information processing systems
(NeurIPS), 2017.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time. Advances in neural information processing systems (NeurlPS), 2016.

Tanmaey Gupta, Sanjeev Krishnan, Rituraj Kumar, Abhishek Vijeev, Bhargav Gulavani, Nipun Kwatra,
Ramachandran Ramjee, and Muthian Sivathanu. Just-In-Time Checkpointing: Low Cost Error Recovery
from Deep Learning Training Failures. In European Conference on Computer Systems (EuroSys), 2024.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations (ICLR), 2016.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In IEEE/CVF conference on computer vision and pattern
recognition (CVPR), 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
IEEE international conference on computer vision (ICCV), 2017.

Tobias Heuer and Sebastian Schlag. Improving coarsening schemes for hypergraph partitioning by
exploiting community structure. In International symposium on experimental algorithms (SEA), 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances in Neural
Information Processing Systems (NeurlPS), 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems (NeurIPS), 2018.

Hongsun Jang, Jaecyong Song, Jaewon Jung, Jaeyoung Park, Youngsok Kim, and Jinho Lee. Smart-
Infinity: Fast Large Language Model Training using Near-Storage Processing on a Real System. In /EEE
International Symposium on High-Performance Computer Architecture (HPCA), 2024.

Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken. A distributed
multi-GPU system for fast graph processing. Proceedings of the VLDB Endowment (VLDB), 2017.

11

505
506
507

508
509
510

511
512

513
514
515

516
517
518

519
520

521
522

523
524

525
526

527
528
529
530

531

533
534

535
536

537
538
539

540
541

542
543

544
545
546

547
548
549

550
551
552

553
554
555

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the Accuracy, Scalability,
and Performance of Graph Neural Networks with Roc. In Conference on Machine Learning and Systems
(MLSys), 2020.

Jiawei Jiang, Pin Xiao, Lele Yu, Xiaosen Li, Jiefeng Cheng, Xupeng Miao, Zhipeng Zhang, and Bin Cui.
PSGraph: How Tencent trains extremely large-scale graphs with Spark? In International Conference on
Data Engineering (ICDE), 2020.

Qisheng Jiang, Lei Jia, and Chundong Wang. Gnndrive: Reducing memory contention and i/o congestion
for disk-based gnn training. In International Conference on Parallel Processing (ICPP), 2024.

Tim Kaler, Alexandros-Stavros Iliopoulos, Philip Murzynowski, Tao B. Schardl, Charles E. Leiserson,
and Jie Chen. Communication-efficient graph neural networks with probabilistic neighborhood expansion
analysis and caching. In Conference on Machine Learning and Systems (MLSys), 2023.

Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao Schardl, Charles E
Leiserson, and Jie Chen. Accelerating training and inference of graph neural networks with fast sampling
and pipelining. In Conference on Machine Learning and Systems (MLSys), 2022.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 1998.

George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In ACM/IEEE design
automation conference (VLSI Design), 1999.

George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis: Parallel graph partitioning and sparse
matrix ordering library. 1997.

Gurneet Kaur and Rajiv Gupta. GO: Out-Of-Core Partitioning of Large Irregular Graphs. In IEEE
International Conference on Networking, Architecture and Storage (NAS), 2021.

Arpandeep Khatua, Vikram Sharma Mailthody, Bhagyashree Taleka, Tengfei Ma, Xiang Song, and
Wen-mei Hwu. Igb: Addressing the gaps in labeling, features, heterogeneity, and size of public graph
datasets for deep learning research. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Dominique LaSalle and George Karypis. Multi-threaded graph partitioning. In IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), 2013.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks. JMLR, 2010.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification laws, shrinking
diameters and possible explanations. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2005.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of deep convolutional
networks. In International conference on machine learning (ICML), 2016.

Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pagraph: Scaling gnn training on large
graphs via computation-aware caching. In ACM Symposium on Cloud Computing (SoCC), 2020.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical network
compression. In International Conference on Machine Learning (ICML), 2021.

Renjie Liu, Yichuan Wang, Xiao Yan, Haitian Jiang, Zhenkun Cai, Minjie Wang, Bo Tang, and Jinyang
Li. Diskgnn: Bridging i/o efficiency and model accuracy for out-of-core gnn training. In International
Conference on Management of Data (SIGMOD), 2025.

Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua Peng, Hongzheng Chen,
Hongzhi Chen, and Chuanxiong Guo. Bgl: Gpu-efficient gnn training by optimizing graph data i/o and
preprocessing. arXiv preprint arXiv:2112.08541, 2021.

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. Neugraph:
Parallel deep neural network computation on large graphs. In USENIX Annual Technical Conference
(ATC), 2019.

12

556

558

559
560

561
562

563
564
565

566
567
568

569
570

571
572

573
574

575
576
577

578
579

580
581
582

583
584

585
586
587

588
589

590

592
593
594

595
596
597

598
599

600

601

603
604

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In International Conference on
Management of Data (SIGMOD), 2010.

Claudio Martella, Dionysios Logothetis, Andreas Loukas, and Georgos Siganos. Spinner: Scalable Graph
Partitioning in the Cloud. In IEEE International Conference on Data Engineering (ICDE), 2017.

Ruben Mayer, Kamil Orujzade, and Hans-Arno Jacobsen. Out-of-core edge partitioning at linear run-time.
In International Conference on Data Engineering (ICDE), 2022.

Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. {CheckFreq}: Frequent,{Fine-
Grained }{DNN} Checkpointing. In USENIX Conference on File and Storage Technologies (FAST),
2021.

Bogdan Nicolae, Jiali Li, Justin M Wozniak, George Bosilca, Matthieu Dorier, and Franck Cappello.
Deepfreeze: Towards scalable asynchronous checkpointing of deep learning models. In IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID), 2020.

NVIDIA. GPUDirect Storage, 2021. https://developer.nvidia.com/
gpudirect-storage,visited on 2024-05-22.

NVIDIA. InfiniBand Network, 2023. https://docs.nvidia.com/networking/display/
MLNXOFEDv493150/InfiniBand+Network,visited on 2023-01-30.

NVIDIA. NVLink Bridge, 2023. https://www.nvidia.com/en-us/design-visualization/
nvlink-bridges/,visited on 2023-06-01.

Yeonhong Park, Sunhong Min, and Jae W. Lee. Ginex: SSD-enabled billion-scale graph neural network
training on a single machine via provably optimal in-memory caching. Proceedings of the VLDB
Endowment (VLDB), 2022.

Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Pytorch: Tensors and dynamic neural
networks in python with strong gpu acceleration. 2017.

Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. Sancus: Staleness-
Aware Communication-Avoiding Full-Graph Decentralized Training in Large-Scale Graph Neural Net-
works. Proceedings of the VLDB Endowment (VLDB), 2022.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical review E, 2007.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2021.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in neural information processing systems (NeurIPS), 2020.

Ruslan Shaydulin and Ilya Safro. Aggregative coarsening for multilevel hypergraph partitioning. arXiv
preprint arXiv:1802.09610, 2018.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In AAAI Conference on
Artificial Intelligence (AAAI), 2020.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large
language models with a single gpu. In International Conference on Machine Learning (ICML), 2023.

Zhihao Shi, Xize Liang, and Jie Wang. LMC: Fast training of GNNs via subgraph sampling with provable
convergence. In International Conference on Learning Representations (ICLR), 2023.

Xiran Song, Jianxun Lian, Hong Huang, Mingqi Wu, Hai Jin, and Xing Xie. Friend Recommendations
with Self-Rescaling Graph Neural Networks. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2022.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD), 2012.

13

https://developer.nvidia.com/gpudirect-storage
https://developer.nvidia.com/gpudirect-storage
https://developer.nvidia.com/gpudirect-storage
https://docs.nvidia.com/networking/display/MLNXOFEDv493150/InfiniBand+Network
https://docs.nvidia.com/networking/display/MLNXOFEDv493150/InfiniBand+Network
https://docs.nvidia.com/networking/display/MLNXOFEDv493150/InfiniBand+Network
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/

605
606
607

608
609
610

611
612
613
614

615
616
617

618
619
620

621
622

623
624
625

626
627
628

629
630

632
633
634

635
636

638
639

640
641
642

643
644
645

646
647
648

649
650
651

652
653
654

[82]

[83]

(84]

(85]

[86]

[87]

[88]

[89]

[90]

[91]

(92]

(93]

[94]

[95]

[96]

[97]

(98]

Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang, Lei Wang, Jie Zhang, Yong Li, Wenyuan
Yu, Jingren Zhou, et al. Legion: Automatically Pushing the Envelope of {Multi-GPU} System for
{Billion-Scale } {GNN} Training. In USENIX Annual Technical Conference (ATC), 2023.

Jie Sun, Mo Sun, Zheng Zhang, Jun Xie, Zuocheng Shi, Zihan Yang, Jie Zhang, Fei Wu, and Zeke
Wang. Helios: An Efficient Out-of-core GNN Training System on Terabyte-scale Graphs with In-memory
Performance. arXiv preprint arXiv:2310.00837, 2023.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei,
Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Dorylus: Affordable, Scalable, and
Accurate GNN Training with Distributed CPU Servers and Serverless Threads. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2021.

Alok Tripathy, Katherine Yelick, and Aydin Bulu¢c. Reducing Communication in Graph Neural Network
Training. In International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2020.

Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. FENNEL:
streaming graph partitioning for massive scale graphs. In ACM International Conference on Web Search
and Data Mining (WSDM), 2014.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations (ICLR), 2018.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. MariusGNN:
Resource-Efficient Out-of-Core Training of Graph Neural Networks. In European Conference on
Computer Systems (EuroSys), 2023.

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. BNS-GCN: Efficient Full-Graph
Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node
Sampling. In Conference on Machine Learning and Systems (MLSys), 2022.

Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan Lin.
PipeGCN: Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature
Communication. In International Conference on Learning Representations (ICLR), 2022.

Xinchen Wan, Kaigiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and Xin Jin. Scalable and efficient
full-graph gnn training for large graphs. In International Conference on Management of Data (SIGMOD),
2023.

Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He. HongTu: Scalable Full-Graph GNN
Training on Multiple GPUs. Proceedings of the ACM on Management of Data (PACMMOD), 2023.

Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and Ge Yu. NeutronStar:
Distributed GNN Training with Hybrid Dependency Management. In International Conference on
Management of Data (SIGMOD), 2022.

Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and Jingren Zhou.
Federatedscope-gnn: Towards a unified, comprehensive and efficient package for federated graph learning.
In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2022.

Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, TS Eugene Ng, and Yida Wang. Gemini:
Fast failure recovery in distributed training with in-memory checkpoints. In Proceedings of the 29th
Symposium on Operating Systems Principles (SOSP), 2023.

Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen, Wenyuan Yu, and Jingren
Zhou. Gnnlab: A factored system for sample-based gnn training over gpus. In European Conference on
Computer Systems (EuroSys), 2022.

Shuangyan Yang, Minjia Zhang, Wenqgian Dong, and Dong Li. Betty: Enabling Large-Scale GNN
Training with Batch-Level Graph Partitioning. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2023.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.

Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery Data Mining (KDD), 2018.

14

655
656
657

658
659
660

661
662
663

664
665
666

667
668
669

670
671
672

673
674
675

676
677
678

679
680
681

682
683

684
685
686

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations (ICLR), 2020.

Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song, Zhibang Ge, Lin Wang,
Zhigiang Zhang, and Yuan Qi. AGL: A Scalable System for Industrial-Purpose Graph Machine Learning.
Proceedings of the VLDB Endowment (VLDB), 2020.

Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding, Yuan Xie, and Yu Wang.
Understanding gnn computational graph: A coordinated computation, io, and memory perspective.
Proceedings of Machine Learning and Systems (MLSys), 2022.

Ruisi Zhang, Mojan Javaheripi, Zahra Ghodsi, Amit Bleiweiss, and Farinaz Koushanfar. AdaGL: Adaptive
Learning for Agile Distributed Training of Gigantic GNNs. In ACM/IEEE Design Automation Conference
(DAC), 2023.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang, and
George Karypis. DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs. arXiv
preprint arXiv:2010.05337, 2020.

Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis. Distributed hybrid cpu
and gpu training for graph neural networks on billion-scale heterogeneous graphs. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), 2022.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

Zhe Zhou, Cong Li, Xuechao Wei, Xiaoyang Wang, and Guangyu Sun. Gnnear: Accelerating full-batch
training of graph neural networks with near-memory processing. In International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2022.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: A comprehensive graph neural network platform. Proceedings of the VLDB Endowment
(VLDB), 2019.

Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and Unlabeled Data with Label Propagation.
2002.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-bitwidth

convolutional neural networks. In IEEE conference on computer vision and pattern recognition (CVPR),
2018.

15

687

688
689
690
691
692
693
694

695

696

698
699
700
701

702
703
704
705

707
708

710
71
712

713
714
715
716
77

A Survey of 2024 conferences’ submission on GNN domains

In our survey of Neur[PS/ICML/ICLR 2024 papers, a total of 76 papers are related to GNN domains.
In 76 papers, 44.7% (34 papers) used full-graph training, and among them, 38.2% (13 papers)
directly reported out-of-memory. In terms of experimental environments, a total of 62 papers reported
their GPU environments, and 45 papers utilized a single GPU (72.6%). Also, some papers with
full-graph training directly stated that larger-sized datasets can incur out-of-memory when running
their experiments. This shows the importance of enabling full-graph training of large graphs under
limited resources (e.g., a single GPU).

B Drawbacks of existing full-graph training methods for limited
environments

A Activations —> Host - GPU —> Host - GPU (Snapshot) —> Intra-Device Op. —> Iterate Op.

@ @ © @ Iterate (#MFGs) times Iterate (#Partitions)x(#Layers) times
@.0'@ @lﬂ Forward Forward
(a) Example graph. 2 -
o o [a
J8 L
Full-Graph Dep. -
BhieRIGiRl) — ,—DataAnipI.
| K 2 A/
®[©
3 T @||®
T % ®
Snap
1-Hop. Vertex Act. shots

o Vertex Act. (d) Host memory
(b) Full-graph dependency. (¢) Micro-batch training. offloaded training.

Figure 8: Full-graph training of single epoch for limited resources.

Full-graph GNN training processes all vertices’ activations and gradients in a single pass, requiring
substantial memory. A few existing approaches exist for single-server approaches. Micro-batch [97]
and host memory offloaded [92]] training have tried to conduct full-graph training in GPU memory-
limited environments. Figure[§]illustrates an example graph and discusses the drawbacks of the above
methods based on the full-graph dependency.

Micro-batch training: Betty [97] (Figure [8c) accumulates gradients from message flow graphs
(MFGs) with all neighbor information across all layers, followed by a single weight update. However,
even a small number GNN layers cause MFGs to expand rapidly (Figure[8p), often exceeding the GPU
memory. Partitioning [47,49,|53] can reduce MFG size but requires significant memory, presenting a
practical bottleneck.

Host memory offloaded training: HongTu [92] (Figure [8d) reduces GPU memory usage by moving
activations and gradients to host memory. A 1-hop partitioning approach extracts 1-hop graphs that fit
in GPU memory. During an epoch, activations for these graphs are transferred to the GPU, processed,
and offloaded back to host memory. While this saves GPU resources, it causes a data amplification
problem: by saving ‘snapshots’ of 1-hop graphs for the backward pass, vertices appearing in multiple
1-hop graphs are stored repeatedly, increasing memory and I/O overhead.

Impractical partitioning: Both micro-batch [97] and host memory offloaded [92] methods rely
on partitioning tools like METIS [47, 149/ 53], which sequentially coarsen and refine graphs. This
process consumes up to 4.8 the graph’s size in memory [50], often exceeding the capacity of a
typical single server. Hence, existing single-server full-graph methods face out-of-memory risks or
resort to an external server.

16

718

719

720
721
722
723

724
725
726
727

728
729
730
731
732
733

734
735
736
737
738
739
740

741
742
743
744

745

746
747
748
749
750
751
752
753
754

756
757
758

C Limitation of extending storage-based mini-batch training to full-graph
training with micro-batch training

While extending storage-based mini-batch training (e.g., Ginex [70], MariusGNN [88]],
DiskGNN [59], GNNDrive [44]) to full-graph training by setting the batch size to the entire node set
and maximizing the neighbor size (i.e., micro-batch training from Betty [97]) may seem to enable the
large-scale full-graph training on a limited environment, it faces several limitations.

First, as it still depends on the message flow graph structure (MFG), it faces the GPU memory limit
like the original micro-batch training (Betty). Since micro-batch training needs to keep all neighbor
information intact without sampling, it easily falls into the out-of-memory due to neighbor explosion.
For more details, please refer to Appendix

Second, they are mainly focused on handling initial features efficiently for mini-batch training,
and are inefficient in supporting full-graph training without sampling. For instance, DiskGNN
aggressively utilizes the preprocessing and pre-stores the mini-batch message flow graphs and related
initial features to efficiently support large-scale mini-batch training with storage. However, since
full-graph training (with micro-batch training) needs to handle all the features without dropping, the
preprocessed data size easily exceeds the SSD capacity due to the redundantly saved data.

Table 6: Performance of extending storage-based mini-batch training to full-graph training.
f: GNNDrive’s GPU caching is statically preprocessed, so the fanout is restricted to 25 and not
equivalent to full-graph training. *: Preprocessing failed because of excessive disk space usage.

Method Products IGBM Papers
Ginex 9.00 OOM 17.72
DiskGNN 2.18 Preproc. Fail* Preproc. Fail*
GNNDirive 6.337 OOM 12.06f
GriNNder (Ours) 0.12 0.93 9.07

To show the above limitations directly, we evaluated DiskGNN [59] and GNNDrive [44], which
surpass the previous state-of-the-art storage-based mini-batch training (Ginex [70], MariusGNN [88]])
in Table [f] Ginex and GNNDrive encountered GPU out-of-memory on IGBM due to neighbor
explosion without information dropping. On Papers, even with fanout 25, they were significantly
slower than ours. DiskGNN uses offline preprocessing to pre-store all cacheable mini-batches with
features. The preprocessing of IGBM/Papers fails by overflowing 4TB SSD, even with reduced fanout
(25) from neighbor explosion. Our method is significantly faster for runnable cases (Products/Papers).

To sum up, while mini-batch storage-based systems can emulate full-graph training by micro-batch
training, results show that this becomes infeasible on a large scale. This is due to either GPU memory
exhaustion or prohibitive preprocessing disk usage. GriNNder avoids them by not relying on message
flow graphs (MFGs) or redundant preprocessing.

D Overall procedure of GriNNder

As GriNNder is the first work on storage offloaded full-graph GNN training, we carefully designed
the framework to address the three challenges outlined in Section[I} whose overall procedure is listed
in Algorithm[T} GriNNder first partitions the graph into smaller pieces, which should be done to incur
minimal data transfer (line 2). Our contribution is on devising a lightweight partitioning algorithm
that operates with significantly lower memory requirements while preserving the partitioning quality
(Section4.3). Then, for each partition (lines 10 and 21), forward and backward passes are performed
on the GPUs (lines 11-14 and 22-27). To maximize the reuse of the data, GriNNder designs an efficient
policy to cache intermediate data on the host memory (Section d.1). During the forward/backward
passes, much of the data transfer occurs between GPU-CPU due to checkpointing (lines 12, 14, 24,
26). This was originally designed toward reducing latency in previous work[92]], but it severely
increases the amount of traffic and host memory usage for storage offloading scenarios. GriNNder
redesigns the gradient engine with redundancy elimination, achieving significantly higher speedup
and less memory requirement (Section {.2)).

17

Algorithm 1 Overall procedure of GriNNder

Input: {W?|1 <i < L}: initial parameters, L: #layers

G' graph, F': initial features, P: #partitions to meet GPU mem. req.
Output: {WW*|1 < i < L}: updated parameters
Notations:

T),: 1-hop topologies (src—>dst)

Aé: destination features/activations of layer [, partition 7},

G AL : gathered source features/activations of layer [, partition T,

1. if METIS)imit > Hostyimi: then

2: Ty < SA_Partition(G, P) // Switching-aware partitioning (Sec.

3: else T(.) < METIS(G, P) end if

4: // Do until finding proper I” which makes all T},s fit GPU memory limit.

5:

6: for e =1 ... #epochs do

7. // Forward pass

8 fori=1..Ldo

9: Storage_to_Host(Al(S) // Partition-aware graph caching (Section
10: forp=0..P—1do
11: GAL! + Gather (A}
12: Host_to_GPU(GAé,_l)
13: Aé — FW(WY GA;,’l, T,) // w/ Regathering (redundancy elimination) (Section
14: GPU_to_Host(Aé)
15: end for

16: end for

17: // Backward pass
18: for!=1L..2do

19: // Partition-aware graph caching (Section@

20: Host_Upload_or_Intitialization(A (31, VAl(Sl) /] Host as write-back buffer
21: forp=0..P—1do

22: Storage_to_Host(Aé, VAIZD)

23: GAL! + Gather(A(}')

24: H ost_to_GPU(GA:f,_l) /I Grad-engine activation regathering (Section
25: (VGAL L YWh <5 BW (W, AL VAL GALY)

26: GPU_to_Host(GAi,_l)

27: VAl@l & Scatter(GAL™)

28: end for

29: end for

18

79 E Profile of dependency among partitions

760
761
762
763
764

765

766
767

769
770
771
772

773

774

775
776
777
778
779

781
782

#Required Vertices
from Others
#Required Vertices
from Others
#Required Vertices
from Others

=
o
=

Figure 9: Partition dependency profile. (left) Products with 16 partitions, (mid) IGBM with 64
partitions, and (right) Papers with 2048 partitions. In the case of Papers, we only presented earlier 64
partitions for visibility.

We additionally presented the profile of dependency among partitions on other datasets in Figure 9}
When the size of a graph becomes larger, we need to partition the graph into a much larger number of
partitions. This makes the trend of power-law distribution clearer. For instance, in Figure P(right),
the Papers dataset with 2048 partitions shows a very vivid power-law distribution compared to the
other two cases. This further enhances the scalability of GriNNder on large-scale graphs.

F Vertex-wise cache management vs. partition-wise cache management

| Storage Page #Vertices in a Page: 2 @2 : Out-of-Scope Vertices |

2 _| Buffer © @ ® Q] -
é <_—>Random .\cu‘ssé Random Access é
©0 B L B2 e2 PALA D)
Swap Out X T T ¥ i
l"lllk‘t‘owu:‘_\‘ 1/0 ‘[,,}‘ ad SWapIn Il nnecessary l/(l) o viee Unlond
s([0D 6P 00 00| 3[e0 EDEIDD| 06 0O e 06| :e6 B8 60 06
;: COERAERN 02| 300 62 60 00| : 02 00 00 00|:00 00 02 00

(a) Vertex-wise cache management (b) Partition-wise cache management

Figure 10: Advantage of partition-wise cache management compared to vertex-wise one.

Figure[[0]emphasizes the advantage of partition-wise cache management compared to the vertex-wise
cache management. Since storage devices access data at a page granularity (e.g., 4KB), vertex-
wise cache management incurs a substantial amount of unnecessary I/0, denoted as ‘Out-of-Scope’
vertices. For instance, when processing the next partition, in Figure[T0, vertex-wise management
needs to swap out (or discard) and swap in unnecessary data combined with the required data due to
the page granularity of a storage device. In contrast, loading and evicting at a partition granularity
alleviates such overhead.

G 1/O optimizations of GriNNder

G.1 Overlapping of processing and cache management

GriNNder schedules host memory cache evictions and prefetching to overlap with GPU computations,
minimizing storage I/O latency as illustrated in Figure (D We pick the next target partition
to exploit already-cached neighbors, determined statically since 1-hop graphs are fixed. 2) We
discard partitions no longer needed. (3) We fetch only required partitions from storage while keeping
reusable ones in the host memory. Because we keep a small extra buffer (dotted blue), uploading the
dependency for partition 1 (pre-compute) does not have to wait for partition O computation and the
succeeding evictions (post-compute), enables overlapping these 1/0 operations ((2)’) with ongoing
computations. Also, we overlap the GPU compute and host—-GPU I/O to further reduce latency.

19

783
784
785
786
787

788

789
790
791
792
793

794

795
796
797

799
800
801
802

803
804
805
806

808
809

<

)

(@9 D55 GRS .. 0 o
OO0 “seinNext () P @0
pt2-(©) L= EPtZ[:
Target @ g LR : Partition-Wise Upload
ES :
]
)
Q
z
[

Host

Storage

Forward/Backward @
of Partition 0

Pt3 @ artition
o/ rogen ; 06 0O 60 0] 16 B 60 06
ForwardBackvard 02 00 00 00 |5 00 00 00 00

o ; @ Post-Compute [0 @' @ Pre-Compute 10

(a) Overview of switching between partitions (b) Overlapping cache management with computation

Figure 11: Overview of overlapping cache management with computation.

D : Host-to-GPU Memory Copy ! . GPU-to-Host Memory Copy D GPU Compute Operations D Storage Read/Write

(a) Overview of forward pass profiling results of GriNNder.

U ol o R i st AR A L Lk il B e e e R e e e i s = T e e

(b) Overview of backward pass profiling results of GriNNder.

W OWT AR R T TEWIT W W WY TN W1 PTITTIY AT T T T W

pfi | few | e tWkiC C pu | e o pehread_cosd_ Fisrmat_lcky

(c) Detailed forward pass profiling results of GriNNder. (d) Detailed backward pass profiling results of GriNNder.

Figure 12: Profiling results of GriNNder’s forward and backward pass.

We actually profile the training procedure of GriNNder, as illustrated in Figure [[2] We profiled
the 3-layer GCN on the IGBM dataset with #partitions=32. In both forward and backward passes,
GriNNder overlaps the host memory and storage I/O with the GPU computation. Thus, in overall
training, GriNNder enables aggressive latency overlapping of I/O and computation and provides
superior training throughput.

G.2 In-partition vertex ordering for sequential accesses

Another source of slowdown is in the gathering, which places vertex activation to be sent (G A) to
the GPU in a dedicated host buffer. This involves multiple random memory access, as illustrated in
Figure [TOh, causing slowdown. To avoid this, after the graph is partitioned, we reorder the individual
adjacency lists such that the neighbors are first sorted by their partition IDs and then by their vertex
IDs. This replaces the random lookups with a single random lookup per partition, as in Figure [I0p.

H Comparison with HongTu’s gradient engine

HongTu [92] (Figure [T3h) mitigates the PyTorch autograd’s issue by recomputing intermediate
activations on demand. It designed a gradient engine to snapshot the gathered activations toward
reducing latency (through enabling sequential accesses to snapshots), but at the cost of increased
snapshots and redundant vertex data across partitions. As a result, each vertex may be stored up to «
times (the average expansion ratio of 1-hop graphs), which adversely impacts memory consumption
and bandwidth requirements, particularly for large datasets. This is because it assumes abundant
host memory and does not consider the employment of storage, which has much lower bandwidth
compared to the host memory.

Figure[I3p illustrates the proposed grad-engine activation regathering, which skips snapshot creation
during the forward pass. Instead, whenever the backward pass requires input activations (GA),
we regather them just-in-time from the already-stored activations (A) managed by partition-aware
graph caching (see Section[4.) in a partition-wise manner. This replaces repeated snapshot storage
with lightweight data arrangement, significantly reducing host memory usage and I/O volume while
maintaining algorithm correctness. While HongTu does suggest an additional strategy of storing the
aggregated intermediate values (10) instead of the activation values (A0), this is only applicable to

20

810
811

812

814

815

817
818
819
820
821
822
823

824

826
827

Forward Backward @ @
@ @ @ @ L ®_ ®
2 @ ®
Alﬁ ’_’ A1 VAl IO IO %
GAO """""" Recompute GAO VGAO
T— Load Features —=| \\"®|)| oy @[] Ol
Snapshot Store FeaL Snap Internred. SnaPShOt Load
(a) HongTu’s gradient engine
Forward

Backward @

!

Nor

@l*

©)

®_ ®
@“’@

IO @
®

Rewmp GAO VGAO

GAO @
T— Load Features :5: 0®8 © Load —T
® Features
Gather Regather

(b) Grad-engine activation regathering (Ours)

Figure 13: Comparison with HongTu [92], which does not consider the employment of storage.

GCN-style models. Contrarily, grad-engine activation regathering generally applies to any model
structure (e.g., GAT).

I In-depth I/O volume and memory footprint analyses

Table 7: I/0 analysis in forward pass

Methods | GPU-Host Host-Storage GPU-Storage
HongTu w/ OS swap memory (i.e., mmap) | (2a+1)D (2a+ 1)D — Mempost
Ours aD aD — CacheHit D

* |V||H| = D. Topology data I/O is omitted for brevity.

Table 8: Maximum memory usage analysis

Methods | Host Storage
HongTu | (ao+ 1)D|L|+ 2D
Ours D+D D|L|+ D

*|V||H| = D. Considers activation and gradients.

Grad-engine activation regathering greatly reduces the I/O volume from snapshot store/load per layer
and the memory footprint displayed in Table[7]and Table[8] where D = |V||H|.

I/0 Volume: We assume host memory offloaded training (HongTu [92]], see Appendix [H]for the
detailed I/O procedure) to utilize OS swap memory (i.e., mmap), since it targets the host memory, not
storage employment. In Table[7] compared to HongTu, the input activation-related GPU-host I/O
volume (2a.D) is halved (aD) by skipping snapshots. GriNNder incurs oD — C'ache Hit amount of
host-storage traffic for intra-layer partition-wise caching, but this is significantly less than utilizing
mmap swap memory. Also, when host memory can handle the single-layer activations (D), this
term becomes D from a full hit. When the host memory offloaded training faces the memory limit
(Memgost), it needs to swap around (2 + 1) D — Mem g s data from/to storage. Given that « is
around 3-10, the improvement is significant.

Memory Footprint: In Table |8} we report the peak memory usage of host offloaded training [92]
(HongTu) and GriNNder. For HongTu, the overhead mostly comes from storing snapshots for all
layers. These redundant snapshots consume additional aD|L| on top of D|L| activations. It needs
to save 2D of gradients in backward pass to handle input and output gradients. In contrast, with

21

828
829
830

831

832
833
834
835
836

837
838
839
840

841

842
843
844
845
846

847
848
849
850

851
852
853

854
855
856
857

858
859
860
861
862
863
864
865

866
867
868
869
870
871

872
873
874

876
877

grad-engine activation regathering and partition-aware graph caching, GriNNder consumes up to
D + D host memory for saving layer-wise activations and gradients. Regarding storage usage,
GriNNder consumes D|L| for saving activations and D for single-layer gradients.

J METIS and its memory usage

Sequential partitioning (e.g., METIS) comprises three stages: coarsening, initial partitioning, and
un-coarsening. In the coarsening phase, it tries to generate a good initial partitioning, which can
be partitioned to the initial partitioning state. From this state, the un-coarsening phase refines the
boundaries of partitions to produce better partitioning results. This complex procedure incurs huge
memory requirements when using large graphs [50]]. To save coarsened intermediate graphs, sequatial
partitioning requires O(2|V | + | E| + 2%, |Ei| + |Vi|) memory where |(-);| is for coarsened graphs
and L is the number of levels of coarsening. [50] reported that it consumes at least 4.8 more
memory than the graph data itself (|V| 4+ | E|). As a result, this huge memory consumption harms the
practicability of existing full-graph training for limited resources [97,(92].

K Insights and details of switching-aware partitioning

Existing partitioners (e.g., METIS-based [47, 149} 153} 91} 160]) output near-optimal partitions but
often exceed single-server memory limits (Figure[6h). This makes prior approaches impractical, as
partitioning needs to be iterated to find the adequate number of partitions to fit in the GPU. While
offline partitioning is possible, each new environment demands re-partitioning, making a lightweight
partitioning method essential.

We draw inspiration from streaming partitioning (Spinner [63]), which applied traditional label
propagation [108] to partitioning in distributed cloud graph systems (e.g., Pregel [62]). While
lightweight label propagation suits our host memory constraints, Spinner’s message-passing-based
design is unsuitable for such limited environments.

Hence, we propose switching-aware partitioning, which adapts label propagation for limited resources
with memory usage similar to CSR. We also introduce a group-wise propagation strategy suited for
storage-offloaded full-graph training.

Switching-aware partitioning aims to find vertices with similar properties in different partitions and
relocate them to the same partition. Additionally, we need to balance the size of each partition to
reduce the workload imbalance between partitions. To do so, we iteratively refine the partitions by
selectively relocating vertices within a certain limit.

Figure [I4]shows the detailed procedure of the proposed switching-aware partitioning. At first, we
set the initial partitioning state (Sy = Fy, ..., P,—1) by randomly assigning each vertex to different
partitions. We want to achieve high-quality partitioning while maintaining the number of vertices
of all partitions close to [V'|/p. | - | means the #vertices in a partition (or a graph), and p is the
#partitions. We additionally define the maximum capacity term as 3 and set the maximum capacity
limit of a single partition as 8 x |V|/p. Here the capacity of a partition refers to the number of
vertices allocated to said partition. In a state S;, each partition j has the available relocation capacity
(RC(; 5)) as follows:

RC ;=B x|V|/p—|P;],(0< 7 <p) (D
This is used to limit the number of vertices moved to the current partition. Figure [[4h illustrates the
intermediate state (S;) where each partition has the available relocation capacity of six (RC(; ;) = 6).
Following the CSR format, our data structure comprises source pointers (SrcPtr) and destination
indices (DstIdx). We manage another array (Dst’s Partition) and fill this array with the partition
of each destination index in DstIdx. For example in Figure[T4h, the vertex 0 has neighbors of vertex
{1,2,5,7,4,3}. For each neighbor, we fill the Dst’s Partition with its partition {2,2,2,0,1,1}.

From a state (S;) (Figure[I4h), we calculate kth preference of a vertex: among the neighbors of the
vertex, the partition ID of the kth largest frequency is the kth preference of the vertex. Then, using
each vertex’s first preference, each partition manages its own relocation candidate vertices from other
partitions. In Figure , vertex 0’s neighboring vertices’ partitions are {2,2,2,0,1,1}. Among
them, the partition that occurs most frequently is 2. Therefore, we put vertex O to the partition 2’s
relocation candidate (0 is now included in Pt.2 List in Figure).

22

878
879
880
881
882
883
884
885
886
887

888
889
890
891

892
893
894
895
896
897

Vertexid@® -~ @ - ® - |Pt0 @ Ptl
3]

Partition

o
sl =]

SrcPtr [0]---

Dstldx [1]2]5][7]4][3]-
Dst's
Partition

2[2[2]J0]1]1

(a) Intermediate Partition and Data Structure.

Thread g i % 8 i 3 g - Source-Level Candidate Vertices of Pt.2
Parallelism (Grouped by 2nd Preference)

VertexId@ . @ . @ O

Partition[0] - -[3]

. o @90

rcPtr |0 - (10 @ O O O

Dstidx [1]2]5]7[4[3] [8]10[9] -
Dst's
Dsts ZI2[2[o[a]T] [2[12] - T oo
1st Pref. 2nd Pref.
v Pt.0 Pt.1 Pt.2 Pt.3
Thread 0| QOO0+ [000 -] [@@® | [OOO--]
Candidate Vertex List
(b) Thread-wise Candidate Investigation and Selection.
Vertexid@® - @ - ® - Partition 0 Partition 1
Partition g\(}_
=] - 0r
Destination-Level > ><
| |
Sreptr 0] - Parallelism ® ol o
Thread |0 : _5'8
i @4/
Dstlax Partiton 2 Partition 3
Dst's 2
Partition ;

(c) Thread-wise Partition Update.

Figure 14: Switching-aware partitioning.

When selecting the final vertices to be relocated among candidates, we select them in a group-wise
manner. In Figure[I4p, we first use the 2nd preference partition of each vertex as a feature to help
cluster vertices into different groups, unlike the baseline streaming partitioning algorithm. We then
choose the largest group with the same 2nd preference to avoid vertices belonging to small, disparate
clusters being relocated. In this example, vertex 0’s 2nd preference partition is partition 1, and vertex
6’s 2nd preference partition is also partition 1. Therefore, we put those two vertices into the same
group. We choose to relocate the group including {0, 6} because it is the largest group among the
candidates. This provides a clustering effect and helps the convergence speed of partitioning. This
can be generalized into comparing until kth preference, but we use k = 2 as default because it already
empirically provides good performance.

To parallelize the procedure, we apply source-level parallelism, which distributes the source vertices
to each thread. Each thread manages its own candidate lists for partitions as depicted in Figure[T4p
with the example of thread 0. We dedicate each thread to the equal available relocation capacity
(RC; 5 /#threads) to run threads in a fully parallel manner.

After selection, we update the relocation result to the Dst’s Partition array. In Figure[T4, vertex
0 and 6 are selected to be relocated to partition 2. Therefore, we update the values of vertex 0
and 6 in Dst’s Partition array to 2 (meaning partition 2). This procedure is conducted with
destination-level parallel, as illustrated in Figure [[4c. After the update, using the updated data
structure, iteration ¢ + 1 proceeds. For each iteration ¢, we conduct the following procedure until
reaching the termination condition, which will be discussed in the next subsection.

23

898

899
900
901
902

903
904
905
906
907

908
909
910
911
912

913

914
915
916
917
918

919

920
921
922
923

924
925
926
927
928

K.1 Detailed terms and memory efficiency

We discussed switching-aware partitioning as a procedural view. In the detailed algorithm, we need a
penalty term for suppressing the propagation to reduce the imbalance among the number of vertices
in partitions. Therefore, in a state S;, for a vertex v, the scoring term (Score(, 1 ;) for each partition
J and the final objective are as follows:

Penalty; ;y = |Pj|/(a x [V]/p), (0 < j < p)
Score.ijy =1+ #N(v,j)/#N(v,-) — Penalty ;) 2)
marimize), . SCOre(, i i—partition,)

where #N (v, j) denotes the frequency of partition j among the neighbors of the vertex v and
Penalty; ;) denotes the penalty term of state S; of partition j. The penalty term reduces the
preference when a partition already reaches the additional capacity a. The objective function
calculates the total sum of the internal preferential scores of partitions. The partitioning halts when
the objective does not improve over € = 0.001 for w = 5 times.

In terms of memory consumption, switching-aware partitioning requires a significantly small amount
of memory. As we only utilize SrcPtr, DstIdx from CSR, Dst’s Partition and the partition
label, switching-aware partitioning only consumes O(2|V'| + 2|E|) amount memory. This is signifi-
cantly less memory usage than METIS, which requires huge memory to save intermediate coarsening
information.

K.2 Partitioning in actual training

Sequential partitioning methods [47, 49, /53] provide a near-optimal partitioning while consuming
large memory. On the other hand, switching-aware partitioning, provides efficient memory usage
while maintaining reasonable partitioning quality. Therefore, when the host memory size is enough to
handle partitioning with a sequential partitioning algorithm (i.e., METIS), we fall back to partitioning
with it.

L API example, framework structure, and implementation

from torch_geometric.nn import GCNConv
from torch_sparse import SparseTensor
from models import GriNNderGNN GriNNderLoader for storage
from utils.loader import GriNNderLoader Additional definition

Inheriting GriNNderGNN

of forward_layer

class GCN(GriNNderGNN):

def __init_ (..., loader: GriNNderLoader, ... ,
use_cache: bool, storage_offload: bool, ...):
super().__init_ (... , loader, ..., use_cache, storage_offload, ...)

for i in range(num_layers):
conv = GCNConv(in_dim, out_dim)
self.convs.append(conv)

def forward(self, x: Tensor, adj: SparseTensor, ...):
for (conv, ...) in zip(self.convs[:-1], ...)
h = conv(x, adj)

def forward_layer(self, layer, x: Tensor, adj: SparseTensor, ...):
h = self.convs[layer](x, adj)

Figure 15: User interface of GriNNder.

Figure[I5]shows the user interface of GriNNder. If a user has a model code for PyG [26]], the user can
utilize GriNNder by simply inheriting the GriNNderGNN module and implementing layer_forward
method. As offloaded full-graph training is layer-wise, a user needs to implement the layer_forward
method in addition to the default forward method of a PyG model.

Figure@illustrates the overall framework structure of GriNNder. In User-Level, GriNNder provides
the base GNN module for inheritation and custom dataloader, which serves offloading-related data
and interacts with switching-aware partitioning. In Middleware, the offloading engine of GriNNder
controls the AIO engine for host-storage I/0 and the GPUDirect Storage (GDS) for GPU-storage 1/0.
The offloading engine also provides the features of GriNNder internally. GriNNder engine utilizes

24

929
930
931

932
933
934
935
936
937
938
939
940
941
942
943

944

945
946
947

949
950
951
952

953
954
955
956

958
959

User Level
[User’s Custom Code]

¥
GriNNder Dataloader
[ag PyG Dataloader]

¥
GriNNder Base
(@ PyG Model |

Middleware - . A
GriNNder Offloading Engine GriNNder
AIO Engine 8 stoarge Offloader GDS Engine | | Partitioner
(e.g. Tensor (e.g. KVikIO) =
NVMe) Cache Handler 36;(%
T 5%
[& Pytorch Geometric Kernels]
HérﬁWai’éi ”””””””” 1l T l ”””””””””
GPU Host Storage
= FW/BW] [Activation] [Activation] [So Topology]

[Model] [@ Gradient]

[E Gradient] [11 Dataloader]

Figure 16: Framework structure of GriNNder.

PyG kernels and implementations for the forward/backward passes. The middleware operates three
Hardwares, GPU, host, and storage. As a result, a user can enjoy the full features of GriNNder only
by providing train code by inheriting GriNNder module.

We implement GriNNder over the torch.nn.Module of PyTorch [71] to enable a user to use
GriNNder only by inheriting GriNNderGNN module. For host-to-storage I/O, we utilized the AIO
interface of Linux wrapped by TensorNVMe [2]]. For GPUDirect Storage (GDS) [67], we used
Kvikio [3]], which is the user interface for GDS. Both I/O engines are managed by a thread pool to
trigger asynchronous I/O. For the data loader and partitioner, we implemented them with C++ and
served these codes to PyTorch through pybind11 [4]. Inside the GriNNderGNN module, offloading
engine conducts the core functionality of GriNNder by interacting with the AIO engine (e.g.,
TensorNVMe) and the GDS engine (e.g., Kvikio). Our custom partitioning extension provides the
partitioning information to the data loader of GriNNder. Additionally, since offloaded training is
usually I/O bound, we further optimize GriNNder using I/O overlapping. Using the bidirectional
interconnect (i.e., PCle), we can overlap offloading the activation/gradients from a partition and
uploading the required activation/gradients for the next partition.

M Detailed experimental settings and baselines

Table 9: Real-world graph datasets and hyper-parameters

Dataset Info. Hyper-parameter
Name #Nodes #Edges Feat. size Ir Dropout #Epochs
Products [38] 2,449K 61.9M 100 0.003 0.3 500
IGBM [51] 10,000K 120.1M 1024 0.01 0.5 500
Papers [38] 111,000K 1,600M 128 0.01 0.5 500

Models and datasets. We tested graph convolutional network (GCN) as the baseline GNN archi-
tecture and also used GAT [87]] and GraphSAGE [33]]. We set the hidden size as the widely-used
256, if not stated otherwise. We used three medium- (Products [38]]) to large-scale (IGBM [51]
and Papers [38]]) datasets (details in Table[0). Products is a co-purchasing network where vertices
represent Amazon products and edges indicate products purchased together. IGBM and Papers are
citation networks with vertices and edges representing research papers and citations, respectively. We
also utilized Kronecker random graphs [54] (average degree=10) with the random initial feature of
dimension 128 and #classes of 10 for scalability and versatility test with ablation.

Hardwares. We used a single PC with AMD Ryzen9 7950X 3D CPU, 128GB DDR5-5600 host
memory, and an RTX A5000 24GB GPU. We equipped a PCle 5.0 4TB NVMe SSD for the swap
memory and GPUDirect Storage (GDS) [67]] and AIO [1]. We also set swap memory of 4TB for the
swap memory-based evaluations. We used a four-server cluster to test distributed full-graph training
baselines, each server having four RTX A6000 GPUs, which aggregates to 16 GPUs. Intra-server
GPUs are connected via NVLink Bridge [69], and servers are connected via Infiniband SDR [68]].
Each server has 512GB DDR4 RAM and an EPYC 7302 (16C 32T). For IGBM/Papers, we needed

25

960
961

962
963
964
965
966
967
968
969
970
971
972
973

974
975
976
977
978
979
980
981

982
983
984
985
986

987

988

989
990
991

992
993
994
995
996
997
998

999
1000
1001
1002
1003
1004
1005

all 16 GPUs to fit the data in the GPU memory. For Products, using fewer GPUs could yield better
performance, but we used all GPUs to maintain consistency among datasets.

Baselines. We compared four single-server baselines with GriNNder (denoted as ‘GRD’). For
MFG-based full-graph training, we used Betty [97] (called micro-batch training), the state-of-the-art
full-graph training in limited environments, as our baseline. As Betty sometimes shows significant
slowdowns due to slow MFG generation, we excluded the MFG generation time for comparison. To
test extension of storage-based mini-batch training to full-graph training while utilizing SSD, we
extend Ginex [70] to micro-batch training [97]. For host offloaded full-graph training, we faithfully
implemented HongTu [92] and used it as a baseline. When the training data overflows the host
memory, we use storage swap memory to compare it with GriNNder regarding storage usage. We
also tested the naive extension of ROC [42] to naively just use storage for offloading, but reported
the results of it only in Appendix [X]because this extension was much slower than the others. In
the appendix, we additionally tested two storage-based mini-batch training (DiskGNN [59] and
GNNDrive [44]]) with micro-batch extension (Appendix E])

We also compared GriNNder with two distributed full-graph training baselines, CAGNET [835]] and
Sancus [[72]. CAGNET is one of the famous distributed full-graph training methods, and Sancus
accelerated it by storing stale activations and gradients to reduce the communication bottleneck. Note
that while Sancus is not the exact full-graph training from using stale activations and gradients, we
still included it as it is one of the state-of-the-art distributed full-graph training frameworks. These two
baselines ran on the cluster mentioned above. When GPU out-of-memory issues arise in distributed
training baselines, we implement host memory activation checkpointing (indicated by ‘*’) to attempt
to make them executable.

For partitioning, we utilized the multi-threaded METIS (MT-METIS) [53] as the baseline, which is
one of the state-of-the-art METIS parallelizations (denoted as ‘METIS’). Even when it does not run on
the testbed due to insufficient memory, we assume it was preprocessed in another environment since
all baseline methods rely on METIS. For comparisons with lightweight partitioners, we benchmarked
Spinner [63] and an out-of-core partitioner (2PS-L [64]).

N Comprehensive analysis with synthetic graph on scalability, ablation, and
configuration

We conducted a comprehensive analysis using synthetic graphs, as summarized in Table[I0} The tests
utilized Kronecker synthetic graphs [54]] with sizes ranging from 222 to 22° nodes (4.2-33.6M) and
an average degree of 10.

Across all combinations of layers and datasets, all ablations of GriNNder consistently achieved
significant speedups over HongTu. For smaller datasets, where host memory can store all intermediate
activations and gradients, the configuration using only grad-engine activation regathering (‘GRD-G’)
generally outperforms the storage-enabled version (‘GRD-GC’), primarily due to cache management
overhead. However, for larger datasets, employing storage alleviates host memory cache pressure,
allowing the storage-based configuration (‘GRD-GC’) to deliver substantial speedups over both
HongTu and GRD-G.

These results demonstrate that GriNNder is highly scalable for large datasets, with storage utilization
being an effective strategy for handling large graphs on a single GPU. We also observed that GriNNder
occasionally requires a larger number of partitions (i.e., different configurations) than HongTu. This
is due to the GPU memory overhead introduced by overlapping GDS operations and computation.
Despite this, GriNNder continues to deliver significant performance improvements over HongTu. It
is also important to note that the number of partitions is merely a configuration hyperparameter, and
users are not burdened by the need to manually handle this difference.

26

Table 10: Training time/epoch (min) for various-sized Kronecker synthetic graphs. ‘-’ denotes
when the number of partitions is not enough for running. Bold is the fastest training time in each
(#layers, dataset) pair.

#Layers #Partitions Method 4.2M 8.4M 16.8M 33.6M
HongTu 0.43 0.83 - -
16 GRD-G 0.29 0.59 - -
GRD-GC 0.31 0.63 - -
HongTu 0.57 1.11 7.25 -
32 GRD-G 0.31 0.66 - -
3 GRD-GC 0.33 0.71 - -
HongTu 0.76 1.76 10.70 -
64 GRD-G 0.41 0.77 - -
GRD-GC 0.43 0.81 - -
HongTu 1.05 5.32 18.96 36.31
128 GRD-G 0.55 1.02 1.93 3.73
GRD-GC 0.58 1.05 1.99 3.86
HongTu 0.83 1.99 - -
16 GRD-G 0.57 1.14 - -
GRD-GC 0.60 1.20 - -
HongTu 1.07 8.04 19.15 -
32 GRD-G 0.60 1.30 - -
5 GRD-GC 0.63 1.37 - -
HongTu 1.48 11.43 24.08 -
64 GRD-G 0.79 1.49 - -
GRD-GC 0.84 1.55 - -
HongTu 4.61 17.08 37.09 96.99
128 GRD-G 1.08 1.96 3.71 10.87
GRD-GC 1.13 2.02 3.82 7.76

27

1006

1007
1008
1009
1010

1011

1012
1013
1014
1015

1016

1017
1018
1019
1020

1021
1022
1023

O Cache hit rates

Table 11: Cache hit rate

Dataset Products IGBM Papers kron-4.2M Kkron-84M kron-16.8M kron-33.6M
Hit Rate (%) 28.57 53.70 83.63 80.81 80.47 92.77 92.70

We report cache hit rates in Table[T1] As larger datasets (> IGBM, 10M) incur more reuse from the
higher number of partitions, the hit rate is more significant in them. A low hit rate is natural in small
datasets (e.g., Products) because we employ only a few partitions, and most data are not reused. Thus,
GriNNder’s caching is promising in large-graph training.

P Comparison with existing lighweight partitioners

Table 12: Time-to-quality comparison with spinner

Products (4 parts)
Sec. 0 1 2 3 4 5 6 7

Spinner 2.62 1.98 1.78 1.47 1.23 1.20 1.19 1.19
GRD 2.62 1.33 1.22 1.19 1.18

IGBM (32 parts)

Sec. 0 1 2 3 4 5 6 7 8 9 .. 37
Spinner 793 781 764 745 723 696 6.64 627 584 544 ... 346
GRD 793 639 474 399 357 341 334 331

Papers (2048 parts)
Min. 0 2 4 6 8 10 12 14 16 18 ... 23
Spinner 27.36 25.68 2241 1829 1444 11.76 10.07 899 825 787 ... 7.09

GRD 2736 2324 1582 11.09 874 791 749 724 7.03 6.89

Table 13: Comparison with SOTA out-of-core partitioner (2PS-L [64])

Quality/Time Products IGBM Papers
2PS-L 2.08/210.19s 5.20/202.77s 18.39/86.56m
GRD 1.18 /4.00s 3.31/6.96s 6.89/17.60m

We compared the time-to-quality (i.e., expansion ratio, o, lower is better) of GriNNder’s switching-
aware partitioning (GRD) with the famous streaming algorithm (Spinner) in Table[I2] We ran 50
iterations for both. We also benchmarked an out-of-core partitioner (2PS-L [[64]]) with the official
code/settings in Table[I3] GriNNder quickly results in higher-quality partitions for both cases.

Q Convergence trend and practical overhead of switching-aware partitioning

Switching-aware partitioning converges fast with low practical overhead. In Table[T4] we report the
trend of the partitioning quality (score of the objective function) improvement (convergence) from
the adjacent previous iteration (e.g., iter 4 — 5). We observe that at most 50 iterations are enough for
convergence, thus limiting partitioning to 50 iterations in our experiments.

Given that a single iteration takes 0.08sec/0.14sec/21.12sec on average and our lightweight parti-
tioning only requires 2.49sec/6.96sec/17.60min, partitioning consumes 0.07/0.02/0.39% of the total
training time (500 epochs) on Products/IGBM/Papers, respectively.

28

1024

1025
1026
1027
1028

1029

1030
1031
1032
1033
1034
1035

1036

1037

1038
1039
1040
1041

1042
1043
1044
1045

Table 14: Partitioning convergence trend

Dataset Improvement (%) for Iterations
. L Iteration 1 5 10 15 20 25 28 (last)
Products (4 parts) — y o ove %) 681 975 379 036 0.12 008 005
Tteration 1 5 10 15 20 25 30 35 40 45 50 (lasy)
IGBM (32 parts) 1 orove (%) 1113 778 3.66 196 0.66 077 039 021 0.16 010 0.08
Iteration 1 5 10 15 20 25 30 35 40 45 50 (last)

Papers 2048 parts) - 1 rove (%) 18.04 286 396 1.61 178 089 046 072 043 022 0.14

R Configuration sensitivity results

Table 15: Configuration sensitivity on training time (sec). The default number of partitions for
ProDUCTS and IGBM are 2 and 32, respectively.

Method x1 X2 x4 x8
o HongTu 9.98 11.11 12.22 13.65
5 PRODUCTS Grp 6.93 7.72 8.55 8.99
< IGBM HongTu 387.68 694.02 675.98 876.60

GRD 55.62 59.41 61.06 66.39
) HongTu 19.14 21.46 23.42 26.22
5 PRODUCTS GRrp 13.65 15.22 16.38 17.60
“ GBM HongTu 894.09 958.20 1183.88 1425.36

GRD 91.46 92.60 98.99 114.76

We additionally conducted configuration sensitivity experiments in Table [I5] From the efficient
caching management and elimination of redundancy, GriNNder is much less sensitive to the number
of partitions (configurations). This enhances the practicality of GriNNder for end-users as they are
not required to carefully configure the number of partitions.

S Muti-GPU scalability

Although GriNNder was not designed for multi-GPU environments, it is scalable to some degree.
We implemented multi-GPU GriNNder with partition parallelism and synchronization of scattered
gradients in the backward pass. We ran this on a multi-GPU server with four RTX4090 GPUs*.
Speedups of 1.25/1.60/2.44x and 1.23/1.53/2.14 x were observed with 2/3/4GPUs, respectively, on
IGBM and Papers. The speedup is proportional to the number of GPUs, where some overhead is
incurred due to the system’s shared resources — host memory bandwidth and storage bandwidth.

*: 2xIntel Xeon Gold 6442Y/512GB DDRS5 DRAM/2TB PCle5.0 NVMe SSD

T Benchmarking w/o GDS

GriNNder can be generally used when GDS is unavailable. In this case, Kvikio (used in GriNNder)
automatically switches to POSIX. Thus, users can still utilize GriNNder without any modification.
Also, please note that GDS is supported on GPUs with NVIDIA compute capability >6.x (e.g., V100
and after).

We also benchmarked the performance (min) of GriNNder without GDS support in Table [T6] as
‘w/o GDS’. As Products and IGBM can be handled with host memory, the ‘w/o GDS’ performs
similarly to the GDS cases. Even with Papers, where storage is highly utilized, there is only a 13-14%
slowdown, demonstrating GriNNder’s versatility.

29

1046

1047
1048
1049
1050
1051
1052

1053

1054
1055
1056
1057
1058
1059
1060
1061
1062

1063

1064
1065
1066
1067
1068
1069
1070

Table 16: Sensitivity to GDS

Layers GDS Products IGBM Papers

3laver ODS 0.12 0.93 9.07
YU wio GDS 0.12 0.93 10.25

5qaver ODS 0.23 152 12.03
Yer' Wwio GDS 0.23 152 13.73

U Cost efficiency analysis

Table[I7]illustrates the cost efficiency of GriNNder compared to baselines. GriNNder is 33.26-60.71 x
more cost-effective against distributed baselines and 6.97-9.78 x cost-efficient than HongTu. Our
four server clusters cost $131,848, including servers, 16 A6000 GPUs, and an Infiniband switch for
inter-server connection. Our single-GPU workstations cost $3,300, including a workstation and an
RTX A5000 GPU. We calculate the vertex per second throughput and divide it by cluster/workstation
price to derive cost efficiency.

Table 17: Cost efficiency (vertex per second / $) of GriNNder compared to baselines. We report
the cases runnable in Tablem

Method PrRODUCTS IGBM PAPERS
% CAGNET 1.51 0.90 1.40
@ A8 SANCUS 1.64 1.64 -
~
- é HONGTU 74.36 7.82 -
= GRD 107.09 54.48 61.82
% CAGNET 0.82 0.60 -
i A8 SaNcus 0.85 0.90 -
~
- E HONGTU 38.77 3.39 -
= GRD 54.37 33.13 46.58

V Researches to resemble full-graph training with algorithm change

Many works have been proposed to resemble the accuracy (effect) of full-graph training by addressing
the information loss of mini-batch training. GNNAutoScale [25] utilizes staled activation to com-
pensate for the information loss of mini-batch training. LMC [79]] further addresses the information
loss by compensating the information loss with gradients. In distributed full-graph training, many
researchers have tried to address the communication bottleneck while resembling the full-graph
training accuracy with staleness [90, [72] and error compensation [89] while proportional dropping of
communication. While the above compensation methods could be orthogonally applied to further
enhance the performance of GriNNder, we did not apply them to implement the exact full-graph
training without algorithm change.

W Functionality (accuracy) check of GriNNder

While GriNNder does not change the algorithm of full-graph training, we tested the accuracy of
GriNNder compared to full-graph training and HongTu for the functionality check, as illustrated in
Figure Full-graph training was conducted with a CAGNET distributed baseline because Sancus
is not exact full-graph training. We only reported Products and IGBM because Papers was not
runnable on HongTu. As depicted in Figure[I'7] while HongTu is much slower than the distributed
setup, GriNNder provides significant speedup over the distributed CAGNET. All two baselines and
GriNNder show the same accuracy, which demonstrates the correct functionality of GriNNder. We

30

1071
1072

1073

1074
1075
1076
1077
1078
1079
1080

1081

1082

1083
1084
1085
1086

1087

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1098

1099
1100
1101
1102

—e— GRD —e— HongTu —e— CAGNET

Time-to-Accuracy for Products Dataset Time-to-Accuracy for IGBM Dataset

70 70

60 60

S Eso
> >
9 9

€40 € a0
3 3
3 9

< 30 < 30
0 k7]

[® 20

10 10

0

0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0 0 100 200 300 400 500 600
100 Epoch Training Time (min) 100 Epoch Training Time (min)

Figure 17: Functionality check of GriNNder.

also additionally checked Sancus’s result, which is not the exact full-graph training as it utilizes staled
activations and gradients. It shows similar accuracy to others but not exactly the same to them.

X Comparison with naive baseline (naive storage extension of ROC [42])

We also tested the naive storage extension of ROC [42] instead of HongTu, which is the state-of-the-
art framework. While we tested with HongTu with OS-based swap (i.e., mmap), we made it directly
utilize storage instead of OS-based management for the ROC extension. On this naive extension,
GriNNder provides 1.28/29.00x speedup on 3-layer GCN on Products and IGBM, respectively.
The speedup is significant on IGBM because Products only use #partitions=2 while IGBM uses
#partitions=32. Thus, GriNNder provides further speedup on IGBM, which has much redundancy
issue with ROC.

Y Limitations

Y.1 Limitation of partition-wise cache management

Although we evaluate an extensive set of datasets and demonstrate the effectiveness of our partition-
wise cache management, there can be a worst-case scenario: when dependencies are uniformly
distributed across many partitions. In this case, partition-wise management may lead to overhead
rather than performance improvement. We leave the handling of such a case to future work.

Y.2 Discussion on SSD durability

A key concern when using SSDs for training is their lifespan, particularly due to durability issues.
GriNNder is designed to minimize reliance on storage by leveraging host memory as much as possible.
Specifically, when the host memory can accommodate all intermediate activations and gradients,
GriNNder does not offload data to storage However, storage becomes necessary for large graph
sizes or hidden dimensions. Since the write operations to SSDs are the primary factor impacting
their lifespan, we can mitigate this issue by utilizing staled activations and gradients, as proposed
in previous works [72,190] from distributed full-graph training. By employing staleness techniques,
while it is not the exact full-graph training, storage writes are effectively converted to storage reads,
thereby extending the lifespan of the SSD. We plan to integrate these staleness-based techniques in
an orthogonal manner to enhance the usability of PyGriNNder.

7Z Related work

GNN training. Numerous methods have been proposed to learn representations from real-world
graphs 381198180, 128]]. Mini-batch training 33,199,103} 104} 4645196, 184,160, 29,57, 182] addresses
memory constraints with sampling [[107} 39| 20]], but often exhibits input information loss [90, 142} |89|
45(184]). Full-graph training is preferred for non input information loss (e.g., validating an algorithm’s

31

1103
1104
1105
1106

1107
1108
1109
1110
1111
1112
1113
1114
1115

1116
1117
1118
1119
1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

sole effect), meeting memory requirements with many GPUs [90, 142, 189172, 185191911160, 93]. Near-
memory processing is also adopted [106] as an alternative hardware solution. To enable full-graph
training in a single server, [97]] accumulates the weight gradients, and [92] stores activations/gradients
to host memory. However, both are still limited to GPU or host memory capacity.

SSD-based training. Training DNNs with storage is a popular research area. Large language models,
for example, [74] uses GPU, CPU, and SSD, and [40]] additionally uses computational storage
devices. But they are centered on managing optimizer states, which are extremely small compared
to activations/gradients in full-graph training. Some works on mini-batch GNNs also utilize SSDs.
Ginex [70] reduces I/O access by restructuring the GNN training pipeline and MariusGNN [[88] loads
only the valid graph features from storage with two-level partitioning. Helios [83]] enables GPUs to
directly access graphs in SSDs. DiskGNN [59] and GNNDrive [44] further optimize disk 1/O of the
above methods for mini-batching However, they target mini-batch training, and are limited by the
message flow graph structure when extended to full-graph training.

GNN snapshots. Using snapshots is a popular method to reduce memory usage in DNN training [12],
7,165, 132} 1951 166 22]] while providing exact results by storing activations and reconstructing them.
Other strategies such as pruning [34} 24} 1351136} 75} 58], quantization [[16} 15} {17,156} [105} 109} [77],
and memory-efficient backpropagation [31} [30, 9] also reduce memory usage but may sacrifice
accuracy. [LO1} 192, 18l 194} 43]] also utilize snapshots for GNN training. [101] further reduces
memory requirements and [92] naively stores snapshots of offloaded partitions, suffering from a
huge redundancy. GriNNder instead proposes grad-engine activation regathering to address this
redundancy and reduce the I/O overhead.

Graph partitioning. Partitioning is widely used for graphs [61} 92| 97| 47, 102, 41} [10, 100,
85, 160, 193, 91]]. The popular METIS [47] features coarsening, partitioning, and un-coarsening
phase [18}137,[76115]. Additional frameworks [102},/41}[10] also try to balance partitions but demand a
large amount of memory. Many distributed GNN training frameworks [90, [72} 103} 104,60, 91, 93]]
are based on METIS for minimizing communication cost or workload balancing. For instance, [91]]
proposes an iterative METIS-based partitioning to enhance its three-dimensional parallelism. [50]
reveals that previous partitioning [S3] requires 4.8 x-13.8 x more memory than the graph itself. There
are attempts to reduce this with online partitioning [21} [86, [81]] or label propagation [48] 73] for
scalable graph partitioning [63]]. However, they focus on distributed systems and still require a lot of
memory. Conversely, GriNNder proposes an efficient partitioning for large-scale graphs in limited
environments.

32

1135

1136

1137
1138

1139

1140
1141
1142

1143

1144
1145
1146
1147
1148
1149
1150
1151
1152

1153

1154

1155

1156
1157
1158
1159
1160
1161

1162

1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s main contribution
and scope. They also correctly summarize the main benefits (computational speedups on
various-sized graphs) of this work.

Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
 The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Appendix[Y] we discussed the limitation of partition-wise cache manage-
ment. Also, we further discussed that the lifespan of SSDs could be a concern for this
work. However, the proposed method is designed to minimize this issue by leveraging host
memory as much as possible through reducing the reliance on storage. Additionally, we
also stated that orthogonally applying the staleness-based methods from other domains (e.g.,
distributed methods) on this work can further mitigate this issue.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

33

1189

1190
1191

1192

1193
1194

1195

1196

1197
1198

1199

1200
1201
1202

1203
1204

1205

1206

1207
1208
1209

1210

1211
1212
1213

1214

1215

1216
1217
1218

1219
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229

1230
1231
1232

1233
1234
1235
1236
1237
1238
1239
1240

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This work proposes systematic approaches for full-graph graph neural network
(GNN) training, and does not have any theoretical results.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides sufficient information needed to reproduce the main
experimental results of the paper. To enhance the reproducibility, we further stated the
detailed procedure in Appendix [D]and the experimental settings in Appendix [M]

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

34

1241
1242
1243
1244
1245

1246

1247
1248
1249

1250

1251
1252
1253

1254

1255
1256
1257

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273

1274

1275
1276
1277

1278

1279
1280

1281

1282

1283
1284

1285
1286

1287

1288
1289

1290

1291
1292
1293

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We included the anonymized code for this paper in the supplemental material.
In the zipped code, the environmental setup guide, the readme, and the experiment scripts
are available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We included the experimental settings and details in the main body and also
described the further details in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper resides in the systems for the ML domain, thus we reported the
sensitivity experiments on various environments instead of experiments for the statistical
significance.

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

1294

1295

1296
1297
1298

1299
1300
1301

1302
1303

1304

1305
1306

1307
1308
1309

1310
1311
1312

1313
1314

1315

1316
1317
1318

1319

1320
1321

1322

1323

1324
1325

1326
1327

1328
1329
1330

1331

1332
1333

1334

1335

1336

1337

1338
1339

1340
1341

1342

1343
1344

8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the sufficient information on compute resources in the evaluation
sections and Appendix [M]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in this work conforms to the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

36

https://neurips.cc/public/EthicsGuidelines

1345

1346
1347

1348

1349

1350
1351

1352
1353
1354
1355

1356
1357
1358
1359
1360
1361
1362

1363
1364
1365
1366
1367
1368
1369
1370

1371

1372
1373
1374

1375

1376

1377

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387

1388

1389
1390
1391

1392

1393
1394

1395

1396

11.

12.

Answer: [NA]

Justification: This paper resides in the systems for ML domain, thus we cannot directly
discuss the potential societal effects of this work. Therefore, we answered NA.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We wrote the code for this work from scratch. In terms of datasets, models,
and datasets, we properly cited them in the paper.

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

37

1397
1398

1399

1400
1401

1402
1403
1404
1405

1406
1407

1408
1409
1410

1411
1412

1413

1414
1415

1416

1417

1418
1419
1420

1421
1422

1423
1424
1425

1426
1427
1428

1429

1430

1431

1432

1433
1434
1435
1436
1437
1438
1439

1440
1441

1442
1443
1444
1445

1446

1447

1448

13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In the anonymized code, we included the environmental setup guidelines and
the readme.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

38

paperswithcode.com/datasets

1449 * The answer NA means that the paper does not involve crowdsourcing nor research with
1450 human subjects.

1451 * Depending on the country in which research is conducted, IRB approval (or equivalent)
1452 may be required for any human subjects research. If you obtained IRB approval, you
1453 should clearly state this in the paper.

1454 * We recognize that the procedures for this may vary significantly between institutions
1455 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1456 guidelines for their institution.

1457 * For initial submissions, do not include any information that would break anonymity (if
1458 applicable), such as the institution conducting the review.

1459 16. Declaration of LLM usage

1460 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1461 non-standard component of the core methods in this research? Note that if the LLM is used
1462 only for writing, editing, or formatting purposes and does not impact the core methodology,
1463 scientific rigorousness, or originality of the research, declaration is not required.

1464 Answer: [NA]

1465 Justification: We did not use any LLMs for the core method development.

1466 Guidelines:

1467 * The answer NA means that the core method development in this research does not
1468 involve LLMs as any important, original, or non-standard components.

1469 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1470 for what should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background: full-graph GNN training
	Full-graph GNN training workflow with storage employment
	GriNNder design
	Partition-aware graph caching
	Grad-engine activation regathering
	Switching-aware partitioning
	Implementation: PyGriNNder

	Evaluation
	Experimental settings and baselines
	Large graph training results
	Ablation by decreasing effective cache size and cache hit rate
	Analysis on host memory usage
	Analysis on partitioning algorithms
	Other sensitivity studies (model, configuration, and multi-GPU sensitivity)

	Conclusion
	Survey of 2024 conferences' submission on GNN domains
	Drawbacks of existing full-graph training methods for limited environments
	Limitation of extending storage-based mini-batch training to full-graph training with micro-batch training
	Overall procedure of GriNNder
	Profile of dependency among partitions
	Vertex-wise cache management vs. partition-wise cache management
	I/O optimizations of GriNNder
	Overlapping of processing and cache management
	In-partition vertex ordering for sequential accesses

	Comparison with HongTu's gradient engine
	In-depth I/O volume and memory footprint analyses
	METIS and its memory usage
	Insights and details of switching-aware partitioning
	Detailed terms and memory efficiency
	Partitioning in actual training

	API example, framework structure, and implementation
	Detailed experimental settings and baselines
	Comprehensive analysis with synthetic graph on scalability, ablation, and configuration
	Cache hit rates
	Comparison with existing lighweight partitioners
	Convergence trend and practical overhead of switching-aware partitioning
	Configuration sensitivity results
	Muti-GPU scalability
	Benchmarking w/o GDS
	Cost efficiency analysis
	Researches to resemble full-graph training with algorithm change
	Functionality (accuracy) check of GriNNder
	Comparison with naïve baseline (naïve storage extension of ROC roc)
	Limitations
	Limitation of partition-wise cache management
	Discussion on SSD durability

	Related work

