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Abstract

Full-graph training of graph neural networks (GNNs) processes the entire graph at1

once, preserving all input information and enabling straightforward validation of2

algorithmic gains. However, it typically needs multiple GPUs/servers, increasing3

costs and inter-server communication. Although single-server methods reduce ex-4

penses, they remain constrained by limited GPU/host memory as graph sizes grow.5

Furthermore, naïvely applying storage-based methods from other domains to miti-6

gate such a limit is infeasible for handling large-scale graphs. Here, we introduce7

GriNNder, the first storage-based framework (e.g., using NVMe SSDs) for scalable8

and efficient full-graph GNN training. GriNNder alleviates GPU memory bottle-9

necks by offloading data to storage, while keeping read/write traffic to and from the10

storage device minimal. To achieve this, from the observation that cross-partition11

dependencies follow a power-law distribution, we introduce an efficient partition-12

wise caching strategy for handling intermediate activations/gradients of full-graph13

dependencies with host memory. Also, we design a regathering mechanism for the14

gradient engine that minimizes storage traffic and propose a lightweight partition-15

ing scheme that overcomes the memory limitations of existing methods. GriNNder16

achieves up to 9.78× speedup over the state-of-the-art baseline and comparable17

throughput to distributed baselines while enabling previously infeasible large-scale18

full-graph training with a single GPU.19

1 Introduction20

Graph neural networks (GNNs) are powerful tools for learning from graph-structured data, applicable21

to social networks [23], protein analysis [27], and even classic vision tasks [13]. Since graphs can22

represent almost any unstructured relationship, GNNs hold broad potential across diverse domains.23

Most GNNs are trained with full-graph or mini-batch training. Full-graph training [90, 89, 42, 25,24

79, 72] iteratively processes the entire graph information, which simplifies identifying algorithmic25

gains. However, this requires storing all intermediate activations/gradients, which can easily overflow26

GPU memory. While scaling GPUs is an option, it incurs significant hardware costs/communication27

overhead, often leading to poor efficiency. Mini-batch training [11, 14, 33, 99] utilizes graph sampling28

to resize the input to fit GPU memory capacity. However, it often results in information loss (e.g.,29

neighbors’ features). Moreover, it also requires extensive tuning of sampling strategies and hyperpa-30

rameters, which complicates finding the optimal performance of the developers’ algorithms [6].31

Aforementioned limitations, which come from the hardware constraints, hinder researchers from32

developing their algorithms flexibly. Our survey on recent conference GNN papers (Appendix A)33

confirms the appeal of full-graph training for its simplicity and fidelity. Around half of them opted34

for full-graph training, but many of them reported out-of-memory with large graphs. To address35

this, some single-server full-graph training methods [97, 92] have been proposed, but suffer from36
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GPU/host memory limit as graph sizes grow (Appendix B). Thus, we devise a novel approach that37

enables full-graph training of large graphs under limited resources (i.e., a single GPU) with storage38

(e.g., NVMe SSD).39

One might think that existing storage-based solutions can compensate for limited GPU and host40

memory. However, such solutions have fundamental limitations and cannot be directly applied to41

full-graph GNN training. For instance, in the context of large language models (LLMs), several42

solutions utilize storage [74, 78] by offloading weight parameters/optimizer states to NVMe devices.43

Unlike LLMs, which typically have large weights and hence large optimizer states, GNN weights are44

shared among all vertices, with only a few (e.g., 2-5) layers. This indicates a need for offloading vertex45

activations/gradients instead, but this brings a non-trivial challenge of addressing the complicated46

dependency (i.e., edges) between layers. These dependencies cause frequent random accesses, which47

put a significant I/O burden on the channel between the GPU and storage.48

In the case of mini-batch GNN training, storage-based methods [70, 88, 59, 44] primarily focus on49

efficiently constructing mini-batches while leveraging storage to hold initial graph-related features.50

However, extending storage-based mini-batch training [70, 88, 59, 44] to full-graph training (called51

micro-batch training [97]) also faces the limitations because it only focuses on handling initial52

features (not intermediate activations/gradients), and further suffers from the GPU out-of-memory53

due to neighbor explosion (Appendix C).54

Specifically, following are three key challenges when employing storage for full-graph GNN training:55

1. Storage I/O Bottlenecks: Despite the improved bandwidth of NVMe SSDs, they are far slower56

than host memory and suffer from inefficient I/O due to the storage page granularity.57

2. Data Amplification: Existing methods [71, 26, 92] utilize activation snapshots to enable sequential58

storage access to activations. However, this approach becomes impractical when employing59

storage, since it inflates memory usage and I/O traffic.60

3. Impractical Partitioning: We need to iteratively conduct graph partitioning until the required61

memory size is met to fit the GPU memory size. However, since existing approaches [97, 92] rely62

on standard partitioning algorithms [47, 49, 53], they often exceed host memory limits with large63

graphs, requiring a separate large-memory cluster/server.64

Here, we introduce GriNNder, the first framework enabling fast full-graph GNN training under tight65

resources, using an NVMe SSD and a single GPU. It tackles the above challenges with the following:66

• Partition-aware graph caching: From the observation that the cross-partition dependencies also67

follow a power-law distribution, we exploit this characteristic and utilize host memory as an68

efficient partition-wise cache with optimized I/O policies, minimizing inefficient storage I/O.69

• Grad-engine activation regathering: A method to minimize redundant data storage in the automatic70

gradient computation engine, mitigating the data amplification in the existing offloading solutions.71

• Switching-aware partitioning: A fast, memory-efficient partitioning algorithm for limited-resource72

settings, avoiding the high memory footprint of standard partitioners.73

We implemented GriNNder as PyGriNNder, allowing users to easily utilize PyTorch Geometric [26]74

code by inheriting the model class. Notably, GriNNder does not alter any of the model/training75

algorithm, ensuring seamless migration without the risk of accuracy drop. Experiments show that76

GriNNder achieves throughput comparable to distributed baselines and up to 9.78× speedup over the77

state-of-the-art, enabling previously infeasible large-scale graph training only with a single GPU.78

2 Background: full-graph GNN training79

Figure 1 shows full-graph training of a two-layer GNN on a toy graph depicted in Figure 1a. From80

the topology, the two-layer dependency can be drawn as in Figure 1b. Starting from the input81

features denoted with circled vertex ids, the features are passed by message passing to the features of82

destination vertices in the intermediate layer. The message passing of the second layer proceeds with83

the same dependency, which creates the output embeddings for the vertices.84

Figure 1c illustrates the typical layer-by-layer procedure of conducting full-graph training on the GNN.85

To compute an output feature vector of a vertex, the features of source vertices from the previous86

layers need to be aggregated (e.g., average). For example, vertex feature a has dependencies from87

vertex features a , b , and g , including an implicit self-directed edge. Similarly, vertex feature i88
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Figure 1: Example full-graph training procedure with a two-layer GNN.

has dependencies from vertex features g , h , and i . After the aggregation, multiplying them with89

the shared weight matrix (i.e., W1) followed by misc operations such as normalization and activation90

produces the final output features for the layer (denoted by ). For the next layer, the output features91

are gathered to make inputs for aggregation under the same dependency (blue arrows). The gathered92

activations are saved (i.e., snapshots) in the GPU/host memory for later use in the backward pass.93

In the backward, the dependency is inverted, where the output of vertex feature/gradient a is94

delivered to a , b , and g to compute their gradients. For this, the previously memory-stored95

snapshots are loaded (red arrows), and the computed gradients of the corresponding source vertex96

features are scatter-accumulated to the vertices of the previous layer (green arrows).97

For workloads that fit on a GPU memory, this procedure ensures fast training by utilizing massive98

parallelism and high memory bandwidth. However, this comes at the cost of capacity pressure,99

because the entire GNN with all its intermediate data has to fit within GPU memory. A straightforward100

solution is to scale out [85, 72], but it often suffers from high system cost and slow network throughput.101

To address such issues, several methods targeting tight resource constraints (i.e., limited GPU memory102

capacity) have been proposed [97, 92]. However, they still suffer from GPU/host memory limit and103

impractical partitioning, which are discussed in Appendix B. Also, extending storage-based mini-104

batch training to full-graph training faces GPU memory limit due to neighbor explosion (Appendix C).105

On the other hand, GriNNder addresses such issues by employing storage with efficient strategies.106

3 Full-graph GNN training workflow with storage employment107
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Figure 2: Workflow of GriNNder compared to the naïve storage extension of full-graph training.

Given the full-graph training from Figure 1, a straightforward method would be to place the small108

weights (and their gradients) on the GPU and the large activations (and their gradients) on the storage.109

Figure 2a illustrates an example procedure for processing a single vertex, a . Since the neighbors of110

a ( a , b , and g ) are small enough to fit within the GPU memory, the training can be conducted.111

However, this approach yields sub-optimal performance for three main reasons: 1 It is non-trivial to112

ensure that the neighbors of a target vertex are small enough to fit within GPU memory, which is113

necessary for enabling full-graph GNN training on a single GPU. 2 Gathering the feature vectors114

of a , b , and g requires random reads from storage. Since storage devices typically operate at115

page granularity (e.g., 16 KiB), such random access leads to substantial inefficiencies. 3 While116

the existing snapshot feature in PyTorch [71] and an existing method [92] enables sequential access117

patterns, it introduces significant redundancy, resulting in inflated write traffic. For instance, g118

appears redundantly in the snapshots of all its neighboring vertices— a , h , and i .119
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To address the above limitations, we propose GriNNder, the first framework that enables storage-120

offloaded full-graph GNN training in environments with limited GPU and host memory. The overall121

workflow of GriNNder is illustrated in Figure 2b (see Appendix D for the full detailed algorithm).122

To mitigate the above three challenges, we introduce solutions for each. 1 Before training begins,123

the entire graph G is partitioned into small graphs denoted Tp such that its activation Al
p and its124

dependency activations GAl−1
p for layer l fit in the GPU memory. This partitioning procedure needs to125

be iteratively conducted until an adequate number of partitions is found to fit such memory usage to the126

GPU. Thus, we propose a lightweight partitioning method, which is suitable in limited environments127

(Section 4.3). 2 GriNNder iterate over each Tp for every layer, loading the corresponding input128

activation GAl−1
p , computing Al

p, and writing the result to storage. To avoid fine-grained access129

patterns, the host-memory cache is managed at the partition granularity. Furthermore, to minimize130

storage I/O traffic, the host memory caches the input activations required for the current layer’s131

computation (Section 4.1). 3 GriNNder redesigns the gradient engine to regather input activations132

(GAl−1
p ) on demand, rather than redundantly snapshotting them (Section 4.2).133

4 GriNNder design134

4.1 Partition-aware graph caching135
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Figure 3: Details and rationales of partition-aware graph caching. Pt.1 denotes the Partition 1.

Key takeaway: Similar to the behavior of vertices in a graph, cross-partition dependencies also136

follow a power-law distribution. We can exploit this characteristic to address inefficient storage I/O.137

We observe that, just as vertex degrees in real-world graphs typically follow a power-law distribution,138

cross-partition access patterns exhibit similar behavior. This arises from the well-known tendency of139

real-world graphs to form clusters [55]. Figure 3a shows that such characteristics exist in practice. It140

shows statistics from each partition of the IGBM dataset (represented on the y-axis as Partitions).141

For each partition, we count how many vertices are required from other partitions. These counts are142

sorted along the x-axis (Sorted Partition IDs). The plot shows that out of 64 partitions, most143

of the dependencies are confined to ∼10 partitions (see Appendix E for more datasets). From this144

observation, we design the following two key mechanisms.145

Layer-wise partition caching: Within a layer, many partitions share activations/gradients. For146

instance, in Figure 3b, vertex e’s activation is used in both partitions 0 and 1. When the average147

expansion ratio (#required/#target) is α, the activations are reused α − 1 times on average within148

that layer. This leads to redundant data accesses to the storage device. To mitigate this inefficiency,149

we introduce a strategy called intra-layer reuse, where frequently reused partitions within a GNN150

layer are cached in host memory. For the other data that have less or no intra-layer reuse (e.g., graph151

topology/output activations), we choose to bypass the host memory with GPUDirect Storage [67]152

(GDS). This has the effect of reducing the I/O traffic and avoiding cache conflict at the host side.153

Please note that GriNNder can be generally used even when GDS is unavailable (see Appendix T).154

Partition-wise cache management: To support the aforementioned feature, GriNNder uses a155

partition as the load/evict granularity for the host-memory caches. One naive alternative would be to156

load/evict at a vertex granularity. However, in this way, every time a cache miss occurs, reading a157

single vertex feature (64∼1,024B) from the storage device is needed. Since storage devices access158

data at a page granularity (e.g., 16KiB), this would incur a substantial amount of unnecessary I/O.159

In contrast, loading and evicting at a partition granularity alleviates such overhead, because the size160

of a partition is typically a few GBs. For example, processing partition 0 (vertices a and b) has161

dependencies to vertices a, b, e, g, and h, which loads three partitions to the host memory: 0, 2, and162

3 as illustrated in Figure 3c. Then, when it proceeds to partition 1, it has dependencies to c, d, e,163
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and f that span over partitions 1 and 2. For this, we reuse partition 2, which is already cached in164

memory. For loading partition 1, we evict an unused partition (partition 0 in this example, assuming165

there is not enough host memory space). This way, the vertex features are reused without causing166

fine-grained random accesses to the storage. In the worst case, partition-wise management could only167

cause overhead if the dependencies are uniformly spread over many partitions. However, in the above168

observation, the dependencies of a partition are confined to only a few other partitions. Therefore, it169

can show stable caching performance. For the detailed comparison between the partition-wise and170

vertex-wise management, see Appendix F. We also minimize the latency by overlapping processing171

and cache management, and maximizing the sequential access in the GPU (Appendix G).172

Detailed procedure. Figure 4 illustrates the brief forward/backward procedure with more details.173

Forward

GA0 A1

a a
b
e
g
h

b
A1

H
os

t

Vertex Activations Vertex Gradients

(  A0)∆

a
b

2
3
e
f

2
3
4

g
h
i

c
d

Host Memory Cache

Grad.
Engine

Act.
Regather

(A0~A3)

a
b

2
3
e
f

2
3
4

g
h
i

c
d

Vertex Activations
Pt.0

Topologies

Storage-based Dataloader

Vertex Gradients

2

a
b

2
3
e
f

2
3
4

g
h
i

c
d

(  A1~  A0)∆ ∆St
or

ag
e

Backward

A1∆ GA0A1

a a
b

e
g
h

b
a
b

a
b

a

e
g
h

b
a

e
g
h

b

GA0∆

A1∆

A1

Gradient
Scatter &
Accum.

3

4

G
PU

(b) Backward pass of GriNNder.

G
PU

H
os

t
St

or
ag

e

①
Partition-Wise Caching

②’

②

Vertex Activations
Pt.0

Topologies

Storage-based Dataloader

(A0~A3)

a
b

2
3
e
f

2
3
4

g
h
i

c
d

③

④

(a) Forward pass of GriNNder.

Skip 
Snapshot

1 5

②’2

Partition-Wise Caching

Host Memory Cache

Vertex Activations

(A0)

a
b

2
3
e
f

2
3
4

g
h
i

c
d

Act.
Gather

a
b
e
g
h

A / Act. / Grad.A∆ Host - GPUIntra-Device Op. Host - Storage GPU - Storage

a
b
e
g
h

(A0)

a
b

2
3
e
f

2
3
4

g
h
i

c
d

T0

GA0

T0

GA0 GA0∆

Weight

Figure 4: GriNNder forward/backward for layer 1.

Figure 4a depicts the forward174

pass for partition 0 of layer 1.175

1 Layer 0’s activations (A0)176

are loaded into the host-memory177

cache at the partition granularity.178

2 The partitioned graph struc-179

ture T0 (topology 0) is uploaded180

directly to the GPU. 2 ’ The re-181

quired vertex activations GA0 is182

sent from the cache to the GPU.183

3 The GPU executes the for-184

ward pass to output the next acti-185

vation A1. 4 Computed activa-186

tions A1 are offloaded to storage187

via GDS as they are not needed188

again for the current layer. We189

skip the snapshot to reduce re-190

dundancy (Section 4.2).191

Figure 4b further illustrates the192

backward for the same partition193

of layer 1. The procedure mirrors the forward, but in reverse order, with slightly added complexity194

from activation gradients (∇A1 and ∇GA0). 1 Similar to the forward, the activations (A0) are195

cached in host memory partition-wise for frequent reuse. 2 In the backward pass, the activations196

A1 and activation gradients ∇A1 have to be directly loaded from the storage, in addition to the197

partitions. Unlike the forward, whose objective is to compute A1, the backward takes A1, ∇A1,198

and GA0 as inputs and produces ∇GA0. 2 ’ Again, similar to the forward, GA0 is fetched from199

the host memory cache through regathering, not from snapshots (Section 4.2). 3 Using the loaded200

activations/gradients, the GPU computes the activation gradients (∇GA0). 4 The source vertices’201

gradients (∇GA0) are updated in host memory with a scattered accumulation, ensuring correctness202

for vertices shared across partitions. During this, host memory works as a write-back buffer for vertex203

activation gradients. 5 Once the entire layer is processed, gradients are offloaded to the storage.204

4.2 Grad-engine activation regathering205

Key takeaway: PyTorch has limitations in supporting the aforementioned partition-wise cache206

management during training, particularly due to its requirement to store redundant snapshots.207

One of the key challenges for employing storage in full-graph GNN training is data amplification,208

where repeated snapshots of input activations inflate both memory capacity and storage I/O demands.209

As described in the previous subsection, the strategy of GriNNder is to partition the graph and cache210

graph features/gradients in the host memory at the partition granularity.211

Unfortunately, the autograd engine of existing frameworks such as PyTorch’s torch.autograd [71,212

26] is not designed with such optimizations, and requires a significant amount of host memory213

when employing offloading, as drawn in (Figure 5a). The vanilla autograd engine stores activation214

snapshots (‘Snap.’) and intermediate snapshots of all operations (‘Intermed.’), such as normalization215

(I0), and activation function (I0′). While this is a reasonable design for vision or language models, it216

struggles on GNNs with limited memory capacity and huge activation sizes.217
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Figure 5: Advantages of grad-engine activation regathering

To mitigate this limitation, we intro-218

duce grad-engine activation regath-219

ering, illustrated in Figure 5, which220

eliminates these inefficiencies. First,221

the activation snapshot GA0 is es-222

sentially a reorganization of the ac-223

tivations A0. Based on this observa-224

tion, we regather the activation just in225

time to build GA0 each time they are226

needed. This removes the unnecessary227

time and memory space for activation228

snapshots. While this adds some ex-229

tra regathering overheads at the host,230

storing all the snapshots would eas-231

ily overflow the memory, increasing232

the storage bandwidth demand. Sec-233

ond, the intermediate values are also234

removed from the host memory and recomputed just in time from the regathered GA0. In the235

figure, I0 is recomputed by aggregation using the topology, and I0′ is obtained by further applying236

normalization. This is analogous to checkpointing techniques [92, 12]. Finally, the output feature A1237

is removed from the memory by bypassing the host memory and is directly written to the storage. We238

further compare it with another method [92] in Appendix H.239

I/O volume and memory footprint. Let D = |V ||H|. During the forward on a layer, the baseline240

autograd engine consumes (2α+3)D traffic between the GPU and the host, for the snapshots (2αD),241

intermediate values (2D), and outputs (D). Since the baseline easily exceeds the host memory limit,242

it mandates the employment of OS swap memory with storage, and most of that traffic becomes the243

traffic between the GPU/host and the storage. GriNNder only consumes αD between the GPU and244

the host, D between the GPU and the storage, and D between the host and the storage while caching245

(when only cold misses exist). In other words, while the baseline suffers from huge and slow storage246

traffic proportional to α, grad-engine activation regathering only requires a 2D amount of storage247

traffic. In terms of the memory footprint during the forward, the baseline stores snapshots (αD),248

activations (D), and intermediate values (2D) per layer. On the other hand, grad-engine activation249

regathering only occupies D space on the host memory, and D on the storage for the outputs without250

redundancy. For more in-depth analyses with another baseline [92], please refer to Appendix I.251

4.3 Switching-aware partitioning252

(a) METIS mem. requirement

0
200
400
600
800

1000

Products IGBM Papers

M
em

. R
eq

. (
GB

)

Host Limit

(b) Intermediate partition and data structure

0
1

2
5

3
47

Pt.1Pt.0

Pt.2SrcPtr 0 10 18

DstIdx 1 2 5 7 4 3
Dst’s
Partition 2 2 2 0 1 1

8 10 9

2 1 2

6

3

VertexId 3 6

Partition 0 1 3

0

(c) Parallelized preference calculation

Source-Level
ParallelismSrcPtr 0 10

DstIdx 1 2 5 7 4 3
Dst’s
Partition 2 2 2 0 1 1

0 1 2 0 1 2Thread

VertexId 0 3

1st Pref.

Partition 0 1

8 10 9

2 1 2

0
1

2
5

3
47

Pt.1Pt.0

Pt.2

Figure 6: Motivation and a high-level overview of switching-aware partitioning.

Key takeaway: Existing partitioning algorithms (e.g., METIS-based) often incur significant hardware253

costs, making them impractical for GNN training in resource-constrained environments.254

Graph partitioning is an important enabler that allows GriNNder to efficiently utilize GPU memory255

and manage caches with minimal storage bandwidth demand. Although existing partitioners used in256

GNN domains (e.g., METIS-based [47, 49, 53, 91, 60]) output near-optimal partitions, they often257

exceed single-server memory limits (Figure 6a) for large datasets such as Papers [38] (Appendix J).258

If partitioning has to be performed on external servers for this, it breaks the purpose of training259

GNNs on a single machine/GPU. Since the partitioning needs to be repeatedly iterated to find the260

adequate number of partitions to fit in the GPU, this issue is critical. This clearly shows the need for261

a lightweight partitioning method.262

Inspired by streaming partitioning (Spinner [63], opted for distributed cloud systems), we devise263

a lightweight switching-aware partitioning, which has low memory consumption and is suited for264
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GriNNder. The key is to minimize the use of auxiliary data structure, whose size often largely265

surpasses that of the graph itself. From an arbitrary partition, we iteratively refine them to reduce266

the number of dependent partitions until convergence. Detailed procedures and design insights are267

provided in Appendix K, and we illustrate the brief overview in the following paragraphs.268

Figure 6b outlines an example intermediate state along with the data structure. The data structure269

follows the compressed sparse row (CSR), which comprises source pointers (SrcPtr) and destination270

indices (DstIdx). On top of this, we manage another array (Dst’s Partition) and fill this with the271

partition IDs of each destination index in DstIdx. In Figure 6b, the vertex 0 has neighbors of vertex272

{1, 2, 5, 7, 4, 3}. For each neighbor, we fill the Dst’s Partition with its partition {2, 2, 2, 0, 1, 1}.273

In a high-level view, the algorithm attempts to move to the partition with the most neighbors to reduce274

the number of dependent partitions, while keeping the sizes of partitions similar. In Figure 6b, the275

vertex 0 prefers the partition 2 (denoted by ‘1st Pref.’ in Figure 6c) because its neighbors are mainly276

placed in partition 2. We search for such preferences on each source vertex (called source) in a multi-277

threaded manner and move each source vertex to the preferred partition as illustrated in Figure 6c.278

By updating the preferred partitions iteratively following the above procedure until convergence, we279

can minimize the average expansion ratio (α) of the partitions. In addition, we also consider the280

balance between the partitions along with second-order preferences. For detailed decision-making281

and parallelized preference calculation and partition update, please refer to Appendix K.282

Memory Efficiency: Switching-aware partitioning uses only a standard CSR representation—283

SrcPtr, DstIdx—plus a Dst’s Partition array to record each neighbor’s current partition. This284

totals O(|V |+ |E|) space, much smaller than METIS’s large coarsening data structures.285

Integration with Full-Graph Training: We use METIS when host memory is sufficient. Otherwise,286

switching-aware partitioning offers a fast and memory-efficient alternative with good partition quality.287

For comparison with Spinner [63] and SOTA out-of-core partitioner (2PS-L [64]), see Appendix P.288

4.4 Implementation: PyGriNNder289

Users with PyG [26] code can utilize GriNNder by simply inheriting the GriNNderGNN module.290

Users only need to implement the layer_forward method in addition to the default forward291

method. See Appendix L for the API example, framework structure, and implementation details.292

5 Evaluation293

5.1 Experimental settings and baselines294

We provide a brief overview of experimental settings and baselines. For more details, see Appendix M.295

Models/datasets: We use 3-/5-layer GCN [52] with a hidden dimension of 256. We also test GAT [87]296

and GraphSAGE [33]. Datasets range from medium to large scale: Products [38], IGBM [51], and297

Papers [38]. We also utilized Kronecker graphs [54] (average degree=10) with the random initial298

feature of dimension 128 and #classes of ten.299

Hardware: We run main experiments on a workstation with an AMD Ryzen9 7950X 3D CPU (16C300

32T), 128GB DDR5-5600 RAM, one RTX A5000 (24GB) GPU, a PCIe 5.0 NVMe SSD (4TB), and a301

total 4TB swap space for swap-based experiments. For distributed baselines, we use a 4-server cluster;302

each node has four RTX A6000 GPUs interconnected by NVLink [69] and Infiniband SDR [68]. For303

IGBM/Papers, we needed all 16 GPUs to fit the data in the GPU memory. For Products, using fewer304

GPUs could yield better performance, but we used all GPUs to maintain consistency among datasets.305

Baselines: (Training) We compare GriNNder (GRD) against various single-server/distributed meth-306

ods: 1 Micro-batch training (Betty [97]), 2 Micro-batch training with storage extension (Ginex307

[70]), 3 Host memory offloaded training (HongTu [92]) with OS swap memory, 4 Distributed308

full-graph training (CAGNET [85]), 5 Distributed full-graph training with communication skipping309

(Sancus [72]), 6 Naïve storage extension of full-graph training (ROC [42]). For details of micro-310

batch and host memory offloaded training, see Appendix B. We showed 6 only in Appendix X311

due to its much slower performance. In the appendix, we also tested two storage-based mini-batch312

training ( 7 DiskGNN [59], 8 GNNDrive [44]) with micro-batch extension (Appendix C). For out-313

of-memory issues in distributed baselines, we add host-memory checkpointing (∗) to enable execution.314
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GriNNder achieves equal final accuracy with all the baselines (see Appendix W) except 5 , which is315

non-exact due to its staleness. All baselines use the state-of-the-art partitioner MT-METIS [53]. For316

fairness, if METIS exceeds our setting’s memory, we assume it was preprocessed elsewhere following317

the standard practice, except for partitioning experiments. (Partitioning) For comparisons with318

lightweight partitioners, we benchmarked Spinner [63] and an out-of-core partitioner (2PS-L [64]).319

5.2 Large graph training results320 Table 1: Results of training time (min)/epoch.

# nodes 2.4M 10M 100M
Method PRODUCTS IGBM PAPERS

|L
|=

3

L
im

ite
d

BETTY 0.61 28.71 GPU OOM
GINEX 9.00 GPU OOM 17.72
HONGTU 0.17 6.46 Swap OOM
GRD 0.12 0.93 9.07

D
is

t. CAGNET 0.21 1.41 ∗10.01
SANCUS 0.19 ∗0.77 ∗GPU OOM

|L
|=

5

L
im

ite
d

BETTY 1.05 GPU OOM GPU OOM
GINEX 15.10 GPU OOM GPU OOM
HONGTU 0.32 14.90 Swap OOM
GRD 0.23 1.52 12.03

D
is

t. CAGNET 0.38 2.10 ∗GPU OOM
SANCUS 0.36 ∗1.41 ∗GPU OOM

SANCUS: Non-exact full-graph (with staleness)

Table 1 presents per-epoch training time for321

GriNNder (GRD) compared to five base-322

lines—Betty, Ginex, HongTu, CAGNET,323

and Sancus—using 3-/5-layer GCNs (hid-324

den dimension 256) on Products, IGBM,325

and Papers.326

Micro-batch (Betty, Ginex): Despite327

Betty’s memory-only design (no storage),328

GRD achieves up to 30.98× faster train-329

ing, largely due to Betty’s repeated neigh-330

bor expansions. Ginex uses storage to ex-331

tract MFG, yet still suffers from redundant332

computation caused by neighbor explosion,333

which GRD improves up to 77.92×.334

Products (Medium): Since HongTu can fit Products entirely in host memory, one might expect it to335

outperform storage-based GRD. In practice, HongTu’s redundant snapshots slow it down, allowing336

GRD to beat it by 1.44/1.40× on 3-/5-layer GCNs.337

IGBM (Large): Micro-batch methods suffer from GPU OOM on deeper models—Betty/Ginex often338

cannot handle the neighbor explosion. HongTu must manage large volumes of data in host memory,339

drastically increasing overhead. In contrast, GRD is 6.97/9.78× faster than HongTu with caching340

and non-redundancy. Even against multi-GPU CAGNET, GRD achieves faster speed (1.52/1.38×).341

Table 2: Training time (min)/epoch sensitivity
for graph sizes with synthetic graphs. For more
results with ablation, see Appendix N.

# nodes 4.2M 8.4M 16.8M 33.6M

|L
|=

3 HONGTU 0.43 0.83 7.25 36.31
GRD 0.29 0.59 1.93 3.73

|L
|=

5 HONGTU 0.83 1.99 19.15 96.99
GRD 0.57 1.14 3.71 7.76

Papers (100M): This highlights GRD’s scalabil-342

ity. Betty and Ginex often fail on deeper mod-343

els with OOM from neighbor explosion, and344

HongTu from activation snapshots. GRD avoids345

these with efficient caching and no redundant346

snapshots. Ginex can run the 3-layer model347

but is 1.95× slower than GRD. Notably, GRD’s348

speed is faster than CAGNET (1.10×) despite349

using a single GPU.350

Additional–synthetic: In Table 2, we tested various-sized Kronecker graphs to validate scalability.351

GriNNder provides stable speedup over HongTu (1.41-12.50×).352

5.3 Ablation by decreasing effective cache size and cache hit rate353

Table 3: Sensitivity on effective cache size
with ablation (training time (min)/epoch).

# hiddens |H|=384 |H|=512 |H|=1024
Method 0.75 $ SIZE 0.5 $ SIZE 0.25 $ SIZE

|L
|=

3 HONGTU 12.53 18.67 39.32
GRD-G 1.20 1.51 20.68
GRD-GC 1.41 1.91 3.98

|L
|=

5 HONGTU 25.07 31.81 93.42
GRD-G 10.26 12.50 42.14
GRD-GC 2.54 3.37 13.65

Table 3 analyzes GriNNder ’s sensitivity to effective354

cache size by varying the hidden dimension on IGBM.355

We ablated GriNNder: HongTu, HongTu + grad-356

engine activation regathering (GRD-G), and GRD-G357

+ partition-aware graph caching (GRD-GC). GriN-358

Nder outperforms HongTu by 6.84–12.34×. When359

host memory can cache most data (in 3 layers), GRD-360

G alone yields improvements over HongTu. However,361

in 5-layer settings, host memory becomes a bottle-362

neck, making cache replacement crucial. Thus, GRD-363

GC gains 3.09-4.04× speedup over GRD-G. Overall,364

GriNNder is robust on cache sizes. Also, we reported the cache hit rates in Appendix O. Larger365

datasets incur more reuse from the higher #partitions, making the hit rates significant (53.70-92.77%).366
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5.4 Analysis on host memory usage367
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Figure 7: Host memory usage of GriNNder on the IGBM.

Figure 7a shows an ablation study on368

how GriNNder reduces host memory369

consumption. We compare GRD-G370

(i.e., HongTu + grad-engine activa-371

tion regathering) and GRD-GC (GRD-372

G + partition-aware graph caching).373

HongTu suffers from snapshots, while374

GRD-G eliminates them. GRD-GC’s375

layer-wise up/offload further cuts the peak usage from HongTu by 5.75×. Figure 7b shows the host376

memory usage timeline. With GDS and caching, GRD-GC shows significantly low memory usage.377

5.5 Analysis on partitioning algorithms378

Table 4: Memory usage (GB) of partitioning.

Dataset Method GraphPart. Label Add. Total

PRODUCTS
MT-METIS 1.01 0.01 9.93 10.95
GRD 1.01 0.01 0.52 1.54

IGBM MT-METIS 1.12 0.04 28.34 29.50
GRD 1.12 0.04 0.87 2.03

PAPERS
MT-METIS 26.71 0.44 867.84895.00
GRD 26.71 0.44 9.56 36.72

Table 5: Effect of partitioning (left) and model
type (right) on training time/epoch (sec).

Method PRODUCTS IGBM

MT-METIS 6.93 55.62

Random 14.73 353.06

GRD 9.26 125.87

Model |L| HongTu GRD

GAT
3 741.07 65.52
5 1153.82 108.01

SAGE
3 584.76 69.24
5 794.13 112.70

Memory usage: Table 4 shows that GriNNder ’s partitioning greatly reduces memory usage by379

7.10–24.37× compared to METIS. METIS requires additional memory for coarsening-phase inter-380

mediates. In contrast, switching-aware partitioning only needs O(|E|) extra space.381

Convergence/practical overhead/comparison with other partitioners: We also reported the382

trend of partitioning quality improvement (convergence) and practical overhead of switching-aware383

partitioning in Appendix Q. We observed that at most 50 iterations are enough for convergence. Also,384

the practical overhead of partitioning in the actual training was only 0.07/0.02/0.39% of the total385

training time on Products/IGBM/Papers, respectively. We additionally benchmarked the (time-to)386

quality of GriNNder compared to lightweight partitioners (Spinner and 2PS-L) (see Appendix P).387

Switching-aware partitioning quickly results in higher-quality partitions for both cases.388

Partition/training time: Among datasets, only Papers exceeded the host memory capacity. Par-389

titioning it into 16 parts with METIS triggers host swap due to its large memory demand and390

took 77.26 (min), making switching-aware partitioning 10.51× faster (7.35 (min)). Table 5 (left)391

evaluates how partitions affect the training of 3-layer GCNs on Products and IGBM. Although392

METIS—with near-optimal partitions—yields the shortest training time, it uses significantly more393

memory. Switching-aware partitioning needs far less memory while improving training speed by394

1.59× on Products and 2.80× on IGBM over random partitioning.395

5.6 Other sensitivity studies (model, configuration, and multi-GPU sensitivity)396

Table 5 (right) shows GriNNder with GAT [87] and GraphSAGE [33], using IGBM. GriNNder397

maintains 7.05–11.31× speedup over HongTu, demonstrating its efficiency beyond GCN. We examine398

the impact of #partitions configuration on the 3-layer setting in Appendix R. Compared to HongTu,399

from the efficient caching and redundancy elimination, GriNNder is much more robust on the400

configuration. We also tested the multi-GPU scalability in Appendix S. Although GriNNder was not401

designed for multi-GPU environments, it is scalable to some degree (up to 2.44× with four GPUs).402

6 Conclusion403

To our knowledge, GriNNder is the first work on full-graph GNN training with storage offloading in404

limited resources. Its careful optimizations enable full-graph training of large datasets previously405

impossible in conventional frameworks. We will open-source GriNNder to facilitate its use.406
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A Survey of 2024 conferences’ submission on GNN domains687

In our survey of NeurIPS/ICML/ICLR 2024 papers, a total of 76 papers are related to GNN domains.688

In 76 papers, 44.7% (34 papers) used full-graph training, and among them, 38.2% (13 papers)689

directly reported out-of-memory. In terms of experimental environments, a total of 62 papers reported690

their GPU environments, and 45 papers utilized a single GPU (72.6%). Also, some papers with691

full-graph training directly stated that larger-sized datasets can incur out-of-memory when running692

their experiments. This shows the importance of enabling full-graph training of large graphs under693

limited resources (e.g., a single GPU).694

B Drawbacks of existing full-graph training methods for limited695

environments696
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Figure 8: Full-graph training of single epoch for limited resources.

Full-graph GNN training processes all vertices’ activations and gradients in a single pass, requiring697

substantial memory. A few existing approaches exist for single-server approaches. Micro-batch [97]698

and host memory offloaded [92] training have tried to conduct full-graph training in GPU memory-699

limited environments. Figure 8 illustrates an example graph and discusses the drawbacks of the above700

methods based on the full-graph dependency.701

Micro-batch training: Betty [97] (Figure 8c) accumulates gradients from message flow graphs702

(MFGs) with all neighbor information across all layers, followed by a single weight update. However,703

even a small number GNN layers cause MFGs to expand rapidly (Figure 8b), often exceeding the GPU704

memory. Partitioning [47, 49, 53] can reduce MFG size but requires significant memory, presenting a705

practical bottleneck.706

Host memory offloaded training: HongTu [92] (Figure 8d) reduces GPU memory usage by moving707

activations and gradients to host memory. A 1-hop partitioning approach extracts 1-hop graphs that fit708

in GPU memory. During an epoch, activations for these graphs are transferred to the GPU, processed,709

and offloaded back to host memory. While this saves GPU resources, it causes a data amplification710

problem: by saving ‘snapshots’ of 1-hop graphs for the backward pass, vertices appearing in multiple711

1-hop graphs are stored repeatedly, increasing memory and I/O overhead.712

Impractical partitioning: Both micro-batch [97] and host memory offloaded [92] methods rely713

on partitioning tools like METIS [47, 49, 53], which sequentially coarsen and refine graphs. This714

process consumes up to 4.8× the graph’s size in memory [50], often exceeding the capacity of a715

typical single server. Hence, existing single-server full-graph methods face out-of-memory risks or716

resort to an external server.717
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C Limitation of extending storage-based mini-batch training to full-graph718

training with micro-batch training719

While extending storage-based mini-batch training (e.g., Ginex [70], MariusGNN [88],720

DiskGNN [59], GNNDrive [44]) to full-graph training by setting the batch size to the entire node set721

and maximizing the neighbor size (i.e., micro-batch training from Betty [97]) may seem to enable the722

large-scale full-graph training on a limited environment, it faces several limitations.723

First, as it still depends on the message flow graph structure (MFG), it faces the GPU memory limit724

like the original micro-batch training (Betty). Since micro-batch training needs to keep all neighbor725

information intact without sampling, it easily falls into the out-of-memory due to neighbor explosion.726

For more details, please refer to Appendix B.727

Second, they are mainly focused on handling initial features efficiently for mini-batch training,728

and are inefficient in supporting full-graph training without sampling. For instance, DiskGNN729

aggressively utilizes the preprocessing and pre-stores the mini-batch message flow graphs and related730

initial features to efficiently support large-scale mini-batch training with storage. However, since731

full-graph training (with micro-batch training) needs to handle all the features without dropping, the732

preprocessed data size easily exceeds the SSD capacity due to the redundantly saved data.733

Table 6: Performance of extending storage-based mini-batch training to full-graph training.
†: GNNDrive’s GPU caching is statically preprocessed, so the fanout is restricted to 25 and not
equivalent to full-graph training. ∗: Preprocessing failed because of excessive disk space usage.

Method Products IGBM Papers
Ginex 9.00 OOM 17.72
DiskGNN 2.18 Preproc. Fail∗ Preproc. Fail∗

GNNDrive 6.33† OOM 12.06†
GriNNder (Ours) 0.12 0.93 9.07

To show the above limitations directly, we evaluated DiskGNN [59] and GNNDrive [44], which734

surpass the previous state-of-the-art storage-based mini-batch training (Ginex [70], MariusGNN [88])735

in Table 6. Ginex and GNNDrive encountered GPU out-of-memory on IGBM due to neighbor736

explosion without information dropping. On Papers, even with fanout 25, they were significantly737

slower than ours. DiskGNN uses offline preprocessing to pre-store all cacheable mini-batches with738

features. The preprocessing of IGBM/Papers fails by overflowing 4TB SSD, even with reduced fanout739

(25) from neighbor explosion. Our method is significantly faster for runnable cases (Products/Papers).740

To sum up, while mini-batch storage-based systems can emulate full-graph training by micro-batch741

training, results show that this becomes infeasible on a large scale. This is due to either GPU memory742

exhaustion or prohibitive preprocessing disk usage. GriNNder avoids them by not relying on message743

flow graphs (MFGs) or redundant preprocessing.744

D Overall procedure of GriNNder745

As GriNNder is the first work on storage offloaded full-graph GNN training, we carefully designed746

the framework to address the three challenges outlined in Section 1, whose overall procedure is listed747

in Algorithm 1. GriNNder first partitions the graph into smaller pieces, which should be done to incur748

minimal data transfer (line 2). Our contribution is on devising a lightweight partitioning algorithm749

that operates with significantly lower memory requirements while preserving the partitioning quality750

(Section 4.3). Then, for each partition (lines 10 and 21), forward and backward passes are performed751

on the GPUs (lines 11-14 and 22-27). To maximize the reuse of the data, GriNNder designs an efficient752

policy to cache intermediate data on the host memory (Section 4.1). During the forward/backward753

passes, much of the data transfer occurs between GPU-CPU due to checkpointing (lines 12, 14, 24,754

26). This was originally designed toward reducing latency in previous work[92], but it severely755

increases the amount of traffic and host memory usage for storage offloading scenarios. GriNNder756

redesigns the gradient engine with redundancy elimination, achieving significantly higher speedup757

and less memory requirement (Section 4.2).758
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Algorithm 1 Overall procedure of GriNNder

Input: {W i|1 ≤ i ≤ L}: initial parameters, L: #layers
G: graph, F : initial features, P : #partitions to meet GPU mem. req.

Output: {W i|1 ≤ i ≤ L}: updated parameters
Notations:

Tp: 1-hop topologies (src−→dst)
Al

p: destination features/activations of layer l, partition Tp

GAl
p: gathered source features/activations of layer l, partition Tp

1: if METISlimit ≥ Hostlimit then
2: T(·) ← SA_Partition(G ,P) // Switching-aware partitioning (Sec. 4.3)
3: else T(·) ← METIS (G ,P) end if
4: // Do until finding proper P which makes all Tps fit GPU memory limit.
5:
6: for e = 1 ... #epochs do
7: // Forward pass
8: for l = 1 ... L do
9: Storage_to_Host(Al−1

(·) ) // Partition-aware graph caching (Section 4.1)
10: for p = 0 ... P − 1 do
11: GAl−1

p ← Gather(Al−1
(·) )

12: Host_to_GPU(GAl−1
p )

13: Al
p ← FW (W l, GAl−1

p , Tp) // w/ Regathering (redundancy elimination) (Section 4.2)

14: GPU_to_Host(Al
p)

15: end for
16: end for
17: // Backward pass
18: for l = L ... 2 do
19: // Partition-aware graph caching (Section 4.1)
20: Host_Upload_or_Intitialization(Al−1

(·) ,∇Al−1
(·) ) // Host as write-back buffer

21: for p = 0 ... P − 1 do
22: Storage_to_Host(Al

p,∇Al
p)

23: GAl−1
p ← Gather(Al−1

(·) )

24: Host_to_GPU(GAl−1
p ) // Grad-engine activation regathering (Section 4.2)

25: (∇GAl−1
p ,∇W l)

·,+←−− BW (W l, Al
p,∇Al

p, GAl−1
p )

26: GPU_to_Host(GAl−1
p )

27: ∇Al−1
(·)

+←− Scatter(GAl−1
p )

28: end for
29: end for
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E Profile of dependency among partitions759

Ds

2 4
Sorted P

6 8
artition I

10 12 14 0.0

5.0
2.5

7.5
10.0

12.5
15.0

Pa
rti

tio
ns

10K
20K
30K
40K
50K

#R
eq

ui
re

d 
Ve

ce
s

fro
m

 O
th

er
srti

s

10
Sorted P

20 30
artition ID

40 50 60 0
10

20
30

40
50

60

Pa
rti

tio
ns

10K
20K
30K
40K
50K

#R
eq

ui
re

d 
Ve

ce
s

fro
m

 O
th

er
srti

500
1000

1500Sorted Partition IDs 2000 0
10

20
30

40
50

60

Pa
rti

tio
ns

0
2K
4K
6K
8K
10K

#R
eq

ui
re

d 
Ve

ce
s

fro
m

 O
th

er
srti

Figure 9: Partition dependency profile. (left) Products with 16 partitions, (mid) IGBM with 64
partitions, and (right) Papers with 2048 partitions. In the case of Papers, we only presented earlier 64
partitions for visibility.

We additionally presented the profile of dependency among partitions on other datasets in Figure 9.760

When the size of a graph becomes larger, we need to partition the graph into a much larger number of761

partitions. This makes the trend of power-law distribution clearer. For instance, in Figure 9(right),762

the Papers dataset with 2048 partitions shows a very vivid power-law distribution compared to the763

other two cases. This further enhances the scalability of GriNNder on large-scale graphs.764

F Vertex-wise cache management vs. partition-wise cache management765
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Figure 10: Advantage of partition-wise cache management compared to vertex-wise one.

Figure 10 emphasizes the advantage of partition-wise cache management compared to the vertex-wise766

cache management. Since storage devices access data at a page granularity (e.g., 4KB), vertex-767

wise cache management incurs a substantial amount of unnecessary I/O, denoted as ‘Out-of-Scope’768

vertices. For instance, when processing the next partition, in Figure 10a, vertex-wise management769

needs to swap out (or discard) and swap in unnecessary data combined with the required data due to770

the page granularity of a storage device. In contrast, loading and evicting at a partition granularity771

alleviates such overhead.772

G I/O optimizations of GriNNder773

G.1 Overlapping of processing and cache management774

GriNNder schedules host memory cache evictions and prefetching to overlap with GPU computations,775

minimizing storage I/O latency as illustrated in Figure 11. 1 We pick the next target partition776

to exploit already-cached neighbors, determined statically since 1-hop graphs are fixed. 2 We777

discard partitions no longer needed. 3 We fetch only required partitions from storage while keeping778

reusable ones in the host memory. Because we keep a small extra buffer (dotted blue), uploading the779

dependency for partition 1 (pre-compute) does not have to wait for partition 0 computation and the780

succeeding evictions (post-compute), enables overlapping these I/O operations ( 2 ’) with ongoing781

computations. Also, we overlap the GPU compute and host–GPU I/O to further reduce latency.782
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(a) Overview of switching between partitions
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(b) Overlapping cache management with computation

Figure 11: Overview of overlapping cache management with computation.

(c) Detailed forward pass profiling results of GriNNder. (d) Detailed backward pass profiling results of GriNNder.

(a) Overview of forward pass profiling results of GriNNder.

(b) Overview of backward pass profiling results of GriNNder.

Host-to-GPU Memory Copy GPU-to-Host Memory Copy GPU Compute Operations Storage Read/Write

Figure 12: Profiling results of GriNNder’s forward and backward pass.

We actually profile the training procedure of GriNNder, as illustrated in Figure 12. We profiled783

the 3-layer GCN on the IGBM dataset with #partitions=32. In both forward and backward passes,784

GriNNder overlaps the host memory and storage I/O with the GPU computation. Thus, in overall785

training, GriNNder enables aggressive latency overlapping of I/O and computation and provides786

superior training throughput.787

G.2 In-partition vertex ordering for sequential accesses788

Another source of slowdown is in the gathering, which places vertex activation to be sent (GA) to789

the GPU in a dedicated host buffer. This involves multiple random memory access, as illustrated in790

Figure 10a, causing slowdown. To avoid this, after the graph is partitioned, we reorder the individual791

adjacency lists such that the neighbors are first sorted by their partition IDs and then by their vertex792

IDs. This replaces the random lookups with a single random lookup per partition, as in Figure 10b.793

H Comparison with HongTu’s gradient engine794

HongTu [92] (Figure 13a) mitigates the PyTorch autograd’s issue by recomputing intermediate795

activations on demand. It designed a gradient engine to snapshot the gathered activations toward796

reducing latency (through enabling sequential accesses to snapshots), but at the cost of increased797

snapshots and redundant vertex data across partitions. As a result, each vertex may be stored up to α798

times (the average expansion ratio of 1-hop graphs), which adversely impacts memory consumption799

and bandwidth requirements, particularly for large datasets. This is because it assumes abundant800

host memory and does not consider the employment of storage, which has much lower bandwidth801

compared to the host memory.802

Figure 13b illustrates the proposed grad-engine activation regathering, which skips snapshot creation803

during the forward pass. Instead, whenever the backward pass requires input activations (GA),804

we regather them just-in-time from the already-stored activations (A) managed by partition-aware805

graph caching (see Section 4.1) in a partition-wise manner. This replaces repeated snapshot storage806

with lightweight data arrangement, significantly reducing host memory usage and I/O volume while807

maintaining algorithm correctness. While HongTu does suggest an additional strategy of storing the808

aggregated intermediate values (I0) instead of the activation values (A0), this is only applicable to809
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Figure 13: Comparison with HongTu [92], which does not consider the employment of storage.

GCN-style models. Contrarily, grad-engine activation regathering generally applies to any model810

structure (e.g., GAT).811

I In-depth I/O volume and memory footprint analyses812

Table 7: I/O analysis in forward pass

Methods GPU-Host Host-Storage GPU-Storage

HongTu w/ OS swap memory (i.e., mmap) (2α+ 1)D (2α+ 1)D −MemHost

Ours αD αD − CacheHit D

* |V ||H| = D. Topology data I/O is omitted for brevity.

Table 8: Maximum memory usage analysis

Methods Host Storage

HongTu (α+ 1)D|L|+ 2D
Ours D +D D|L|+D

* |V ||H| = D. Considers activation and gradients.

Grad-engine activation regathering greatly reduces the I/O volume from snapshot store/load per layer813

and the memory footprint displayed in Table 7 and Table 8, where D = |V ||H|.814

I/O Volume: We assume host memory offloaded training (HongTu [92], see Appendix H for the815

detailed I/O procedure) to utilize OS swap memory (i.e., mmap), since it targets the host memory, not816

storage employment. In Table 7, compared to HongTu, the input activation-related GPU-host I/O817

volume (2αD) is halved (αD) by skipping snapshots. GriNNder incurs αD − CacheHit amount of818

host-storage traffic for intra-layer partition-wise caching, but this is significantly less than utilizing819

mmap swap memory. Also, when host memory can handle the single-layer activations (D), this820

term becomes D from a full hit. When the host memory offloaded training faces the memory limit821

(MemHost), it needs to swap around (2α+ 1)D −MemHost data from/to storage. Given that α is822

around 3-10, the improvement is significant.823

Memory Footprint: In Table 8, we report the peak memory usage of host offloaded training [92]824

(HongTu) and GriNNder. For HongTu, the overhead mostly comes from storing snapshots for all825

layers. These redundant snapshots consume additional αD|L| on top of D|L| activations. It needs826

to save 2D of gradients in backward pass to handle input and output gradients. In contrast, with827
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grad-engine activation regathering and partition-aware graph caching, GriNNder consumes up to828

D + D host memory for saving layer-wise activations and gradients. Regarding storage usage,829

GriNNder consumes D|L| for saving activations and D for single-layer gradients.830

J METIS and its memory usage831

Sequential partitioning (e.g., METIS) comprises three stages: coarsening, initial partitioning, and832

un-coarsening. In the coarsening phase, it tries to generate a good initial partitioning, which can833

be partitioned to the initial partitioning state. From this state, the un-coarsening phase refines the834

boundaries of partitions to produce better partitioning results. This complex procedure incurs huge835

memory requirements when using large graphs [50]. To save coarsened intermediate graphs, sequatial836

partitioning requires O(2|V |+ |E|+
∑L

i=1 |Ei|+ |Vi|) memory where |(·)i| is for coarsened graphs837

and L is the number of levels of coarsening. [50] reported that it consumes at least 4.8× more838

memory than the graph data itself (|V |+ |E|). As a result, this huge memory consumption harms the839

practicability of existing full-graph training for limited resources [97, 92].840

K Insights and details of switching-aware partitioning841

Existing partitioners (e.g., METIS-based [47, 49, 53, 91, 60]) output near-optimal partitions but842

often exceed single-server memory limits (Figure 6a). This makes prior approaches impractical, as843

partitioning needs to be iterated to find the adequate number of partitions to fit in the GPU. While844

offline partitioning is possible, each new environment demands re-partitioning, making a lightweight845

partitioning method essential.846

We draw inspiration from streaming partitioning (Spinner [63]), which applied traditional label847

propagation [108] to partitioning in distributed cloud graph systems (e.g., Pregel [62]). While848

lightweight label propagation suits our host memory constraints, Spinner’s message-passing-based849

design is unsuitable for such limited environments.850

Hence, we propose switching-aware partitioning, which adapts label propagation for limited resources851

with memory usage similar to CSR. We also introduce a group-wise propagation strategy suited for852

storage-offloaded full-graph training.853

Switching-aware partitioning aims to find vertices with similar properties in different partitions and854

relocate them to the same partition. Additionally, we need to balance the size of each partition to855

reduce the workload imbalance between partitions. To do so, we iteratively refine the partitions by856

selectively relocating vertices within a certain limit.857

Figure 14 shows the detailed procedure of the proposed switching-aware partitioning. At first, we858

set the initial partitioning state (S0 = P0, ..., Pp−1) by randomly assigning each vertex to different859

partitions. We want to achieve high-quality partitioning while maintaining the number of vertices860

of all partitions close to |V |/p. | · | means the #vertices in a partition (or a graph), and p is the861

#partitions. We additionally define the maximum capacity term as β and set the maximum capacity862

limit of a single partition as β × |V |/p. Here the capacity of a partition refers to the number of863

vertices allocated to said partition. In a state Si, each partition j has the available relocation capacity864

(RC(i,j)) as follows:865

RC(i,j) = β × |V |/p− |Pj |, (0 ≤ j < p) (1)
This is used to limit the number of vertices moved to the current partition. Figure 14a illustrates the866

intermediate state (Si) where each partition has the available relocation capacity of six (RC(i,j) = 6).867

Following the CSR format, our data structure comprises source pointers (SrcPtr) and destination868

indices (DstIdx). We manage another array (Dst’s Partition) and fill this array with the partition869

of each destination index in DstIdx. For example in Figure 14a, the vertex 0 has neighbors of vertex870

{1, 2, 5, 7, 4, 3}. For each neighbor, we fill the Dst’s Partition with its partition {2, 2, 2, 0, 1, 1}.871

From a state (Si) (Figure 14a), we calculate kth preference of a vertex: among the neighbors of the872

vertex, the partition ID of the kth largest frequency is the kth preference of the vertex. Then, using873

each vertex’s first preference, each partition manages its own relocation candidate vertices from other874

partitions. In Figure 14b, vertex 0’s neighboring vertices’ partitions are {2, 2, 2, 0, 1, 1}. Among875

them, the partition that occurs most frequently is 2. Therefore, we put vertex 0 to the partition 2’s876

relocation candidate (0 is now included in Pt.2 List in Figure 14b).877
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(a) Intermediate Partition and Data Structure.

(c) Thread-wise Partition Update.
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Figure 14: Switching-aware partitioning.

When selecting the final vertices to be relocated among candidates, we select them in a group-wise878

manner. In Figure 14b, we first use the 2nd preference partition of each vertex as a feature to help879

cluster vertices into different groups, unlike the baseline streaming partitioning algorithm. We then880

choose the largest group with the same 2nd preference to avoid vertices belonging to small, disparate881

clusters being relocated. In this example, vertex 0’s 2nd preference partition is partition 1, and vertex882

6’s 2nd preference partition is also partition 1. Therefore, we put those two vertices into the same883

group. We choose to relocate the group including {0, 6} because it is the largest group among the884

candidates. This provides a clustering effect and helps the convergence speed of partitioning. This885

can be generalized into comparing until kth preference, but we use k = 2 as default because it already886

empirically provides good performance.887

To parallelize the procedure, we apply source-level parallelism, which distributes the source vertices888

to each thread. Each thread manages its own candidate lists for partitions as depicted in Figure 14b889

with the example of thread 0. We dedicate each thread to the equal available relocation capacity890

(RC(i,j)/#threads) to run threads in a fully parallel manner.891

After selection, we update the relocation result to the Dst’s Partition array. In Figure 14c, vertex892

0 and 6 are selected to be relocated to partition 2. Therefore, we update the values of vertex 0893

and 6 in Dst’s Partition array to 2 (meaning partition 2). This procedure is conducted with894

destination-level parallel, as illustrated in Figure 14c. After the update, using the updated data895

structure, iteration i + 1 proceeds. For each iteration i, we conduct the following procedure until896

reaching the termination condition, which will be discussed in the next subsection.897
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K.1 Detailed terms and memory efficiency898

We discussed switching-aware partitioning as a procedural view. In the detailed algorithm, we need a899

penalty term for suppressing the propagation to reduce the imbalance among the number of vertices900

in partitions. Therefore, in a state Si, for a vertex v, the scoring term (Score(v,I,j)) for each partition901

j and the final objective are as follows:902

Penalty(i,j) = |Pj |/(α× |V |/p), (0 ≤ j < p)

Score(v,i,j) = 1 +#N(v, j)/#N(v, ·)− Penalty(i,j)

maximize
∑

v∈G Score(v,i,j=partitionv)

(2)

where #N(v, j) denotes the frequency of partition j among the neighbors of the vertex v and903

Penalty(i,j) denotes the penalty term of state Si of partition j. The penalty term reduces the904

preference when a partition already reaches the additional capacity α. The objective function905

calculates the total sum of the internal preferential scores of partitions. The partitioning halts when906

the objective does not improve over ϵ = 0.001 for w = 5 times.907

In terms of memory consumption, switching-aware partitioning requires a significantly small amount908

of memory. As we only utilize SrcPtr, DstIdx from CSR, Dst’s Partition and the partition909

label, switching-aware partitioning only consumes O(2|V |+ 2|E|) amount memory. This is signifi-910

cantly less memory usage than METIS, which requires huge memory to save intermediate coarsening911

information.912

K.2 Partitioning in actual training913

Sequential partitioning methods [47, 49, 53] provide a near-optimal partitioning while consuming914

large memory. On the other hand, switching-aware partitioning, provides efficient memory usage915

while maintaining reasonable partitioning quality. Therefore, when the host memory size is enough to916

handle partitioning with a sequential partitioning algorithm (i.e., METIS), we fall back to partitioning917

with it.918

L API example, framework structure, and implementation919

from torch_geometric.nn import GCNConv
from torch_sparse import SparseTensor
from models import GriNNderGNN
from utils.loader import GriNNderLoader

class GCN(GriNNderGNN):
    def __init__(..., loader: GriNNderLoader, ... , 
   use_cache: bool, storage_offload: bool, ...):
        super().__init__(... , loader, ..., use_cache, storage_offload, ...)

        for i in range(num_layers):
            conv = GCNConv(in_dim, out_dim)
            self.convs.append(conv)             
    
    def forward(self, x: Tensor, adj: SparseTensor, ...):
        for (conv, ...) in zip(self.convs[:-1], ...):
            h = conv(x, adj)
    
    def forward_layer(self, layer, x: Tensor, adj: SparseTensor, ...):
        h = self.convs[layer](x, adj)

Inheriting GriNNderGNN

GriNNderLoader for storage

Additional definition 
of forward_layer 

Figure 15: User interface of GriNNder.

Figure 15 shows the user interface of GriNNder. If a user has a model code for PyG [26], the user can920

utilize GriNNder by simply inheriting the GriNNderGNN module and implementing layer_forward921

method. As offloaded full-graph training is layer-wise, a user needs to implement the layer_forward922

method in addition to the default forward method of a PyG model.923

Figure 16 illustrates the overall framework structure of GriNNder. In User-Level, GriNNder provides924

the base GNN module for inheritation and custom dataloader, which serves offloading-related data925

and interacts with switching-aware partitioning. In Middleware, the offloading engine of GriNNder926

controls the AIO engine for host-storage I/O and the GPUDirect Storage (GDS) for GPU-storage I/O.927

The offloading engine also provides the features of GriNNder internally. GriNNder engine utilizes928
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Figure 16: Framework structure of GriNNder.

PyG kernels and implementations for the forward/backward passes. The middleware operates three929

Hardwares, GPU, host, and storage. As a result, a user can enjoy the full features of GriNNder only930

by providing train code by inheriting GriNNder module.931

We implement GriNNder over the torch.nn.Module of PyTorch [71] to enable a user to use932

GriNNder only by inheriting GriNNderGNN module. For host-to-storage I/O, we utilized the AIO933

interface of Linux wrapped by TensorNVMe [2]. For GPUDirect Storage (GDS) [67], we used934

Kvikio [3], which is the user interface for GDS. Both I/O engines are managed by a thread pool to935

trigger asynchronous I/O. For the data loader and partitioner, we implemented them with C++ and936

served these codes to PyTorch through pybind11 [4]. Inside the GriNNderGNN module, offloading937

engine conducts the core functionality of GriNNder by interacting with the AIO engine (e.g.,938

TensorNVMe) and the GDS engine (e.g., Kvikio). Our custom partitioning extension provides the939

partitioning information to the data loader of GriNNder. Additionally, since offloaded training is940

usually I/O bound, we further optimize GriNNder using I/O overlapping. Using the bidirectional941

interconnect (i.e., PCIe), we can overlap offloading the activation/gradients from a partition and942

uploading the required activation/gradients for the next partition.943

M Detailed experimental settings and baselines944

Table 9: Real-world graph datasets and hyper-parameters

Name
Dataset Info. Hyper-parameter

#Nodes #Edges Feat. size lr Dropout #Epochs

Products [38] 2,449K 61.9M 100 0.003 0.3 500
IGBM [51] 10,000K 120.1M 1024 0.01 0.5 500
Papers [38] 111,000K 1,600M 128 0.01 0.5 500

Models and datasets. We tested graph convolutional network (GCN) as the baseline GNN archi-945

tecture and also used GAT [87] and GraphSAGE [33]. We set the hidden size as the widely-used946

256, if not stated otherwise. We used three medium- (Products [38]) to large-scale (IGBM [51]947

and Papers [38]) datasets (details in Table 9). Products is a co-purchasing network where vertices948

represent Amazon products and edges indicate products purchased together. IGBM and Papers are949

citation networks with vertices and edges representing research papers and citations, respectively. We950

also utilized Kronecker random graphs [54] (average degree=10) with the random initial feature of951

dimension 128 and #classes of 10 for scalability and versatility test with ablation.952

Hardwares. We used a single PC with AMD Ryzen9 7950X 3D CPU, 128GB DDR5-5600 host953

memory, and an RTX A5000 24GB GPU. We equipped a PCIe 5.0 4TB NVMe SSD for the swap954

memory and GPUDirect Storage (GDS) [67] and AIO [1]. We also set swap memory of 4TB for the955

swap memory-based evaluations. We used a four-server cluster to test distributed full-graph training956

baselines, each server having four RTX A6000 GPUs, which aggregates to 16 GPUs. Intra-server957

GPUs are connected via NVLink Bridge [69], and servers are connected via Infiniband SDR [68].958

Each server has 512GB DDR4 RAM and an EPYC 7302 (16C 32T). For IGBM/Papers, we needed959
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all 16 GPUs to fit the data in the GPU memory. For Products, using fewer GPUs could yield better960

performance, but we used all GPUs to maintain consistency among datasets.961

Baselines. We compared four single-server baselines with GriNNder (denoted as ‘GRD’). For962

MFG-based full-graph training, we used Betty [97] (called micro-batch training), the state-of-the-art963

full-graph training in limited environments, as our baseline. As Betty sometimes shows significant964

slowdowns due to slow MFG generation, we excluded the MFG generation time for comparison. To965

test extension of storage-based mini-batch training to full-graph training while utilizing SSD, we966

extend Ginex [70] to micro-batch training [97]. For host offloaded full-graph training, we faithfully967

implemented HongTu [92] and used it as a baseline. When the training data overflows the host968

memory, we use storage swap memory to compare it with GriNNder regarding storage usage. We969

also tested the naïve extension of ROC [42] to naïvely just use storage for offloading, but reported970

the results of it only in Appendix X because this extension was much slower than the others. In971

the appendix, we additionally tested two storage-based mini-batch training (DiskGNN [59] and972

GNNDrive [44]) with micro-batch extension (Appendix C).973

We also compared GriNNder with two distributed full-graph training baselines, CAGNET [85] and974

Sancus [72]. CAGNET is one of the famous distributed full-graph training methods, and Sancus975

accelerated it by storing stale activations and gradients to reduce the communication bottleneck. Note976

that while Sancus is not the exact full-graph training from using stale activations and gradients, we977

still included it as it is one of the state-of-the-art distributed full-graph training frameworks. These two978

baselines ran on the cluster mentioned above. When GPU out-of-memory issues arise in distributed979

training baselines, we implement host memory activation checkpointing (indicated by ‘*’) to attempt980

to make them executable.981

For partitioning, we utilized the multi-threaded METIS (MT-METIS) [53] as the baseline, which is982

one of the state-of-the-art METIS parallelizations (denoted as ‘METIS’). Even when it does not run on983

the testbed due to insufficient memory, we assume it was preprocessed in another environment since984

all baseline methods rely on METIS. For comparisons with lightweight partitioners, we benchmarked985

Spinner [63] and an out-of-core partitioner (2PS-L [64]).986

N Comprehensive analysis with synthetic graph on scalability, ablation, and987

configuration988

We conducted a comprehensive analysis using synthetic graphs, as summarized in Table 10. The tests989

utilized Kronecker synthetic graphs [54] with sizes ranging from 222 to 225 nodes (4.2-33.6M) and990

an average degree of 10.991

Across all combinations of layers and datasets, all ablations of GriNNder consistently achieved992

significant speedups over HongTu. For smaller datasets, where host memory can store all intermediate993

activations and gradients, the configuration using only grad-engine activation regathering (‘GRD-G’)994

generally outperforms the storage-enabled version (‘GRD-GC’), primarily due to cache management995

overhead. However, for larger datasets, employing storage alleviates host memory cache pressure,996

allowing the storage-based configuration (‘GRD-GC’) to deliver substantial speedups over both997

HongTu and GRD-G.998

These results demonstrate that GriNNder is highly scalable for large datasets, with storage utilization999

being an effective strategy for handling large graphs on a single GPU. We also observed that GriNNder1000

occasionally requires a larger number of partitions (i.e., different configurations) than HongTu. This1001

is due to the GPU memory overhead introduced by overlapping GDS operations and computation.1002

Despite this, GriNNder continues to deliver significant performance improvements over HongTu. It1003

is also important to note that the number of partitions is merely a configuration hyperparameter, and1004

users are not burdened by the need to manually handle this difference.1005
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Table 10: Training time/epoch (min) for various-sized Kronecker synthetic graphs. ‘-’ denotes
when the number of partitions is not enough for running. Bold is the fastest training time in each
(#layers, dataset) pair.

#Layers #Partitions Method 4.2M 8.4M 16.8M 33.6M

3

16
HongTu 0.43 0.83 - -
GRD-G 0.29 0.59 - -
GRD-GC 0.31 0.63 - -

32
HongTu 0.57 1.11 7.25 -
GRD-G 0.31 0.66 - -
GRD-GC 0.33 0.71 - -

64
HongTu 0.76 1.76 10.70 -
GRD-G 0.41 0.77 - -
GRD-GC 0.43 0.81 - -

128
HongTu 1.05 5.32 18.96 36.31
GRD-G 0.55 1.02 1.93 3.73
GRD-GC 0.58 1.05 1.99 3.86

5

16
HongTu 0.83 1.99 - -
GRD-G 0.57 1.14 - -
GRD-GC 0.60 1.20 - -

32
HongTu 1.07 8.04 19.15 -
GRD-G 0.60 1.30 - -
GRD-GC 0.63 1.37 - -

64
HongTu 1.48 11.43 24.08 -
GRD-G 0.79 1.49 - -
GRD-GC 0.84 1.55 - -

128
HongTu 4.61 17.08 37.09 96.99
GRD-G 1.08 1.96 3.71 10.87
GRD-GC 1.13 2.02 3.82 7.76
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O Cache hit rates1006

Table 11: Cache hit rate

Dataset Products IGBM Papers kron-4.2M kron-8.4M kron-16.8M kron-33.6M
Hit Rate (%) 28.57 53.70 83.63 80.81 80.47 92.77 92.70

We report cache hit rates in Table 11. As larger datasets (> IGBM, 10M) incur more reuse from the1007

higher number of partitions, the hit rate is more significant in them. A low hit rate is natural in small1008

datasets (e.g., Products) because we employ only a few partitions, and most data are not reused. Thus,1009

GriNNder’s caching is promising in large-graph training.1010

P Comparison with existing lighweight partitioners1011

Table 12: Time-to-quality comparison with spinner

Products (4 parts)

Sec. 0 1 2 3 4 5 6 7

Spinner 2.62 1.98 1.78 1.47 1.23 1.20 1.19 1.19
GRD 2.62 1.33 1.22 1.19 1.18

IGBM (32 parts)

Sec. 0 1 2 3 4 5 6 7 8 9 . . . 37

Spinner 7.93 7.81 7.64 7.45 7.23 6.96 6.64 6.27 5.84 5.44 . . . 3.46
GRD 7.93 6.39 4.74 3.99 3.57 3.41 3.34 3.31

Papers (2048 parts)

Min. 0 2 4 6 8 10 12 14 16 18 . . . 23

Spinner 27.36 25.68 22.41 18.29 14.44 11.76 10.07 8.99 8.25 7.87 . . . 7.09
GRD 27.36 23.24 15.82 11.09 8.74 7.91 7.49 7.24 7.03 6.89

Table 13: Comparison with SOTA out-of-core partitioner (2PS-L [64])

Quality/Time Products IGBM Papers
2PS-L 2.08 / 210.19s 5.20 / 202.77s 18.39 / 86.56m
GRD 1.18 / 4.00s 3.31 / 6.96s 6.89 / 17.60m

We compared the time-to-quality (i.e., expansion ratio, α, lower is better) of GriNNder’s switching-1012

aware partitioning (GRD) with the famous streaming algorithm (Spinner) in Table 12. We ran 501013

iterations for both. We also benchmarked an out-of-core partitioner (2PS-L [64]) with the official1014

code/settings in Table 13. GriNNder quickly results in higher-quality partitions for both cases.1015

Q Convergence trend and practical overhead of switching-aware partitioning1016

Switching-aware partitioning converges fast with low practical overhead. In Table 14, we report the1017

trend of the partitioning quality (score of the objective function) improvement (convergence) from1018

the adjacent previous iteration (e.g., iter 4 −→ 5). We observe that at most 50 iterations are enough for1019

convergence, thus limiting partitioning to 50 iterations in our experiments.1020

Given that a single iteration takes 0.08sec/0.14sec/21.12sec on average and our lightweight parti-1021

tioning only requires 2.49sec/6.96sec/17.60min, partitioning consumes 0.07/0.02/0.39% of the total1022

training time (500 epochs) on Products/IGBM/Papers, respectively.1023
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Table 14: Partitioning convergence trend

Dataset Improvement (%) for Iterations

Products (4 parts) Iteration 1 5 10 15 20 25 28 (last)
Improve (%) 6.81 9.75 3.79 0.36 0.12 0.08 0.05

IGBM (32 parts) Iteration 1 5 10 15 20 25 30 35 40 45 50 (last)
Improve (%) 11.13 7.78 3.66 1.96 0.66 0.77 0.39 0.21 0.16 0.10 0.08

Papers (2048 parts) Iteration 1 5 10 15 20 25 30 35 40 45 50 (last)
Improve (%) 18.04 2.86 3.96 1.61 1.78 0.89 0.46 0.72 0.43 0.22 0.14

R Configuration sensitivity results1024

Table 15: Configuration sensitivity on training time (sec). The default number of partitions for
PRODUCTS and IGBM are 2 and 32, respectively.

Method ×1 ×2 ×4 ×8

3-
la

ye
r PRODUCTS

HongTu 9.98 11.11 12.22 13.65
GRD 6.93 7.72 8.55 8.99

IGBM HongTu 387.68 694.02 675.98 876.60
GRD 55.62 59.41 61.06 66.39

5-
la

ye
r PRODUCTS

HongTu 19.14 21.46 23.42 26.22
GRD 13.65 15.22 16.38 17.60

IGBM HongTu 894.09 958.20 1183.88 1425.36
GRD 91.46 92.60 98.99 114.76

We additionally conducted configuration sensitivity experiments in Table 15. From the efficient1025

caching management and elimination of redundancy, GriNNder is much less sensitive to the number1026

of partitions (configurations). This enhances the practicality of GriNNder for end-users as they are1027

not required to carefully configure the number of partitions.1028

S Muti-GPU scalability1029

Although GriNNder was not designed for multi-GPU environments, it is scalable to some degree.1030

We implemented multi-GPU GriNNder with partition parallelism and synchronization of scattered1031

gradients in the backward pass. We ran this on a multi-GPU server with four RTX4090 GPUs∗.1032

Speedups of 1.25/1.60/2.44× and 1.23/1.53/2.14× were observed with 2/3/4GPUs, respectively, on1033

IGBM and Papers. The speedup is proportional to the number of GPUs, where some overhead is1034

incurred due to the system’s shared resources – host memory bandwidth and storage bandwidth.1035

∗: 2xIntel Xeon Gold 6442Y/512GB DDR5 DRAM/2TB PCIe5.0 NVMe SSD1036

T Benchmarking w/o GDS1037

GriNNder can be generally used when GDS is unavailable. In this case, Kvikio (used in GriNNder)1038

automatically switches to POSIX. Thus, users can still utilize GriNNder without any modification.1039

Also, please note that GDS is supported on GPUs with NVIDIA compute capability >6.x (e.g., V1001040

and after).1041

We also benchmarked the performance (min) of GriNNder without GDS support in Table 16 as1042

‘w/o GDS’. As Products and IGBM can be handled with host memory, the ‘w/o GDS’ performs1043

similarly to the GDS cases. Even with Papers, where storage is highly utilized, there is only a 13-14%1044

slowdown, demonstrating GriNNder’s versatility.1045
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Table 16: Sensitivity to GDS

Layers GDS Products IGBM Papers

3 layer GDS 0.12 0.93 9.07
w/o GDS 0.12 0.93 10.25

5 layer GDS 0.23 1.52 12.03
w/o GDS 0.23 1.52 13.73

U Cost efficiency analysis1046

Table 17 illustrates the cost efficiency of GriNNder compared to baselines. GriNNder is 33.26–60.71×1047

more cost-effective against distributed baselines and 6.97–9.78× cost-efficient than HongTu. Our1048

four server clusters cost $131,848, including servers, 16 A6000 GPUs, and an Infiniband switch for1049

inter-server connection. Our single-GPU workstations cost $3,300, including a workstation and an1050

RTX A5000 GPU. We calculate the vertex per second throughput and divide it by cluster/workstation1051

price to derive cost efficiency.1052

Table 17: Cost efficiency (vertex per second / $) of GriNNder compared to baselines. We report
the cases runnable in Table 1.

Method PRODUCTS IGBM PAPERS

|L
|=

3 D
is

t. CAGNET 1.51 0.90 1.40
SANCUS 1.64 1.64 -

L
im

it. HONGTU 74.36 7.82 -
GRD 107.09 54.48 61.82

|L
|=

5 D
is

t. CAGNET 0.82 0.60 -
SANCUS 0.85 0.90 -

L
im

it. HONGTU 38.77 3.39 -
GRD 54.37 33.13 46.58

V Researches to resemble full-graph training with algorithm change1053

Many works have been proposed to resemble the accuracy (effect) of full-graph training by addressing1054

the information loss of mini-batch training. GNNAutoScale [25] utilizes staled activation to com-1055

pensate for the information loss of mini-batch training. LMC [79] further addresses the information1056

loss by compensating the information loss with gradients. In distributed full-graph training, many1057

researchers have tried to address the communication bottleneck while resembling the full-graph1058

training accuracy with staleness [90, 72] and error compensation [89] while proportional dropping of1059

communication. While the above compensation methods could be orthogonally applied to further1060

enhance the performance of GriNNder, we did not apply them to implement the exact full-graph1061

training without algorithm change.1062

W Functionality (accuracy) check of GriNNder1063

While GriNNder does not change the algorithm of full-graph training, we tested the accuracy of1064

GriNNder compared to full-graph training and HongTu for the functionality check, as illustrated in1065

Figure 17. Full-graph training was conducted with a CAGNET distributed baseline because Sancus1066

is not exact full-graph training. We only reported Products and IGBM because Papers was not1067

runnable on HongTu. As depicted in Figure 17, while HongTu is much slower than the distributed1068

setup, GriNNder provides significant speedup over the distributed CAGNET. All two baselines and1069

GriNNder show the same accuracy, which demonstrates the correct functionality of GriNNder. We1070
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Figure 17: Functionality check of GriNNder.

also additionally checked Sancus’s result, which is not the exact full-graph training as it utilizes staled1071

activations and gradients. It shows similar accuracy to others but not exactly the same to them.1072

X Comparison with naïve baseline (naïve storage extension of ROC [42])1073

We also tested the naïve storage extension of ROC [42] instead of HongTu, which is the state-of-the-1074

art framework. While we tested with HongTu with OS-based swap (i.e., mmap), we made it directly1075

utilize storage instead of OS-based management for the ROC extension. On this naïve extension,1076

GriNNder provides 1.28/29.00× speedup on 3-layer GCN on Products and IGBM, respectively.1077

The speedup is significant on IGBM because Products only use #partitions=2 while IGBM uses1078

#partitions=32. Thus, GriNNder provides further speedup on IGBM, which has much redundancy1079

issue with ROC.1080

Y Limitations1081

Y.1 Limitation of partition-wise cache management1082

Although we evaluate an extensive set of datasets and demonstrate the effectiveness of our partition-1083

wise cache management, there can be a worst-case scenario: when dependencies are uniformly1084

distributed across many partitions. In this case, partition-wise management may lead to overhead1085

rather than performance improvement. We leave the handling of such a case to future work.1086

Y.2 Discussion on SSD durability1087

A key concern when using SSDs for training is their lifespan, particularly due to durability issues.1088

GriNNder is designed to minimize reliance on storage by leveraging host memory as much as possible.1089

Specifically, when the host memory can accommodate all intermediate activations and gradients,1090

GriNNder does not offload data to storage However, storage becomes necessary for large graph1091

sizes or hidden dimensions. Since the write operations to SSDs are the primary factor impacting1092

their lifespan, we can mitigate this issue by utilizing staled activations and gradients, as proposed1093

in previous works [72, 90] from distributed full-graph training. By employing staleness techniques,1094

while it is not the exact full-graph training, storage writes are effectively converted to storage reads,1095

thereby extending the lifespan of the SSD. We plan to integrate these staleness-based techniques in1096

an orthogonal manner to enhance the usability of PyGriNNder.1097

Z Related work1098

GNN training. Numerous methods have been proposed to learn representations from real-world1099

graphs [38, 98, 80, 28]. Mini-batch training [33, 99, 103, 104, 46, 45, 96, 84, 60, 29, 57, 82] addresses1100

memory constraints with sampling [107, 39, 20], but often exhibits input information loss [90, 42, 89,1101

45, 84]. Full-graph training is preferred for non input information loss (e.g., validating an algorithm’s1102
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sole effect), meeting memory requirements with many GPUs [90, 42, 89, 72, 85, 19, 91, 60, 93]. Near-1103

memory processing is also adopted [106] as an alternative hardware solution. To enable full-graph1104

training in a single server, [97] accumulates the weight gradients, and [92] stores activations/gradients1105

to host memory. However, both are still limited to GPU or host memory capacity.1106

SSD-based training. Training DNNs with storage is a popular research area. Large language models,1107

for example, [74] uses GPU, CPU, and SSD, and [40] additionally uses computational storage1108

devices. But they are centered on managing optimizer states, which are extremely small compared1109

to activations/gradients in full-graph training. Some works on mini-batch GNNs also utilize SSDs.1110

Ginex [70] reduces I/O access by restructuring the GNN training pipeline and MariusGNN [88] loads1111

only the valid graph features from storage with two-level partitioning. Helios [83] enables GPUs to1112

directly access graphs in SSDs. DiskGNN [59] and GNNDrive [44] further optimize disk I/O of the1113

above methods for mini-batching However, they target mini-batch training, and are limited by the1114

message flow graph structure when extended to full-graph training.1115

GNN snapshots. Using snapshots is a popular method to reduce memory usage in DNN training [12,1116

7, 65, 32, 95, 66, 22] while providing exact results by storing activations and reconstructing them.1117

Other strategies such as pruning [34, 24, 35, 36, 75, 58], quantization [16, 15, 17, 56, 105, 109, 77],1118

and memory-efficient backpropagation [31, 30, 9] also reduce memory usage but may sacrifice1119

accuracy. [101, 92, 8, 94, 43] also utilize snapshots for GNN training. [101] further reduces1120

memory requirements and [92] naïvely stores snapshots of offloaded partitions, suffering from a1121

huge redundancy. GriNNder instead proposes grad-engine activation regathering to address this1122

redundancy and reduce the I/O overhead.1123

Graph partitioning. Partitioning is widely used for graphs [61, 92, 97, 47, 102, 41, 10, 100,1124

85, 60, 93, 91]. The popular METIS [47] features coarsening, partitioning, and un-coarsening1125

phase [18, 37, 76, 5]. Additional frameworks [102, 41, 10] also try to balance partitions but demand a1126

large amount of memory. Many distributed GNN training frameworks [90, 72, 103, 104, 60, 91, 93]1127

are based on METIS for minimizing communication cost or workload balancing. For instance, [91]1128

proposes an iterative METIS-based partitioning to enhance its three-dimensional parallelism. [50]1129

reveals that previous partitioning [53] requires 4.8×-13.8× more memory than the graph itself. There1130

are attempts to reduce this with online partitioning [21, 86, 81] or label propagation [48, 73] for1131

scalable graph partitioning [63]. However, they focus on distributed systems and still require a lot of1132

memory. Conversely, GriNNder proposes an efficient partitioning for large-scale graphs in limited1133

environments.1134
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NeurIPS Paper Checklist1135

1. Claims1136

Question: Do the main claims made in the abstract and introduction accurately reflect the1137

paper’s contributions and scope?1138

Answer: [Yes]1139

Justification: The abstract and introduction accurately reflect the paper’s main contribution1140

and scope. They also correctly summarize the main benefits (computational speedups on1141

various-sized graphs) of this work.1142

Guidelines:1143

• The answer NA means that the abstract and introduction do not include the claims1144

made in the paper.1145

• The abstract and/or introduction should clearly state the claims made, including the1146

contributions made in the paper and important assumptions and limitations. A No or1147

NA answer to this question will not be perceived well by the reviewers.1148

• The claims made should match theoretical and experimental results, and reflect how1149

much the results can be expected to generalize to other settings.1150

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1151

are not attained by the paper.1152

2. Limitations1153

Question: Does the paper discuss the limitations of the work performed by the authors?1154

Answer: [Yes]1155

Justification: In Appendix Y, we discussed the limitation of partition-wise cache manage-1156

ment. Also, we further discussed that the lifespan of SSDs could be a concern for this1157

work. However, the proposed method is designed to minimize this issue by leveraging host1158

memory as much as possible through reducing the reliance on storage. Additionally, we1159

also stated that orthogonally applying the staleness-based methods from other domains (e.g.,1160

distributed methods) on this work can further mitigate this issue.1161

Guidelines:1162

• The answer NA means that the paper has no limitation while the answer No means that1163

the paper has limitations, but those are not discussed in the paper.1164

• The authors are encouraged to create a separate "Limitations" section in their paper.1165

• The paper should point out any strong assumptions and how robust the results are to1166

violations of these assumptions (e.g., independence assumptions, noiseless settings,1167

model well-specification, asymptotic approximations only holding locally). The authors1168

should reflect on how these assumptions might be violated in practice and what the1169

implications would be.1170

• The authors should reflect on the scope of the claims made, e.g., if the approach was1171

only tested on a few datasets or with a few runs. In general, empirical results often1172

depend on implicit assumptions, which should be articulated.1173

• The authors should reflect on the factors that influence the performance of the approach.1174

For example, a facial recognition algorithm may perform poorly when image resolution1175

is low or images are taken in low lighting. Or a speech-to-text system might not be1176

used reliably to provide closed captions for online lectures because it fails to handle1177

technical jargon.1178

• The authors should discuss the computational efficiency of the proposed algorithms1179

and how they scale with dataset size.1180

• If applicable, the authors should discuss possible limitations of their approach to1181

address problems of privacy and fairness.1182

• While the authors might fear that complete honesty about limitations might be used by1183

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1184

limitations that aren’t acknowledged in the paper. The authors should use their best1185

judgment and recognize that individual actions in favor of transparency play an impor-1186

tant role in developing norms that preserve the integrity of the community. Reviewers1187

will be specifically instructed to not penalize honesty concerning limitations.1188
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3. Theory assumptions and proofs1189

Question: For each theoretical result, does the paper provide the full set of assumptions and1190

a complete (and correct) proof?1191

Answer: [NA]1192

Justification: This work proposes systematic approaches for full-graph graph neural network1193

(GNN) training, and does not have any theoretical results.1194

Guidelines:1195

• The answer NA means that the paper does not include theoretical results.1196

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1197

referenced.1198

• All assumptions should be clearly stated or referenced in the statement of any theorems.1199

• The proofs can either appear in the main paper or the supplemental material, but if1200

they appear in the supplemental material, the authors are encouraged to provide a short1201

proof sketch to provide intuition.1202

• Inversely, any informal proof provided in the core of the paper should be complemented1203

by formal proofs provided in appendix or supplemental material.1204

• Theorems and Lemmas that the proof relies upon should be properly referenced.1205

4. Experimental result reproducibility1206

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1207

perimental results of the paper to the extent that it affects the main claims and/or conclusions1208

of the paper (regardless of whether the code and data are provided or not)?1209

Answer: [Yes]1210

Justification: This paper provides sufficient information needed to reproduce the main1211

experimental results of the paper. To enhance the reproducibility, we further stated the1212

detailed procedure in Appendix D and the experimental settings in Appendix M.1213

Guidelines:1214

• The answer NA means that the paper does not include experiments.1215

• If the paper includes experiments, a No answer to this question will not be perceived1216

well by the reviewers: Making the paper reproducible is important, regardless of1217

whether the code and data are provided or not.1218

• If the contribution is a dataset and/or model, the authors should describe the steps taken1219

to make their results reproducible or verifiable.1220

• Depending on the contribution, reproducibility can be accomplished in various ways.1221

For example, if the contribution is a novel architecture, describing the architecture fully1222

might suffice, or if the contribution is a specific model and empirical evaluation, it may1223

be necessary to either make it possible for others to replicate the model with the same1224

dataset, or provide access to the model. In general. releasing code and data is often1225

one good way to accomplish this, but reproducibility can also be provided via detailed1226

instructions for how to replicate the results, access to a hosted model (e.g., in the case1227

of a large language model), releasing of a model checkpoint, or other means that are1228

appropriate to the research performed.1229

• While NeurIPS does not require releasing code, the conference does require all submis-1230

sions to provide some reasonable avenue for reproducibility, which may depend on the1231

nature of the contribution. For example1232

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1233

to reproduce that algorithm.1234

(b) If the contribution is primarily a new model architecture, the paper should describe1235

the architecture clearly and fully.1236

(c) If the contribution is a new model (e.g., a large language model), then there should1237

either be a way to access this model for reproducing the results or a way to reproduce1238

the model (e.g., with an open-source dataset or instructions for how to construct1239

the dataset).1240
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(d) We recognize that reproducibility may be tricky in some cases, in which case1241

authors are welcome to describe the particular way they provide for reproducibility.1242

In the case of closed-source models, it may be that access to the model is limited in1243

some way (e.g., to registered users), but it should be possible for other researchers1244

to have some path to reproducing or verifying the results.1245

5. Open access to data and code1246

Question: Does the paper provide open access to the data and code, with sufficient instruc-1247

tions to faithfully reproduce the main experimental results, as described in supplemental1248

material?1249

Answer: [Yes]1250

Justification: We included the anonymized code for this paper in the supplemental material.1251

In the zipped code, the environmental setup guide, the readme, and the experiment scripts1252

are available.1253

Guidelines:1254

• The answer NA means that paper does not include experiments requiring code.1255

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1256

public/guides/CodeSubmissionPolicy) for more details.1257

• While we encourage the release of code and data, we understand that this might not be1258

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1259

including code, unless this is central to the contribution (e.g., for a new open-source1260

benchmark).1261

• The instructions should contain the exact command and environment needed to run to1262

reproduce the results. See the NeurIPS code and data submission guidelines (https:1263

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1264

• The authors should provide instructions on data access and preparation, including how1265

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1266

• The authors should provide scripts to reproduce all experimental results for the new1267

proposed method and baselines. If only a subset of experiments are reproducible, they1268

should state which ones are omitted from the script and why.1269

• At submission time, to preserve anonymity, the authors should release anonymized1270

versions (if applicable).1271

• Providing as much information as possible in supplemental material (appended to the1272

paper) is recommended, but including URLs to data and code is permitted.1273

6. Experimental setting/details1274

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1275

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1276

results?1277

Answer: [Yes]1278

Justification: We included the experimental settings and details in the main body and also1279

described the further details in Appendix M.1280

Guidelines:1281

• The answer NA means that the paper does not include experiments.1282

• The experimental setting should be presented in the core of the paper to a level of detail1283

that is necessary to appreciate the results and make sense of them.1284

• The full details can be provided either with the code, in appendix, or as supplemental1285

material.1286

7. Experiment statistical significance1287

Question: Does the paper report error bars suitably and correctly defined or other appropriate1288

information about the statistical significance of the experiments?1289

Answer: [No]1290

Justification: This paper resides in the systems for the ML domain, thus we reported the1291

sensitivity experiments on various environments instead of experiments for the statistical1292

significance.1293
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Guidelines:1294

• The answer NA means that the paper does not include experiments.1295

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1296

dence intervals, or statistical significance tests, at least for the experiments that support1297

the main claims of the paper.1298

• The factors of variability that the error bars are capturing should be clearly stated (for1299

example, train/test split, initialization, random drawing of some parameter, or overall1300

run with given experimental conditions).1301

• The method for calculating the error bars should be explained (closed form formula,1302

call to a library function, bootstrap, etc.)1303

• The assumptions made should be given (e.g., Normally distributed errors).1304

• It should be clear whether the error bar is the standard deviation or the standard error1305

of the mean.1306

• It is OK to report 1-sigma error bars, but one should state it. The authors should1307

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1308

of Normality of errors is not verified.1309

• For asymmetric distributions, the authors should be careful not to show in tables or1310

figures symmetric error bars that would yield results that are out of range (e.g. negative1311

error rates).1312

• If error bars are reported in tables or plots, The authors should explain in the text how1313

they were calculated and reference the corresponding figures or tables in the text.1314

8. Experiments compute resources1315

Question: For each experiment, does the paper provide sufficient information on the com-1316

puter resources (type of compute workers, memory, time of execution) needed to reproduce1317

the experiments?1318

Answer: [Yes]1319

Justification: We provided the sufficient information on compute resources in the evaluation1320

sections and Appendix M.1321

Guidelines:1322

• The answer NA means that the paper does not include experiments.1323

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1324

or cloud provider, including relevant memory and storage.1325

• The paper should provide the amount of compute required for each of the individual1326

experimental runs as well as estimate the total compute.1327

• The paper should disclose whether the full research project required more compute1328

than the experiments reported in the paper (e.g., preliminary or failed experiments that1329

didn’t make it into the paper).1330

9. Code of ethics1331

Question: Does the research conducted in the paper conform, in every respect, with the1332

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1333

Answer: [Yes]1334

Justification: The research conducted in this work conforms to the NeurIPS code of ethics.1335

Guidelines:1336

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1337

• If the authors answer No, they should explain the special circumstances that require a1338

deviation from the Code of Ethics.1339

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1340

eration due to laws or regulations in their jurisdiction).1341

10. Broader impacts1342

Question: Does the paper discuss both potential positive societal impacts and negative1343

societal impacts of the work performed?1344
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Answer: [NA]1345

Justification: This paper resides in the systems for ML domain, thus we cannot directly1346

discuss the potential societal effects of this work. Therefore, we answered NA.1347

Guidelines:1348

• The answer NA means that there is no societal impact of the work performed.1349

• If the authors answer NA or No, they should explain why their work has no societal1350

impact or why the paper does not address societal impact.1351

• Examples of negative societal impacts include potential malicious or unintended uses1352

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1353

(e.g., deployment of technologies that could make decisions that unfairly impact specific1354

groups), privacy considerations, and security considerations.1355

• The conference expects that many papers will be foundational research and not tied1356

to particular applications, let alone deployments. However, if there is a direct path to1357

any negative applications, the authors should point it out. For example, it is legitimate1358

to point out that an improvement in the quality of generative models could be used to1359

generate deepfakes for disinformation. On the other hand, it is not needed to point out1360

that a generic algorithm for optimizing neural networks could enable people to train1361

models that generate Deepfakes faster.1362

• The authors should consider possible harms that could arise when the technology is1363

being used as intended and functioning correctly, harms that could arise when the1364

technology is being used as intended but gives incorrect results, and harms following1365

from (intentional or unintentional) misuse of the technology.1366

• If there are negative societal impacts, the authors could also discuss possible mitigation1367

strategies (e.g., gated release of models, providing defenses in addition to attacks,1368

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1369

feedback over time, improving the efficiency and accessibility of ML).1370

11. Safeguards1371

Question: Does the paper describe safeguards that have been put in place for responsible1372

release of data or models that have a high risk for misuse (e.g., pretrained language models,1373

image generators, or scraped datasets)?1374

Answer: [NA]1375

Justification: This paper poses no such risks.1376

Guidelines:1377

• The answer NA means that the paper poses no such risks.1378

• Released models that have a high risk for misuse or dual-use should be released with1379

necessary safeguards to allow for controlled use of the model, for example by requiring1380

that users adhere to usage guidelines or restrictions to access the model or implementing1381

safety filters.1382

• Datasets that have been scraped from the Internet could pose safety risks. The authors1383

should describe how they avoided releasing unsafe images.1384

• We recognize that providing effective safeguards is challenging, and many papers do1385

not require this, but we encourage authors to take this into account and make a best1386

faith effort.1387

12. Licenses for existing assets1388

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1389

the paper, properly credited and are the license and terms of use explicitly mentioned and1390

properly respected?1391

Answer: [Yes]1392

Justification: We wrote the code for this work from scratch. In terms of datasets, models,1393

and datasets, we properly cited them in the paper.1394

• The answer NA means that the paper does not use existing assets.1395

• The authors should cite the original paper that produced the code package or dataset.1396
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• The authors should state which version of the asset is used and, if possible, include a1397

URL.1398

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1399

• For scraped data from a particular source (e.g., website), the copyright and terms of1400

service of that source should be provided.1401

• If assets are released, the license, copyright information, and terms of use in the1402

package should be provided. For popular datasets, paperswithcode.com/datasets1403

has curated licenses for some datasets. Their licensing guide can help determine the1404

license of a dataset.1405

• For existing datasets that are re-packaged, both the original license and the license of1406

the derived asset (if it has changed) should be provided.1407

• If this information is not available online, the authors are encouraged to reach out to1408

the asset’s creators.1409

13. New assets1410

Question: Are new assets introduced in the paper well documented and is the documentation1411

provided alongside the assets?1412

Answer: [Yes]1413

Justification: In the anonymized code, we included the environmental setup guidelines and1414

the readme.1415

Guidelines:1416

• The answer NA means that the paper does not release new assets.1417

• Researchers should communicate the details of the dataset/code/model as part of their1418

submissions via structured templates. This includes details about training, license,1419

limitations, etc.1420

• The paper should discuss whether and how consent was obtained from people whose1421

asset is used.1422

• At submission time, remember to anonymize your assets (if applicable). You can either1423

create an anonymized URL or include an anonymized zip file.1424

14. Crowdsourcing and research with human subjects1425

Question: For crowdsourcing experiments and research with human subjects, does the paper1426

include the full text of instructions given to participants and screenshots, if applicable, as1427

well as details about compensation (if any)?1428

Answer: [NA]1429

Justification: This work does not involve crowdsourcing nor research with human subjects.1430

Guidelines:1431

• The answer NA means that the paper does not involve crowdsourcing nor research with1432

human subjects.1433

• Including this information in the supplemental material is fine, but if the main contribu-1434

tion of the paper involves human subjects, then as much detail as possible should be1435

included in the main paper.1436

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1437

or other labor should be paid at least the minimum wage in the country of the data1438

collector.1439

15. Institutional review board (IRB) approvals or equivalent for research with human1440

subjects1441

Question: Does the paper describe potential risks incurred by study participants, whether1442

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1443

approvals (or an equivalent approval/review based on the requirements of your country or1444

institution) were obtained?1445

Answer: [NA]1446

Justification: This work does not involve crowdsourcing nor research with human subjects.1447

Guidelines:1448
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• The answer NA means that the paper does not involve crowdsourcing nor research with1449

human subjects.1450

• Depending on the country in which research is conducted, IRB approval (or equivalent)1451

may be required for any human subjects research. If you obtained IRB approval, you1452

should clearly state this in the paper.1453

• We recognize that the procedures for this may vary significantly between institutions1454

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1455

guidelines for their institution.1456

• For initial submissions, do not include any information that would break anonymity (if1457

applicable), such as the institution conducting the review.1458

16. Declaration of LLM usage1459

Question: Does the paper describe the usage of LLMs if it is an important, original, or1460

non-standard component of the core methods in this research? Note that if the LLM is used1461

only for writing, editing, or formatting purposes and does not impact the core methodology,1462

scientific rigorousness, or originality of the research, declaration is not required.1463

Answer: [NA]1464

Justification: We did not use any LLMs for the core method development.1465

Guidelines:1466

• The answer NA means that the core method development in this research does not1467

involve LLMs as any important, original, or non-standard components.1468

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1469

for what should or should not be described.1470

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background: full-graph GNN training
	Full-graph GNN training workflow with storage employment
	GriNNder design
	Partition-aware graph caching
	Grad-engine activation regathering
	Switching-aware partitioning
	Implementation: PyGriNNder

	Evaluation
	Experimental settings and baselines
	Large graph training results
	Ablation by decreasing effective cache size and cache hit rate
	Analysis on host memory usage
	Analysis on partitioning algorithms
	Other sensitivity studies (model, configuration, and multi-GPU sensitivity)

	Conclusion
	Survey of 2024 conferences' submission on GNN domains
	Drawbacks of existing full-graph training methods for limited environments
	Limitation of extending storage-based mini-batch training to full-graph training with micro-batch training
	Overall procedure of GriNNder
	Profile of dependency among partitions
	Vertex-wise cache management vs. partition-wise cache management
	I/O optimizations of GriNNder
	Overlapping of processing and cache management
	In-partition vertex ordering for sequential accesses

	Comparison with HongTu's gradient engine
	In-depth I/O volume and memory footprint analyses
	METIS and its memory usage
	Insights and details of switching-aware partitioning
	Detailed terms and memory efficiency
	Partitioning in actual training

	API example, framework structure, and implementation
	Detailed experimental settings and baselines
	Comprehensive analysis with synthetic graph on scalability, ablation, and configuration
	Cache hit rates
	Comparison with existing lighweight partitioners
	Convergence trend and practical overhead of switching-aware partitioning
	Configuration sensitivity results
	Muti-GPU scalability
	Benchmarking w/o GDS
	Cost efficiency analysis
	Researches to resemble full-graph training with algorithm change
	Functionality (accuracy) check of GriNNder
	Comparison with naïve baseline (naïve storage extension of ROC roc)
	Limitations
	Limitation of partition-wise cache management
	Discussion on SSD durability

	Related work

