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ABSTRACT

Adversarial training is a commonly used technique to improve model robustness
against adversarial examples. Despite its success as a defense mechanism, ad-
versarial training often fails to generalize well to unperturbed test data. While
previous work assumes it is caused by the discrepancy between robust and non-
robust features, in this paper, we introduce Adversarial Masking, a new hypothesis
that this trade-off is caused by different feature maskings applied. Specifically, the
rescaling operation in the batch normalization layer, when combined together with
ReLU activation, serves as a feature masking layer to select different features for
model training. By carefully manipulating different maskings, a well-balanced
trade-off can be achieved between model performance on unperturbed and per-
turbed data. Built upon this hypothesis, we further propose Robust Masking (Rob-
Mask), which constructs a unique masking for every specific attack perturbation
by learning a set of primary adversarial feature maskings. By incorporating dif-
ferent feature maps after the masking, we can distill better features to help model
generalization. Sufficiently, adversarial training can be treated as an effective reg-
ularizer to achieve better generalization. Experiments on multiple benchmarks
demonstrate that RobMask achieves significant improvement on clean test accu-
racy compared to strong state-of-the-art baselines.

1 INTRODUCTION

Deep neural networks have achieved unprecedented success over a variety of tasks and across dif-
ferent domains. However, studies have shown that neural networks are inherently vulnerable to ad-
versarial examples (Biggio et al., 2013; Szegedy et al., 2014). To enhance model robustness against
adversarial examples, adversarial training (Goodfellow et al., 2015; Madry et al., 2018) has become
one of the most effective and widely applied defense methods, which employs specific attacking
algorithms to generate adversarial examples during training in order to learn robust models.

Albeit effective in countering adversarial examples, adversarial training often suffers from inferior
performance on clean data (Zhang et al., 2019; Balaji et al., 2019). This observation has led prior
work to extrapolate that a trade-off between robustness and accuracy may be inevitable, particularly
for image classification tasks (Zhang et al., 2019; Tsipras et al., 2019). However, Yang et al. (2020)
recently suggests that it is possible to learn classifiers both robust and highly accurate on real im-
age data. The current state of adversarial training methods falls short of this prediction, and the
discrepancy remains poorly understood.

In this paper, we conduct an in-depth study on understanding the trade-off between robustness and
clean accuracy in adversarial training, and introduce Adversarial Masking, a new hypothesis stating
that a widely used technique, batch normalization (BN), has a significant impact on the trade-off
between robustness and natural accuracy. Specifically, we break down BN into normalization and
rescaling operations, and find that the rescaling operation has a significant impact on the robustness
trade-off while normalization only has marginal influence. Built upon this observation, we hypoth-
esize that adversarial masking (i.e., the combination of the rescaling operation and the follow-up
ReLU activation fucntion) acts as a feature masking layer that can magnify or block feature maps to
influence the performance of robust or clean generalization. In this hypothesis, different rescaling
parameters in BN contribute to different adversarial maskings learned through training. By using
a simple linear combination of two adversarial maskings, rather than using robust features learned
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by adversarial training (Madry et al., 2018; Ilyas et al., 2019; Zhang et al., 2019), we show that a
well-balanced trade-off can be readily achieved.

Based on the Adversarial Masking hypothesis, we further propose RobMask (Robust Masking), a
new training scheme that learns an adaptive feature masking for different perturbation strengths. We
use the learned adaptive feature masking to incorporate different features so that we could improve
model generalization with a better robustness trade-off. Specifically, each perturbation strength is
encoded as a low-dimensional vector, and we take this vector as input to a learnable linear projec-
tion layer together with ReLU activation, to obtain the adversarial masking for the corresponding
perturbation strength. Therefore, for different perturbation strengths, we learn different maskings
accordingly. By doing so, rather than hurting the performance on clean test data, we use adversarial
examples as powerful regularization to boost model generalization. Experiments on multiple bench-
marks demonstrate that RobMask achieves not only significantly better natural accuracy, but also a
better trade-off between robustness and generalization.

Our contributions are summarized as follows. (i) We conduct a detailed analysis to demonstrate
that the rescaling operation in batch normalization has a significant impact on the trade-off between
robustness and natural accuracy. (ii) We introduce Adversarial Masking, a new hypothesis to explain
that this trade-off is caused by different feature maskings applied, and different combinations of
maskings can lead to different trade-offs. (iii) We propose RobMask, a new training scheme to learn
an adaptive masking for different perturbation strengths, in order to utilize adversarial examples to
boost generalization on clean data. RobMask also achieves a better trade-off between robust and
natural accuracy.

2 PRELIMINARY AND RELATED WORK

Adversarial Training Since the discovery of the vulnerability of deep neural networks, diverse
approaches have been proposed to enhance model adversarial robustness. A natural idea is to itera-
tively generate adversarial examples, add them back to the training data, and then retrain the model.
For example, Goodfellow et al. (2015) uses adversarial examples generated by FGSM to augment the
data, and Kurakin et al. (2017) proposes to use a multi-step FGSM to further improve performance.
Madry et al. (2018) shows that adversarial training can be formulated as a min-max optimization
problem, and proposes PGD attack (similar to multi-step FGSM) to find adversarial examples for
each batch. Specifically, for a K-class classification problem, let us denote D = {(xi, yi)}ni=1 as
the set of training samples with xi ∈ Rd, yi ∈ {1, . . . ,K}, where K is the number of classes.
Considering a classification model fθ(x) : Rd → ∆K parameterized by θ, where ∆K represents a
K-dimensional simplex, adversarial training can be formulated as:

min
θ

1

n

n∑
i=1

max
x′

i∈Bp(xi,ε)
`(fθ(x

′
i), yi), (1)

where Bp(xi, ε) denotes the `p-norm ball centered at xi with radius ε, and `(·, ·) is the cross-entropy
loss. The inner maximization problem aims to find an adversarial version of a given data point xi
that yields the highest loss. In general, Bp(xi, ε) can be defined based on the threat model, but the
`∞ ball is the most popular choice among recent work (Madry et al., 2018; Zhang et al., 2019),
which is also adopted in this paper.

For deep neural networks, the inner maximization does not have a closed-form solution. Thus, ad-
versarial training typically uses a gradient-based iterative solver to approximately solve the inner
problem. The most commonly used choice is multi-step PGD (Madry et al., 2018) and C&W at-
tack (Carlini & Wagner, 2017). Since then, most defense algorithms (Zhang et al., 2019; Balaji
et al., 2019; Wang et al., 2019; Ding et al., 2018; Cheng et al., 2020) are based on a similar min-max
framework.

Trade-off between Robustness and Accuracy While effective in improving model robustness,
adversarial training is known to bear a performance drop on clean test data. Tsipras et al. (2019)
provides a theoretical example of data distribution where any classifier with high test accuracy must
also have low adversarial accuracy under `∞ perturbations. They claim that high performance on
both accuracy and robustness may be unattainable due to their inherently opposing goals. Zhang
et al. (2019) decomposes the robust error as the sum of natural (classification) error and boundary
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error, and provides a differentiable upper-bound using the theory of classification-calibrated loss,
based on which they further propose TRADES to achieve different trade-offs by tuning the regular-
ization term.

Most recently, Xie et al. (2020) proposes AdvProp to assign another batch normalization for gener-
ating adversarial examples, and shows improved performance on clean data in image classification
tasks. There are also parallel studies on applying adversarial training to improve clean data perfor-
mance in language understanding and vision-and-language tasks (Zhu et al., 2019; Jiang et al., 2019;
Liu et al., 2020; Gan et al., 2020).

Batch Normalization Batch Normalization is a widely adopted technique that enables faster and
more stable training of deep neural networks, below, we provide a brief overview of batch nor-
malization, which paves the way to introduce our method. Specifically, batch normalization (Ioffe
& Szegedy, 2015) is proposed to reduce the internal co-variate shift to ease neural network train-
ing. Considering a convolutional neural network, we can define the input and output as Ib,c,x,y and
Ob,c,x,y , respectively. The dimensions correspond to examples with a batch b, channel c, and two
spatial dimensions x, y. A neural network applies the same normalization for all activations in a
given channel:

Ob,c,x,y ← γ
Ib,c,x,y − µc√

σ2
c + ε

+ β ∀b, c, x, y, (2)

where µc = 1
|B|

∑
b,x,y Ib,c,x,y denotes the mean for channel c, and σc denotes the corresponding

standard deviation. γ and β are two learnable parameters for the channel-wise affine transformation,
i.e., rescaling operations. ε is a small number to control numerical stability.

3 ADVERSARIAL MASKING

3.1 BATCH NORMALIZATION ACTS AS ADVERSARIAL MASKING

Ilyas et al. (2019) disentangles adversarial examples as a natural consequence of non-robust fea-
tures. Specifically, they construct robust features from an adversarial trained “robust model” di-
rectly. Therefore, a common belief is that adversarial robustness comes from feature representations
learned through adversarial training (Ilyas et al., 2019; Santurkar et al., 2019). An interesting ques-
tion we would like to ask is: can we learn robust features from a vanilla standard-trained model, or,
can we obtain non-robust features from an adversarial trained “robust model”?

Method Clean Acc. Robust Acc.

Standard Training 91.97% 0.0%
+ Adv. Finetuning of BN 53.96% 26.51%

Adv. Training 78.47% 48.67%
+ Standard Finetuning of BN 86.96% 5.83%

Table 1: Clean and robust accuracy of ResNet-18 models
trained under different settings on CIFAR-10. All robust
accuracy results are obtained using the ε = 8/255 `∞ ball.
(BN: Batch Normalization)

To answer this question, we design
the following experiments. We first
train a ResNet-18 model with stan-
dard and adversarial training, then
finetune the networks by allowing
only batch normalization (BN) to be
changed while freezing other param-
eters. Specifically, we finetune BN in
a standard trained model using adver-
sarial training, and finetune BN in an
adversarial trained model with stan-
dard training, respectively. Results
are summarized in Table 1. Given a
standard trained model, by only per-
forming adversarial finetuning of the BN layers, the resulting model can already achieve a reason-
ably good robust accuracy 26.51% (the 1st block). Similarly, given an adversarial trained model,
by only performing standard finetuning of the BN layers, the clean accuracy of the model increases
significantly from 78.47% to 86.96% (the 2nd block).

This experiment demonstrates that we can control the trade-off between clean and robust errors by
only tuning the BN layer, so here comes a natural question: which part in BN has contributed to this
performance trade-off? To investigate this, we take a step further to check the difference of every
parameter used in BN. In particular, we check the first BN layer after the first convolution layer.
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(a) Running mean µ (b) Running variance σ (c) Rescaling γ (d) Rescaling β

Figure 1: Batch statistics in the first batch normalization (BN) layer of an adversarial trained
ResNet18 model on CIFAR10, with and without further standard fine-tuning of BN (orange and
blue lines, respectively). The running mean µ and variance σ, as well as the rescaling shift param-
eter β are almost the same (overlapped in the figure), while the rescaling weight γ has a significant
difference, which has a notable contribution to the clean and robustness trade-off.

Model p 1.0 0.8 0.6 0.4 0.2 0.0

Adv. Training with and
w/o Std. Finetuning of BN

Clean Acc. 78.47% 81.16% 82.8% 84.66% 86.06% 86.96%
Robust Acc. 48.67% 44.88% 37.2% 24.79% 12.85% 5.83%

Std. Training with and
w/o Adv. Finetuning of BN

Clean Acc. 91.97% 88.66% 74.87% 58.76% 53.89% 53.96%
Robust Acc. 0.0% 0.0% 0.12% 5.73% 19.93% 26.51%

Table 2: The clean and robust accuracy using different combination coefficient p on CIFAR-10 with
ResNet-18. The 1st block uses adversarial trained models with and without further standard fine-
tuning of batch normalization (BN). The 2nd block uses standard trained models with and without
further adversarial finetuning of BN. All robust accuracies are obtained using ε = 8/255 `∞ ball.

As well known, BN uses a running average of the mean and variance during testing. Figure 1a
and 1b illustrate the difference on the running mean µ and running variance σ. The batch statistics
with and without further standard finetuning of BN (under the setting in the 2nd block of Table 1)
are nearly identical across all the dimensions. Figure 1c and 1d plot the learned rescaling parameters
γ and β. We can clearly see that the fine-tuned rescaling parameter γ is completely different from
the original one, with β unchanged, indicating that γ has a significant impact on the clean and robust
trade-off while still performing similar normalization on both sides.

On the other hand, Rectified Linear Unit (ReLU) (Agarap, 2018) is the most commonly used acti-
vation function in deep neural networks. The function returns 0 if it receives any negative input, and
for any positive value x it returns that value back (i.e., f(x) = max(0, x)). During the rescaling
operation, γ would magnify or shrink the magnitude of feature maps. Together with β, after ReLU
activation, features that become negative will be blocked as 0. By combining the rescaling operation
with the following ReLU activation function, the resulting layer can be viewed as a masking layer
to magnify or block the features maps from the convolution layer (see Figure 2(a) for illustration).
To further validate this, we plot the feature maps after ReLU activation functions in Figure 4 in the
Appendix. Some feature maps are blocked after finetuning BN (completely black when all pixels are
set to 0) as well as some are magnified significantly. We term the above observation as Adversarial
Masking, and hypothesize that this leads to the trade-off between robustness and natural accuracy.

3.2 CONTROLLING ROBUSTNESS TRADE-OFF VIA ADVERSARIAL MASKING

The above analysis suggests that, rather than feature representations, rescaling in the BN layer to-
gether with ReLU activation function serves as a masking layer for selecting different feature combi-
nations that can achieve different performance trade-offs between clean and perturbed test sets. From
this hypothesis, a different combination of BN together with ReLU can be regarded as a different
adversarial masking. With such a masking, we can readily achieve a series of trade-offs, without
the need of training the model from scratch again, which is the case for conventional adversarial
training. In the following experiment, we use a simple linear combination of two learned adversarial
maskings to achieve this trade-off, and empirically, we observe that this simple design is sufficient.
Specifically, denote (γ, β) and (γ′, β′) as two learned adversarial maskings (i.e., the learned rescal-
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(a) Adversarial Masking. (b) The proposed RobMask method.

Figure 2: Illustration of (a) Adversarial Masking hypothesis, and (b) RobMask method for im-
proving the generalization performance. Instead of just using a single masking for both clean and
adversarial examples, we use the linear combination of k primary rescaling parameters {wj}kj=1

and {w′j}kj=1 to incorporate different perturbation strength εi.

ing parameters in the BN layer), and we have γ̂ = pγ+ (1− p)γ′ and β̂ = pβ+ (1− p)β′. We then
use the new adversarial masking (γ̂, β̂) for evaluation. Table 2 shows that different clean and robust
accuracies can be readily achieved by selecting different p values.

Previous work (Zhang et al., 2019) uses regularization hyperparameter λ to balance between clean
error and robust error. By tunning λ, they could achieve different robustness trade-offs. However, it
takes enormous time and effort to retrain the model from the scratch. Instead, this finding inspires
us that we can just store one model and employ a series of learned adversarial maskings to control
the robustness trade-off at real time.

4 IMPROVING MODEL GENERALIZATION VIA ROBMASK

As mentioned in Section 3.2, different trade-offs can be achieved by linearly combining two pre-
trained batch normalization layers. However, this may not be ideal due to several deficiencies. First,
the “clean” mask learned by fine-tuning is not distilled and may partially override the mask learned
from adversarial examples, leading to a sub-optimal solution. Second, since every perturbation
strength tends to have a different masking, if we only utilize one perturbation strength, we lose all
the other maskings generated by the perturbation strength in-between. Third, it requires a careful
selection of what the maximum perturbation strength is. In the extreme case, if a sample is perturbed
to the decision boundary, the learned adversarial mask might be completely meaningless. Or, if the
chosen perturbation strength is too small, there will not be enough regularization for improving
generalization. To address these issues, we propose RobMask (Robust Masking), a new framework
that aims to actively learn the adversarial masking to boost generalization performance.

Specifically, we propose to incorporate different perturbation strengths for model training, instead
of just one. Note that we could treat ε = 0 for the unperturbed data. Then, a straightforward way
is to just learn a set of γi, βi independently for every perturbation strength εi. However, due to the
limited number of sampled perturbation strengths, each γi could have poor generalization due to
over-fitting. At the same time, it loses the correlation between all the generated maskings. Instead,
we need to jointly learn the corresponding maskings simultaneously.

To this end, we assume that every rescaling parameter γi can be well-approximated by a linear
combination of k basic rescaling parameters {wj}kj=1, where k is a small number. By encoding
perturbation strength εi into a k-dimensional vector ui, we can linearly combine wj using ui to
obtain a rescaling parameter for strength εi as: γi =

∑k
j=1 uijwj . Take k = 2 as an example:

we can encode u0 = [1.0 0.0]T for ε = 0 and uεmax = [0.0 1.0]T for εi = εmax, respectively.
Naturally, the intermediate perturbation strength εi = pi · εmax can be encoded as ui = (1 −
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Algorithm 1 The proposed RobMask method for improving model generalization.

Input: Training dataset {xi, yi}ni=1, perturbation upper bound εmax.
for epoch= 1, . . . , N do

for i = 1, . . . , B do
Sample a random number p from 0 to 1
εi ← p · εmax # obtain the current perturbation strength in this mini-batch
ui ← Encode(εi) # encoder the perturbation strength as a vector
δi ← 0
for j = 1, . . . ,m do
δi ← δi + α · sign(∇δ`(fθ(xi + δi), yi) # PGD adversarial attack
δi ← max(min(δi, εi),−εi)

end for
γi ←

∑k
j=1 uijwj , βi ←

∑k
j=1 uijw

′
j # the rescaling parameters in BN

W←W − η1 · ∇W`(fθ(xi + δi, γi, βi), yi) # update W and W′

W′ ←W′ − η2 · ∇W′`(fθ(xi + δi, γi, βi), yi)
θ ← θ − η3 · ∇θ`(fθ(xi + δi, γi, βi), yi) # update neural network parameters θ

end for
end for
return θ,W,W′

pi)u0 + piuεmax
. Therefore, instead of learning γi separately for every εi, we learn a low-rank

matrix W = [w1,w2, . . . ,wk] to incorporate different perturbation strengths and learn a series of
maskings. Similarly, we learn another matrix W′ for βi.

During training, in every iteration, with a randomly selected perturbation strength εi = pi · εmax,
we first generate a mini-batch of adversarial examples by conducting PGD attacks. Then, we learn
the rescaling parameter of BN by using a low-rank linear layer (W and W′) and encoded attack
strength ui. Finally, we minimize the total loss using stochastic gradient descent (SGD) to update
model parameters. Detailed algorithm is summarized in Algorithm 1.

Connection with AdvProp Xie et al. (2020) hypothesizes that the performance degradation on
unperturbed test dataset is mainly caused by the distribution mismatch between adversarial examples
and clean images. They propose AdvProp to assign an auxiliary batch normalization for adversarial
examples, and show that adversarial examples can be useful to achieve better performance on clean
test data. However, as shown in Figure 1, the running mean and variance are kept the same after
fine-tuning. We argue that the improved model generalization is realized by a different adversarial
mask learned by auxiliary batch normalization in the AdvProp procedure.

Although we utilize adversarial training to boost generalization as well, our approach has clear
differences. First, in AdvProp, there is no connection between the traditional and auxiliary batch
normalization (BN). The traditional BN only obtains inputs from clean data, and the auxiliary BN
only obtains inputs from adversarial examples. This type of disentanglement would completely
separate different masks, which violates the reality that some masks can be useful for both clean and
robust performance. Second, AdvProp has to designate a perturbation strength that should not be
too large or too small, which is difficult to tune in practice. Also, the proposed RobMask method is
more general than Advprop, and AdvProp can be considered as one special case of RobMask when
we set the linear layer rank k to 2 and freeze p = 1 in the whole training process.

5 EXPERIMENTS

In this section, we conduct experiments to show that RobMask can successfully improve general-
ization performance. We also provide additional robustness evaluation for completeness.

5.1 EXPERIMENTAL SETUP

Datasets and Model Architectures We use two popular datasets CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) for experiments. For model architectures, we use the popular
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ResNet (He et al., 2016a) family including Preact ResNet (He et al., 2016b), ResNeXt (Xie et al.,
2016) and the recent well-performed DenseNet (Huang et al., 2016).

Baselines We compare RobMask with two baselines: (i) AdvProp: Dual batch normalization (Xie
et al., 2020), where different batch normalizations are used for clean and adversarial examples during
training; and (ii) BN: Standard training with normal batch normalization enabled. Note that as
our main goal is to improve the generalization performance instead of robust test accuracy, we do
not compare against standard adversarial training methods, as they are reported to largely decrease
generalization performance (Madry et al., 2018; Zhang et al., 2019; Balaji et al., 2019).

Implementation Details For CIFAR-10 and CIFAR-100, we set the number of iterations in adver-
sarial attack to 7 for all the methods during training. All PGD attacks are non-targeted attacks with
random initialization. We set the PGD attack strength ε = 8/255 with cross-entropy (CE) loss and
the step-size to ε/5. All models are trained using SGD with momentum 0.9, weight decay 5×10−4.
We use cosine learning rate scheduling with initial learning rate γ1 = γ2 = γ3 = 0.1. To have
a fair comparison, for RobMask, we set k = 2 and εmax = 8/255 in all our experiments, which
has the same number of model parameters and same regularization strength as AdvProp. All our
experiments are implemented in Pytorch. Code will be released upon acceptance.

5.2 EXPERIMENTAL RESULTS

Generalization Table 3 summarize the results of all the evaluated methods on CIFAR-10 and
CIFAR-100. Across all the tested model architectures, RobMask shows a significant improvement
over both normal batch normalization (BN) and AdvProp. Specifically, as shown in Table 3, for 100-
epochs training on CIFAR-10, RobMask achieves around 1.5% test accuracy improvement over BN
and 0.8% over AdvProp, respectively. Similar improvements can also be observed on the CIFAR-
100 dataset. Further, when comparing results between Table 3, we observe that RobMask also leads
to faster convergence: 20-epochs training using RobMask leads to results that are comparable to
100-epochs training using BN.

Additionally, we add the large-scale dataset ImageNet into the comparison. Table 4 summarize the
results with ResNet-18 on ImageNet datasets. It could be clearly seen that while Advprop has a very
limited improvement on ResNet-18, RobMask has around 0.4 percent improvement, which further
shows RobMask’s effectiveness on the generalization.

Robustness Evaluation In addition to improved generalization performance, our method can also
achieve a better robust and natural accuracy trade-off over adversarial training. For CIFAR-10 and
CIFAR-100, we evaluate all the methods under the white-box ε = 8/255 `∞-norm bounded non-
targeted PGD attack. Specifically, we use 100-step PGD with step size ε/5) that is equipped with
random start. Moreover, to further verify the robust accuracy achieved, we use the Autoattack(Croce
& Hein, 2020) to evaluate the performance. Note that, when ε = 0, robust accuracy is reduced to
the test accuracy of unperturbed (natural) test samples, i.e, clean accuracy. Results are summarized
in Table 5 and 6. RobMask clearly outperforms other methods among ε from 0 to 6/255. However,
RobMask performs slightly worse on ε = 8/255. It is because both AdvProp and Adversarial
training models are trained with adversarial examples generated with ε = 8/255, while our methods
use a random perturbation where εmax = 8/255. That is, we use a weaker perturbation strength
compared to both AdvProp and Adv train.

To achieve a better result on ε = 8/255, we relax the max epsilon constraint from 8/255 to 10/255.
From Table 6, we could see that the clean performance drop slightly with a increasing robust accu-
racy on ε >= 6/255 so that we now could achieve a better robust accuracy on ε = 8/255. Even
with the slight degrading performance on clean accuracy, RobMask achieves a better adversarial
robustness trade-off over other methods.

Importance of low-rank matrix: We conduct an ablation study on DenseNet-121 over CIFAR-
10 to investigate the importance of using a low-rank matrix to incorporate multiple perturbation
strengths. Here, we extend AdvProp to use a randomly selected strength εi = pi · εmax to generate
adversarial examples, and then feed into auxiliary batch normalization. Advprop can also be gener-
alized using multiple auxiliary BNs when given multiple perturbation strengths. In the experiments,
instead of an auxiliary batch normalization for adversarial examples generated by ε = 8/255, we
also give another batch normalization for ε = 4/255 adversarial examples. Table 7 shows Advprop
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Model #Epochs CIFAR-10 CIFAR-100

BN AdvProp RobMask BN AdvProp RobMask

ResNet-18 20 92.59% 93.45% 94.64% 75.88% 76.15% 77.61%
100 94.87% 95.3% 96.10% 77.7% 76.82% 78.77%

DenseNet-121 20 93.26% 94.61% 95.30% 74.79% 73.61% 75.11%
100 94.71% 94.61% 96.47% 77.63% 76.88% 80.18%

Preact-18 20 91.93% 92.55% 94.04% 70.79% 72.71% 73.59%
100 94.37% 95.33% 95.97% 76.14% 76.87% 78.19%

ResNeXt-29 20 93.12% 93.37% 95.03% 74.26% 72.18% 74.65%
100 95.15% 95.29% 96.06% 78.60% 76.35% 79.54%

Table 3: Comparison on CIFAR-10/100 over ResNet-18, DenseNet-121, Preact-18, and ResNeXt-
29. Models are trained for 20 and 100 epochs using normal Batch Normalization (BN), AdvProp and
our RobMask. RobMask shows a significant performance improvement on all model architectures.
Also, RobMask trained with 20 epochs achieves a comparable performance to 100-epoch training
using BN and AdvProp.

Model ImageNet
BN AdvProp RobMask

ResNet-18 69.76% 69.79% 70.14%

Table 4: Comparison on ImageNet over ResNet-18. Models are trained for 105 epochs using normal
Batch Normalization (BN), AdvProp and our RobMask. RobMask shows a significant performance
improvement on all model architectures.

ε 0 2/255 4/255 6/255 8/255

Adv. Training 78.86% 72.61% 65.27% 57.15% 47.97%
AdvProp 85.98% 78.34% 69.24% 57.61% 46.04%
RobMask 89.99% 82.91% 72.23% 58.63% 44.50%

Table 5: Robust accuracy under different levels of PGD `∞ attacks on CIFAR-10 with ResNet-18
architecture. RobMask clearly outperforms AdvProp and standard adversarial training in all the test
perturbation strengths except ε = 8/255 on which AdvProp and standard adversarial training are
trained.

ε 0 2/255 4/255 6/255 8/255

Adv. Training 78.86% 70.99% 62.94% 53.83% 44.66%
AdvProp 85.98% 77.73% 67.57% 55.36% 43.13%
RobMask 89.99% 81.87% 70.99% 55.9% 41.7%

RobMask ε = 10/255 86.5% 78.47% 68.08% 56.89% 44.69%

Table 6: Robust accuracy under different levels of `∞ Autoattacks on CIFAR-10 with ResNet-18
architecture. RobMask clearly outperforms AdvProp and standard adversarial training in all the test
perturbation strengths except ε = 8/255 on which AdvProp and standard adversarial training are
trained.

has degenerated performance when using random perturbation strength. When adding more aux-
iliary batch normalization, the performance improves slightly, also observed in Xie et al. (2020).
However, RobMask still significantly outperforms AdvProp variations.

Training curve: In Figure 3, we plot the training curves for both RobMask and Advprop for CIFAR-
10 datasets on DenseNet-121. RobMask clearly outperforms Advprop during the whole training
process. Also, RobMask will not introduce additional training overhead cost than AdvProp. Since
both RobMask and AdvProp use two forward and one backward pass, they have almost identical
training time per epoch. For example, in DenseNet-121, it takes around 870 seconds for Advprop
and around 890 seconds for RobMask. i.e., our model did not take much longer to train.
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Method Clean Acc.

AdvProp 94.61%
with random perturbation strength 94.50%
with 2 auxiliary BN 95.10 %

RobMask 96.47%

Table 7: Comparison on CIFAR-10 over DenseNet-121 on AdvProp and its extensions. Models are
trained for 100 epochs.

6 CONCLUSIONS

Figure 3: Training curve on DenseNet-121

In this paper, we analyze the impact of batch
normalization (BN) on adversarial robustness,
and show that the rescaling operations in BN
has a strong impact on the clean and robust-
ness trade-off. We then formalize the rescal-
ing operations together with ReLU activations
as an adversarial mask, and show that a sim-
ple linear combination of two adversarial mask-
ings can be utilized directly to achieve different
performance trade-offs. Inspired by these find-
ings, we propose RobMask, an active adversar-
ial mask learning method that is designed to
achieve better generalization performance. The
success of RobMask indicates that adversarial
training can serve as a strong regularizer, in-
stead of a performance killer, for training better
models.
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A APPENDIX

A.1 MULTIPLE RUNS

We run RobMask for three times with different random seed and present the mean in Table 8. We
report the more detailed result in Table 8:

Model #Epochs CIFAR-10 CIFAR-100

ResNet-18 20 94.54±0.22 77.41± 0.20%
100 95.90±0.24 8.59±0.18%

DenseNet-121 20 95.10± 0.20% 75.94± 0.17%
100 96.29± 0.18% 79.99± 0.18%

Preact-18 20 94.92± 0.12% 73.43± 0.16%
100 95.83± 0.14% 78.01±0.18%

ResNeXt-29 20 94.83± 0.21% 74.43± 0.22%
100 96.84± 0.22% 79.31± 0.23%

Table 8: RobMask results on CIFAR-10/100 over ResNet-18, DenseNet-121, Preact-18, and
ResNeXt-29. Models are trained for 20 and 100 epochs.

A.2 COMPARISON ON BATCH NORMALIZATIONS

In this section, we extend our experiment in Figure 1 to show the batch statistics in the deeper layers
across the neural networks. It clearly shows that the rescaling weight has more effect than other
parameters in the batch normalization. To be noted, since the deep layer’s mean and variance would
be affected by the shallow layers’ rescaling weight parameter, the result on the deeper layer couldn’t
disentangle the effect between normalization and rescaling because it is mixed.

Mean Variance Weight Bias
Layer 0 1.0 1.0 0.7620 1.0
Layer 1 0.9842 0.9718 0.7883 1.0
Layer 2 0.9530 0.9199 0.7544 1.0
Layer 3 0.9743 0.9691 0.8594 1.0
Layer 4 0.8894 0.9340 0.8126 1.0
Layer 5 0.9555 0.9516 0.8813 1.0
Layer 6 0.9853 0.9452 0.7141 1.0
Layer 7 0.9554 0.9169 0.8609 1.0
Layer 8 0.9903 0.9646 0.8961 1.0
Layer 9 0.9635 0.9755 0.8046 1.0
Layer 10 0.9823 0.9522 0.9396 1.0
Layer 11 0.9823 0.9769 0.7906 1.0
Layer 12 0.9753 0.9593 0.7839 1.0
Layer 13 0.9914 0.9874 0.8891 1.0
Layer 14 0.9699 0.9898 0.6593 1.0
Layer 15 0.9902 0.9870 0.8605 1.0
Layer 16 0.9603 0.9889 0.7423 1.0
Layer 17 0.9736 0.9742 0.6809 1.0
Layer 18 0.9772 0.9838 0.9573 1.0

Table 9: Cosine similarity on under every batch normalization layer under standard fine-tuned train-
ing on adversarial trained model

A.3 ADVERSARIAL MASKING VISULIAZATION
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(a) Adversarial training with further stan-
dard finetuning of BN

(b) Adversarial training

Figure 4: Illustration of the Adversarial Masking effect. We mark several feature maps (red and
green boxes) are blocked out or magnified when comparing (a) and (b), which can be viewed as a
selection mask on “non-robust” and “robust” features.
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