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Abstract

Current methods of feature selection based on a self-representation framework use all the
features of the original data in their representation framework. This issue carries over
redundant and noisy features into the representation space, thereby diminishing the quality
and effectiveness of the results. This work proposes a novel representation learning method,
dubbed GRSSLFS (Graph Regularized Self-Representation and Sparse Subspace Learning),
that mitigates the drawbacks of using all features. GRSSLFS employs an approach for
constructing a basis for the feature space, which includes those features with the highest
variance. The objective function of GRSSLFS is then developed based on a self-representation
framework that combines subspace learning and matrix factorization of the basis matrix.
Moreover, these basis features are incorporated into a manifold learning term to preserve
the geometrical structure of the underlying data. We provide an evaluation of effectiveness
and performance of GRSSLFS on several widely used benchmark datasets. The results
show that GRSSLFS achieves a high level of performance compared to several classic and
state-of-the-art feature selection methods.

1 Introduction

Feature selection is a prominent technique for managing high-dimensional data, aiming to identify the
most representative and effective features within the original feature set Dinh & Ho (2020); Majumdar &
Chatterjee (2022). Feature selection is applied across various tasks, including image processing Shi et al.
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(2023), bioinformatics Moslemi (2023), and genomics Sun et al. (2022). Moreover, recent advances in this
field involves different perspectives such as subspace learning Li et al. (2021), graph learning Roffo et al.
(2021) and self-representation learning Chen et al. (2022).

Subspace learning is a concept that aims to find the best lower-dimensional subspace within the original
high-dimensional space Ren et al. (2021). These methods can be categorized into two primary types: Linear
Subspace Learning, and Nonlinear Subspace Learning. The first category, which comprises well-established
techniques such as Local Preserving Projection (LPP) He & Niyogi (2003) and Principal Component Analysis
(PCA) Marukatat (2023), focuses on recognizing linear combinations of the initial features that define a lower-
dimensional subspace. Nonetheless, in situations where the inherent data structure departs from linearity,
nonlinear subspace learning methods become inevitable. Methods like Kernel PCA Ghojogh et al. (2023)
and Locally Linear Embedding (LLE) Roweis & Saul (2000) serve as examples of approaches for nonlinear
subspace learning. While subspace learning and feature selection can be employed separately, combining
them can result in even more potent approaches to dimensionality reduction in data and modeling strategies.
For instance, MFFS Wang et al. (2015a) stands out as a prominent example of unsupervised feature selection
methods developed within the context of subspace learning and matrix factorization techniques. Subsequently,
numerous approaches that integrate subspace learning and feature selection have been introduced, such as
those presented in SLSDR Shang et al. (2020), DGSLFS Sheng et al. (2021), CNAFS Yuan et al. (2022) and
SPLR Li et al. (2022).

In addition to subspace learning, representation learning has been widely used in various domains of
dimensionality reduction methods Shang et al. (2021); Wang et al. (2023). When it comes to deal with
high-dimensional data with a large amount of redundant features, it will be a complex task to analyze and
mine such data, which will generally lead to imprecise results. One preliminary goal of representation learning
is to discover basic information, such as the inherent structure and characteristic, from the data Wu et al.
(2023); Shao et al. (2023). As a popular category of representation learning, self-representation learning
achieves high performance in combination with other methods such as subspace learning Chen et al. (2022).
Self-representation learning indeed originates from one of the earliest mathematical concepts called a basis
for vector spaces and is rested on the assumption that every sample or feature vector of the original data can
be described in terms of other sample or feature vectors. According to this merit of self-representation, some
effective feature selection methods have been recently developed to focus on utilizing the correlations among
features Tang et al. (2019); Zhang et al. (2022); Lin et al. (2022).

Feature selection techniques that fall under either the subspace learning or self-representation learning
framework are a prevalent category within the realm of dimensionality reduction. However, these techniques
encompass all the features from the initial dataset, including redundant ones, in their representations, which
can potentially harm the effectiveness of feature selection. In order to get the root of such problem, the
philosophy behind the basis for vector spaces, which forms the foundation for the development of self-
representation-based feature selection methods, can be revisited. In linear algebra, it is known that a basis
for a vector space can be defined as a set of linearly independent vectors that can uniquely produce the whole
space. In fact, because of the linear independency among the members of a basis, it is highly probable that
redundant vectors are excluded from the basis. Hence, with a basis for the space formed by the features
of the original data, redundant features will have a diminished impact on the self-representation process,
thereby allowing their exclusion from the set of selected features. The comprehensive properties of the basis
for the feature space, namely the linear independence of its members and the unique representation of the
feature space, serve as motivation for us to introduce a more efficient form of self-representation and subspace
learning frameworks for feature selection.

The aim of this paper is to establish a new type of feature selection method which is called Graph Regularized
Self-Representation and Sparse Subspace Learning (GRSSLFS). The primary contributions of the paper are
outlined as follows:

• Expressing both the subspace learning and self-representation problems by employing a basis for the feature
space. Moreover, GRSSLFS merges the subspace learning and self-representation problems, leveraging the
basis of the feature space, to simultaneously eliminate redundant features and perform feature selection.
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• To the best of our knowledge, GRSSLFS is the first feature selection method that integrates a basis of
linearly independent features into a unified framework of subspace learning and self-representation.

• Introducing the Variance Basis Extension (VBE) framework, which utilizes the variance information of
features to establish a basis for the feature space. The objective is to identify basis features with the
highest variance scores, ensuring that the basis for the feature space consists of elements with the greatest
dispersion.

• Through conducting comprehensive experiments on various real-world datasets, the results indicate that
GRSSLFS outperforms several existing related and state-of-the-art feature selection methods. Additionally,
the application of GRSSLFS on the PneumoniaMNIST dataset Yang et al. (2021) is assessed to precisely
detect and analyze the cardiac silhouette in chest X-ray images.

Finally, the key characteristics of some unsupervised feature selection methods based on subspace learning or
self-representation, together with our proposed GRSSLFS are outlined in Table 1. The detailed descriptions
of these methods are provided in Appendix A.1.

Table 1: Comparison of some related unsupervised feature selection methods.
Method Subspace Learning Self-representation Graph Regularization Sparse Regularization Orthogonality Constraint
MFFS Wang et al. (2015a) ✓ × × × ✓

MPMR Wang et al. (2015b) ✓ × × × ✓

RMFFS Qi et al. (2018) ✓ × × ✓ ×
DSRMR Tang et al. (2018) × ✓ ✓ ✓ ×
NSSLFS Zheng et al. (2019) ✓ × × ✓ ×
SCFS Parsa et al. (2020) ✓ ✓ × ✓ ✓

RNE Liu et al. (2020) ✓ × × × ✓

SLSDR Shang et al. (2020) ✓ × ✓ ✓ ✓

DGSLFS Sheng et al. (2021) ✓ × ✓ ✓ ✓

CNAFS Yuan et al. (2022) ✓ × ✓ ✓ ✓

SPLR Li et al. (2022) ✓ × ✓ ✓ ✓

RDMRS2FS Chen et al. (2022) × ✓ ✓ ✓ ×
GRSSLFS (Ours) ✓ ✓ ✓ ✓ ×

2 Methodology

In this section, we first introduce our approach to constructing a basis for the feature space and then explain
how we use this basis in the frameworks of self-representation and subspace learning to propose the GRSSLFS
method. In what follows, X ∈ Rm×n

+ indicates the data matrix with m samples and n features. Here, Rm×n
+

denotes the set of non-negative matrices of size m× n. For an m dimension vector space P , the set B ⊆ P is
called a basis if the span of elements of B can produce W and B is linearly independent. Here, the span of
some vectors refers to all the possible linear combinations of them. The Frobenius norm, the L2,1-norm, the
trace, and the transpose of a matrix A are denoted by ∥A∥F , ∥A∥2,1, Tr(A), and AT , respectively. Finally,
⟨a, b⟩ = aT b is the Euclidean inner product of the vectors a and b.

2.1 Constructing a Basis for the Feature Space

A basis for a vector space can be defined as a set of linearly independent vectors that can produce the whole
space. This section introduces a novel framework, called Variance Basis Extension (VBE), to select a basis
for the space generated by the original features. Let us consider the data matrix X = [f1, f2, . . . , fn] so that
the rank of X is r. The Basis Extension (BE) method Meyer (2000) starts by choosing an arbitrary feature
like fi1 from among all the features and sets B = {fi1}. It is clear that B is linearly independent. If r = 1,
the basis building process by the BE method terminates at this point, and B will be a basis. Otherwise, we
have r ≤ n, and we can choose a new feature like fi2 from {f1, f2, . . . , fn} − {fi1} so that B ∪ {fi2} = {fi1 , fi2}
is a linearly independent set. The process described in these two steps continues in the same way, and it can
be easily proved that during the r steps, the BE method is able to construct the set {fi1 , fi2 , . . . , fir}, which
is a basis for the space generated by the whole features.

As seen in the first step of the BE method, we are allowed to choose any arbitrary vector from {f1, f2, . . . , fn}.
Therefore, there is an ideal situation to choose features that contain useful information from the data and can
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be effective in the feature selection process. As one of the most popular tools in data mining, the variance
information of the data has gained widespread acceptance in some well-known dimensionality reduction
methods such as the PCA and variance score methods. The primary motivation for the use of the variance
information stems from its simple implementation and its power to display the amount of data dispersion.
According to this advantage, the variance score method simply but effectively maintains a number of features
with the highest variance score and removes the remaining features.

In the following, we introduce our VBE framework which integrates the variance information of features into
the BE method with the aim of constructing a basis of features with the highest variance score. The VBE
method involves the following three steps:

• For each feature fi, i = 1, 2, . . . , n, its variance score is calculated. Then, the set of features {f1, f2, . . . , fn}
is sorted in descending order based on their variance score. Next, we will have {f ′

1, f ′
2, . . . , f ′

n} where f ′
i

refers to the case that f ′
i has the ith-ranked among all features based on the variance scores. Now, we set

X′ = [f ′
1, f ′

2, . . . , f ′
n].

• Set B = {f ′
1} so that f ′

1 has the highest variance score.

• Let rank(X) = r. For k = 2, . . . , n, if f ′
k /∈ span(B), set B = B ∪ {f ′

k}. In this case, if the number of
members of B is equal to r, then the VBE method terminates at this point, and B will is a basis for the
space generated by the features {f1, f2, . . . , fn}.

The main difference between the proposed VBE method and its original BE method is that the features
selected by VBE have the highest variance score. This method gives a basis with the members that have the
most dispersion in space and avoid the accumulation of the features as much as possible.

2.2 Self-representation Problem and the Basis

In the field of linear algebra, a direct connection exists between redundancy and the concept of linear
independency. Each basis for the feature space exhibits two essential properties. Firstly, a basis can represent
the complete feature space through its elements, achieved with a significantly reduced number of elements
compared to the entire feature space. The second characteristic of a basis is that its elements are linearly
independent which leads to a significant reduction in data redundancy which is a crucial aim in feature
selection. Continuing on, it is discussed how the concept of a basis for the feature space can lead to the
definition of an effective form for the self-representation problem.

The self-representation problem of features is considered as a linear representation of all features in a dataset,
including redundant ones which can potentially harm the effectiveness of feature representation. Formally, the
self-representation problem of features is defined as, minC∈Rn×n ∥X−XC∥2

F , which can also be expressed as:

X ≃ XC⇒


f1 ≃ c11f1 + c21f2 + · · ·+ cn1fn,

f2 ≃ c12f1 + c22f2 + · · ·+ cn2fn,
...
fn ≃ c1nf1 + c2nf2 + · · ·+ cnnfn,

(1)

where X = [f1, f2, . . . , fn] and C = [cij ] is the coefficient matrix. Without loss of generality, let us assume
that rank(X) = m, where m ≤ n. In the case, where m > n, a similar discussion can be also applied. Under
this assumption, it can be shown that there exists a basis B with linearly independent features {fi1 , . . . , fim

}
such that the set {f1, f2, . . . , fn} can be represented by the basis B. Therefore, the following representation
based on the basis can be obtained for the features:

f1 ≃ g11fi1 + g12fi2 + · · ·+ gm1fim ,

f2 ≃ g12fi1 + g22fi2 + · · ·+ gm2fim ,
...
fn ≃ g1nfi1 + gm2fi2 + · · ·+ gmnfim ,

, (2)

4



Published in Transactions on Machine Learning Research (07/2024)

which implies that X ≃ BG, where B = [fi1 , . . . , fim
] ∈ Rm×m is a basis matrix, and G = [gij ] ∈ Rm×n is

the basis coefficient matrix. Now, compared to the linear system of equations (1), the self-representation
problem based on the basis can be defined as:

min
G
∥X−BG∥2

F . (3)

Problem (3) clarifies that rather than utilizing all features, many of which may be redundant, it is feasible to
introduce a new formulation for the self-representation problem, which utilizes a basis containing linearly
independent features.

2.3 Subspace Learning Problem and the Basis

A popular technique in machine learning is subspace learning, which is used to discover low-dimensional
representations of high-dimensional data through linear or non-linear mappings. Several subspace learning
models using Euclidean distance have been introduced in the past few years Wang et al. (2015a); Qi et al.
(2018); Shang et al. (2020). Among the efficient subspace learning models is the following one:

distSL(X, XU) = min
V
∥X−XUV∥2

F , (4)

where U ∈ Rn×k and V ∈ Rk×n are called the feature weight and the representation matrices, respectively.
We shall note that the subspace learning model (4) indeed calculates the distance between the space of
features generated by X and the space of the selected subset of features generated by XU. As a result,
if U is chosen such that XU = B, then it can be seen that the distance between X and B is zero, i.e.,
distSL(X, B) = 0, which means that the space of X and the space of B can align or be identical. More
information regarding this issue is provided in the following theorem.
Theorem 2.1. Let X = [f1, . . . , fn] ∈ Rm×n be a dataset with n features such that rank(X) = m. Let us also
assume that B = [fi1 , . . . , fim

] is a basis for the space generated by X. Then, according to the distance-based
subspace learning problem introduced in (4), the distance between X and B is zero, that is distSL(X, B) = 0.

Proof. If the matrix U is defined as U = [ui1 , . . . , uim
], where uij

(for j = 1, . . . , m) is a vector whose
ij-element is 1 and other elements are 0, then it can be easily seen that B = XU. With this assumption, the
distance-based subspace learning problem (4) will be of the following form:

distSL(X, XU) = distSL(X, B) = min
V
∥X−BV∥F .

It turns out from the above problem that distSL(X, B) ≤ ∥X−BV∥F , for each V. On the other hand, since
B is a basis for the space generated by X, there is a basis coefficient matrix G such that X = BG. Taking this
observation into account and assuming V = G, it becomes evident that 0 ≤ distSL(X, B) ≤ ∥X−BG∥F = 0,
which completes the proof.

Remark. It should be noted that in the case where rank(X) < m or m > n, it is still possible to create
a basic matrix for the feature space, and this will not cause any issues in designing our feature selection
framework.

Now, we can state the subspace learning model (4) in terms of the basis matrix B. In order to accomplish
this goal, let us consider the representation relation (2). Therefore, the expression X−XUV can be shown
as X−BGUV. On the other hand, according to the vector space generation property of the basis, since
the distance between X and B is zero, it is straightforward to see that X can be substituted using the
basis matrix B. As a result of the preceding discussion, a basis-based subspace learning problem for feature
selection can be established as follows:

min
G,U,V

∥B−BGUV∥2
F , (5)

where G ∈ Rm×n, U ∈ Rn×k, and V ∈ Rk×m, such that k ≤ n is the dimension of the selected feature space.
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2.4 The Importance of the Roles of U, V, and G

The framework defined in (5) can be employed as a bedrock for the feature selection process, in which the
feature weight matrix U, the representation matrix V, and the basis coefficient matrix G play a major role
in selecting the underlying features in our proposed method.

• The Role of U: First, U is used as the weight matrix in the feature selection process, that is Xselected =
BGU =

∑n
i=1(BG)iui:, where (BG)i is the i-th column of BG, and ui: is the i-th row of U. In fact,

the sparser the construction of rows in U, the higher the likelihood of selecting effective features. This
description allows the utilization of the L2,1-norm to promote row sparsity within the matrix U, which can be
demonstrated as ∥U∥2,1. The importance of row sparsity in the L2,1-norm lies in its effectiveness in managing
structured sparsity, where the objective is to choose discriminative features.

• The Role of V: Second, let us consider that B = [fi1 , . . . , fim ] and V = [v1, . . . , vm]. It can be concluded
from Problem (5) that B ≃ BGUV, which means that [fi1 , . . . , fim

] ≃ [BGUv1, . . . , BGUvm]. This implies,
each feature fil

of the basis can be represented by BGUvl, for l = 1, . . . , m. To be more precise, we can see
that fil

≃
∑k

r=1(BGU)rvrl. Hence, the more sparse the columns of V are, the fewer members of BGU
are used in the representation of fil

of the basis matrix B. As a result, a reduction in redundancy is more
likely to occur. In order to reflect the importance of the representation matrix V in our proposed feature
selection process, the idea of inner product regularization can be used. Let us consider the representation
matrix V. The Gram matrix of V can be written as VT V = [⟨vl, vp⟩], where vl is the l-th column of
V, for l = 1, . . . , m. Now, it can be easily seen that the expression Tr(1m×mVT V) − Tr(VT V) readily
corresponds to the summation of the off-diagonal elements within the Gram matrix VT V, that is to say
Tr(1m×mVT V)− Tr(VT V) =

∑m
l,p=1,l ̸=p⟨vl, vp⟩. Therefore, by the subsequent problem given as:

min
V

(
Tr(1m×mVT V)− Tr(VT V)

)
, (6)

and under the assumption that V, it can be deduced that the optimal solution to Problem (6) is attained
when the inner product terms ⟨vl, vp⟩ tend toward zero for all pairs of l and p except when l = p. On the
other hand, since ⟨vl, vp⟩ = (vl)T vp and considering the non-negativity assumption for vl and vp, the value
of ⟨vl, vp⟩ tends towards zero when either vl or vp become zero or extremely sparse vectors. Consequently,
the optimization Problem (6) can result in a significant degree of sparsity within the coefficient matrix V.

Considering the importance of the role of U and V, we integrate two efficient sparsity regularizations into
the objective function (5) in order to make both U and V sparse. Two of the most useful and simple tools
are the L2,1-norm and the inner product regularizations, which benefit from the robustness in a row and
column sparsity, respectively. We can now state the sparse form of the subspace learning problem based on
the basis as follows:

min
G,U,V

(
∥B−BGUV∥2

F + ∥U∥2,1 +
(
Tr(1m×mVT V)− Tr(VT V)

))
.

• The Role of G: Graph regularization is essential in feature selection methods as it integrates the inherent
relationships between features into the selection process Khoshraftar & An (2024). In doing so, graph
regularization aids in choosing features not solely based on their individual predictive capabilities but also on
their relationships with other features. Typically, graph regularization is expressed through an additional
term in the objective function of feature selection algorithms. This term imposes penalties on solutions that
deviate from the smoothness enforced by the structure of graph. Common graph regularization terms include
the graph Laplacian, which encourages solutions where neighboring nodes in the graph have similar function
values Hamilton (2020).

To establish a framework for the graph regularization in our proposed method, let us consider the relation
X ≃ BG and assume that G = [g1, . . . , gn]. It is concluded that [f1, f2, . . . , fn] ≃ [Bg1, . . . , Bgn]. As a
result, according to the basic principle of preserving the geometric structure in the feature manifold, if
the two features fl and fr have a similar structure in the feature space, then it can be expected that their
corresponding representations Bgl and Bgr will also have the similar structure. This observation can be
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expressed as follows:

min
G

Tr
(
BGLGT BT

)
= 1

2

n∑
q,r=1

aqr∥Bgq −Bgr∥2
2, (7)

where A = [aqr] ∈ Rn×n is the similarity matrix for the features, and the Laplacian matrix L is defined
as L = P−A such that P = diag(pqq) is a diagonal matrix with the diagonal entries pqq =

∑n
r=1 aqr, for

q = 1, . . . , n. Here, we consider aqr = exp
(

−∥fq−fr∥2
2

t2

)
, if fq ∈ Nk(fr) or fr ∈ Nk(fq), where Nk(fr) refers

to the set of k feature vectors that are closest to fr, and t denotes the scale parameter of the Gaussian
distribution, and aqr = 0 otherwise. Now, according to (7), the graph regularized self-representation problem
based on the basis can be formulated as follows:

min
G

(
∥X−BG∥2

F + Tr
(
BGLGT BT

))
. (8)

2.5 The GRSSLFS Method

Based on the the previous sections, we establish the novel GRSSLFS method according to the combination of
“self-representation based on the basis” and “sparse subspace learning based on the basis” as follows:

min
G,U,V

(
∥X−BG∥2

F + ∥B−BGUV∥2
F + αTr

(
BGLGT BT

)
+ β∥U∥2,1 + γ

2
(
Tr(1m×mVT V)− Tr(VT V)

))
,

(9)

where α, β and γ are the regularization parameters. Moreover, we assume that G ∈ Rm×n
+ , U ∈ Rn×k

+ , and
V ∈ Rk×m

+ , such that k ≤ n is the dimension of the selected feature space. To solve Problem (9), let us
consider the function J(G, U, V) as follows:

J(G, U, V) = ∥X−BG∥2
F + ∥B−BGUV∥2

F + αTr
(
BGLGT BT

)
+ βTr(UT EU)

+ γ
(
Tr(1m×mVT V)− Tr(VT V)

)
+ Tr(MGT ) + Tr(NUT ) + Tr(WVT ),

where E ∈ Rn×n
+ is a diagonal matrix with the diagonal elements Eii = 1/2∥Ui∥2, for i = 1, . . . , n. Moreover,

M ∈ Rm×n, N ∈ Rn×n and W ∈ Rk×n are the Lagrange multipliers. The problem mentioned above can be
effectively solved by applying an alternative iterative procedure involving G, U, and V. To achieve this, one
variable needs to be fixed, whereas the other variables need to be determined. That is to say
• Update G with fixed U and V. Taking the partial derivative of J in terms of G shows

∂J

∂G = −2BT X + 2BT BG + 2αBT BGL− 2BT BVT UT + 2BT BGUVVT UT + M.

• Update U with fixed G and V. Taking the partial derivative of J in terms of U shows

∂J

∂U = −2GT BT BVT + 2GT BT BGUVVT + 2βEU + N.

• Update V with fixed G and U. Finally, taking the partial derivative of J in terms of V shows

∂J

∂V = −2UT GT BT B + 2UT GT BT BGUV + 2γ(V1m×m −V) + W.

Now, putting the Karush-Kuhn-Tucker conditions Lee & Seung (2001) together with ∂J/∂G = ∂J/∂U =
∂J/∂V = 0 results in the following updating rule:

Gij ← Gij

√
(BT X + αBT BGA + BT BVT UT )ij

(BT BG + αBT BGP + BT BGUVVT UT )ij

, (10)

7



Published in Transactions on Machine Learning Research (07/2024)

Uij ← Uij

√
(GT BT BVT )ij

(GT BT BGUVVT + βEU)ij

, (11)

Vij ← Vij

√
(UT GT BT B + γV)ij

(UT GT BT BGUV + γV1m×m)ij

. (12)

Remark. Regarding the square root operation applied in the updating rules (10), (11), and (12), it
is essential to highlight that the objective function J incorporates the second-order matrix polynomials
concerning the variables G, U, and V. To derive efficient update procedures for solving these variables, prior
studies Ding et al. (2005); Ding & et al. (2006) suggest the utilization of update rules (like the ones given
in (10), (11), and (12) that are founded on the concept of the square root. Algorithm 1 is a summary of
the procedure developed above to solve the objective function of GRSSLFS. Moreover, the framework of the
proposed GRSSLFS method is displayed in Figure 1.

Figure 1: Framework of the proposed GRSSLFS method which
integrates the self-representation based on the basis with the
sparse subspace learning based on the basis.

Algorithm 1 The proposed GRSSLFS
method.

1: Input: Data matrix X; the number of
selected features k.

2: Construct the basis matrix B using the
VBE method discussed in Section 2.1.

3: Initialize the matrices G, U, and V.
4: while not converged do steps 4 and 6:
5: Update G according to the rule (10).
6: Update U according to the rule (11).
7: Update V according to the rule (12).
8: Output: Put the rows of U in descend-

ing order of value according to the 2-norm.
Next, sort the features of X so that the k
features have the highest 2-norm score in
U.

2.6 Convergence Analysis

In the following, a detailed analysis of the monotone property of the objective function for the GRSSLFS
method is conducted.
Theorem 2.2. The objective function of the GRSSLFS method monotonously decreases according to the
update rules (10), (11), and (12).

Proof. The proof starts by assuming that the matrices U ≥ 0 and V ≥ 0 are fixed, and it is shown that
the objective function of GRSSLFS monotonously decreases in terms of the other variable G ≥ 0. With
this assumption, we define the function Z(G) = ∥X−BG∥2

F + αTr
(
BGLGT BT

)
+ ∥B−BGUV∥2

F . Using
simple calculations, the following can be deduced:

Z(G) = Tr(XT X)− 2Tr(XT BG) + Tr(GT BT BG) + αTr
(
BG(P−A)GT BT

)
+ Tr(BT B)

− 2Tr(BT BGUV) + Tr(VT UT GT BT BGUV).

Additionally, suppose that G′ ≥ 0 is given. It can be easily shown that

Tr(GT MGN) ≤
∑

ij

(MG′N)ijG2
ij

G′
ij

, (13)

for any matrices M ∈ Rm×m and N ∈ Rn×n. Using the inequality (13) in conjunction with the inequality
c > 1 + log(c), for any c > 0, we have

• −Tr(XT BG) ≤ −
∑
l,r

(
(BT X)lrG′

lr

(
1 + log Glr

G′
lr

))
, (14)

8
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• Tr(GT BT BG) ≤
∑
l,r

(BT BG′)lr
G2

lr

G′
lr

, (15)

• Tr(BGPGT BT ) ≤
∑
l,r

(BT BG′P)lr
G2

lr

G′
lr

, (16)

• −Tr(BGAGT BT ) ≤ −
∑
l,r,q

(
(BT BG′A)qlG′

lr

(
1 + log GqlGlr

G′
qlG′

lr

))
, (17)

• −Tr(BT BGUV) ≤ −
∑
l,r

(
(BT BVT UT )lrG′

lr

(
1 + log Glr

G′
lr

))
, (18)

• Tr(VT UT GT BT BGUV) ≤
∑
l,r

(BT BG′UVVT UT )lr
G2

lr

G′
lr

). (19)

Let us now define the following function:

Ω(G, G′) = Tr(XT X)− 2
∑
l,r

(
(BT X)lrG′

lr

(
1 + log Glr

G′
lr

))
+
∑
l,r

(BT BG′)lr
G2

lr

G′
lr

+ α
∑
l,r

(BT BG′P)lr
G2

lr

G′
lr

− α
∑
l,r,q

(
(BT BG′A)qlG′

lr

(
1 + log GqlGlr

G′
qlG′

lr

))

+ Tr(BT B)− 2
∑
l,r

(
(BT BVT UT )lrG′

lr

(
1 + log Glr

G′
lr

))
+
∑
l,r

(BT BG′UVVT UT )lr
G2

lr

G′
lr

.

Now, in view of the relations (14)-(19), it turns out that (1) Ω(G, G) = Z(G) and (2) Z(G) ≤ Ω(G, G′), for
any G ≥ 0. Taking these observations into account, it can be inferred that Ω(G, G) represents an auxiliary
function for Z(G) Lee & Seung (2001). Consequently, using the following relation

G∗ = arg min
G

Ω(G, G′), (20)

the objective function of the GRSSLFS method monotonously decreases in terms of the variable G. In
order to compute the minimization problem (20), the derivative of Ω(G, G′) in terms of Gij leads us to the
following relation:

∂Ω(G, G′)
∂Gij

= −2(BT X)ij

G′
ij

Gij
+ 2(BT BG′)ij

Gij

G′
ij

+ 2α(BT BG′P)ij
Gij

G′
ij

− 2α(BT BG′A)ij

G′
ij

Gij

− 2(BT BVT UT )ij

G′
ij

Gij
+ 2(BT BG′UVVT UT )ij

Gij

G′
ij

.

Thus, assuming that ∂Ω(G, G′)/∂Gij = 0, it follows that(
BT X + αBT BG′A + BT BVT UT

)
ij

(G′
ij)2 =

(
BT BG′ + αBT BG′P + BT BG′UVVT UT

)
ij

G2
ij ,

which leads to the following relation:

Gij ← G′
ij

√
(BT X + αBT BG′A + BT BVT UT )ij

(BT BG′ + αBT BG′P + BT BG′UVVT UT )ij

. (21)

In conclusion, solving the minimization problem (20) leads to a solution in the form shown in (21), which is
exactly consistent with the relation (10) introduced as the update rule for variable G. Here, the proof for the
monotone property of the objective function of the GRSSLFS method in terms of G is completed. Similar
to what has been explained above for the case of G, it is possible to prove the monotone property of the
objective function of GRSSLFS in terms of U and V, which are omitted due to the similarity in the process
of existing relations.

9
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2.7 Complexity Analysis

Let m, n and k be the number of samples, the number of features and the number of selected features,
respectively. In order to update the matrices G, U, and V, several matrix multiplications must be done
in GRSSLFS. From the updating rules (10), (11), and (12), it can be found that among all the operations,
the most time-consuming parts to update of G, U and V are BT BGUVVT UT , GT BT BGUVVT , and
UT GT BT BGUV, respectively, so that the time complexity of each of them is almost equal to O(k2m2n2)
per iteration. Besides, the required time complexity is O(n2) for constructing the feature graph. In summary,
assuming that k ≤ {m, n}, the computational complexity of GRSSLFS is almost equal to O(m2n2).

3 Experimental Studies

In this section, we conduct empirical comparisons between our proposed approach, GRSSLFS, and a range of
other supervised and unsupervised feature selection techniques. The unsupervised methods consist of LS He
et al. (2005), CNAFS Yuan et al. (2022), OCLSP Lin et al. (2022), RNE Liu et al. (2020), VCSDFS Karami
et al. (2023), and CAE Balın et al. (2019). Furthermore, the supervised methods examined include Laaso
Tibshirani (1996), SLAP Chen et al. (2018a), and CD-LSR Xu et al. (2023). We evaluate the performance of
the comparison algorithms in terms of how the selected features impact the downstream task of clustering in
various datasets. We refer to Appendix A.2 for the detailed information on benchmark datasets, Appendix
A.3 for the compared feature selection algorithms, Appendix A.4 for the evaluation metrics, and Appendix
A.5 for the experimental settings details.

Table 2: Comparing the best values of the clustering ACC and NMI of ten algorithms on all datasets. The values in
parentheses denote the selected number of features at which the ACC and NMI values are reported.

ACC
Datasets Lasso LS CNAFS OCLSP RNE SLAP VCSDFS CAE CD-LSR GRSSLFS
CNS 60.33 ± 1.45(40) 58.66 ± 1.02 (80) 63.84 ± 1.62 (50) 65.31 ± 1.94 (70) 58.33 ± 0.00 (40) 63.86 ± 1.17 (70) 66.49 ± 2.11 (20) 66.61±0.05(60) 61.67±1.83(60) 73.33 ± 0.01 (20)
GLIOMA 62.20 ± 1.01(40) 44.00 ± 0.00 (10) 50.11 ± 2.83 (40) 50.77 ± 1.03 (40) 47.11 ± 2.19 (20) 48.71 ± 2.01 (30) 51.23 ± 0.77 (30) 54.52±3.13(40) 48.70±3.92(10) 54.10 ± 2.71(30)
TOX171 43.71 ± 0.72(30) 40.35 ± 0.72 (10) 48.06 ± 1.32 (90) 48.67 ± 0.89 (40) 51.69 ± 0.48 (40) 44.14 ± 0.78 (80) 52.69 ± 1.26(40) 53.36±1.24(40) 48.77±4.18(10) 57.39 ± 1.27 (40)
SRBCT 49.58 ± 2.82 (40) 46.02 ± 2.96 (100) 44.17 ± 1.55 (60) 44.27 ± 2.07 (60) 42.12 ± 3.37 (80) 43.16 ± 2.34 (90) 44.39 ± 0.91 (30) 46.08±4.18(90) 52.63±4.39(10) 53.49 ± 3.11 (60)
SMK 57.22 ± 0.56(10) 55.11± 2.35 (80) 60.12 ± 1.72 (40) 62.31 ± 3.00 (100) 61.51 ± 0.34 (10) 62.01± 3.44 (100) 62.91 ± 2.62 (40) 61.80±2.06(40) 64.71±2.72(30) 65.72 ± 2.59 (10)
ATT 56.31 ± 4.03(100) 46.75 ±3.87(60) 58.68 ±2.78(100) 59.71 ±1.94(100) 59.08 ± 3.12(50) 59.96±2.81(100) 61.97 ± 1.83 (100) 56.86±2.79(90) 58.03±3.33(100) 64.11 6± 2.65(100)
ORL 48.95 ± 2.91(100) 38.51 ± 1.66(90) 49.17±2.52(90) 50.45 ±3.41(100) 51.31 ±3.01(100) 48.92±1.23(100) 47.51±1.38(100) 50.09±2.42(100) 54.05±3.51(100) 53.45 ± 3.13(80)
warpAR10P 39.46 ± 2.18(70) 21.50 ±0.94(10) 38.83 ±2.28(10) 41.68±3.31(10) 34.62 ±2.45(10) 39.81±2.19(10) 36.85 ±0.73(10) 39.26±2.83(10) 31.94±2.78(30) 46.66 ± 3.51(10)

NMI
Datasets Lasso LS CNAFS OCLSP RNE SLAP VCSDFS CAE CD-LSR GRSSLFS
CNS 7.00 ± 0.11(50) 2.44 ± 0.45 (90) 8.15 ± 3.09 (70) 10.76 ± 3.68 (70) 2.29 ± 0.00 (50) 12.76 ± 1.41 (50) 10.35± 2.62 (50) 11.05±0.41(30) 13.76±0.06(20) 18.56 ± 0.00 (70)
GLIOMA 53.45± 2.16(50) 18.67± 0.29 (50) 27.21 ± 2.43 (20) 28.93 ± 1.86 (30) 25.84 ± 4.20 (20) 27.73± 0.85 (30) 28.92 ± 1.29 (40) 32.83±1.83(40) 25.35±1.68(70) 32.09 ± 2.14 (40)
TOX171 17.99± 1.03(30) 11.68± 1.97 (90) 23.47 ± 1.98(80) 25.27 ± 2.31 (80) 26.78 ± 0.08 (40) 28.28± 1.07 (80) 30.98 ± 0.77 (100) 31.12±0.31(40) 31.28±0.93(10) 36.96 ± 0.60 (100)
SRBCT 40.88 ± 2.37(20) 56.23± 4.06 (60) 41.21 ± 4.36 (60) 42.44 ± 2.68 (90) 29.48 ± 3.52 (80) 41.17± 2.36 (90) 48.00 ± 4.01 (90) 45.28±3.59(80) 49.53±3.86(30) 59.67 ± 4.18 (90)
SMK 5.35 ± 0.08(30) 2.17± 0.05 (80) 3.75 ± 0.09 (40) 4.72 ± 0.22 (30) 3.77 ± 0.08 (10) 3.53± 0.12 (40) 5.63 ± 1.55 (40) 3.51±0.09(80) 7.12±1.05(30) 8.20 ± 0.53 (10)
ATT 71.21±0.89(100) 68.46 ± 1.37(70) 77.05± 1.44(90) 78.61 ±2.53(100) 77.17 ± 1.04(80) 79.58±3.98(100) 78.62 ±0.81(100) 75.27±2.24(90) 77.02±2.19(100) 81.71± 1.31(100)
ORL 58.23 ±2.13(100) 63.85 ±1.23(100) 71.44 ±1.16(100) 72.19 ±2.34(100) 72.59±1.33(100) 72.41 ±2.41(100) 73.02 ±1.49(100) 73.64±1.41(100) 72.57±2.02(100) 74.56 ± 1.72(80)
warpAR10P 42.45 ± 1.98(80) 19.39 ±1.84(40) 43.00 ±1.64(80) 45.46 ±3.08(20) 35.85±4.38(20) 47.72±1.84(20) 41.62 ±1.22(80) 42.35±2.23(80) 34.22±3.37(20) 48.63 ± 2.83(10)

3.1 Results and Analysis

Figure 2: Average of the best ACC and
NMI results over all datasets for each feature
selection method.

The best value of ACC and NMI metrics at a specific number
of selected features is listed in Table 2. It is evident from these
results (please see Appendix A.6 for more illustration) that
our proposed method, GRSSLFS, outperforms all other nine
methods in terms of selecting features that result in better
clustering performance. There are only two exceptions (on
the GLIOMA and ORL datasets) where the Lasso, CAE and
CD-LSR methods led to a higher ACC or NMI compared to
our method. For example, the ACC corresponding to Lasso is
62.2 versus 54.10 in our method. Despite the superiority of our
method over other methods, its behavior across all datasets is
not the same. For example, we can refer to the CNS dataset,
where the NMI values are considerably lower compared to the
ACC values. This trend is also observed for the other nine feature selection methods. It is mainly due to
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the nature of datasets, some of which pose difficulties in selecting distinguishable features and hence have a
higher clustering accuracy.

On average, the results of the VCSDFS, CAE and CD-LSR methods are closer to those of the proposed
method, compared to other methods. Nevertheless, the proposed method is still superior to such methods for
two main reasons. First, the basis vectors in the GRSSLFS method are constructed as an independent linear
combination of the selected features. Second, the GRSSLFS method uses self-representation learning along
with subspace learning in which the basis of features is used to build both the self-representation and subspace
feature spaces. This combination of self-representation and subspace learning with the underlying basis of
features makes the proposed method efficient compared to other methods. The effectiveness is observable in
Table 2 where the consistency of our method compared to the other methods across all the different datasets
is evident. For instance, the ACC values in Table 2 show that while Lasso has a superior performance with
respect to GRSSLFS on the GLIOMA dataset, its performance degrades on the other datasets. To summarize
the final clustering performance, the average value of ACC and NMI across all the datasets for each feature
selection algorithm is also demonstrated as a bar plot in Figure 2. On this account, Figure 2 confirm the
superiority of the proposed feature selection model in almost all cases (please refer to the Appendix section for
Clustering Performance Results in Figures 4 and 5, Running Time Comparison in A.8, Convergence Test in
A.9, and Non-parametric Statistical Test in A.10). In particular, comparing our proposed GRSSLFS method
(an unsupervised approach) with other supervised methods, such as Lasso, SLAP, and CD-LSR, reveals that
our unsupervised feature selection technique is fully capable of competing with these supervised alternatives.

3.2 The Role of Hyperparameters

In this part, the effect of hyperparameters on the performance of our proposed method is investigated. To
achieve this, we conduct an ablation study and sensitivity analysis. The objective function of GRSSLFS in
(9) has three adjustable parameters; α is for the feature graph regularization term in the self-representation
framework and β and γ control the sparsity of the feature weight matrix U and representation matrix V,
respectively, in the subspace learning process.

Table 3: The outputs related to the ablation study.
Datasets GLIOMA warpAR10P
Evaluation metrics ACC± std NMI± std ACC± std NMI± std
Main experiment 54.10 ± 2.71(30) 32.09±2.14(40) 46.66 ± 3.51(10) 48.63 ± 2.83(10)
α = β = γ = 0 44.51±2.96(50) 21.38±4.67(50) 32.27±2.75(50) 34.01±3.18(50)
α = β = 0 50.21±4.29(20) 27.09±3.09(70) 39.65±3.18(10) 42.59±4.01(30)
α = γ = 0 48.30±3.13(10) 27.52±4.03(60) 38.15±3.94(30) 41.55±3.78(80)
β = γ = 0 46.60±2.16(10) 25.46±5.29(50) 40.84±3.06(10) 45.01±3.56(30)
α = 0 50.00±3.94(40) 30.37±1.25(10) 43.34±4.13(20) 45.68±3.36(10)
β = 0 49.80±1.82(30) 29.89±2.28(30) 42.19±4.97(20) 44.04±3.58(20)
γ = 0 51.20±2.46(20) 28.97±4.18(70) 40.26±3.51(30) 43.99±2.19(10)

For the ablation study, we isolate the im-
pact of the hyperparameters by setting
their values to zero, as shown in the con-
figurations in the first column of Table 3.
We then choose one biological (GLIOMA)
and one image (warpAR10P) dataset to
run through our algorithm for feature se-
lection and subsequent clustering. The
clustering metrics for the seven experiments are reported in Table 3 and are compared against the best
results we obtained with non-zero hyperparameter values of our proposed method. The results indicate that,
all parts of the objective function in (9) have a critical role in the feature selection process and can not be
removed from this process.

The results of the sensitivity analysis on two datasets, ORL (image) and TOX171 (biological), indicate
that while our model’s performance depends on the values of the parameters and datasets, it demonstrates
relatively consistent ACC and NMI values. Notably, our model operates well with moderate values of the
hyperparameters. For detailed information on the sensitivity analysis, refer to A.7 in the Appendix.

3.3 Application to the PneumoniaMNIST Dataset

In patients diagnosed with pneumonia, chest X-rays reveal various diagnostic features, particularly in the
cardiac section. Notable among these characteristics are an augmented cardiac shadow, alterations in cardiac
positioning, the presence of effusion, the pericardial effusion, and the instances of cardiomegaly Reed (2017).
In this section, the application of our proposed feature selection method to the PneumoniaMNIST dataset
Yang et al. (2021) is assessed with the goal of precisely identifying and analyzing the cardiac silhouette in chest
X-ray images. The PneumoniaMNIST dataset, designed for Chest X-Ray radiographs and forming part of the
MedMNIST collection Yang et al. (2023), comprises 5,856 Chest X-Ray radiograph images, each measuring
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(a) PneumoniaMNIST - Original Images

(b) PneumoniaMNIST - Selected Features = 10

(c) PneumoniaMNIST - Selected Features = 50

(d) PneumoniaMNIST - Selected Features = 100

Figure 3: The visualization of selected features on PneumoniaMNIST images.

28x28 pixels in grayscale. To this end, we test the representativeness of the selected features using GRSSLFS
by running it on the PneumoniaMNIST image database. Here, the first ten Chest X-Ray radiograph images
are chosen from this dataset. Moreover, we select {10, 50, 100} pixels by running GRSSLFS. Figure 3 shows
the outputs, where the original and the feature-selected images for each Chest X-Ray radiograph image
are plotted in the corresponding row from left to right. In Figure 3, the selected features are depicted
by red dots and the un-selected features remain at their original pixel colour. As can be seen, when the
number of selected features increases from 10 to 100, subsequently GRSSLFS is able to capture the most
representative parts of the images, like the central part of the chest, which contains the most discriminative
features of the Chest X-Ray radiograph images and can detect the cardiac silhouette. The performance of the
obtained feature-selected images has been validated through assessment by radiologists, which demonstrates
the proficiency of our proposed method in capturing the fundamental features of the PneumoniaMNIST
dataset. This capability shows the interpretability and explainability power of our model. The reason for
this selection may lie in the cooperation of the basis matrix in self-representation and subspace learning
terms of our objective function. Finally, Section A.11 reports the results pertaining to the selection of 100
features by other comparative methods. Examining this figure, it is evident that some methods, including our
proposed method, SLAP, and VCSDFS, exhibit a tendency to identifythe central area of chest X-ray images.
Conversely, some other methods, while successfully identifying portions of the central areas, may overlook
additional regions that could provide valuable information. These methods fail to capture such information
in radiological analysis.

4 Conclusion

In this paper, we addressed the self-representation learning problem by establishing a basis for the feature
space, with the primary aim of eliminating unnecessary and redundant features for the representation of the
initial data. The motivation behind this work stems from a fundamental concept in linear algebra known as
the basis for a given vector space. Essentially, this concept implies that every feature vector can be expressed
as a linear combination of a basis set of features, which are linearly independent. Leveraging this idea, we also
designed a subspace learning framework to select features with minimal redundancy. Through the introduction
of these novel variations in self-representation and subspace learning, we proposed an unsupervised feature
selection method called Graph Regularized Self-Representation and Sparse Subspace Learning (GRSSLFS).
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Comparative experiments conducted in this study demonstrated that the proposed GRSSLFS method exhibits
a high level of effectiveness in feature selection.

The performance of our proposed GRSSLFS method is closely tied to the choice of the feature space basis.
As discussed, GRSSLFS employs the variance information of features to establish a basis for the feature
space. However, it raises the question: what alternative mathematical or statistical tools could be used
instead of variance information for constructing such a basis? This prompts us to recognize the challenge of
devising a meaningful basis for the feature space through a potentially more optimized process. As such, the
pursuit of constructing an optimal basis for the feature space remains an open problem within the domain of
unsupervised feature selection, warranting further research in future studies.
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A Appendix

A.1 Related Work

Table 1 presents a detailed summary of various unsupervised feature selection methods, systematically
classified into the two main categories: Subspace Learning and Self-representation. Both categories are
crucial for dimensionality reduction and offer ways to enhance the efficiency and clarity of feature selection
models without the need for labeled data. Subspace learning methods aim to identify a lower-dimensional
representation of data that maintains its inherent structure, thereby enabling more efficient feature selection.
Conversely, self-representation methods strive to represent each data point or feature as a combination of
other points or features within the dataset, revealing the underlying relationships and supporting effective
feature selection. To further enhance these methodologies, various regularization and constraint techniques
can be applied. Graph regularization utilizes the geometric structure of the data, ensuring that the selected
features preserve the inherent relationships among data points. Sparse regularization encourages the selection
of a minimal subset of features, thereby improving the efficiency and interpretability of model. Meanwhile,
the orthogonality constraint ensures that the selected features are uncorrelated, promoting a more robust
and diverse feature set. By incorporating these regularization and constraint techniques with subspace
learning-based and self-representation-based methods, researchers can attain more robust, efficient, and
interpretable feature selection outcomes.

Table 1 lists some of these methods and their potential combinations, providing a valuable resource for
advancing the field of unsupervised feature selection. To begin with, Wang et al. (2015a) introduced the MFFS
method, which is a notable example of unsupervised feature selection developed using subspace learning and
matrix factorization techniques. Subsequently, Wang et al. (2015b) proposed the MPMR method, a subspace
learning-based approach that utilizes maximum projection and minimum redundancy. This method aims
to capture the most significant variance while ensuring that the selected features provide complementary
information, thus enhancing clustering and classification performance. Building on subspace learning and
matrix factorization, Qi et al. (2018) introduced the RMFFS method. This technique employs regularized
matrix factorization for feature selection, effectively decomposing the data into lower-dimensional matrices and
facilitating the identification of informative features while imposing an inner product regularization constraint
to ensure orthogonality. Tang et al. (2018) introduced a robust unsupervised feature selection approach, called
DSRMR, which leverages dual self-representation and manifold regularization. By capturing both local and
global data structures, this method ensures that the selected features preserve the intrinsic geometry of the
data. Inspired by MFFS, Zheng et al. (2019) suggested the NSSLFS method, which utilizes the nonnegative
subspace learning combined with the L1 sparsity to select highly discriminative features. Parsa et al. (2020)
introduced SCFS, a non-linear self-representation-based method that incorporates the adaptive similarity
learning and subspace clustering techniques. SCFS dynamically adjusts similarity measures to enhance the
capture of feature relationships. Recent advancements have continued to advance the unsupervised feature
selection methods. For example, Liu et al. (2020) introduced the RNE method, a robust neighborhood
subspace learning technique designed to preserve local neighborhood structures and enhance feature selection
quality, particularly in noisy environments. Shang et al. (2020) and Sheng et al. (2021) introduced the SLSDR
and DGSLFS methods, respectively. These feature selection techniques utilize dual-graph regularization
within the subspace learning framework to capture data structures effectively.

Further extending these advancements, Yuan et al. (2022) proposed the CNAFS method, which utilizes
convex non-negative matrix factorization alongside an adaptive graph. CNAFS ensures that feature selection
maintains data manifold structures through a resilient and adaptive subspace learning strategy. Li et al.
(2022) developed SPLR, a subspace learning method that is based on the principles of self-paced learning.
SPLR seeks to preserve the local manifold structure and utilizes the L2,1/2-norm to maintain discriminative
features while reducing the impact of noise in the data. Chen et al. (2022) introduced RDMRS2FS, a feature
selection technique rooted in self-representation. RDMRS2FS focuses on semi-supervised feature selection
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with the goal of reducing redundancy among features. This method utilizes dual-graph regularization to
precisely capture data characteristics and uncover relationships between features.

A.2 Datasets

Table 4 demonstrates the eight benchmark datasets, which are used to perform our experiments. We selected
a mix of five different gene expression datasets and three facial image datasets to diversify our data samples
and hence to better evaluate the performance of our proposed feature selection method. It should be noted
that all of these datasets are accessible through the scikit-feature feature selection repository∗ Li et al. (2018)
and the UCI Machine Learning Repository† Dua & Graff (2017).

Table 4: The information of eight datasets used in this study.
ID Dataset # of Samples # of Features # of Classes Type
1 CNS 60 7129 2 Biological
2 GLIOMA 50 4434 4 Biological
3 TOX_171 171 5748 4 Biological
4 SRBCT 83 2308 4 Biological
5 SMK 187 19993 2 Biological
6 ATT 400 10304 40 Image
7 ORL 400 1024 40 Image
8 warpAR10P 130 2400 10 Image

A.3 Comparison Methods

In this study, the following feature selection methods are selected with their track records of performance in
the literature to be compared with GRSSLFS. These methods are briefly explained below.

1. Baseline: All features of data are considered.

2. The least absolute shrinkage and selection operator (Lasso) Tibshirani (1996): A supervised
feature selection method that efficiently selects features by assuming a linear relationship between
input features and output values.

3. Laplacian Score (LS) He et al. (2005): The features selected by this method can best preserve the
local manifold structure of the original data.

4. Convex non-negative matrix Factorization with an Adaptive graph constraint Feature
Selection (CNAFS) Yuan et al. (2022): Through convex matrix factorization with adaptive graph
constraint, it selects the best feature subset by considering the correlation between the data while
preserving the local manifold structure.

5. Orthogonal basis clustering and Local Structure Preserving (OCLSP) Lin et al. (2022): An
orthogonal basis clustering and an adaptive graph regularization are used to gain cluster separation
while keeping the local information of data.

6. Supervised Feature Selection with Local Adaptive Projection (SLAP) Chen et al. (2018b):
is a supervised feature selection method that simultaneously learns an adaptive similarity matrix and
a projection matrix within an iterative framework.

7. Robust Neighborhood Embedding (RNE) Liu et al. (2020): In this method, features are
selected using the neighborhood embedding and ℓ1 norm as the loss function.

∗https://jundongl.github.io/scikit-feature/datasets.html
†https://archive.ics.uci.edu/ml/index.php

17

https://jundongl.github.io/scikit-feature/datasets.html
https://archive.ics.uci.edu/ml/index.php


Published in Transactions on Machine Learning Research (07/2024)

8. Variance-Covariance Subspace Distance based Feature Selection (VCSDFS) Karami et al.
(2023): Variance-Covariance subspace distance is used to select the subset which contains the most
representative features.

9. Concrete Autoencoders (CAE) Balın et al. (2019): CAE has an encoder-decoder architecture
with a concrete selector layer as the encoder and a standard neural network as the decoder. It aims
at selecting the most informative subset of global features, which are used to simultaneously train a
neural network to reconstruct the input data.

10. Coordinate Descent based Least Square Regression (CD-LSR) Xu et al. (2023): This
method leverages a coordinate descent-based optimization framework to solve the general l2,0-norm
constrained feature selection problem.

A.4 Evaluation Metrics

In the experiments, the clustering performance of feature selection algorithms is evaluated using Accuracy
(ACC) and Normalized Mutual Information (NMI) metrics Solorio-Fernández et al. (2020). The higher ACC
and NMI values are, the better the clustering performance is, which in turn results from better performance
of the feature selection algorithm to select informative features.
The ACC is defined as:

ACC =
∑n

i=1 δ(qi, map(pi))
n

,

where pi and qi are, respectively, the clustering and the ground-truth labels of the sample xi, and δ is the
Kronecker delta function. In addition, map(.) denotes the best permutation mapping function that uses the
Kuhn–Munkres algorithm to map each clustering label to the corresponding ground-truth label.
The NMI is defined as

NMI = MI(P, Q)√
H(P )H(Q)

,

where P and Q are the set of centers of the predicted and the ground-truth clusters, and MI(.) is the mutual
information. Furthermore, H(P ) and H(Q) denote the entropy of P and Q, respectively.

A.5 Experimental Settings

Our experiments are performed for various numbers of selected features in the range of {10, 20, . . . , 100},
for all datasets. Furthermore, hyperparameter tuning is done to find the most optimum configuration of
various feature selection models in our study. We fix k = 5 for the k-nearest neighbor algorithm and for
all the datasets in LS, OCLSP and RNE methods. For CNAFS, the hyperparameters α, β, γ, λ and ϵ are
tuned by searching from {10−3, 10−2, . . . , 103} as mentioned in author’s literature in lYuan et al. (2022). To
implement OCLSP, Lin et al. (2022), the parameter α is fixed 104 and η, γ, β are tuned by selecting from
{10−3, 10−2, . . . , 103}. For SLAP, we set the projected dimension m equal to the number of classes, and the
regularization parameter γ is selected from the set {10−3, 10−2, . . . , 103}. In VCSDFS, the values of the
parameter ρ is selected from {10−6, 10−5, . . . , 106}, Karami et al. (2023). We adopted the values for the
parameters of RNE from Liu et al. (2020), and let the penalty coefficient α be 103. For the CAE method, we
used the values in the original paper Balın et al. (2019). The performance of CD-LSR was assessed using the
provided code based on the author’s implementation as described in the original paper of the method Xu
et al. (2023). We tuned the parameters α, β and γ of GRSSLFS method on {10−5, . . . , 105}. Finally, due to
the random initialization in the k-means clustering algorithm, we repeated the clustering runs 20 times with
different random starting points over which we reported the average and standard deviations of the ACC and
NMI metrics. Finally, it should be noted that our tests were conducted utilizing Matlab 2018a on a personal
computer equipped with 16GB of RAM and an Intel Core i5-4690 processor.

A.6 Experimental Results

For more illustration of the reported clustering performance of all comparison methods, in Figures 4 and 5,
we depict the values of ACC and NMI metrics for different number of selected features.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4: Clustering ACC of 11 algorithms across eight datasets as a function of the number of selected
features.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5: Clustering NMI of 11 algorithms across eight datasets as a function of the number of selected
features.
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A.7 Sensitivity Analysis

We conducted a sensitivity experiment on one image dataset, ORL, and one biological dataset, TOX171.
We fixed the number of selected features at k = 100. Since we have three hyperparameters for evaluating
sensitivity, we fixed one parameter and calculated the values of ACC and NMI with respect to the other two
varying hyperparameters. We set the value of the fixed parameter to 10−1 for this experiment. The results
are illustrated in Figure 6. It is evident that our model has relatively steady performance in terms of the
hyperparameters, and the results don’t show high fluctuations. As an observation, we can say that GRSSLFS
produces better outputs for moderate values of the hyperparameters in the range of 10−2 to 10.

Figure 6: Sensitivity experiment: impact of the hyperparameters α and β, and γ on the values of ACC and
NMI for the datasets ORL and TOX171.

A.8 Running Time Comparison

Figure 7 also demonstrates a comparison between the proposed method and all other unsupervised feature
selection algorithms in terms of the running times (in seconds) for selecting 100 features from the TOX171
dataset. It is evident that CAE is the slowest method, followed by RNE and GRSSLFS methods, as the
second and third slowest algorithms. The high running time of CAE is ascribed to the training neural
networks in this deep, encoder-decoder feature selector Balın et al. (2019). The relative sluggishness of the
RNE method can be attributed to its non-smooth nature, although it is convex Liu et al. (2020). To solve this
issue, RNE employs the alternation direction method of multipliers (ADMM) to minimize its loss function.
The proposed method is the next slow method due to the fact that the GRSSLFS method uses both subspace

Figure 7: Running time (in seconds) of all algorithms to select 100 features for the TOX171 dataset.
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learning and self-representation, wherein multiple matrix multiplications are carried out. Consequently, as we
demonstrated in Section 2.7, the time complexity of the GRSSLFS method is quadratic in terms of both the
number of original features and the number of input data points. Furthermore, as we discussed in Section
2.5, an alternative approach is used to solve the loss function minimization problem of the proposed method.

A.9 Convergence Test

We set out to empirically evaluate Theorem 2.2, wherein we presented a theoretical proof for the monotonic
decreasing behavior of the objective function of the GRSSLFS method. Figure 8 depicts the evolution of the
objective function over the number of iterations for all datasets. One can clearly see that the values of the
objective function across all datasets plummet quickly and the objective function converges quickly. This
observation demonstrates the effectiveness of the alternative iterative algorithm that is proposed to solve the
objective function of the GRSSLFS method.

Figure 8: The convergence curves of the objective function of GRSSLFS on the eight datasets.

A.10 Non-parametric Statistical Test

We demonstrated in previous sub-sections that the proposed method, GRSSLFS, has superior performance
over the state-of-the-art unsupervised feature selection methods. Here, we employ the Friedman test as a
non-parametric statistical test to evaluate the statistical significance of GRSSLFS’s performance compared to
other methods. The null hypothesis is then expressed as follows: there is no significant difference between
any of the methods, and the selected features by these methods lead to the same clustering performance.
The alternative hypothesis is that there are at least two methods whose selected features result in significant
differences in the clustering performance.

We use the data presented in Table 2 to run the test. In this setting, the datasets, the feature selection
methods, and the ACC or NMI values are considered as, respectively, the subjects, the treatments, and the
measurements in the Friedman test terminology. The feature selection methods are then ranked to calculate
the Friedman statistics. The average rankings over all datasets for each feature selection algorithm and
two different measurements (i.e., ACC and NMI) are presented in Figure 9. The lower ranking means the
corresponding measurement is higher.

We obtained 38.022727 and 36.090909 for the Friedman statistics based on ACC and NMI measurements,
respectively. Accordingly, the p-values corresponding to these Friedman statistics are 0.000038 and 0.000081,
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Figure 9: Average ranks obtained by the Friedman test for each method with respect to the ACC and
NMI evaluation metrics on the datasets. Note that the lower rank of the evaluation metrics, the better the
performance of the methods.

respectively. With the significance level of 5%, these two p-values lead us to reject the null hypothesis in the
favor of the alternative hypothesis. With this description, it can be seen that there are at least two methods,
VCSDFS, CAE and GRSSLFS, that select features with statistically significant differences in the clustering
performance.

Following the Friedman test, we also carry out a post-hoc statistical test using the Holm’s method (aka.,
Holm–Bonferroni method) Bolón-Canedo et al. (2014) to identify which pairs of methods result in a significant
difference in the clustering performance. For this purpose, we select the proposed method, GRSSLFS, as
the control method and compare it with all other 10 methods including the Baseline which are listed in the
columns of Table 2. It means that we end up having 10 null hypotheses for each pair of GRSSLFS-X where
“X" refers to those 10 other methods. Each null hypothesis states that there is no significant difference between
GRSSLFS and the method “X" in terms of their feature selection effectiveness with performant downstream
clustering. The significance level α is set to 0.05 for each null individual null hypothesis. The p-values of
the nine null hypotheses are presented in Table 5 based on ACC and NMI measurements, respectively. The
corresponding Holm’s p-values are also included in these tables.

ACC
Method p-value Holm’s p-value

LS 0 0.005
Baseline 0.000009 0.005556

RNE 0.000526 0.00625
CNAFS 0.000911 0.007143
Lasso 0.001998 0.008333
SLAP 0.003285 0.01

CD-LSR 0.019454 0.0125
VCSDFS 0.034808 0.016667
OCLSP 0.050016 0.025

CAE 0.059505 0.05

NMI
Method p-value Holm’s p-value

LS 0.000001 0.005
Baseline 0.000006 0.005556

RNE 0.000221 0.00625
Lasso 0.000396 0.007143

CNAFS 0.000526 0.008333
OCLSP 0.015861 0.01
SLAP 0.015861 0.0125

CD-LSR 0.019454 0.016667
CAE 0.023739 0.025

VCSDFS 0.041831 0.05

Table 5: Post-hoc test using Holm’s method to compare the effect of GRSSLFS and the 10 other feature
selection methods on the clustering ACC and NMI metrics. The significance level of α = 0.05 is set for
each individual pairwise null hypothesis. Holm’s procedure rejects a null hypothesis when the p-value of the
individual null hypothesis is less than or equal to Holm’s p-value.

Holm’s method rejects those hypotheses that their initial p-values are less than or equal to the calculated
p-values by Holm’s method. Thus, we infer from the results in Table 5 that we have enough evidence to reject
the null hypothesis for the pairwise comparison between GRSSLFS and all methods except for SLAP, OCLSP,
CAE, VCSDFS, and CD-LSR. To be more precise, our proposed GRSSLFS method exhibits significant
differences from all other methods, except for the aforementioned methods, in terms of the ACC and NMI
measures. Nevertheless, as we observed in the results of Figures 4 and 5, GRSSLFS displayed a more
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consistent trend over a wide range of a number of selected features compared to all comparison methods. In
addition, although there is no significant difference between our proposed GRSSLFS method (an unsupervised
approach) and the two supervised approaches, SLAP and CD-LSR, the numerical results demonstrate that
the proposed unsupervised feature selection method in this article is fully capable of competing with these
supervised methods.

A.11 Application to the PneumoniaMNIST dataset

This section presents the results of the selection of 100 features from the PneumoniaMNIST dataset, conducted
by our proposed GRSSLFS method and other comparative methods (see Figure 10).

A.12 Code Availability

The source code is available at https://github.com/FaridSaberi/GRSSLFS.
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(a) Original Images

(b) Lasso

(c) LS

(d) CNAFS

(e) OCLSP

(f) RNE

(g) SLAP

(h) VCSDFS

(i) CAE

(j) CD-LSR

(k) Our proposed GRSSLFS method

Figure 10: The visualization of 100 selected features obtained by different feature selection methods on
PneumoniaMNIST images.
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