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Abstract

Current methods of feature selection based on a self-representation framework use all
the features of the original data in their representation framework. This issue carries
over redundant and noisy features into the representation space, thereby diminishing the
quality and effectiveness of the results. This work proposes a novel representation learning
method, dubbed GRSSLFS (Graph Regularized Self-Representation and Sparse Subspace
Learning), that mitigates the drawbacks of using all features. GRSSLFS employs an
approach for constructing a basis for the feature space, which includes those features with
the highest variance. The objective function of GRSSLFS is then developed based on a
self-representation framework that combines subspace learning and matrix factorization of the
basis matrix. Moreover, these basis features are incorporated into a manifold learning term
to preserve the geometrical structure of the underlying data. We provide an effectiveness and
performance evaluation on several widely-used benchmark datasets. The results show that
GRSSLFS achieves a high level of performance compared to several classic and state-of-the-art
unsupervised feature selection methods.

1 Introduction

Feature selection is a prominent technique for managing high-dimensional data, aiming to identify the
most representative and effective features within the original feature set [Dinh & Ho| (2020); [Majumdar &
Chatterjee| (2022)). Feature selection is applied across various tasks, including image processing Shi et al.
(2023)), bioinformatics [Liang et al.| (2018), and genomics |Sun et al| (2022). Moreover, recent advances in this
field involves different perspectives such as subspace learning |Li et al.| (2021)), graph learning |Roffo et al.
(2021) and self-representation learning |(Chen et al.| (2022).

Subspace learning is a concept that aims to find the best lower-dimensional subspace within the original
high-dimensional space Ren et al.| (2021). These methods can be categorized into two primary types: Linear
Subspace Learning, and Nonlinear Subspace Learning. The first category, which comprises well-established
techniques such as Local Preserving Projection (LPP) He & Niyogi (2003 and Principal Component Analysis
(PCA) Marukatat| (2023), focuses on recognizing linear combinations of the initial features that define a lower-
dimensional subspace. Nonetheless, in situations where the inherent data structure departs from linearity,
nonlinear subspace learning methods become inevitable. Methods like Kernel PCA |Ghojogh et al.| (2023)
and Locally Linear Embedding (LLE) [Roweis & Saul| (2000)) serve as examples of approaches for nonlinear
subspace learning. While subspace learning and feature selection can be employed separately, combining
them can result in even more potent approaches to dimensionality reduction in data and modeling strategies.
For instance, MFF'S [Wang et al.| (2015al) stands out as a prominent example of unsupervised feature selection
methods developed within the context of subspace learning and matrix factorization techniques. Subsequently,
numerous approaches that integrate subspace learning and feature selection have been introduced, such as
those presented in SLSDR |[Shang et al.| (2020), DGSLFS |Sheng et al.|(2021]), CNAFS [Yuan et al. (2022) and
SPLR [Li et al.| (2022)).

In addition to subspace learning, representation learning has been widely used in various domains of
dimensionality reduction methods [Shang et al. (2021); Wang et al.| (2023). When it comes to deal with



Under review as submission to TMLR

high-dimensional data with a large amount of redundant features, it will be a complex task to analyze and
mine such data, which will generally lead to imprecise results. One preliminary goal of representation learning
is to discover basic information, such as the inherent structure and characteristic, from the data [Wu et al.
(2023); [Shao et al. (2023)). As a popular category of representation learning, self-representation learning
achieves high performance in combination with other methods such as subspace learning |Chen et al.| (2022)).
Self-representation learning indeed originates from one of the earliest mathematical concepts called a basis
for vector spaces and is rested on the assumption that every sample or feature vector of the original data can
be described in terms of other sample or feature vectors. According to this merit of self-representation, some
effective feature selection methods have been recently developed to focus on utilizing the correlations among
features [Tang et al.| (2019)); |Zhang et al.| (2022); [Lin et al.| (2022]).

Feature selection techniques that fall under either the subspace learning or self-representation learning
framework are a prevalent category within the realm of dimensionality reduction. However, these techniques
encompass all the features from the initial dataset, including redundant ones, in their representations, which
can potentially harm the effectiveness of feature selection. In order to get the root of such problem, the
philosophy behind the basis for vector spaces, which forms the foundation for the development of self-
representation-based feature selection methods, can be revisited. In linear algebra, it is known that a basis
for a vector space can be defined as a set of linearly independent vectors that can uniquely produce the whole
space. In fact, because of the linear independency among the members of a basis, it is highly probable that
redundant vectors are excluded from the basis. Hence, with a basis for the space formed by the features
of the original data, redundant features will have a diminished impact on the self-representation process,
thereby allowing their exclusion from the set of selected features. The comprehensive properties of the basis
for the feature space, namely the linear independence of its members and the unique representation of the
feature space, serve as motivation for us to introduce a more efficient form of self-representation and subspace
learning frameworks for feature selection.

The aim of this paper is to establish a new type of feature selection method which is called Graph Regularized
Self-Representation and Sparse Subspace Learning (GRSSLFS). The primary contributions of the paper are
outlined as follows:

o Expressing both the subspace learning and self-representation problems by employing a basis for the feature
space. Moreover, GRSSLF'S merges the subspace learning and self-representation problems, leveraging the
basis of the feature space, to simultaneously eliminate redundant data features and feature selection.

e To the best of our knowledge, GRSSLFS is the first feature selection method that integrates a basis of
linearly independent features into a unified framework of subspace learning and self-representation.

o Introducing the Variance Basis Extension (VBE) framework, which utilizes the variance information of
features to establish a basis for the feature space. The objective is to identify basis features with the
highest variance scores, ensuring that the basis for the feature space consists of elements with the greatest
dispersion.

e Through conducting comprehensive experiments on various real-world datasets, the results indicate that
GRSSLEFS outperforms several existing related and state-of-the-art unsupervised feature selection methods.
Additionally, the application of GRSSLFS on the PneumoniaMNIST dataset [Yang et al| (2021) is assessed
to precisely detect and analyze the cardiac silhouette in chest X-ray images.

Finally, the key characteristics of some unsupervised feature selection methods based on subspace learning or
self-representation together with our proposed GRSSLFS are outlined in Table

2 Methodology

In this section, we first introduce our approach to constructing a basis for the feature space and then explain
how we use this basis in the frameworks of self-representation and subspace learning to propose the GRSSLFS
method. In what follows, X € R"*" indicates the data matrix with m samples and n features. Here, RJ"*"
denotes the set of non-negative matrices of size m x n. For an m dimension vector space W, the set B C W
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Table 1: A comparison of some related unsupervised feature selection methods.

Method Subspace Learning | Self-representation | Graph Regularization | Sparse Regularization | Orthogonality Constraint
MFFS|Wang et al.|(2015a) v X X X v
[ MPMR |Wang et al.[(2015b v x X x v
[ RMFFS|Qi et al.[{2018 v X X v x
DSRMR |Tang et al.|(2018} X v v v X
[ NSSLFS|Zheng et al.|(2019] v x X v X
SCFS|Parsa ct al.[{2020 % v x v v
RNE |Liu et al.|(2020 v X X X v
[ SLSDR |Shang ct al.|(2020] v X v v v
[ DGSLFS|Sheng et al.|{2021] % X v v v
CNAFS [Yuan et al.|(2022 v X v v v
[ SPLRILI et al.[(2022] v x v v v
[ RDMRS2FS|Chen et al.|{2022 x v v v x
GRSSLFS (Ours) v v v v X

is called a basis if the span of elements of B can produce W and B is linearly independent. Here, the span of
some vectors refers to all the possible linear combinations of them. The Frobenius norm, the L ;-norm, the
trace, and the transpose of a matrix A are denoted by ||A|/r, [|A|2,1, Tr(A), and AT, respectively. Finally,
(a,b) = a’b is the Euclidean inner product of the vectors a and b.

2.1 Constructing a Basis for the Feature Space

A basis for a vector space can be defined as a set of linearly independent vectors that can produce the whole
space. This section introduces a novel framework, called Variance Basis Extension (VBE), to select a basis
for the space generated by the original features. Let us consider the data matrix X = [fi, f5,...,f,] so that
the rank of X is r. The Basis Extension (BE) method Meyer| (2000) starts by choosing an arbitrary feature
like f;, from among all the features and sets B = {f;, }. It is clear that B is linearly independent. If r =1,
the basis building process by the BE method terminates at this point, and B will be a basis. Otherwise, we
have r < n, and we can choose a new feature like f;, from {f,fo,...,f,} — {f;,} so that BU{f;,} = {f;,.£;,}
is a linearly independent set. The process described in these two steps continues in the same way, and it can
be easily proved that during the r steps, the BE method is able to construct the set {f;,,f;,,...,f; }, which
is a basis for the space generated by the whole features.

As seen in the first step of the BE method, we are allowed to choose any arbitrary vector from {fy,fs,...,f,}.
Therefore, there is an ideal situation to choose features that contain useful information from the data and can
be effective in the feature selection process. As one of the most popular tools in data mining, the variance
information of the data has gained widespread acceptance in some well-known dimensionality reduction
methods such as the PCA and variance score methods. The primary motivation for the use of the variance
information stems from its simple implementation and its power to display the amount of data dispersion.
According to this advantage, the variance score method simply but effectively maintains a number of features
with the highest variance score and removes the remaining features.

In the following, we introduce our VBE framework which integrates the variance information of features into
the BE method with the aim of constructing a basis of features with the highest variance score. The VBE
method involves the following three steps:

o For each feature f;, i = 1,2,...,n, its variance score is calculated. Then, the set of features {f;,fs,...,f,}
is sorted in descending order based on their variance score. Next, we will have {f],f},... f/} where f]

refers to the case that f] has the ith-ranked among all features based on the variance scores. Now, we set
X' =[f],f5,....f].

o Set B = {f]} so that f] has the highest variance score.
o Let rank(X) = r. For k = 2,...,n, if f| ¢ span(B), set B = B U {f,}. In this case, if the number of

members of B is equal to r, then the VBE method terminates at this point, and B will is a basis for the
space generated by the features {fi,fs,...,f,}.
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The main difference between the proposed VBE method and its original BE method is that the features
selected by VBE have the highest variance score. This method gives a basis with the members that have the
most dispersion in space and avoide the accumulation of the features as much as possible.

2.2 Self-representation Problem and the Basis

In the field of linear algebra, a direct connection exists between redundancy and the concept of linear
independency. Each basis for the feature space exhibits two essential properties. Firstly, a basis can represent
the complete feature space through its elements, achieved with a significantly reduced number of elements
compared to the entire feature space. The second characteristic of a basis is that its elements are linearly
independent which leads to a significant reduction in data redundancy which is a crucial aim in feature
selection. Continuing on, it is discussed how the concept of a basis for the feature space can lead to the
definition of an effective form for the self-representation problem.

The self-representation problem of features is considered as a linear representation of all features in a dataset,
including redundant ones which can potentially harm the effectiveness of feature representation. Formally, the
self-representation problem of features is defined as, mingegnx» ||X — XC||%, which can also be expressed as:

fi ~cufi +corfo 4+ - - 4 cnafn,

fo ~ ciofi +coofo +-- -+ Cn2f7’ba
X~XC={ (1)

f, ~cinfi +confo+ -+ Cnnfna

where X = [fi,f5,...,f,] and C = [¢;;] is the coefficient matrix. Without loss of generality, let us assume
that rank(X) = m, where m < n. In the case, where m > n, a similar discussion can be also applied. Under
this assumption, it can be shown that there exists a basis B with linearly independent features {f;,,...,f; }
such that the set {fi,fs,...,f,} can be represented by the basis B. Therefore, the following representation
based on the basis can be obtained for the features:

fi ~ guifi, + giofi, +--- + gmafi,,
fo >~ giofiy + g2ofiy + -+ + gmeofi,,,

: (2)
fr ~ ginfi, + gmafis + - + gmnfi,.,
which implies that
X ~ BG,
where B = [f; ,....f; ] € R™*™ is a basis matrix, and G = [g;;] € R™*" is the basis coefficient matrix.

Now, compared to the linear system of equations , the self-representation problem based on the basis can
be defined as:

min | X — BG|%. 3
min | I3 (3)
Problem clarifies that rather than utilizing all features, many of which may be redundant, it is feasible to
introduce a new formulation for the self-representation problem, which utilizes a basis containing linearly
independent features.

2.3 Subspace Learning Problem and the Basis

A popular technique in machine learning is subspace learning, used to discover low-dimensional representations
of high-dimensional data through linear or non-linear mappings. Several subspace learning models using
Euclidean distance have been introduced in the past few years|Wang et al.| (2015a)); |Qi et al.| (2018)); [Shang
et al.| (2020). Among the efficient subspace learning models is the following one:

distsy,(X, XU) = min [ X — XUV|%, (4)
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where U € RiXk and V € R’f” are called the feature weight and the representation matrices, respectively.
We shall note that the subspace learning model indeed calculates the distance between the space of
features generated by X and the space of the selected subset of features generated by XU. As a result,
if U is chosen such that XU = B, then it can be seen that the distance between X and B is zero, i.e.,
distgr, (X, B) = 0, which means that the space of X and the space of B can align or be identical. More
information regarding this issue is provided in the following theorem.

Theorem 2.1. Let X = [fy,...,f,] € R™*™ be a dataset with n features such that rank(X) = m. Let us also
assume that B = [f;,,...,f; ] is a basis for the space generated by X. Then, according to the distance-based

subspace learning problem introduced in , the distance between X and B is zero, that is distsy,(X,B) = 0.

Proof. If the matrix U is defined as U = [u;,,...,u;, ], where u;; (for j = 1,...,m) is a vector whose
ij-element is 1 and other elements are 0, then it can be easily seen that B = XU. With this assumption, the
distance-based subspace learning problem will be of the following form:

distg, (X, XU) = distg, (X,B) = min || X —-BW||g.
WeRmxn
It turns out from the above problem that distsy, (X, B) < || X — BW|| g, for each W € R™*™. On the other
hand, since B is a basis for the space generated by X, there is a basis coefficient matrix G = [g;;] € R™*"

such that X = BG. Taking this observation into account and assuming W = G, it becomes evident that
0 < dists.(X,B) < ||X — BG||p = 0, which completes the proof. O

Remark. It should be noted that in the case where rank(X) < m or m > n, it is still possible to create
a basic matrix for the feature space, and this will not cause any issues in designing our feature selection
framework.

Now, we can state the subspace learning model in terms of the basis matrix B € R™*™. In order to
accomplish this goal, let us consider the representation relation . Therefore, the expression X — XUV can
be shown as X — BGUYV. On the other hand, according to the vector space generation property of the basis,
since the distance between X and B is zero, it is straightforward to see that X can be substituted using the
basis matrix B. As a result of what has been discussed so far, the subspace learning problem based on
the basis can be established as follows:

: _ 2
Juin |[B —-BGUVI|r, (5)

where we assume that G € R]"", U € RT’“ ,and V € Rixm, such that & < n is the dimension of the
selected feature space.

2.4 The Importance of the Role of U and V

The framework defined in (|5|) can be employed as a bedrock for the feature selection process, in which the feature
weight matrix U and the representation matrix V play a major role in selecting the underlying features. First,
U is used as the weight matrix in the feature selection process, that is Xgelected = BGU = Y"1 | (BG);u;;,
where (BG); is the i-th column of BG, and u;. is the i-th row of U. In fact, the sparser the construction of rows
in U, the higher the likelihood of selecting effective features. This description allows the utilization of the Lo ;-
norm to promote row sparsity within the matrix U, which can be demonstrated as |U||2,1. The importance
of row sparsity in the Ly ;-norm lies in its effectiveness in managing structured sparsity, where the objective is
to choose discriminative features. Second, let us consider that B = [f;,,...,f; ] and V = [vq,...,v,]. It can
be concluded from Problem (5) that B ~ BGUV, which means that [f;,,...,f; | ~ [BGUvy,...,BGUv,,].
This implies, each feature f;, of the basis can be represented by BGUvy, for [ = 1,...,m. To be more

inb
precise, we can see that f;, ~ Zle(BGU)rvrl. Hence, the more sparse the columns of V are, then fewer
members of BGU are used in the representation of f;, of the basis matrix B. As a result, a reduction in
redundancy is more likely to occur. In order to reflect the importance of the representation matrix V in our
proposed feature selection process, the idea of inner product regularization can be used. Let us consider the

representation matrix V. The Gram matrix of V can be written as VI'V = [(v;, v,)], where v; is the I-th
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column of V, for I = 1,...,m. Now, it can be easily seen that the expression Tr(1,,x,» VI V) — Tr(VIV)
readily corresponds to the summation of the off-diagonal elements within the Gram matrix V'V, that is to
say Tr(1,xm VIV) = Tr(VIV) = Z;:Ll#p (vi,vp). Therefore, by the subsequent problem given as:

min = Tr(Lyxm VI V) = Tr(VIV), (6)
VERk xXm

and under the assumption that V € R’j_xm, it can be deduced that the optimal solution to Problem @
is attained when the inner product terms (v;,v,) tend toward zero for all pairs of [ and p except when
[ = p. On the other hand, since (v;,v,) = (v;)?v, and considering the non-negativity assumption for v; and
vy, the value of (v;,v,) tends towards zero when either v; or v, become zero or extremely sparse vectors.
Consequently, the optimization Problem @ can result in a significant degree of sparsity within the coefficient
matrix V.

Considering the importance of the role of U and V, we integrate two efficient sparsity regularizations into
the objective function in order to make both U and V sparse. Two of the most useful and simple x are
the Lo 1-norm and the inner product regularization, which benefit from the robustness in a row and column
sparsity, respectively. We can now state the sparse form of the subspace learning problem based on the basis
as follows:

. . 2 T _ T
dnin [|B = BGUVI[%: + [Ull21 + (Tr(Lyxm VIV) = Te(VIV)).

2.5 Feature Manifold Problem and the Basis

According to the relation X ~ BG and assuming that G = [g1, ..., &y, it is concluded that [f,fo, ..., f,] ~
[Bgi,...,Bg,]. As a result, according to the basic principle of preserving the geometric structure in the
feature manifold, if the two features f; and f,. have a similar structure in the feature space, then it can be
expected that their corresponding representations Bg; and Bg, will also have the similar structure. This
observation can be expressed as follows:

n

> a4 |Bg, — Be:ll3,

qr=1

min Tr (BGLG"B”) = !
GERmXn 2

where A = [agr] € R™™” is the similarity matrix for the features, and the Laplacian matrix L is defined
as L = P — A such that P = diag(p,) is a diagonal matrix with the diagonal entries pyq = >, agr, for

g=1,...,n. Here, we consider a,r = e~ = ,if f; € Ni(f,) or f, € Ni(f;), where Ny (f,) refers to the set
of k feature vectors that are closest to f,., and ¢ denotes the scale parameter of the Gaussian distribution, and
aqr = 0 otherwise.

2.6 The GRSSLFS Method

Based on the the previous sections, we establish the novel GRSSLFS method according to the combination of
“self-representation based on the basis” and “sparse subspace learning based on the basis” as follows:

o nin X — BG|% +|B - BGUV|} + aTr (BGLG"B”) + 8||U|21 + % (Tr(Lpnxm VIV) = Tr(VIV)),
) (7)

where «, 8 and -y are the sparsity regularization parameters. To solve Problem @, let us consider the function
J(G,U,V) as follows:

J(G,U,V) = X -BG|% + |B-BGUV|% + oTr (BGLG"B") + pTr(U"EU)
+ 9 (Tt(Lyxm VIV) = Tr(VIV)) + Tr(MGT) + Tr(NUT) + Tr(WVT),
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where E € R*™ is a diagonal matrix with the diagonal elements E;; = 1/2||U, ||, for ¢ = 1,...,n. Moreover,
M € R™ " N € R™*" and W € R¥*" are the Lagrange multipliers. The problem mentioned above can be
effectively solved by applying an alternative iterative procedure involving G, U, and V. To achieve this, one
variable needs to be fixed, whereas the other variables need to be determined. That is to say

e Update G with fixed U and V. Taking the partial derivative of J in terms of G shows

g—é = —2BTX + 2BTBG + 2aBTBGL - 2B”’BVTUT + 2B”BGUVVTUT + M.

e Update U with fixed G and V. Taking the partial derivative of J in terms of U shows

g% = 2G"B"BV” +2G"B"BGUVV” + 28EU + N.

e Update V with fixed G and U. Finally, taking the partial derivative of J in terms of V shows

STJI — —2UTG"B"B +2U"GTBTBGUV + 2y(Vlxm — V) + W.

Now, putting the Karush-Kuhn-Tucker conditions Lee & Seung| (2001) together with 0J/0G = 9J/0U =
0J/OV = 0 results in the following updating rule:

G o (BTX + aBTBGA +BTBVTUT),_ .
¥ %\ (BTBG + oBTBGP + BTBGUVVTUT) ®)
— (GTBTBVT),, .
ij < Uij (GTBTBGUVVT T BEU)ij’ ( )
Vi<V (UTGTBTB + V), 10
W Vi (UTGTBTBGUV +7Vlnxm),; (10)

Remark. Regarding the square root operation applied in the updating rules (8)), @D, and , it is essential

to highlight that the objective function J incorporates the second-order matrix polynomials concerning the
variables G, U, and V. To derive efficient update procedures for solving these variables, prior studies |Ding
et al| (2005); Ding & et al.| (2006]) suggest the utilization of update rules (like the ones given in , @D,
and that are founded on the concept of the square root. Algorithm [I|is a summary of the procedure
developed above to solve the objective function of GRSSLFS. Moreover, the framework of the proposed
GRSSLFS method is displayed in Figure

T N\ Algorithm 1 The proposed GRSSLFS
L ~ mion: couan Ion:-RegularizedSfl;a»::presenlatinn 1: Input: Data matrix X € R™*"; the num-
| ottt Reprooincatin M ; Based on the Basis ber of selected features k.
”””””””” 2: Construct the basis matrix B using the
l smpgzagﬁéaming VBE method discussed in Section 211

Based on the Basis . Initialize the matrices G, U, and V.

: while not converged do steps 4 and 6:

: Update G according to the rule (8).
: Update U according to the rule (9).
: Update V according to the rule (10)).
: Output: Put the rows of U in descending

. order of value according to the 2-norm.
Figure 1: Framework of the proposed GRSSLFS method  Naxt. sort the features of X so that the

which integrates the self-representation based on the basis  f..t11res have the highest 2-norm score in
with the sparse subspace learning based on the basis. U.
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2.7 Convergence Analysis

In the following, a detailed analysis of the monotone property of the objective function for the GRSSLFS
method is conducted.

Theorem 2.2. The objective function of the GRSSLFS method monotonously decreases according to the

update rules (@, (@, and (@

Proof. The proof starts by assuming that the matrices U > 0 and V > 0 are fixed, and it is shown that the
objective function of GRSSLFS monotonously decreases in terms of the other variable G > 0. With this
assumption, we define the following function:

Z(G) = |X - BG|% + oTr (BGLG"B") + |B - BGUV|3..
Using simple calculations, the following can be deduced:
Z(G) = Tr(X"X) - 2Tr(X"BG) + Tr(G"B"BG) + oTr (BG(P — A)G"B”) + Tr(B"B)
—2Tr(BTBGUV) 4+ Tr(VIUTGTBTBGUV).
Additionally, suppose that G’ > 0 is given. It can be easily shown that
Tr(GTMGN) < 3 (MGg?iijj ’
ij

ij

(11)

for any matrices M € R™*™ and N € R"*". Using the inequality in conjunction with the inequality
¢ > 1+log(c), for any ¢ > 0, we have

G,
+-T(X"BG) < - 3 (X, (14105 g7 ) ) (12
Ir Ir
G2
« Tr(G"B"BG) < Y (B"BG);, Gf*, (13)
iI,r lr
G2
« Tr(BGPG'B") < ) (B"BG'P),, Gir, (14)
I,r lr
TRT T / ’ quGlr
e -Tr(BGAG'B") < - [ (B"BG'A);Gy, | 1 +log eIe , (15)
I,r,q ql —lr
Gir
o -Tr(B'BGUV) < - ) ((BTBVTUT)ZT i (1 + log Gf )) : (16)
L,r Ir
G2
« Tr(V'U'G"B"BGUV) < Y (B"BG'UVV'U"), Gf?"). (17)
l,r lr
Let us now define the following function:
/ T T / Gy T 1 Gl2r
QG,G) = Te(XTX) - 23 ((BTX);,Gj, ( 1+ log & +) (B"BG )erE
l,r T l,r T
G? G, G
+ay (B'BG'P);, GET —ay ((BTBG’A)qu;T (1 + log Gfi Gi))
l,r r l,r,q q T
T T Ty1T ’ Gy T ’ Ty1T Gl2r
+ Tr(BTB) — 22 (B'BV'U" )Gy, | 1+ log o +Y (B'BG'UVVTU )”CT"
l,r lr l,r lr
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Now, in view of the relations (12)-(I7), it turns out that (1) (G, G) = Z(G) and (2) Z(G) < UG, G'), for
any G > 0. Taking these observations into account, it can be inferred that Q(G, G) represents an auxiliary
function for Z(G) [Lee & Seung| (2001)). Consequently, using the following relation

G* = argmin Q(G, G'), (18)
G
the objective function of the GRSSLFS method monotonously decreases in terms of the variable G > 0. In

order to compute the minimization problem , the derivative of Q(G, G') in terms of G;; leads us to the
following relation:

00(G, G) s Gl G.. G.. G
— 27— 9BTX),, =2 +2(B"BG");; =2 4+ 2a(BT"BG'P);;, —L — 2a(B"TBG'A),;; —
T Ty1T G;j T / Ty1T Gij
-2(B°"BV'U )ijG“ +2(B"BG'UVV'U )ijG’ .
%] ij

Thus, assuming that 0Q(G, G’)/0G;; = 0, it follows that
(B*X +aB"BG'A + B'BV'U") (G};)? = (B'BG' +aB'BG'P + B'BG'UVV'U") G}

179

which leads to the following relation:

, (BTX + aBTBG'A + BTBVTUT),,
Gi] «— G’U ( (19)

BTBG’ + aBTBG'P + BTBG’UVVTUT)ij '

In conclusion, solving the minimization problem leads to a solution in the form shown in , which is
exactly consistent with the relation introduced as the update rule for variable G. Here, the proof for the
monotone property of the objective function of the GRSSLFS method in terms of G is completed. Similar
to what has been explained above for the case of G, it is possible to prove the monotone property of the
objective function of GRSSLFS in terms of U and V, which are omitted due to the similarity in the process
of existing relations. O

2.8 Complexity Analysis

Let m,n and k be the number of samples, the number of features and the number of selected features,
respectively. In order to update the matrices G € R™*" U € R"** and V € R¥*™  several matrix
multiplications must be done in GRSSLFS. From the updating rules , @[), and , it can be found that
among all the operations, the most time-consuming parts to update of G, U and V are BTBGUVVTUT,
GTBTBGUVVT, and UTGTBTBGUYV, respectively, so that the time complexity of each of them is almost
equal to O(k?m?2n?) per iteration. Besides, the required time complexity is O(n?) for constructing the feature
graph. In summary, assuming that k < {m,n}, the computational complexity of GRSSLFS is almost equal
to O(m?n?).

3 Experimental Studies

3.1 Results and Analysis

We evaluate the performance of the unsupervised feature selection algorithms in terms of how the selected
features impact the downstream task of clustering in various datasets. We refer to Appendix [A-T] for detailed
information on benchmark datasets, Appendix for the compared feature selection algorithms (Baseline,
LS [He et al.| (2005), CNAFS [Yuan et al.| (2022), OCLSP |Lin et al|(2022), RNE [Liu et al,| (2020), RMFFS Qi
et al| (2018), VCSDFS Karami et al.| (2023), CAE Balm et al.|[(2019), CD-LSR [Xu et al|(2023)), Appendix
for the evaluation metrics, and Appendix for the experimental settings details). The best value of
ACC and NMI metrics at a specific number of selected features is listed in Table [2]
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Table 2: Comparing the best values of the clustering ACC and NMI of nine algorithms on all datasets. The values in
parentheses denote the selected number of features at which the ACC and NMI are reported.

ACC
Datasets Baseline LS CNAFS OCLSP RNE RMFFS VCSDFS CAE CD-LSR GRSSLFS
CNS 5333 £ 145 | 58.66 £ 1.02 (30) | 63.84 &+ 1.62 (50) | 65.31 & 1.04 (70) | 58.33 % 0.00 (40) | 63.33 £ 0.00 (60) | 66.49 & 2.11 (20) | 66.61=0.05(60) | 61.67=1.83(60) | 73.33 + 0.01 (20)
GLIOMA | 44.05 £ 0.00 | 44.00 £ 0.00 (10) | 50.11 + 2.83 (40) | 50.77 £ 1.03 (40) | 47.11 % 2.19 (20) | 49.80 + 5.30 (30) | 51.23 + 0.77 (30) | 54.52+3.13(40) | 48.70+3.92(10) 54.10 £ 2.71(30)
TOX171 41.25 £ 0.72 | 40.35 + 0.72 (10) | 48.06 + 1.32 (90) | 48.67 + 0.89 (40) | 51.69 + 0.48 (40) | 49.64 + 1.59 (20) | 52.69 + 1.26(40) | 53.36+1.24(40) | 48.77+4.18(10) | 57.39 + 1.27 (40)
SRBCT 25.66 + 2.82 | 46.02 + 2.96 (100) | 44.17 + 1.55 (60) | 44.27 £ 2.07 (60) | 42.12 + 3.37 (80) | 48.97 £ 4.67 (90) | 44.39 £ 0.91 (30) | 46.08+4.18(90) | 52.63+£4.39(10) | 53.49 + 3.11 (60)
SMK 51.34 = 0.56 | 55.11+ 2.35 (80) | 60.12 + 1.72 (40) | 62.31 % 3.00 (100) | 61.51 4 0.34 (10) | 52.94+ 2.31 (50) | 6291 + 2.62 (40) | 61.80+2.06(40) | 64.71+£2.72(30) | 65.72 + 2.59 (10)
ATT 63.81 = 4.03 | 46.75 £3.87(60) | 58.68 £2.78(100) | 59.71 +£1.94(100) | 59.08 + 3.12(50) | 46.25+3.48(30) | 61.97 + 1.83 (100) | 56.86+2.79(90) | 58.03+3.33(100) | 64.11 6+ 2.65(100)
ORL 50.25 = 291 | 3851 + 1.66(90) | 49.17+2.52(90) | 50.45 +£3.41(100) | 51.31 £3.01(100) | 47.71£2.73(70) | 47.51+1.38(100) | 50.09+2.42(100) | 54.05+3.51(100) |  53.45 =+ 3.13(80)
warpAR10P | 26.88 = 2.18 | 21.50 £0.94(10) | 38.83 £2.28(10) | 41.68+3.31(10) | 34.62 £2.45(10) | 41.55%£3.21(90) | 36.85 £0.73(10) | 30.26+2.83(10) | 31.94%2.78(30) 46.66 £ 3.51(10)

NMI
Datasets Baseline LS CNAFS OCLSP RNE RMFFS VCSDFS CAE CD-LSR GRSSLFS
CNS 17 £ 0.00 | 2.44 £ 0.45 (90) | 8.15 £ 3.00 (70) | 10.76 £ 3.68 (70) | 2.20 = 0.00 (50) | 9.35 = 0.08 (50) | 10.35% 2.62 (50) | 11.0520.41(30) | 13.7620.06(20) | 18.56 = 0.00 (70)
GLIOMA 17.94+ 0.69 | 18.67+ 0.29 (50) | 27.21 + 2.43 (20) | 28.93 + 1.86 (30) | 25.84 + 4.20 (20) | 29.81+ 1.46 (30) | 28.92 + 1.20 (40) | 32.83+1.83(40) | 25.35+1. 68(70) 32.00 + 2.14 (40)
TOX171 13.544 0.23 | 11.68+ 1.97 (90) | 23.47 + 1.98(80) | 25.27 + 2.31 (80) | 26.78 + 0.08 (40) | 24.60+ 0.41 (20) | 30.98 + 0.77 (100) | 31.12+£0.31(40) | : 36.96 + 0.60 (100)
SRBCT 11.55 + 3.47 | 56.23+ 4.06 (60) | 41.21 + 4.36 (60) | 42.44 + 2.68 (90) | 20.48 + 3.52 (80) | 47.82+ 4.13 (90) | 48.00 + 4.01 (90) | 45.28+3.59(80) 59.67 + 4.18 (90)
SMK 0.01 +0.00 | 217+ 0.05 (80) | 3.75 4 0.09 (40) | 4.72 + 0.22 (30) | 3.77 + 0.08 (10) | 3.21+ 0.19 (70) | 5.63 + 1.5 (40) | 3.5140.09(80) 8.20 + 0.53 (10)
ATT 81.19+1.77 | 68.46 + 1.37(70) | 77.054 1.44(90) | 78.61 £2.53(100) | 77.17 + 1.04(80) | 65.27+2.03(50) | 78.62 £0.81(100) | 75.27+2.24(90) | 77.0242.19(100) | 81.71+ 1.31(100)
ORL 72.68 £1.27 | 63.85 +£1.23(100) | 71.44 £1.16(100) | 72.19 +£2.34(100) | 72.59+1.33(100) | 69.72 +£1.69(70) | 73.02 £1.49(100) | 73.64+1.41(100) | 72.57+2.02(100) | 74.56 + 1.72(80)
warpARIOP | 28.48 + 3.31 | 19.30 £1.84(40) | 43.00 £1.64(80) | 45.46 +3.08(20) | 35.85+4.38(20) | 46.60+2.94(90) | 41.62 £1.22(80) | 42.35+2.23(80) | 34.22+3.37(20) | 48.63 + 2.83(10)

It is evident from these results (see Table [2| and Appendix for more illustration) that our proposed
method, GRSSLFS, outperforms all other eight methods in terms of selecting features that result in better
clustering performance. There are only two exceptions (on the GLIOMA and ORL datasets) where the
CAE and CD-LSR methods led to a marginally higher ACC compared to our method. For example, the
ACC corresponding to CAE is 54.52 versus 54.10 in our method (only 0.7% difference in the average values).
Despite the superiority of our method over other methods, its behavior across all datasets is not the same.
For example, we can refer to the CNS dataset, where the NMI values are considerably lower compared to the
ACC values. This trend is also observed for the other eight feature selection methods. It is mainly due to
the nature of datasets, some of which pose difficulties in selecting distinguishable features and hence have a
higher clustering accuracy.

On average, the results of the VCSDFS, CAE and CD-LSR methods are closer to those of the proposed
method, compared to other methods. Nevertheless, the proposed method is still superior to such methods for
two main reasons. First, the basis vectors in the GRSSLFS method are constructed as an independent linear
combination of the selected features. Second, the GRSSLFS method uses self-representation learning along
with subspace learning in which the basis of features is used to build both the self-representation and subspace
feature spaces. This combination of self-representation and subspace learning with the underlying basis of
features makes the proposed method efficient compared to other methods. The effectiveness is observable in
Table [2] where the consistency of our method compared to the other methods across all the different datasets
is evident. For instance, the ACC values in Table [2] show that while CAE has a comparable performance
with respect to GRSSLFS on the GLIOMA dataset, its performance degrades on the other datasets. To
summarize the final clustering performance, the average value of ACC and NMI across all the datasets for
each feature selection algorithm is also demonstrated as a bar plot in Figure 2l On this account, Figure
confirm the superiority of the proposed feature selection model in almost all cases. (refer to the Appendix
section for Clustering Performance Results in Figure [l Running Time Comparison in[A.6 Convergence Test
in[A77 and Non-parametric Statistical Test in[A§]

Average results of ACC and NMI
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Figure 2: Average of the best ACC and NMI results over all datasets for each feature selection method.
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3.2 Ablation Study

In this part, the effect of hyperparameters on the performance of our proposed method is investigated. For
this, we first look into the objective function of GRSSLFS in @ that has three adjustable parameters; « is for
the feature graph regularization term in the self-representation framework and 8 and « control the sparsity of
the feature weight matrix U and representation matrix V, respectively, in the subspace learning process. To
isolate the impact of the hyperparameters, we set their values to zero according to the configuration shown in
the first column of Table 3] We then choose one biological (GLIOMA) and one image (warpAR10P) dataset
to run through our algorithm for feature selection and subsequent clustering. The clustering metrics for
the seven experiments are reported in Table |3[ and are compared against the best results we obtained with
non-zero hyperparameter values of our proposed method.

Table 3: The outputs related to the ablation study.

Datasets GLIOMA warpAR10P
Evaluation metrics ACC std NMI+ std ACCH std NMI+ std
Main experiment | 54.10 + 2.71(30) 32.09+2.14(40) | 46.66 & 3.51(10) 48.63 & 2.83(10)
a=B=7=0 4451£2.96(50)  21.38£4.67(50) | 32.2742.75(50) 34.0143.18(50)
a=p=0 50.2144.20(20)  27.09£3.09(70) |  39.653.18(10) 42.5944.01(30)
=y=0 48.30£3.13(10)  27.52+4.03(60) |  38.15+3.94(30) 41.55+3.78(80)
B=rq=0 46.60+2.16(10)  25.46%5.29(50) |  40.84:3.06(10) 45.01£3.56(30)
a=0 50.0043.94(40)  30.37£1.25(10) | 43.34:4.13(20) 45.68+3.36(10)
B=0 49.80+1.82(30) 29.89+2.28(30) 42.1944.97(20) 44.0443.58(20)
7=0 51.2042.46(20) 28.97+4.18(70) 40.26+3.51(30) 43.99+2.19(10)

The result show that, inclusion of all three hyperparameters in our method result in higher clustering
performance compared to cases with one or more hyperparameters excluded. Thus, all parts of the objective
function in (E) have a critical role in the feature selection process and can not be removed from this process.

AR RNE NN

(a) PneumoniaMNIST - Original Images
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.
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) PneumoniaMNIST - Selected Features = 10

) PneumoniaMNIST - Selected Features = 50

) PneumoniaMNIST - Selected Features = 100

Figure 3: The visualization of selected features on PneumoniaMNIST images.

3.3 Application to the PneumoniaMNIST Dataset

In patients diagnosed with pneumonia, chest X-rays reveal various diagnostic features, particularly in the
cardiac section. Notable among these characteristics are an augmented cardiac shadow, alterations in cardiac
positioning, the presence of effusion, the pericardial effusion, and the instances of cardiomegaly .
In this section, the application of our proposed feature selection method to the PneumoniaMNIST dataset

11
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Yang et al.| (2021)) is assessed with the goal of precisely identifying and analyzing the cardiac silhouette in chest
X-ray images. The PneumoniaMNIST dataset, designed for Chest X-Ray radiographs and forming part of the
MedMNIST collection [Yang et al.| (2023, comprises 5,856 Chest X-Ray radiograph images, each measuring
28x28 pixels in grayscale. To this end, we test the representativeness of the selected features using GRSSLFS
by running it on the PneumoniaMNIST image database. Here, the first ten Chest X-Ray radiograph images
are chosen from this dataset. Moreover, we select {10,50,100} pixels by running GRSSLFS. Figure [3| shows
the outputs, where the original and the feature-selected images for each Chest X-Ray radiograph image
are plotted in the corresponding row from left to right. In Figure 3| the selected features are depicted
by red dots and the un-selected features remain at their original pixel colour. As can be seen, when the
number of selected features increases from 10 to 100, subsequently GRSSLF'S is able to capture the most
representative parts of the images, like the central part of the chest, which contains the most discriminative
features of the Chest X-Ray radiograph images and can detect the cardiac silhouette. The performance of the
obtained feature-selected images has been validated through assessment by radiologists, which demonstrates
the proficiency of our proposed method in capturing the fundamental features of the PneumoniaMNIST
dataset. This capability shows the interpretability and explainability power of our model. The reason for
this selection may lie in the cooperation of the basis matrix in self-representation and subspace learning
terms of our objective function. Finally, Section reports the results pertaining to the selection of 100
features by other comparative methods. Examining this figure, it is evident that some methods, including
our proposed method, RMFFS, and VCSDFS, exhibit a tendency to identifythe central area of chest X-ray
images. Conversely, some other methods, while successfully identifying portions of the central areas, may
overlook additional regions that could provide valuable information. These methods fail to capture such
information in radiological analysis.

4 Conclusion

In this paper, we addressed the self-representation learning problem by establishing a basis for the feature
space, with the primary aim of eliminating unnecessary and redundant features for the representation of the
initial data. The motivation behind this work stems from a fundamental concept in linear algebra known as
the basis for a given vector space. Essentially, this concept implies that every feature vector can be expressed
as a linear combination of a basis set of features, which are linearly independent. Leveraging this idea, we also
designed a subspace learning framework to select features with minimal redundancy. Through the introduction
of these novel variations in self-representation and subspace learning, we proposed an unsupervised feature
selection method called Graph Regularized Self-Representation and Sparse Subspace Learning (GRSSLFS).
Comparative experiments conducted in this study demonstrated that the proposed GRSSLFS method exhibits
a high level of effectiveness in feature selection.

The performance of our proposed GRSSLFS method is closely tied to the choice of the feature space basis.
As discussed, GRSSLFS employs the variance information of features to establish a basis for the feature
space. However, it raises the question: what alternative mathematical or statistical tools could be used
instead of variance information for constructing such a basis? This prompts us to recognize the challenge of
devising a meaningful basis for the feature space through a potentially more optimized process. As such, the
pursuit of constructing an optimal basis for the feature space remains an open problem within the domain of
unsupervised feature selection, warranting further research in future studies.
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A Appendix

A.1 Datasets

Table [d] demonstrates the eight benchmark datasets, which are used to perform our experiments. We selected
a mix of five different gene expression datasets and three facial image datasets to diversify our data samples
and hence to better evaluate the performance of our proposed feature selection method. It should be noted
that all of these datasets are accessible through the scikit-feature feature selection repositor Li et al.|[(2018)
and the UCI Machine Learning Repositorym Dua & Graff] (2017).

Table 4: The information of eight datasets used in this study.

ID | Dataset # of Samples | # of Features | # of Classes Type
1 | CNS 60 7129 2 Biological
2 | GLIOMA 50 4434 4 Biological
3 | TOX_171 171 5748 4 Biological
4 | SRBCT 83 2308 4 Biological
5 | SMK 187 19993 2 Biological
6 | ATT 400 10304 40 Image
7 | ORL 400 1024 40 Image
8 | warpAR10P 130 2400 10 Image

A.2 Comparison Methods

In this study, the following unsupervised feature selection methods are selected with their track records of
performance in the literature to be compared with GRSSLFS. These methods are briefly explained below.

1. Baseline: All features are considered.

*https://jundongl.github.io/scikit-feature/datasets.html
Thttps://archive.ics.uci.edu/ml/index.php
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2. Laplacian Score (LS) [He et al.| (2005): The features selected by this method can best preserve the
local manifold structure of the original data.

3. Convex non-negative matrix Factorization with an Adaptive graph constraint Feature
Selection (CNAFS) Yuan et al.| (2022)): Through convex matrix factorization with adaptive graph
constraint, it selects the best feature subset by considering the correlation between the data while
preserving the local manifold structure.

4. Orthogonal basis clustering and Local Structure Preserving(OCLSP) |Lin et al.| (2022): An
orthogonal basis clustering and an adaptive graph regularization are used to gain cluster separation
while keeping the local information of data.

5. Regularized Matrix Factorization Feature Selection (RMFFS) |Qi et al.|(2018)): This method
modifies its objective function for feature selection by adding an inner product regularization to the
matrix factorization.

6. Robust Neighborhood Embedding (RNE) [Liu et al. (2020): In this method, features are
selected using the neighborhood embedding and ¢; norm as the loss function.

7. Variance-Covariance Subspace Distance based Feature Selection (VCSDFS) Karami et al.
(2023): Variance-Covariance subspace distance is used to select the subset which contains the most
representative features.

8. Concrete Autoencoders (CAE) Balin et al.| (2019): CAE has an encoder-decoder architecture
with a concrete selector layer as the encoder and a standard neural network as the decoder. It aims
at selecting the most informative subset of global features, which are used to simultaneously train a
neural network to reconstruct the input data.

9. Coordinate Descent based Least Square Regression (CD-LSR) Xu et al.| (2023): This
method leverages a coordinate descent-based optimization framework to solve the general I3 g-norm
constrained feature selection problem.

A.3 Evaluation Metrics

In the experiments, the clustering performance of feature selection algorithms is evaluated using Accuracy
(ACC) and Normalized Mutual Information (NMI) metrics [Solorio-Fernandez et al.| (2020). The higher ACC
and NMI values are, the better the clustering performance is, which in turn results from better performance
of the feature selection algorithm to select informative features.
The ACC is defined as: .
ACC = 2iz1 (g, map(pi))
n

)

Where p; and ¢; are, respectively, the clustering and the ground-truth labels of the sample z;, and § is the
Kronecker delta function. In addition, map(.) denotes the best permutation mapping function that uses the
Kuhn—-Munkres algorithm to map each clustering label to the corresponding ground-truth label.

The NMI is defined as
MI(P,Q)

H(P)H(Q)'

Where P and @ are the set of centers of the predicted and the ground-truth clusters, and M1I1(.) is the mutual
information. Furthermore, H(P) and H(Q) denote the entropies of P and @, respectively.

NMI =

A.4 Experimental Settings

Our experiments are performed for various numbers of selected features in the range of {10,20,...,100},
for all datasets. Furthermore, hyperparameter tuning is done to find the most optimum configuration of
various feature selection models in our study. We fix k£ = 5 for the k-nearest neighbor algorithm and for
all the datasets in LS, OCLSP and RNE methods. For CNAFS, the hyperparameters «, 3,7, A and € are
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tuned by searching from {1073,1072,...,10%} as mentioned in author’s literature in 1Yuan et al.|(2022). To
implement OCLSP, [Lin et al.| (2022), the parameter « is fixed 10* and 7,+, 3 are tuned by selecting from
{1073,1072,...,103}. For RMFFS, we followed the work in Qi et al.| (2018) and searched the value of the
parameter (3 in the range of {1,10,...,10%}. In VCSDFS, the values of the parameter p is selected from
{1076,107°,...,105}, [Karami et al.| (2023). We adopted the values for the parameters of RNE from |Liu et al.
(2020), and let the penalty coefficient o be 103. For the CAE method, we used the values in the original
paper Balin et al.[(2019). The performance of CD-LSR was assessed using the provided code based on the
author’s implementation as described in the original paper of the method |Xu et al.[ (2023). We tuned the
parameters «, 3 and v of GRSSLFS method on {107°,...,10°}. Finally, due to the random initialization in
the k-means clustering algorithm, we repeated the clustering runs 20 times with different random starting
points over which we reported the average and standard deviations of the ACC and NMI metrics. Finally, it
should be noted that our tests were conducted utilizing Matlab 2018a on a personal computer equipped with
16GB of RAM and an Intel Core i5-4690 processor.

A.5 Experimental Results

For more illustration of the reported clustering performance of all comparison methods, in Figure [d we depict
the values of ACC and NMI metrics for different numbers of selected features.

A.6 Running Time Comparison

Figure [5] also demonstrates a comparison between the proposed method and all other unsupervised feature
selection algorithms in terms of the running times (in seconds) for selecting 100 features from the TOX171
dataset. It is evident that CAE is the slowest method, followed by RNE and GRSSLFS methods, as the
second and third slowest algorithms. The high running time of CAE is ascribed to the training neural
networks in this deep, encoder-decoder feature selector Balin et al.|(2019). The relative sluggishness of the
RNE method can be attributed to its non-smooth nature, although it is convex |Liu et al.|[(2020). To solve this
issue, RNE employs the alternation direction method of multipliers (ADMM) to minimize its loss function.
The proposed method is the next slow method due to the fact that the GRSSLFS method uses both subspace
learning and self-representation, wherein multiple matrix multiplications are carried out. Consequently, as we
demonstrated in Section the time complexity of the GRSSLFS method is quadratic in terms of both the
number of original features and the number of input data points. Furthermore, as we discussed in Section
[2:6] an alternative approach is used to solve the loss function minimization problem of the proposed method.

A.7 Convergence Test

We set out to empirically evaluate Theorem [2.2] wherein we presented a theoretical proof for the monotonic
decreasing behavior of the objective function of the GRSSLFS method. Figure [] depicts the evolution of the
objective function over the number of iterations for all datasets. One can clearly see that the values of the
objective function across all datasets plummet quickly and the objective function converges quickly. This
observation demonstrates the effectiveness of the alternative iterative algorithm that is proposed to solve the
objective function of the GRSSLFS method.

A.8 Non-parametric Statistical Test

We demonstrated in previous sub-sections that the proposed method, GRSSLFS, has superior performance
over the state-of-the-art unsupervised feature selection methods. Here, we employ the Friedman test as a
non-parametric statistical test to evaluate the statistical significance of GRSSLFS’s performance compared to
other methods. The null hypothesis is then expressed as follows: there is no significant difference between
any of the methods, and the selected features by these methods lead to the same clustering performance.
The alternative hypothesis is that there are at least two methods whose selected features result in significant
differences in the clustering performance.

We use the data presented in Table [2| to run the test. In this setting, the datasets, the feature selection
methods, and the ACC or NMI values are considered as, respectively, the subjects, the treatments, and the
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Figure 6: The convergence curves of the objective function of GRSSLF'S on the eight datasets.

measurements in the Friedman test terminology. The feature selection methods are then ranked to calculate
the Friedman statistics. The average rankings over all datasets for each feature selection algorithm and
two different measurements (i.e., ACC and NMI) are presented in Figure ﬂ The lower ranking means the
corresponding measurement is higher.

We obtained 36.190909 and 35.290909 for the Friedman statistics based on ACC and NMI measurements,
respectively. Accordingly, the p-values corresponding to these Friedman statistics are 0.000053 and 0.000037,
respectively. With the significance level of 5%, these two p-values lead us to reject the null hypothesis in the
favor of the alternative hypothesis. With this description, it can be seen that there are at least two methods,
VCSDFS, CAE and GRSSLFS, that select features with statistically significant differences in the clustering
performance.

Following the Friedman test, we also carry out a post-hoc statistical test using the Holm’s method (aka.,
Holm-Bonferroni method) Bolén-Canedo et al.| (2014) to identify which pairs of methods result in a significant
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Ranking
Fh e A w e N e e

Baseline Ls cNAFs | oclsP | RNE RMFFS | VCSDFS CAE | CDASR | GRSSLFS
mAcC| 8 875 6375 45 6.375 6.25 45 4 5 125
aNMI 8 8375 6.625 475 65 6.25 225 4375 475 1125

Figure 7: Average ranks obtained by the Friedman test for each method with respect to the ACC and
NMI evaluation metrics on the datasets. Note that the lower rank of the evaluation metrics, the better the
performance of the methods.

difference in the clustering performance. For this purpose, we select the proposed method, GRSSLFS, as
the control method and compare it with all other 9 methods including the Baseline which are listed in the
columns of Table 2] It means that we end up having 9 null hypotheses for each pair of GRSSLFS-X where X
refers to those 9 other methods. Each null hypothesis states that there is no significant difference between
GRSSLFS and the method "X" in terms of their feature selection effectiveness with performant downstream
clustering. The significance level « is set to 0.05 for each null individual null hypothesis. The p-values of
the nine null hypotheses are presented in Table [f] based on ACC and NMI measurements, respectively. The
corresponding Holm’s p-values are also included in these tables.

ACC NMI
Method [[ p-value | Holm’s p-value Method p-value | Holm’s p-value
LS 0.000001 0.005556 LS 0.000002 0.005556

Baseline 0.000008 0.00625 Baseline 0.000006 0.00625
CNAFS 0.000711 0.007143 CNAFS 0.00028 0.007143

RNE 0.000711 0.008333 RNE 0.000384 0.008333
RMFFS 0.000957 0.01 RMFFS 0.000711 0.01
CD-LSR 0.013243 0.0125 OCLSP 0.016639 0.0125
OCLSP 0.031803 0.016667 CD-LSR || 0.016639 0.016667
VCSDFS || 0.031803 0.025 CAE 0.031803 0.025

CAE 0.06928 0.05 VCSDFS || 0.038989 0.055

Table 5: Post-hoc test using Holm’s method to compare the effect of GRSSLFS and eight other feature
selection methods and also the Baseline on the clustering ACC and NMI metrics. The significance level of
a = 0.05 is set for each individual pairwise null hypothesis. Holm’s procedure rejects a null hypothesis when
the p-value of the individual null hypothesis is less than or equal to Holm’s p-value.

Holm’s method rejects those hypotheses that their initial p-values are less than or equal to the calculated
p-values by Holm’s method. Thus, we infer from the results in Table [§] that we have enough evidence to reject
the null hypothesis for the pairwise comparison between GRSSLFS and all methods except for OCLSP, CAE,
VCSDFS, and CD-LSR. To be more precise, our proposed GRSSLFS method exhibits significant differences
from all other methods, except for the aforementioned methods, in terms of the ACC and NMI measures.
Nevertheless, as we observed in the results of Figure [4, GRSSLF'S displayed a more consistent trend over a
wide range of a number of selected features compared to all comparison methods.

A.9 Application to the PneumoniaMNIST dataset

This section presents the results of the selection of 100 features from the PneumoniaMNIST dataset, conducted
by our proposed GRSSLFS method and other comparative methods.
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Figure 8: The visualization of 100 selected features obtained by different feature selection methods on
PneumoniaMNIST images.

21



Under review as submission to TMLR

A.10 Code Availability

An implementation of Graph Regularized Self-Representation and Sparse Subspace Learning (GRSSLFS) is
available in the following;:

h—mmmm - Inputs

%% X: Data matrix in R"(m*n), withe m samples and n features

%% B: Basis for the feature space

%% A: Similarity matrix in R"(n*n) associated with the features
%% P: Degree matrix

%% alpha,beta,gamma: Regularization parameters
%% k: The number of selected features

%% itermax: Maximum number of iterations

%% BB = (B')*B;

ht% BX = (B')*X;

A OQutput

%% Selected_feat: Selected features

h——mmmm - The proposed GRSSLFS method:
function Selected_feat = GRSSLFS(X,BB,BX,P,A,alpha,beta,gamma,k,itermax)
fhmmmmmm————— Initializations

[m,n] = size(X);

G = rand(m,n);

U = rand(n,k);

V = rand(k,m) ;

onesm = ones(m,m);
h=—mm———————— Calculation of the matrix E used in the L2,1 norm
a = 4*max(diag(U*(U')) ,107-9);
E = diag(sqrt(1l./a));

for i = 1:itermax

h——mmmm - Update G

VU = (V') *(U");

BBG = BB*G;

NoG = BX+alpha*xBBG*xA+BB*VU;

DeG = BBG+alpha*BBG*P+BBG*xU*xV*VU;
rel = rdivide (NoG,DeG) ;

G = G.*nthroot (rel,2);
h——mm—m Update U

GBB = (G')*BB;

NoU = GBB*(V');

DeU = GBB*G*xUxV*(V')+beta*xEx*xU;
re2 = rdivide (NoU,DeU) ;

U = U.*nthroot(re2,2);

h=mmmmm——————- Update E
a = 4xmax(diag(Ux(U')) ,107-9);
E = diag(sqrt(1l./a));
h——mm Update V

UGB = BB*G*U;

NoV = (UGB')+gammax*V;

DeV = (UGB')*G*U*xV+gamma*V*onesm;
re3 = rdivide (NoV,DeV);

V = V.*xnthroot (re3,2);

tempVector = sum(U."2, 2);

22




Under review as submission to TMLR

[~, value] = sort(tempVector, 'descend');

Selected_feat = wvalue(1l:k);

end

h——mmmm - Constructing the Basis for Feature Space via the Variance

information and the Basis Extension (VBE) method
function B = VBE(X,r)
h=——mmmm - Inputs
%% X: Data matrix
%% r: rank of X
hm—mmmm - OQutput
%% B: Basis matrix
E = var(X);

[~,index] = sort(E, 'descend');
A = index;

B(:,1) = X(:,A(1));
j =2

for i = 2:r

B(:,i) = X(:,A(§));
while rank(B)~ = i
jo= 3+

B(:,i) = X(:,A(§));
end

jo= i+

end

end
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