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The swift evolution of Large Language Models (LLMs) like the GPT family, LLaMA, ChatGLM, and Qwen represents significant progress
in artificial intelligence research. Despite their remarkable capabilities in generating content, these models encounter substantial
challenges when producing structured outputs and engaging in dynamic interactions, particularly when they need to retrieve
external information in real time. To address these limitations, researchers have developed the "Function Calling" paradigm. This
approach enables language models to analyze user inquiries and engage with defined functions, thereby facilitating precise responses
through connections to external sources including databases, programming interfaces, and live data streams. This functionality has
been successfully implemented across numerous sectors such as finance analytics, healthcare systems, and service operations.The
implementation of function calling comprises three essential phases: preparation, execution, and processing. The preparation phase
encompasses query analysis and function identification. During execution, the system evaluates whether a function is necessary,
extracts relevant parameters, and oversees the operation. The processing phase concentrates on analyzing outcomes and crafting
appropriate responses. Each phase presents unique difficulties, ranging from accurately selecting functions to managing complex
parameter extraction and ensuring reliable execution. Researchers have established various evaluation frameworks and metrics to
assess function calling performance, including success rates, computational efficiency, parameter extraction accuracy, and response
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quality indicators such as ROUGE-L evaluation scores. This survey systematically reviews the current landscape of function calling in
LLMs, analyzing technical challenges, examining existing solutions, and discussing evaluation methodologies. We particularly focus
on practical implementations and industrial applications, providing insights into both current achievements and future directions in
this rapidly evolving field. For more resources and a comprehensive collection of related research papers, please refer to our repository
at GitHub 1.

CCS Concepts: • Computing methodologies → Neural networks; Natural language processing; • Information systems →
Specialized information retrieval.

Additional Key Words and Phrases: Large Language Models, Function Calling, Industrial Perspective, LLM Agent
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1 INTRODUCTION

Recent advancements in artificial intelligence have ushered in a transformative era with the development of large
language models (LLMs) such as GPT series, LLama [164], ChatGLM [33, 212] and Qwen [10]. These models, particularly
effective in generation tasks due to their robust generative capabilities, have established themselves as vital for complex
language tasks where traditional methods struggle. However, despite these advancements, LLMs face significant
challenges in specific applications, particularly in generating highly structured outputs and engaging in timely real-
world interactions [123, 137]. Even with evolving technology, LLMs often generate incorrect or outdated results for
scenarios outside their training scope [32, 57], indicating certain limitations. For example, asking a LLM to analyze the
latest stock market prices would be ineffective as it cannot access or retrieve real-time market data. This illustrates the
model’s limitation in handling dynamic information that changes frequently.

To overcome these deficiencies and more effectively leverage the potential of LLMs in enterprise and technical
domains, the concept of “Function Calling” has been introduced [61]. In this context, a Function is defined as a predefined
block of code, software, or tools that accept parameters and return a result. The term Function Calling in the context
of Large LanguageModels describes their proficiency at interpreting user requests and employing designated
computational procedures to deliver precise, contextually suitable answers. This technological advancement
substantially improves these AI systems’ accuracy when processing sophisticated inquiries while facilitating direct
connections with numerous external resources—including data repositories, streaming information feeds, external
application interfaces, alternative sophisticated language models, and additional services. To illustrate, these systems
can acquire current weather conditions through meteorological service integrations and implement programming
fragments using flexible code interpretation mechanisms. Additionally, this capability supports instantaneous analytical
processes and operational decisions crucial for various professional domains including financial research [106], medical
information systems [53], and tailored support solutions [54, 60]. As a result, this innovation fundamentally transforms
the architecture of automated intelligence platforms and their engagement patterns with human operators. For example,
Wolfram Alpha’s [54] plugin for ChatGPT leverages function calling to enable complex computational queries and data
retrieval. Users can ask detailed mathematical, scientific, or statistical questions, and LLMs call Wolfram Alpha’s API to

1https://github.com/Applied-Machine-Learning-Lab/Awesome-Function-Callings
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provide accurate and up-to-date answers directly within ChatGPT. This significantly enhances the ability of LLMs to
solve specific mathematical problems.

Thus, a significant ongoing task is to enhance LLMs, which are primarily trained in natural language, to develop
robust capabilities for specialized function calling. As shown in Figure 1, for a comprehensive LLM function calling
process, the entire process can be divided into three stages based on the timing of the call: pre-call, on-call, and post-call.
In the pre-call stage, the model must pre-process the user’s query, including planning and decomposing tasks and
selecting suitable function candidates from a function pool. Next, when entering the on-call stage, the model needs to
assess whether a function call is necessary to complete the current user’s task, involving the correct triggering of a
single function or multi-functions. This is because not every user query requires a function call; sometimes, standard
dialogue suffices. The challenge in this stage is avoiding unnecessary function calls and ensuring that needed function
calls occur at the right time. Once a function call is triggered, the model first extracts parameters, identifying specific
parameters from the user’s query and incorporating them into the function. Common practices include matching and
copying, but user language often contains a large amount of pronouns and unstructured expressions. For instance,
asking about “today” involves a date that changes daily. To address this, we can use adapters or automatic rewriting in
an intermediate language to optimize the process. Another major challenge in function calling is that if the required
parameter volume is not provided, the model might need to ask the users to obtain the necessary information. Once all
necessary parameters are prepared, the LLM will send the output results for the next step of processing. In the post-call
stage, since the LLM output is in a natural language format and differs from real-world functions, the LLM output
generated in natural language needs to be mapped to executable functions in the real physical world before being sent
to the server for execution. During the execution stage, natural challenges include handling function execution failures
and discrepancies between the function’s results and the query.

Nonetheless, evaluating the effectiveness of function calling involves various strategies [205] and various aspects [204].
Metrics such as pass rate and win rate [120], average time per call [150], parameter identification ratio [205], retrieval
metrics (such as Recall@𝐾 , NDCG@𝐾 , COMP@𝐾 ) [122] and ROUGE-L score [77] provide a comprehensive assessment
of the LLM’s performance in executing function calls. Each of these metrics provides valuable insights into different
aspects of the function calling process, but a holistic evaluation requires considering all these factors together to
fully understand the performance and limitations of LLMs in real-world applications. Numerous studies, including
API-BLEND [13], Seal-Tools [183], ToolBench2 [120], APIBank [70], ToolEyes [204], Rotbench [205], and others, have
conducted extensive evaluations of the function calling capabilities of LLMs, encompassing a wide range of aspects.

Although many surveys [90, 123, 179] have addressed the topics of function calling, tool learning, and tool use, they
often lack detailed discussions on practical challenges and underlying motivations. For example, Qu et al. [123] provide
a comprehensive framework for tool learning, covering stages such as task planning, tool selection, invocation, and
response generation. However, their work does not explore how these workflows can be optimized for real-world multi-
task scenarios, a crucial aspect for industrial applications. Similarly, Mialon et al. [90] discuss foundational definitions
and workflows, focusing on how tools enhance reasoning and problem-solving capabilities in LLMs. However, they
overlook the challenges of implementing function calling systems in practice, such as managing latency, tool selection
errors, or system failures. Wang (2024 B) et al. [179] categorize tool learning techniques and evaluation metrics but do
not address strategies for handling dynamic multi-tool environments or deployment at scale.

Yang et al. [200] and Wang (2023) et al. [180] broaden the discussion by emphasizing the importance of LLM
interactions in decision-making and evaluation methodologies, respectively. Yang et al. focus on combining planning
with tool invocation in complex tasks but limit their exploration to methodological overviews. Similarly, Wang (2023)



4 Wang et al.Table 1. Evaluation of Survey Papers Across Different Dimensions

Survey Paper Definition
or Workflow

Industrial
Challenges

Sample
Construction

Deployment
& Inference Evaluation Futures

& Outlook

Zhao et al. [220] ✓ ✗ ✗ ✗ ✓ ✓

Gao et al. [40] ✓ ✗ ✗ ✗ ✓ ✗

Xi et al. [188] ✓ ✗ ✗ ✗ ✓ ✓

Sun et al. [157] ✓ ✗ ✗ ✗ ✓ ✗

Qiao et al. [117] ✓ ✗ ✗ ✗ ✓ ✗

Huang et al. [52] ✓ ✗ ✗ ✗ ✓ ✗

Zhao et al. [221] ✓ ✗ ✗ ✗ ✓ ✗

Wang (2023) et al. [180] ✓ ✗ ✓ ✗ ✓ ✓

Wang (2024 A) et al. [170] ✓ ✗ ✗ ✗ ✓ ✓

Wang (2024 B) et al. [179] ✓ ✗ ✗ ✗ ✓ ✓

Qin et al. [210] ✓ ✓ ✓ ✗ ✓ ✓

Yang et al. [200] ✓ ✓ ✓ ✓ ✗ ✓

Mialon et al. [90] ✓ ✗ ✗ ✗ ✓ ✗

Qu et al. [123] ✓ ✗ ✓ ✗ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

et al. [180] highlight human-feedback-driven tool invocation but fail to provide solutions for practical challenges
like invocation failures or latency in real-world applications. These works represent an important intermediate step
but leave critical gaps in practical implementation. Broader surveys, such as Zhao et al. [221] and Huang et al. [52],
explore general LLM techniques and planning capabilities without directly addressing tool learning or function calling.
Reasoning surveys like Qiao et al. [117] and Sun et al. [157] overlook the integration of tools and workflows for solving
complex tasks. Additionally, works on autonomous agents by Wang (2024 B) et al. [170] and Xi et al. [188] touch upon
tools’ importance but lack systematic discussions of invocation challenges. Lastly, retrieval-augmented generation is
reviewed comprehensively by Gao et al. [40] and Zhao et al. [220], but their focus remains on retrieval rather than
broader tool learning frameworks. We also recognize the foundational contributions of earlier works like Qu et al. [123]
and Mialon et al. [90], which laid the groundwork for tool learning by defining workflows and highlighting its potential.
Yang et al. [200] and Wang (2023) et al. [180] expand the scope to interactive tasks, reinforcing function calling as a
vital direction for LLM research.

Building on these studies, our work addresses the gaps in systematic implementation and industrial deployment
of function calling and tool learning. We conduct experiments to explore how LLMs can efficiently select and invoke
tools in multi-task settings, while analyzing the influence of task complexity on tool selection mechanisms. We further
propose practical strategies, such as dynamic task queuing to optimize tool invocation efficiency, RL-based approaches
to improve adaptability to invocation failures, and lightweight interfaces to mitigate latency issues. As shown in Table 1,
while prior works have extensively covered function calling definitions and evaluation strategies, few studies have
comprehensively addressed industrial challenges, sample construction, and system deployment aspects. Our work
aims to fill these gaps by providing a complete treatment across all dimensions, including practical implementation
considerations and deployment strategies.

In this paper, we make several key contributions to the field of LLMs function calling:

• We clearly define the concept of function calling and provide a comprehensive function calling pipeline.
• We describe in detail the potential challenges encountered at each step of the function calling pipeline.
• We outline strategies for sample construction and training as well as model deployment to tackle all identi-
fied challenges. Importantly, we validate several of these strategies through carefully designed experiments,
demonstrating their effectiveness.
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Challenge 3.3: Pronouns Resolving
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                       Latency and Accuracy
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Challenge 2.1: Missing Calls
Challenge 2.2: Unnecessary Calls

Fig. 1. Typical function calling pipeline and associated challenges. The pipeline consists of three main stages: pre-call (including query
processing and function retrieval), on-call (covering function triggering and parameter handling), and post-call (involving function
execution and response generation). Each stage faces distinct challenges ranging from intent recognition and function redundancy in
the pre-call stage to parameter extraction and multi-call procedures during execution to result in mismatch and execution failures in
the post-call stage. LLMs are typically utilized in Stage 2 and Stage 3.

• We discuss comprehensive evaluation strategies for function calling and metrics.
• We also summarize the main datasets related to function calling in LLMs.
• We discuss future challenges and outlooks in this field.

In this paper, we present a comprehensive taxonomy of function calling in LLMs, which systematically categorizes
key technical components and methodologies across the full lifecycle, from training data construction and model
fine-tuning to deployment strategies and evaluation frameworks, providing a structured overview of both academic
research advances and industrial applications in this rapidly evolving field. We have organized our survey paper into
the following sections: Section 2 explores the motivations behind function calling and analyzes it through the function
calling workflow, highlighting the associated challenges. In Section 3, we detail strategies from the perspectives of sample
construction and model fine-tuning that are designed to overcome specific challenges in function calling. Subsequently,
Section 4 delves into strategies for tailored system deployment and model inference to tackle particular challenges
associated with function calling. Then, Section 5 discusses potential future developments and the corresponding
challenges.
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Additionally, we also provide supplementary information in the Appendix. Appendix Section A presents methods
for assessing the performance of function calling. Appendix Section B examines existing industrial products along
with essential datasets and benchmarks.

2 CONSTRUCTING THE FOUNDATION: FUNCTION CALLING PIPELINE AND CHALLENGES

We systematically analyze the function calling pipeline and its associated challenges in Section 2, providing a com-
prehensive framework for understanding this crucial aspect of LLM capabilities. This section presents a structured
classification framework for identifying difficulties encountered throughout the function calling process. Our taxonomy
systematically organizes these issues across multiple operational stages—beginning with query understanding prior to
function invocation and extending through response management following execution completion.

2.1 Motivation

The incorporation of function calling mechanisms within Large Language Models serves to address inherent constraints
these systems face beyond textual production capabilities [16]. Despite their sophisticated linguistic comprehension
and generation faculties [168], these models exhibit notable limitations regarding real-time information acquisition,
specialized computational operations, and external system interactions. Function calling integration enables thesemodels
to access designated interfaces and predefined procedural elements, thereby facilitating current data retrieval, complex
operational execution, and fluid integration with complementary technological frameworks [105]. This technological
advancement substantially expands the operational parameters of these systems while considerably improving both
utilization experience and practical implementation value [21].

2.2 Pre-call Stage

Preliminary analysis of user inquiries and identification of applicable functional components must be systematically per-
formed to guarantee optimal procedural selection while simultaneously maximizing response precision and operational
efficiency throughout the interaction process.

2.2.1 Query Processing. The preliminary phase within the standard function calling operational sequence involves
the model’s systematic preprocessing of user-submitted inquiries. The core tasks of this stage include understanding
the user’s request and decomposing the task. Through this process, the model can identify key information and action
steps that require further processing, preparing for the subsequent function retrieval stage. A significant challenge in
this stage is:

Challenge 1.1: Intent Recognition The initial challenge lies in recognizing user intent to guide function calling.
Understanding user intent is crucial for addressing this challenge. Interpreting user requests to discern their intentions

necessitates learning a mapping from the instruction space to the model’s cognition space [155, 216]. These approaches
employ external user-specific modules or prompts to incorporate users’ preferences, styles, and personal information
into the generated content. For example, GeckOpt [37] refines tool selection by incorporating intent-driven gating.
Additionally, some research [185, 210] advocates for leveraging user feedback to dynamically adapt the model to
individual users, presenting a promising avenue for personalizing LLMs. To the best of our knowledge, recognizing
user intent in most function-calling applications predominantly relies on the inherent capabilities of large models and
the strategic construction of prompts.
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2.2.2 Function Retrieval Processing. After query processing, it is crucial to select relevant function candidates for
subsequent steps. Given that a large commercial enterprise may have thousands of functions, failing to perform an
initial screening could result in an overwhelming number of choices. This introduces a new challenge:

Challenge 1.2 Function redundancy: When multiple functions serve similar purposes, the system faces decreased
efficiency and slower response times due to redundant function choices that complicate the selection process.

Initial function retrieval typically leverages the features of functions to address this challenge. It is important to
distinguish between function selection and initial function retrieval: function selection involves choosing the correct
function from a set of candidates, whereas retrieval pertains to identifying potential candidates. Some papers conflate
these concepts. In this paper, ’initial function retrieval’ denotes explicitly the process of identifying potential candidates.
A practical retrieval module is crucial for selecting the top-K suitable function candidates from a large pool in scenarios
with numerous functions. The introduction of this module bridges the gap between the capabilities of LLMs and
practical input size limitations, as not all functions can be directly input into LLMs. Traditional term-based methods,
such as BM25 [132], represent documents and queries as high-dimensional sparse vectors. For instance, Gorilla [113]
combines BM25 and GPT-Index to construct a tool retriever for tool retrieval. Semantic similarity can be calculated
using language model embeddings and cosine similarity. For instance, Confucius [39] trained a SentenceBERT model as
a tool retriever, enhancing the efficiency of relevant tool retrieval. CRAFT [208] guides LLMs to generate fictitious tool
descriptions based on a given query, utilizing these semantic details for searching. Similar to traditional information
retrieval domains, some topological information can also be incorporated. For example, COLT [122] proposes a novel
tool retrieval approach using Graph Neural Networks (GNNs) to ensure the completeness of the retrieved functions.

2.3 On-call Stage

After preparing the tasks and selecting a set of function candidates, the next typical step is to proceed with the
function calling operation. This involves addressing two sub-problems: ’When to call’ and ’How to call.’ In practical
implementations, the distinction between these two parts is often quite blurred, typically manifesting as a single-step
generation by the LLM. However, to facilitate a comprehensive understanding of the entire function calling process,
we discuss these two steps separately. Nevertheless, in practical applications, LLMs usually complete these steps in a
single operation [105].

2.3.1 When to call. After function retrieval, the model needs to assess whether a function call is required to complete
the user’s task. This decision depends on the model’s deep understanding of the task requirements and the context of
the dialogue. Correct triggering is crucial to avoid unnecessary function calls and to ensure that necessary function
calls occur timely. This presents two challenges:

Challenge 2.1: Missing Calls The LLM fails to initiate function calls when such actions are required. This lack of
proper triggering can lead to missed opportunities for processing or accurately responding to user requests.

Challenge 2.2: Unnecessary Calls The LLM initiates unnecessary function calls when not required by the user’s
current task. As shown in ChemAgent’s [207] evaluation, unnecessary function callings may underperform base LLMs
on general tasks if used indiscriminately. This not only results in inefficiencies and a waste of resources but may also
mislead the model’s output.

2.3.2 How to call. Once a function call is triggered, the LLM needs to decide which function to call and extract the
necessary parameters from the user’s query. This process generally includes identifying keywords and phrases in the
user’s language and converting them into the parameters required for the correctly chosen function. This step is critical
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to ensuring the accuracy of the function call. However, the selection and extraction of parameters can encounter the
following challenges:

Challenge 3.1: Missing/Illegal Parameters Missing/Illegal parameters issue arises when the parameters extracted
from the user’s input are inadequate or inappropriate for executing the intended function. This can lead to potential
failures in function execution or the necessity for the model to solicit additional input from the user, thereby complicating
the interaction and possibly affecting user satisfaction.

Challenge 3.2: Function hallucination The phenomenon of functional fabrication manifests when language
models erroneously invoke non-applicable or entirely fictitious operational components, or populate parameters lacking
legitimate existence. Such aberrations potentially generate inaccurate system responses and compromise procedural
reliability, consequently inducing user dissatisfaction and diminishing confidence in the technological framework.

Furthermore, linguistic reference elements within user communications—including temporal indicators such as
"today" and pronominal forms like "he" or "it"—necessitating contextual decoding for parameter determination, constitute
an additional computational complexity.

Challenge 3.3 PronounsResolving: Accurate disambiguation of referential elements within user-initiated linguistic
constructs represents a substantial technical impediment, attributable to the inherently fluid and context-contingent
characteristics of natural language. Inadequate resolution of such referential ambiguities frequently precipitates
erroneous parameter extraction mechanisms, thereby fundamentally compromising the operational integrity of function
invocation protocols.

Moreover, consequent to their developmental conditioning within unconstrained textual corpora and intrinsically
sophisticated architectural configurations, large language models manifest inherent computational constraints that
significantly impact performance metrics, particularly regarding temporal response parameters and precision indicators.
This operational limitation attains particular significance when these computational frameworks are deployed within
specialized implementation domains necessitating exactitude and expeditious output generation.

Challenge 3.4: LLM Inherent Limitations on Latency and Accuracy: The fundamental operational limitations
inherent within language modeling architectures—attributable to their developmental exposure to expansive yet non-
domain-specific datasets coupled with their intricate algorithmic configurations—manifest as substantive impediments
affecting response chronometry and interpretative fidelity when operationalized within specialized implementation
contexts. Such algorithmic constraints frequently precipitate procedural latencies, interpretative aberrations, or critical
analytical omissions throughout functional invocation sequences.

Furthermore, when confronted with user-initiated operational requisitions, the comprehensive fulfillment of such di-
rectives may necessitate sequential multiple-function activation protocols, exemplified by conference facility reservation
processes wherein the computational framework must initially execute database interrogation procedures regard-
ing facility availability parameters before subsequently implementing selection algorithms conforming to specified
conditional criteria. This operational complexity introduces the following methodological challenge.

Challenge 3.5 Multi-Call Procedure: The procedural execution framework may mandate the preservation of com-
prehensive algorithmic comprehension across multiplicitous functional invocation mechanisms—whether manifested
through concurrent parallel implementations or sequentially interdependent operational chains. Such computational
orchestration necessitates sophisticated task decomposition methodologies while simultaneously administering complex
dependency architectures throughout execution cycles.
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Furthermore, consequent to the inherently iterative conversational structures characteristic of human-machine
interactions and the potentially extensive epistemological repositories maintained by individual users, a significant
methodological impediment emerges regarding informational continuity management.

Challenge 3.6 Effective Context Management: Comprehensive administration of this expansive informational
continuity framework constitutes an operational imperative of paramount significance, functioning to mitigate poten-
tialities of critical data attenuation while simultaneously ensuring the maintenance of response homogeneity throughout
the duration of interactive procedural engagements. Inadequacies in this area can significantly impair the precision and
user experience of function calling. Previous context may include essential user information, domain knowledge, or the
history of multiple rounds of dialogue, including the results of functions executed in previous turns.

After parameter extraction, the model integrates these parameters into the chosen function. During this phase, the
model may need to use built-in logic or interact with the user to address any parameter deficiencies. Once this step is
completed, the model is prepared to send the function and its parameters, thus concluding the function calling process.

2.4 Post-call Stage

The objective of the post-call stage in the function-calling process is to execute the function and generate an appropriate
natural language response. This phase involves converting the natural language outputs of the LLM into executable
real-world functions. Once converted, these functions are sent for execution. Subsequently, the process also requires
analyzing the execution results, managing instances of execution failures, and reconciling any discrepancies between
the function’s results and the user’s original query and expectations. The challenges faced in this stage include:

Challenge 4.1 Execution Result Mismatch: Even when functions are correctly called, the outcomes may not align
with user expectations, leading to mismatches in execution results. These mismatches can occur due to constraints
inherent in the function’s logic, malicious attacks [182, 213] on the function, or inconsistencies in the quality of function
description.

Challenge 4.2 Irrelevant Information Overload: Some functions return some helpful, relevant information and
an excessive amount of irrelevant information due to their design for comprehensiveness, which can lead to verbose
responses and significant redundancy. This issue necessitates effective strategies for pruning irrelevant details to
enhance the clarity and utility of the output.

Challenge 4.3 Mismatch Between Real-World Functions and LLM-Generated Results: Functions filled by an
LLM generally cannot be directly executed due to a significant mismatch between the semantic space and the code
space, making mapping a considerable challenge. For instance, to query the weather in “Hangzhou” on “January 1st,
2024”, the function must be formatted correctly for the server. It may require a syntax like “GetWeather(date="2024.1.1",
city="007")” instead of “GetWeather(date="January 1st, 2024", city="Hangzhou")” generated by LLMs.

Challenge 4.4 Execution Failure: Notwithstanding precise functional invocation and adequate parameterization
protocols, operational execution failuresmay neverthelessmanifest due tomultifarious technical impediments. Execution
anomalies potentially derive from server-side computational aberrations, structural incongruities between anticipated
data architecture specifications and actual information configurational manifestations, or inherent constraints within
functional design paradigms that preclude efficacious processing of boundary conditions or unanticipated input
typologies. Such operational vulnerabilities necessitate the implementation of sophisticated exception management
infrastructures and alternative procedural pathways to preserve systemic operational integrity and maintain user
confidence metrics.
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Fig. 2. Exemplar Methodological Framework for Augmentation of Linguistic Model Functional Invocation Capacities: This schematic
representation delineates one potential procedural implementation trajectory through exemplar construction and parametric opti-
mization methodologies, comprising three principal operational phases: (1) Functional Entity Aggregation, wherein computational
procedural constructs and their corresponding ontological descriptors are systematically accumulated and categorized; (2) Invocation
Sample Architectural Development, potentially encompassing functional execution instantiations, parameter-deficient scenarios, and
heterogeneous response configurational paradigms; and (3) Output Sample Structural Formulation, illustrating one methodological
approach toward mapping execution resultant states to appropriate linguistic response generations. While other approaches exist
(e.g., LlamaFactory [175]’s unified training framework), this pipeline demonstrates common components that practitioners might
consider when implementing function calling capabilities.

The comprehensive resolution of aforementioned methodological impediments would facilitate enhanced linguistic
model performance vis-à-vis complex user directive processing, precise functional invocation execution, and appro-
priate response generation while simultaneously preserving contextual relevance parameters and output consistency
indicators. Through transcendence of current operational limitations, computational frameworks would attain superior
capability regarding nuanced query interpretation, intricate workflow administration, and reliable output production
across diverse interaction modalities. This augmented functional capacity would engender robust operational support
spanning multitudinous application scenarios, encompassing rudimentary task automation implementations through
sophisticated multi-iterative conversational exchanges, ultimately enhancing user satisfaction indices and systemic
reliability coefficients. The resultant performance optimization would concurrently facilitate seamless integration
capabilities with extant technological infrastructures while accommodating emergent utilization paradigms. Subsequent
analytical sections shall elucidate detailed methodological approaches addressing these operational challenges through
the prismatic perspectives of exemplar construction methodologies, parameter optimization protocols, and deployment
architectures, examining specific procedural frameworks and implementation heuristics for each operational dimension.

3 ENHANCING LLMS TO HAVE THE ABILITY: SAMPLE CONSTRUCTION AND FINE-TUNING

In the previous section, we discussed the necessary steps for function calling. This chapter addresses how pre-trained
LLMs under natural language settings can be endowed with function calling capabilities, as illustrated in Figure 2. As
shown in Table 2, we present a systematic review of sample construction methods and fine-tuning strategies, ranging
from function collection approaches to critical considerations in the training process.
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Table 2. Sample Construction and Fine-Tuning Strategies for Function Calling in LLMs

Sample
Construction
& Fine-Tuning

Function Collection (§3.1)
Manual Construction: Human-crafted functions
LLM Generation: Usage of LLMs for automated function creation
Web Mining: Diverse function extraction from web

Sample Construction (§3.2)
Text Representation: Toolformer [137], ToolGen [172]
Token Representation: Toolformer [137], ToolGen [172]
Multi-turn Interaction: GraphQL-RestBench [135], Hammer [78]

Fine-tuning Strategies (§3.3)

SFT: ToolGen [172], RAIT [136], Nye et al. [103], Andor et al. [7], Liu et al. [79], Allamanis
et al. [6], Barone et al. [11], Liu et al. [84], Liu et al. [82]
PEFT: GPT4Tools [199], CITI [48], Toolformer [137], Li et al. [69], Wei et al. [181]
RL & RLHF: WebGPT [98], TaskMatrix.AI [75], MADAC [73], GopherCite [126], Kojima
et al. [63], DPO [127], Christiano et al. [25], Manduzio et al. [89]

Critical Emphasis (§3.4)
Data Quality: Focus on data diversity and verification rather than volume
Model Scaling: Larger models show better function calling capabilities
Capability Balance: Need to maintain general abilities while enhancing function calling

3.1 Function Collection

The initial step involves collecting functions, including the function object—abstract entities consisting of the function
name, parameters, and execution logic—and their descriptions. Real-world functions are often disorganised, and
descriptions can be chaotic. Aside from manual construction, function objects and their descriptions can also be
generated using large-scale LLMs like GPT-4 [2][1],LlaMA 70B [164] or Qwen [10, 195]. However, our experience
suggests that such generated functions often lack diversity. Alternatively, data mining techniques can extract diverse
function objects from the web, with descriptions supplemented by powerful LLMs if missing. By assembling a sufficient
number of functions, the model can effectively grasp the timing of function triggers, thereby addressing Challenge 2.1.

3.2 Function Calling Sample Construction

We can construct sample mapping queries to outputs with a sufficient collection of functions. Real-world function calls
involve returning the corresponding function and parameters, awaiting execution by the system and server. In cases
where user-provided parameters are insufficient, the model may generate queries asking for additional information.
Samples must, therefore, cater to these scenarios by including a variety of input-output pairs. Only when provided
with a sufficient number of samples containing inadequate parameters, can the model learn when to request missing
parameters from users, thereby partially addressingChallenge 2.2. Functions can be represented either as text or tokens
in the model. Text representation provides more flexibility and semantic information but requires more token space,
while token representation (as adopted by Toolformer [137] and ToolGen [172]) is more compact and computationally
efficient but may have limited expressiveness. These two approaches can be combined - using token representation
during training for efficiency while converting to text format during inference for better interpretability and interaction.
For instance, both Toolformer and ToolGen encode functions as special tokens during training, but can present them in
natural language format during interaction with users.Challenge 3.1.

Inputs typically consist of function candidates and a natural text query generated by robust LLMs based on original
functions and descriptions. Outputs are crafted to match the varying requirements of real-life function-calling scenarios.
For instance, in situations where function calls are not necessary, it is essential to construct examples to guide the model
in understanding when to rely on its capabilities to respond. This approach could address Challenge 2.2. Moreover,
samples can be constructed to simulate multi-turn interactions to enhance multi-turn function calling capabilities [20].
GraphQL-RestBench [135] further advances sequential function calling by introducing structured API schemas and
response mapping, focusing on real-world REST API scenarios where functions have complex interdependencies.
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To further improve robustness in function selection and address Challenge 2.2, recent work like Hammer [78]
introduces specialized techniques such as function masking and dataset augmentation. This approach specifically targets
naming convention sensitivity issues that often mislead models, while demonstrating state-of-the-art performance even
in resource-constrained on-device deployment scenarios.

3.3 Fine-tuning Strategies

LLMs trained in natural language can perform function calls by designing prompts to enable this capability, as discussed
in other sections. However, this approach is often insufficient because the model’s reasoning and acting abilities depend
entirely on the provided prompts, and the model itself does not self-optimize or adapt to new environments. Therefore,
additional tuning is essential, mainly when new behaviors are challenging to learn and require more than just a few
examples. Before fine-tuning LLMs, constructed function calling samples and response samples can undergo a uniform
format cleaning process according to the specific usage, which typically includes a series of cleaning strategies, such as
data deduplication [6], syntax normalization [11], format standardization [84], and error correction [82]. . Subsequently,
some LLM fine-tuning strategies such as SFT (full-model fine-tuning), PEFT (parameter-efficient fine-tuning), and RLHF
(reinforcement learning with human feedback) can be employed to optimize model performance via constructed and
cleaned samples.

Specifically, parameter 𝜃∗ is learned by maximizing the likelihood of the output samples corresponding to the
dataset constructed, as discussed in previous sections. The objective function calculates the expected value of the
product of action probabilities for all queries 𝑞𝑖 and their corresponding outputs 𝑎∗

𝑖
within the dataset D, given

the auxiliary cues 𝑥𝑖,𝑡 and the conditions of the queries. Specifically, the objective function is defined as 𝜃∗ =

argmax
𝜃

E(𝑞𝑖 ,𝑎∗𝑖 ) ∈D
[
𝑝𝜃 (𝑎∗𝑖 | 𝑥𝑖 , 𝑞𝑖 )

]
, where 𝑝𝜃 (𝑎∗𝑖 | 𝑥𝑖 , 𝑞𝑖 ) represents the probability of output given the query

and auxiliary cues. Beyond direct imitation learning, additional information and tasks can be integrated to enhance
the training process. For example, Nye et al. [103] use execution traces as a form of supervision to improve reasoning
abilities. In contrast, Andor et al. [7] apply heuristics to gather supervised data, facilitating the fine-tuning of language
models. RAIT [136] combines instruction-tuning of code small language models with retrieval-augmented tool usage,
enabling systematic problem-solving in process engineering. ToolGen [172] injects tool information through fine-tuning
LLMs with tool descriptions as inputs and their corresponding tokens as outputs, directly incorporating tool knowl-
edge into model parameters. Additionally, the integration of LoRA can further refine these approaches. For example,
GPT4Tools [199] advance the capabilities of open-source LLMs by incorporating LoRA optimization techniques into
fine-tuning, utilizing datasets composed of tool usage instructions produced by ChatGPT. CITI [48] proposes a novel
Mixture-of-LoRA adapter to important and selectively fine-tunes unimportant components, enabling LLMs to enhance
their tool-utilizing capabilities while preserving general performance across multiple tasks.

Reinforcement Learning (RL) in function calling enables LLMs to interact with external tools or APIs within a task
directly, enhancing their ability to perform specific functions based on given inputs. For instance, Toolformer [137]
utilizes RL-based techniques to bootstrap examples of tool use, improving the language model’s effectiveness in function
calling. Reinforcement Learning from Human Feedback (RLHF) [2, 25] further enhances this approach by aligning the
languagemodel more closely with complex human preferences and values that are challenging to capture with hardcoded
reward functions. This proves particularly useful in function-calling scenarios [69] where the model interacts with
external systems or tools to perform tasks such as computation, information retrieval, or navigating web interfaces. For
example, WebGPT [98] employs a text-based browser to answer questions using internet searches, optimizing browsing
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actions and answer quality through RLHF. Similarly, GopherCite [126] is fine-tuned with RLHF to cite supporting
evidence when answering questions and to abstain when unsure. TaskMatrix.AI [75] leverages RLHF to incorporate
human feedback dynamically, enhancing the model’s ability to navigate and coordinate the use of multiple tools and
APIs. Recent work [89] proposes an efficient framework for training smaller models in function calling capabilities,
using larger models to generate training data through step-by-step reasoning chains [63, 181] and Direct Preference
Optimization (DPO) [127]. The safe multi-agent reinforcement learning framework proposed by MADAC [73], which
ensures state-wise safety constraints while achieving optimal performance, could potentially provide insights for
developing safe function calling systems. This approach demonstrates that focused training on specific reasoning tasks
can achieve strong performance even with reduced model sizes, addressing practical deployment constraints.

In addition to their direct application [79], RL methods are crucial for repairing bad cases in real-world function-
calling scenarios within industrial settings. There is a perceptual discrepancy between LLMs and human interpretation
of queries. For example, when users search for ’flights from Los Angeles to Hangzhou on the evening of August 30th,’
they might also consider flights in the early hours of August 31st as ’evening’ flights. However, if an LLM strictly
interprets the query, it may miss these flights. Relying solely on explicit data to resolve these discrepancies is impractical,
as training LLMs to encompass all potential user intents is unfeasible. Furthermore, it is difficult to capture complex
intentions through simple inputs due to the limitations in prompt length. Therefore, adjusting based on human feedback
becomes crucial. Reinforcement Learning from Human Feedback (RLHF) is essential for function-calling learning
because it allows for direct learning from human feedback, correcting errors, and refining system responses. This
technology is critical for addressing habitual mistakes, misentered parameters, and even hallucinations in user inputs.

Fine-tuning strategies effectively address several key challenges. For Challenge 3.1 and Challenge 3.2, approaches
like ToolGen [172] demonstrate that directly incorporating tool knowledge into model parameters through fine-tuning
can significantly reduce parameter errors and hallucination. To address Challenge 2.2, methods like GPT4Tools [199]
and CITI [48] show that LoRA-based selective fine-tuning can effectively reduce unnecessary function invocations while
maintaining model performance. Additionally, for Challenge 4.1 and Challenge 4.4, RLHF approaches demonstrated
by WebGPT [98] and MADAC [73] provide effective frameworks for handling execution failures and improving result
accuracy through human feedback.

3.4 Critical Emphasis

Based on practical implementations, we emphasize that data quality (and variety) plays a more crucial role than data
quantity in both data construction and fine-tuning phases, given the intricate nature of function calling tasks. To validate
this hypothesis, we conducted a simple experiment: we selected a subset of 1,000 samples from the BFCL [112, 113]
training dataset for supervised fine-tuning using LLaMA Factory [175], and used BFCL’s Abstract Syntax Tree (AST)
test category for evaluation. We chose AST tests as they enable offline evaluation of function calling capabilities without
requiring external API access. We applied LoRA fine-tuning with a rank of 8 and a learning rate of 3e-4, training for 3
epochs. We specifically chose Qwen1.5-7B-Instruct [10] as our base model to ensure experimental integrity, as this older
version predates the release of the Gorilla dataset, thus eliminating potential data contamination concerns. To investigate
the minimal data requirements for achieving satisfactory function calling capabilities, we conducted experiments with
varying training sample sizes. As shown in Figure 3, our experimental results demonstrate that model performance
quickly reaches a plateau after processing approximately 400 training samples. This early plateau phenomenon suggests
two important insights: First, the function calling ability can be effectively learned with a relatively small amount of
high-quality data, indicating that the model can quickly grasp the underlying patterns of API usage and parameter
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Fig. 3. Performance comparison of different models across various sample sizes. The results show that Python Simple achieves the
best performance with a peak accuracy of 82.25% at 400 samples, while Multiple AST and AST Summary also demonstrate strong
performance above 60% accuracy.
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Fig. 4. Performance trends across different model sizes. Base models show near-zero function calling capabilities across all scales,
indicating this ability is unlikely to emerge naturally during pre-training. After LoRA fine-tuning, performance exhibits clear scaling
law characteristics, with particularly significant improvements from 4B to 7B. This suggests that function calling capabilities need to
be explicitly introduced during both pre-training and fine-tuning stages and benefit substantially from larger model scales.

formatting; Second, simply increasing the training data volume beyond this point yields diminishing returns, which
emphasizes the importance of data quality over quantity in function calling tasks. This finding has significant practical
implications for efficient model training and resource utilization in real-world applications.

As shown in Figure 4, we conducted another experiment to investigate the impact of model size on function calling
capabilities. We selected three Qwen models of different sizes (1.8B, 4B, and 7B) and evaluated their performance on
BFCL’s AST tests, both with and without fine-tuning. Our experiments reveal two key findings: First, base models with-
out fine-tuning demonstrate minimal function calling capabilities, suggesting this skill rarely emerges naturally during
pre-training. Secondarily, the performance trajectories subsequent to Low-Rank Adaptation parametric optimization
methodologies manifest characteristic computational scaling law phenomenology, with particularly significant efficacy
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Fig. 5. The potential seesaw effect across different language capabilities. After fine-tuning Qwen-7B with function calling data,
we observe a substantial improvement in function calling accuracy (FC Overall Acc increases from 11.11% to 45.43%). Meanwhile,
the model shows varying performance changes in other capabilities: a decrease in question-answering ability (BoolQ accuracy
drops from 66.37% to 60.61%) and relatively stable performance in news generation (CNN-rougeL maintains around 0.071). This
pattern might suggest a seesaw effect between specialized function calling capability and general language abilities, particularly in
question-answering tasks, though more systematic studies would be needed to confirm this hypothesis.

amplifications observed at the 7B parameter quantification threshold, indicative of enhanced functional invocation capa-
bility acquisition correlating positively with architectural volumetric expansions. This scaling pattern topology reveals
critical epistemological insights regarding model dimensionality requirements for functional invocation operational
tasks. Whereas computational frameworks exceeding 7B parametric quantities demonstrate promising performance
enhancement coefficients, reduced-scale architectures (sub-7B configurations) exhibit persistent inadequacy in at-
taining comparable operational efficacy despite substantial training corpus augmentation. This empirical observation
suggests that conventional optimization methodologies may prove insufficient for reduced-scale models to acquire
robust functional invocation capabilities. For more resource-efficient deployment within computationally-constrained
operational environments, subsequent investigative endeavors should explore enhanced methodological approaches
for reduced-scale architectures, including externalized memory mechanisms to compensate for inherent capacity
limitations, specialized training paradigms such as incremental complexity progression methodologies, or architectural
reconfiguration strategies specifically engineered for functional invocation operational contexts. This empirical finding
underscores the necessity of optimizing equilibrium between computational efficiency metrics and functional invocation
capability coefficients, particularly within deployment scenarios where expanded-scale architectural implementations
may present practical implementation constraints.

In practice, intensive function call training tends to compromise the model’s general capabilities, particularly in
text generation. As demonstrated in our experiments, this trade-off between specialized function call abilities and
general language capabilities presents a significant challenge. To investigate this phenomenon more systematically,
we conducted experiments with Qwen-7B under three scenarios: the base model, function calling fine-tuned (FC),
and mixed training with both function calling and natural language samples (Mixed). As illustrated in Figure 5, our
evaluation using AST overall accuracy, CNN/Daily Mail dataset [140]’s RougeL score, and BoolQ accuracy [26] reveals
an interesting pattern: while function calling fine-tuning substantially improves the AST performance, it appears to
come at a cost to certain general language capabilities, particularly in question-answering tasks. The text generation
ability, however, remains relatively stable across different training configurations, suggesting a complex relationship
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Fig. 6. A Typical Deployment of LLM for Function Calling Stages: The Flow through Input Construction, Memory Integration, and
Output Format Validation (Function Execution). Note that actual implementations may vary in practice.

between different language capabilities. To address this challenge, we suggest incorporating domain-outlier data samples
and natural language text [107] alongside function call examples during fine-tuning [162]. This mixed training approach
attempts to maintain model versatility while developing function call competence, aligning with successful strategies
that blend different types of training data [128]. While our initial results show promise in balancing these capabilities,
further systematic studies would be needed to fully understand and optimize this relationship. Furthermore, concepts
from lifelong learning and curriculum learning [174, 219] may offer promising directions for achieving a better balance
between specialized and general capabilities, particularly crucial for practical applications where maintaining both sets
of abilities is essential.

Some studies recommend sample augmentation [154] to improve tuning outcomes. APIGen [84] presents an automated
pipeline for generating high-quality, verifiable function-calling datasets through a three-stage verification process,
demonstrating that models trained on such carefully curated data can achieve superior performance even with relatively
small parameter counts compared to larger models like GPT-4. ToolACE [82] presents an innovative self-evolving
data synthesis pipeline that leverages multi-agent interactions and dual-layer verification to generate high-quality
function-calling training data, enabling 8B parameter models to achieve GPT-4-level performance on standardized
benchmarks. These approaches and the strategies discussed form a comprehensive methodology for tuning LLMs to
handle sophisticated function-calling tasks effectively.

What’s more, the ultimate goal for large models is to generate appropriate natural language text responses based on
user queries. Data for mapping function return results to suitable natural language responses is therefore necessary.

4 IMPLEMENTING LLMS FOR FUNCTION CALLING: DEPLOYMENT AND INFERENCE
After constructing the sample and fine-tuning the large model, this section examines common deployment approaches
that implement the three-stage pipeline (pre-call, on-call, post-call) outlined in Section 2. The deployment process for
function-calling LLMs typically involves multiple inference steps aligned with these stages. While some implementations
include an initial inference step for query understanding and decomposition using an intent model, this preprocessing
phase continues to evolve in industrial applications and represents an area for future exploration. The core process of
handling user queries and functions directly follows a well-defined workflow. As shown in Figure 6, a typical deployment
involves input construction with the query and contextual information (pre-call), LLM-based function generation
(on-call), and format check or function execution (post-call). The Memory component maintains essential context across
these stages. This represents one common approach among various possible implementation patterns that practitioners
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Table 3. Deployment and Inference Strategies for Function Calling in LLMs

Deployment
& Inference

Task Planning (§4.1)

Foundational Planning Mechanisms: ReAct [203], ToolFormer [138], Reverse
Chain [218], AVATAR [184], DEPS [178], LLM-MCTS [222], MACT [226], TACO [88],
PAE [227], SCIAGENT [183], Agent Laboratory [139]
GUI-based Approaches: AppAgent [202], OS-ATLAS [187], AndroidLab [194], Pon-
der [177], OS-Genesis [159]
System Optimizations: Orca [93, 95], Memgpt [108], AIOS-Agent [41], SpecInfer [91],
PEOA [153], LLM-Tool Compiler [150]
Error: LLM-Planner [151], ToolChain* [229], TPTU [134], Buckets [23], AMOR [42]
Tree-based: ControlLLM [85], PLUTO [50], Toolink [116], TPTU-v2 [64], 𝛼-UMi [145]
Adaptive: COA [38], DEER [43], SOAY [176], ProgPrompt [149], AutoTOD [217],
MATMCD [143], CC-PP [49], AVT [198], K-agents [18], Agent-Pro [217], Inner [83]

Prompt Construction (§4.2)
Few-shot Integration: Example demonstrations [154], Four-shot prompting
Context Management: Function definitions, Docstrings, Chain-of-thought
Query-based Retrieval: Ask-when-Needed [173], Interactive refinement

Function Generation (§4.3)
Grammar control [111, 166], Knowledge guidance [17]
Attribution [231], Feedback [192], Dialogue refinement [59]
Multi-agent coordination [46], Task proposal [227], Experience transfer [114]

Function Mapping (§4.4)
Resolution: Rule-based [66, 81], Knowledge reasoning [214], LLM mapping [67]
Alignment: Dictionary mapping [156], Semantic matching [121], normalization
Validation: Parameter checking, Value enumeration, Permission management

Response Generation (§4.5)

Initial Generation: Placeholder results [47, 110, 137], Function unpredictability [203]
Templates: Structure format [113, 120], Formatting [68], Signatures [154]
Review: Validation [120, 152], Agent correction [55, 147], Feedback [51, 99, 190]
RAG: Example retrieval [40], System mapping [19, 76, 100, 129, 133, 154, 209]

Memory Scheme (§4.6)

Memory Structure: Hierarchical structure and storage [225], Task-related symbolic
memory [201], Three-layered memory architecture [71], Persistent memory stream [74]
Memory Management: Self-controlled memory mechanism [74], Memory control
system [74, 94], Multi-agent experience storage [72]
Memory Retrieval: Cross-conversation memory retrieval [225], LSH-based indexing
mechanism [94], Similarity-based retrieval [223], Efficient memory access [80]
Memory Processing: Thought-based memory storage [80], Trajectory-as-exemplar
framework [223], State abstraction mechanism [223], Knowledge triplet [94]

have explored. As detailed in Table 3, we provide a comprehensive overview of deployment and inference strategies,
covering aspects from task planning to memory schemes.

4.1 Task Planning and Compiler

4.1.1 Foundational Planning Mechanisms. Understanding user intent alone is insufficient for complex function
calling tasks, necessitating sophisticated task planning approaches. Early works established fundamental planning
capabilities through chain-of-thought prompts (ReAct [203]) and fine-tuning approaches (ToolFormer [138]), enabling
LLMs to decompose problems and utilize APIs progressively. Reverse Chain [218] advanced this by introducing target-
driven backward reasoning for more controlled multi-API planning without fine-tuning. Recent frameworks have
enhanced planning capabilities through multi-component architectures and iterative refinement. Agent Laboratory [139]
advances structured research planning through a multi-agent architecture where specialized agents (PhD, Postdoc,
Professor) collaborate using function calling and iterative planningmechanisms - each agent executes targeted commands
(e.g., SEARCH, DIALOGUE, EDIT) while engaging in reflective dialogue to decompose complex research tasks, similar to
howAVATAR [184] leverages actor-comparator architecture but adapted specifically for scientific workflows. The system
enables iterative refinement through stage-wise human feedback, analogous to DEPS’s interactive planning approach,
while maintaining research state tracking across literature review, experimentation and writing phases. DEPS [178]
enables interactive planning through description-based decomposition and iterative refinement, while LLM-MCTS [222]
combines Monte Carlo Tree Search with memory augmentation, leveraging LLMs as both a commonsense world model
and a search heuristic. These planning approaches have been successfully adapted to diverse application scenarios.
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For complex table analysis, MACT [226] implements iterative planning between planning and coding agents through
action generation and execution. TACO [88] enhances multi-modal models through synthetic Chain-of-Thought-and-
Action traces for complex task solving. PAE [227] improves zero-shot generalization through context-aware planning
and evaluation beyond existing models. In specialized domains, SCIAGENT [183] enables direct scientific reasoning
through tool-augmented planning across multiple domains, while Ning et al. [101] combine Code Property Graphs with
LLM-based semantic analysis for comprehensive agent code defect detection. To enable effective planning capabilities,
FlowAgent [146] introduces Procedure Description Language (PDL) that bridges natural language flexibility with
code-like precision, allowing LLM-based agents to adapt workflows while maintaining procedural control. These
advances demonstrate the evolution from basic chain-of-thought approaches (ReAct [203], ToolFormer [138]) to
sophisticated planning frameworks (AVATAR [184], DEPS [178], LLM-MCTS [222]) capable of handling diverse tasks
through structured decomposition, iterative refinement, and domain-specific adaptations (MACT [226], TACO [88],
SCIAGENT [183]).

4.1.2 GUI-based Approaches. Recent work has explored GUI-based approaches to enhance function calling capa-
bilities. AppAgent [202] proposes a two-stage training paradigm combining GUI grounding pre-training and action
fine-tuning to enable LLMs to understand and interact with mobile applications. OS-ATLAS [187] further extends this
by introducing a foundation action model for generalist GUI agents, unifying the action space across different platforms.
These approaches demonstrate the potential of combining API and GUI-based methods for more comprehensive task
execution capabilities. AndroidLab [194] provides a systematic benchmark framework for evaluating such autonomous
agents in real-world mobile environments. Ponder & Press [177] proposes a divide-and-conquer visual GUI agent
framework that uses only visual input, featuring a two-stage planning strategy with instruction interpretation and
element localization to enable direct and general computer control. OS-Genesis [159] proposes an interaction-driven
GUI agent trajectory construction framework that generates training data by exploring environments first, then deriving
tasks retrospectively, without human supervision.

4.1.3 System-level Optimizations. From a system perspective, researchers have explored optimizing LLM execution
through compiler and operating system innovations. At the compiler level, Orca [93, 95] proposes a specialized
approach to optimize LLM inference through instruction scheduling and memory management, introducing techniques
like operation fusion and memory layout optimization to reduce inference latency. Operating system optimizations
have also shown promising results. Memgpt [108] presents an operating system design specifically tailored for LLM
workloads, providing efficient resource management and scheduling mechanisms. AIOS-Agent ecosystem [41] envisions
a revolutionary architecture where LLM serves as the operating system kernel while diverse AI agents function as
applications, enabling natural language programming and democratizing software development. These system-level
optimizations are crucial for enabling efficient on-device LLM deployment and execution, particularly in resource-
constrained environments where memory and computational efficiency are paramount. Recent system optimizations
further explore specialized architectures. SpecInfer [91] introduces speculative inference to enhance serving efficiency
through parallel execution. The PEOA [153] introduces a Large Language Model Operating System (LLM OS) with a
modular architecture, where a meta-agent orchestrates an action generator and specialized expert models to break down
and solve complex chemical engineering problems, utilizing property graph-based knowledge modelling and teacher-
student transfer learning with GPT-4 for improved tool integration and problem-solving capabilities, while managing
system resources and tool scheduling in a manner similar to traditional operating systems. LLM-Tool Compiler [150]
fuses similar tool operations into unified tasks at runtime, achieving up to 4x improvement in parallel execution while
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reducing API costs in function calling systems. These works demonstrate the potential of system-level optimizations in
improving LLM performance across different deployment scenarios.

4.1.4 Robust Planning through Error Handling. Error handling and recovery mechanisms have been explored
to enhance planning reliability. LLM-Planner [151] introduces environmental feedback for plan regeneration during
execution failures, while ToolChain* [229] employs decision trees to systematically manage API calls. TPTU [134] and
Attention Buckets [23] focus on reducing information loss through structured frameworks and parallel operations.
AMOR [42] presents a finite state machine (FSM)-based framework for function calling that allows autonomous
execution and transitions over disentangled modules, enabling process-level human feedback to improve reasoning
capabilities through a two-stage fine-tuning approach (warm-up and adaptation).

4.1.5 Tree-based Decision Making. Tree-structured approaches offer systematic solution exploration. Control-
LLM [85] implements Tree of Thoughts with depth-first search on tool graphs. PLUTO [50] uses autoregressive planning
with hypothesis trees, while Toolink [116] and TPTU-v2 [64] leverage hierarchical task decomposition. 𝛼-UMi [145]
extends this through specialized planning-oriented fine-tuning.

4.1.6 Adaptive Planning Strategies. Recent works advance flexible planning and coordination through various
approaches. In terms of adaptive planning, COA [38] employs abstract reasoning chains that adapt to domain knowledge,
while DEER [43] enhances generalization through dynamic tool sampling. SOAY [176] and ProgPrompt [149] further this
adaptability by generating executable code structures tailored to specific execution environments. Building on adaptive
planning, several frameworks demonstrate effective task decomposition and multi-agent coordination. MATMCD [143]
introduces a multi-agent framework where data augmentation and causal constraint agents collaborate for multi-
modal causal discovery. Similarly, AVT [198] decomposes video processing tasks between captioning and arrangement
agents, while K-agents [18] coordinates translation and inspection agents for experimental procedures using state
machines. Advanced coordination mechanisms are explored in several works. CC-PP [49] employs a two-stage approach
combining path heuristics with greedy best-first search for multi-agent coordination under communication constraints.
AutoTOD [217] demonstrates effective task planning through instruction-following models, while Agent-Pro [217]
introduces dynamic belief management and policy-level reflection. The Inner Thoughts framework [83] enhances
multi-party coordination by enabling proactive participation through continuous thought generation and evaluation.

Task planning and system optimization address several key challenges in function calling. ForChallenge 1.1 complex
task decomposition and Challenge 1.2 execution planning, foundational planning mechanisms like chain-of-thought
and multi-component architectures provide systematic approaches for task breakdown and execution. For Challenge
2.1 cross-modal interaction and Challenge 2.2 system efficiency, GUI-based approaches and system-level optimizations
enable effective human-computer interaction and improved computational performance. Additionally, for Challenge
3.1 error handling and Challenge 3.2 robustness, various frameworks introduce mechanisms for execution reliability
and recovery strategies.

4.2 Prompt Construction Strategies

For function calling tasks, effective prompt construction requires careful integration of few-shot examples, context, and
query-based retrieval. NexusRaven [154] demonstrates that retrieving demonstrations from existing query-response
pairs, using approximately 16 examples per API function with four-shot prompting, significantly improves function
calling success rates. The prompt context must include function definitions, docstrings, capability descriptions, and
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chain-of-thought components that explain argument derivation and function selection logic. Hard-negative examples
of similar but incorrect functions help improve the model’s discrimination ability. The construction process leverages
demonstration retrieval by scanning existing query-response pairs while maintaining a growing corpus of past use
cases that enables system personalisation through live interactions. This approach incorporates multi-step refinement,
from mining raw function calls to generating natural language queries with chain-of-thought reasoning. While these
methods focus on improving function calling through demonstration and refinement, the Ask-when-Needed prompting
strategy [173] enhances LLMs’ ability to handle unclear instructions by encouraging proactive question-asking before
API calls, achieving significant improvements in accuracy while maintaining efficiency when paired with GPT-4. These
prompt engineering strategies effectively address Challenge 2.1, Challenge 2.2, and Challenge 3.2 by improving
function triggering accuracy and reducing hallucination through better-structured prompts and examples.

4.3 Function Generation (or Selection) Strategies

Once the prompt is constructed, the LLM proceeds to generate functions. A critical step in this process involves
the controlled or restricted generation of outputs. Control over function generation in LLM function calls can be
significantly enhanced through the use of context-free grammar (CFG) [111, 166]. By adopting a CFG-based approach,
the model’s output can be restricted to syntactically valid sequences, effectively constraining the token space to
prevent the production of invalid tokens. This methodological implementation operationalizes a filtration mechanism
that orchestrates the selective procedural determination during generative processes through syntactical constraint
application, ensuring rigorous conformity to grammatical structural specifications delineated within the Context-
Free Grammar framework. As empirically substantiated through application deployment scenarios, this procedural
architecture not only expedites integration protocols of computational linguistic outputs through syntactical anomaly
reduction but concurrently enhances reliability coefficients of model-generated content, thereby preserving elevated
qualitative generation standards within predetermined grammatical constraint parameters.

TOOL-ED [17] methodological framework augments affective conversational content generation through reconcep-
tualization of epistemological repositories such as COMET as invocable procedural utilities, facilitating linguistic model
implementation of flexible accessibility protocols to externalized emotional knowledge constructs through pedagogical-
acquisitional transfer learning paradigms, consequently achieving superior performance metrics in affective response
generation while simultaneously circumventing superfluous knowledge incorporation phenomena.

VisionMask [231] proposes an attribution-centric architectural paradigm that identifies critical visual-spatial regions
within optical inputmodalities catalyzing functional invocation processes through autonomously-supervised educational
methodologies, enabling enhanced comprehension and validation capabilities regarding computational decisional
processes. TR-Feedback [192] proposes an iterative feedback framework that leverages LLMs to enhance tool retrieval
performance through comprehension, assessment, and instruction refinement while establishing both in-domain
and out-of-domain benchmarks for tool retrieval evaluation, significantly improving tool retrieval accuracy. APEC-
Travel [59] proposes an interleaved dialogue framework that effectively extracts personalized user preferences through
multi-round interactions, demonstrating how to achieve accurate, proactive, efficient, and credible function calling via
streaming processing. IBSEN [46] proposes a director-actor agent collaboration framework for generating controlled
drama scripts, demonstrating an effective function generation strategy through multi-agent coordination and dynamic
adaptation. PAE (Proposer-Agent-Evaluator) [227] demonstrates significant improvements in accuracy by introducing
a three-component framework that combines context-aware task proposal, chain-of-thought agent execution, and
image-based outcome evaluation, achieving over 30% relative improvement in zero-shot generalization to unseen
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Fig. 7. Function mapping strategies in LLM function calling, illustrating the transformation process from natural language input to
system-executable function calls through pronoun mapping, format alignment, and error checking.

tasks and websites even when using weaker models for task proposal and evaluation. Experiential Co-Learning [114]
proposes an experience-based collaborative framework for software code generation, demonstrating improved function
generation through agent cooperation and experience transfer

These approaches can improve the accuracy of LLMs in function calls, which demand high precision, thereby
addressing Challenge 3.2 and Challenge 3.4.
4.4 Function Mapping Strategies

Function mapping plays a crucial role in deploying function calling, primarily responsible for transforming model
outputs at the semantic level into executable commands in the physical space. Moreover, as shown in Fig. 7, function
mapping involves Pronoun Mapping, Format Alignment, and Error Checking.

4.4.1 Mapping of Pronouns. First, it is necessary to map some pronouns. For instance, when querying “the weather
in our city today” the model output “GetWeather(date=’Today’, city=’Our City’)” can be recognized and converted
to “GetWeather(date=’20240101’, city=’Hangzhou’)” This can be achieved through predefined human-designed rules
(by constructing and maintaining necessary information mapping dictionaries) or by a small language model. Proper
construction of the LLM data itself can also address this issue, but robust backups for industrial scenarios are very
important. These conversions are typically achieved through simple mappings via human-designed rules [66, 81],
knowledge structures reasoning [214], resolving and mapping via small language models [67], UI-guided token selection
and interleaved streaming [121], or directly adding some specific tuning samples to finetune and enhance the LLM’s
direct resolving capabilities, thus addressing Challenge 3.3 and Challenge 4.3 to some extent.

4.4.2 Strict Format AlignmentMapping. Additionally, there is often a large gap between the user’s natural language
input and the strict requirements of function parameters (which change according to the function). For example, when
querying the weather in “Hangzhou” on “January 1st, 2024," the model output “GetWeather(date=’January 1st 2024’,



22 Wang et al.

city=’Hangzhou’)” is converted to “GetWeather(date=’20240101’, city=’007’)” to meet actual system requirements. Or,
when a user inputs “Please register for my heart treatment” at a hospital, it needs to be mapped to “Cardiovascular
Department” This mapping can be maintained in the service through an information mapping dictionary, or by allowing
the LLM to perform a first-step alignment through LLM CoT, or by training a small language classifier with semantic
features to match function parameters. Syllabus [156] introduces a portable curriculum learning library that provides
unified APIs and format alignment mechanisms for training reinforcement learning agents across different environments
and frameworks. These approaches also address Challenge 4.3 to some extent.

4.4.3 Identification of Invalid Inputs. In addition, the mapping stage also needs to verify that all required parameters
are included and assess the accuracy of enumerated values. This effectively addresses issues of missing or invalid
parameters and mitigates the impact of Challenge 3.1 at the system level. For example, if a model returns a query
“GetWeather(date=’20240101’)” missing city information, the parameter checker will identify the missing city parameter
and trigger a default response configured by operations, which is then returned to the user. Or if a query requests
tomorrow’s weather in “Hogwarts” with the output “GetWeather(date=’20240101’, city=’Hogwarts’)” and "Hogwarts"
is not recognized in the city code table, the checker will flag it as an invalid value and trigger a default response for
unsupported values, which is then communicated to the user.

Moreover, function mapping could also involve filling in some parameters invisible to the LLM, such as fields related
to permissions and UUIDs, which are supplemented during the backend processing stage to ensure the request’s
integrity and security. Function mapping fundamentally involves utilizing system-level rules and algorithms to ensure
the robustness of the function-calling process and enhance the user experience in a way that is both reliable and
intuitive. Effective function mapping addresses Challenge 4.3 and can mitigate the impact of Challenge 3.1 at the
system level.

4.5 Response Generation Strategies

The simplest method for response generation involves initially using a model to generate placeholder results [47, 110,
137], which are then replaced with the outputs from an API call (either through direct matching or rewriting with a
larger model). This approach ensures the model’s planning and intent understanding are executed end-to-end. However,
this method makes the function calls and their outputs unpredictable [203], and the execution of functions may lead to
unexpected results.

4.5.1 Templates. Templates play a crucial role in structuring function calling outputs. Several works have demon-
strated that structured templates significantly improve function calling accuracy and parameter selection [113, 120].
The template approach has proven especially valuable in API interaction scenarios where precise parameter formatting
and type checking are crucial [68]. Studies indicate that well-designed templates can help models better understand
function signatures and generate more accurate API calls [154]. These template-based approaches effectively address
Challenge 3.1 and Challenge 4.3.

4.5.2 Review. Response review mechanisms ensure reliable function execution through systematic validation. Pa-
rameter boundary checking and type validation during review phase have proven effective in preventing common
function calling errors [120]. Beyond simple validation, interactive review and correction approaches have emerged
- Song et al. implemented a schema-based parameter checking and response parsing system [152], while Shi et al.
proposed a cooperative multi-agent framework that enables specialized agents to dynamically review and correct each
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other’s actions [147]. A comprehensive evaluation by Jacovi et al. demonstrated that careful review mechanisms are
crucial for tool-assisted systems, though they also found that existing review approaches still struggle with effective
tool integration and validation [55]. Nathani et al. further advanced this field by introducing a multi-aspect feedback
framework that integrates multiple specialized review modules to address different types of errors, showing significant
improvements in reasoning accuracy [99]. Xu et al. proposed using compression and selective augmentation during
review to make the process more efficient while maintaining effectiveness [190]. QueryAgent [51] proposes an environ-
mental feedback-based framework for reliable and efficient function generation, introducing stepwise self-correction and
targeted error guidance. These mechanisms are crucial for ensuring successful execution in complex API interactions.
These review mechanisms effectively address Challenge 3.1, Challenge 4.1, and Challenge 4.4.

4.5.3 RAG. Retrieval-Augmented Generation (RAG) enhances function calling accuracy by leveraging existing exam-
ples [40]. By incorporating previously successful function calls, RAG systems can better map user queries to appropriate
API calls [19, 76, 100, 129, 133, 154, 209]. Nguyen et al. propose SFR-RAG [100], a contextually faithful LLM specifically
optimized for retrieval-augmented generation, introducing a standardized evaluation framework and demonstrating
strong performance in contextual understanding and citation abilities with significantly fewer parameters than existing
solutions. Chan et al. [19] evaluate RAG for API integration by comparing semantic search approaches using different
embedding models and analyzing the limitations of retrieval-based methods compared to fine-tuning based solutions.
The NexusRaven [154] shows that carefully curated demonstration sets can significantly improve parameter selection
and function matching. These enhancements help maintain a high level of clarity and consistency in responses, which
is crucial for applications requiring high reliability and ease of use. These strategies not only optimize the interaction
between users and AI systems but also contribute to creating a more efficient and user-friendly experience. These
approaches can effectively address Challenge 3.4, Challenge 4.1 and Challenge 4.2.

4.6 Memory Scheme Strategy

Implementing an effective memory scheme in multi-turn dialogue situations is crucial, especially when it comes to
handling function calls and parameter extraction. Given the empirical observation of suboptimal contextual continuity
preservation within multi-iterative conversational frameworks, potentially resulting in deficient parameter extraction
methodologies, we propose an architectural implementation strategy that discretely maintains functional parameter
extraction resultants across the most recent K conversational iterations. By way of illustrative exemplification, during
initial conversational engagement, when a user solicits meteorological information regarding "the weather in Hangzhou
on 1st January 2024," the computational framework extracts GetWeather(date="20240101", city="Hangzhou")” and
systematically preserves this parametric configuration within temporary computational storage. During subsequent
conversational iteration, upon user inquiry regarding What about Xi’an?”, the system extracts exclusively city=Xi’an”
from the current linguistic input. At this operational juncture, the system reappropriates the temporal parameter
from preserved memory architecture and executes GetWeather(date="tomorrow", city="Xi’an")”. This methodolog-
ical approach potentially incorporates memory attenuation mechanisms, wherein early conversational parametric
configurations undergo systematic elimination once conversational iterations exceed predetermined threshold K.

The implementation of dynamic filtration and selective retention of contextual informational components predicated
upon current interrogative specifications constitutes a critical operational dimension in enhancing dialogical qualita-
tive metrics and relevance coefficients. This methodological paradigm effectively attenuates informational entropy
derived from contextually irrelevant data while ensuring sustained computational focus on immediate conversational
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requirements. These optimization architectural implementations contribute significantly to experiential user satis-
faction metrics and systemic operational efficacy in managing multi-iterative dialogical exchanges. To address these
methodological impediments and further advance dialogical capabilities, investigative researchers have proposed vari-
ous memory-augmented architectural paradigms. Among these theoretical frameworks, MemoryBank [225] presents
an innovative memory-augmented planning architecture that enhances large linguistic computational models with
extended temporal memory capabilities through three principal operational components: hierarchical memory storage
infrastructure, Ebbinghaus-inspired memory updating algorithmic mechanisms, and cross-conversational memory re-
trieval methodologies. SCM [74] proposes a self-controlled memory-augmented planning framework that enables LLMs
to maintain and utilize long-term memories through a memory stream, memory controller, and LLM agent architecture.
TiM [80] proposes a memory-augmented planning framework that enables LLMs to store and recall thoughts rather
than raw conversations, featuring pre-response recalling and post-response thinking to achieve consistent reasoning
with efficient memory retrieval. RET-LLM [94] proposes a memory-augmented planning framework featuring a general
read-write memory system that stores knowledge in triplets, manages memory through a controller, and enables efficient
memory retrieval through LSH-based indexing. SYNAPSE [223] proposes a memory-augmented planning framework
that uses trajectory-as-exemplar prompting, featuring state abstraction for memory efficiency, complete trajectories as
exemplars for planning, and similarity-based memory retrieval for experience reuse. METAAGENTS [72] proposes a
memory-augmented planning framework for collaborative generative agents, featuring perception for environment
understanding, memory for experience storage, reasoning for planning and reflection, and execution for skill utilization.
TradingGPT [71] proposes a memory-augmented multi-agent trading system that features a three-layered memory
structure, inter-agent debate mechanism, and personalized trading characteristics to enhance financial decision-making
through collaborative planning. DoraemonGPT [201] proposes a memory-augmented framework for dynamic scene un-
derstanding, featuring task-related symbolic memory, spatio-temporal and knowledge tools, and MCTS-based planning
for exploring multiple solution paths. These memory management strategies and memory-augmented frameworks
effectively address Challenge 3.6 by enabling more coherent and context-aware interactions across extended conversa-
tions. Additionally, by maintaining accurate parameter history and context, these approaches help mitigate Challenge
3.1 and Challenge 3.3 through improved parameter extraction and pronoun resolution in multi-turn dialogues.

4.7 Function Call Latency Strategies

Function calls require low latency to perform efficiently, especially under the challenge of managing long contexts.
Key-value (KV) cache techniques, commonly used to manage extensive contexts, can adversely affect performance when
the context becomes overly lengthy, as they are not ideally suited for function calls. However, employing page attention
mechanisms within the vLLM (very large language model) framework can effectively address these latency issues by
optimizing how the model accesses and processes large contexts, significantly improving baseline LLM performance.
vLLM [169] introduces continuous batching and PagedAttention for efficient serving of LLMs, achieving higher
throughput while maintaining low latency. PagedAttention [65] presents a novel memory management mechanism
that enables efficient attention computation through page-based memory organization, significantly reducing memory
requirements for LLM serving. FlashAttention [28, 29, 141] presents an IO-aware attention algorithm that reduces
memory access and increases training speed. SpecInfer [91] introduces speculative inference to enhance serving
efficiency through parallel execution.

Due to the potential involvement of multiple functions in function calling (FC), system-level planning to optimize
latency is essential. For instance, the LLM Compiler [61, 150] effectively plans and executes multiple function calls
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in parallel, organizing them using a Directed Acyclic Graph (DAG) to manage dependencies efficiently. This strategy
not only streamlines the process but also significantly cuts down on latency, providing a more responsive system
for handling intricate function call scenarios. Besides mitigating Challenge 3.4, the LLM Compiler also effectively
addresses Challenge 3.5 by managing the orchestration of sequential and parallel tasks seamlessly.

Several optimization techniques have proven effective for further advancements in reducing latency during function
calls. Model pruning [87, 96, 158] and knowledge distillation [193, 197] demonstrate significant latency reductions
while preserving function calling accuracy. Quantization methods [34, 167] could further optimize inference speeds
in production environments. ThorV2 [14] demonstrates enhanced function calling capabilities with smaller models,
achieving superior performance in CRM operations compared to larger commercial LLMs. TinyAgent [35] offers
solutions through efficient model compression and optimization techniques, demonstrating that small language models
can achieve GPT-4-Turbo-level performance while running entirely on local hardware like MacBooks. This marks a
significant advancement in edge-based function calling capabilities. These approaches directly address Challenge 3.4
by enhancing model efficiency in real-time applications.

5 LOOKING AHEAD: OPEN ISSUES AND DISCUSSIONS FOR FUNCTION CALLING IN LLMS

Despite the significant progress in function calling capabilities for LLMs, several critical open issues remain to be
addressed. These issues span various aspects of function calling systems, from fundamental service-level issues to
practical concerns about usability, optimization, and function isolation.

5.1 Open Issue 1: Service Issues of Function Calling

Establishing universally accepted standards for assessing function call quality across services remains challenging.
Current evaluation metrics, as shown in Appendix Sec. A predominantly focuses on technical capabilities rather
than service-oriented application requirements. These quantitative methodologies often prioritize computational
efficiency but often inadequately address user experience and domain-specific implementation needs. LLMs often
exhibit suboptimal performance characteristics, including elevated response latency and reduced throughput, especially
when tool learning is integrated into reasoning frameworks. For instance, simple queries using LLM plugins can result
in noticeable delays compared to traditional search engines. Reducing this latency is essential for maintaining service
quality. In Agent Laboratory [139], this challenge is particularly pronounced as research processes require sequential
tool usage across multiple stages.

Recent work by Wu et al. [186] has identified critical security vulnerabilities specific to function calling capabilities.
Their study demonstrates that through a novel "jailbreak function" attack method, attackers can achieve over 90%
success rates in bypassing safety measures across major models, including GPT-4 [104], Claude-3.5-Sonnet [8], and
Gemini-1.5-pro [163].

Developing an integrated assessment framework that evaluates response time, accuracy, user satisfaction, and
security measures is essential. Such a framework should incorporate multidimensional metrics that align technical
performance with service quality and safety objectives.

5.2 Open Issue 2: Usability and Modification of Functions for Function Calling Applications

In practical applications, the effectiveness of function calls largely depends on the usability of callable functions, such as
modifying existing functions. Identifying operational components suitable for computational utilization and addressing
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implementation impediments within specific scenarios constitutes a primary obstacle for optimized function invocation
efficiency.

Challenges in function modification include ensuring data interoperability, circumventing architectural constraints,
and addressing integration complexities between functional components and existing frameworks, which can potentially
impede deployment flexibility and the efficacy of training for function invocation operations.

To mitigate technical barriers and economic factors, establishing standardized API modification frameworks becomes
imperative, encompassing evaluation protocols, design specifications, validation methodologies, and deployment
guidelines. Implementing modularized design paradigms can simplify integration protocols and enhance systemic
flexibility.

Achieving equilibrium between economic resource allocation for API modifications and the resulting performance
enhancements, while ensuring stability and effectiveness across diverse operational scenarios, remains an area that
requires additional research.

5.3 Open Issue 3: FeedbackQuality and Optimization of Function Calls

The efficacy of LLMs in acquiring and operationalizing human feedback remains insufficiently elucidated, particularly
within scenarios involving complex or nuanced feedback mechanisms. Current implementations may inadequately
utilize feedback due to complex processing sequences, potentially leading to error propagation and suboptimal learning
outcomes.

Existing methodologies include Reinforcement Learning from Human Feedback (RLHF), wherein models undergo
optimization utilizing reward signals derived from human preferences. Additionally, supervised optimization with
annotated data repositories attempts to incorporate human input directly within training frameworks. However, these
approaches often demonstrate inadequate performance with ambiguous or unstructured feedback, which is prevalent
in authentic environments.

Further research is needed to develop methodologies for accurately quantifying and responding to human feedback,
especially in ambiguous situations. Potential solutions include developing advanced natural language comprehension
algorithms that can interpret underlying user intent, incorporating probabilistic modeling to manage uncertainty in
feedback interpretation, and integrating interactive learning frameworks that enable clarification queries to resolve
ambiguities.

5.4 Open Issue 4: Function Isolation and Post-Processing Strategies

Implementing appropriate isolation mechanisms and post-processing frameworks for distinct functional components
is imperative to meet commercial requirements and regulatory compliance specifications. These implementations
necessitate flexible design methodologies and elevated customization capabilities.

Examples include microservice architectures, wherein individual functional components are deployed as autonomous
service entities with precisely delineated interfaces. This approach facilitates enhanced control over operational behavior
and simplifies regulatory compliance by isolating sensitive processes. Additionally, middleware layers designed explicitly
for post-processing tasks ensure that computational outputs conform to the necessary specifications.

A primary challenge is ensuring that isolation strategies and post-processing frameworks maintain effectiveness
across heterogeneous implementation scenarios, while satisfying regulatory requirements and preserving service
efficiency. Potential solutions might include adaptive algorithms that dynamically reconfigure API characteristics based
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on real-time analytics, policy-driven management systems that facilitate automated compliance mechanisms, and
machine learning models for monitoring performance metrics to enable resource allocation adjustments.

6 CONCLUSION

This comprehensive survey has examined function calling in LLMs from an industrial perspective, systematically
analyzing the challenges, solutions, and future directions in this rapidly evolving field. We have outlined a complete
function calling pipeline consisting of three critical stages: pre-call, on-call, and post-call, and detailed the specific
challenges encountered at each stage. The key challenges include intent recognition, function redundancy, parameter
extraction, function hallucination, and multi-call procedures. Our review and discussion demonstrated that function
calling significantly enhances LLMs’ capabilities by enabling structured outputs and real-time interactions with external
systems. As the field continues to evolve, we anticipate the development of more sophisticated techniques for context
management, complex multi-function calls, and real-time parameter validation, leading to more powerful and practical
AI systems that can better serve human needs while maintaining reliability and efficiency.

Additionally, detailed evaluations, benchmarking datasets, and analyses of industry products for LLM Function
Calling can be found in Appendix Sec. A and Sec. B.
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A ASSESSING THE ABILITY: EVALUATION OF FUNCTION CALLING TASKS

Evaluating the capabilities of function calling in large language models (LLMs) is a multifaceted challenge due to the
numerous steps involved in the process. It is insufficient to judge a function-calling system from a single perspective,
and currently, there is no comprehensive evaluation metric that fully captures its performance. Existing evaluation
methods either focus on specific components or calculate aggregated scores across various tasks using large benchmarks.
As shown in Table 4, we summarize both the commonly used evaluation metrics and major benchmarks that have been
developed to assess function calling capabilities in LLMs.

Table 4. Overview of Evaluation Methods and Benchmarks for Function Calling in LLMs

Category Evaluation Type Methods and Benchmarks

Overall
Performance

(§A.1)

Function Selection Metrics Recall@K [228], NDCG@K [56], COMP@K
Core Evaluation Metrics Pass Rate [120], Win/Success Rate (information richness, factual accuracy, rea-

soning quality) [12]
Comprehensive Assessment T-Eval (planning, reasoning, retrieval, understanding, instruction following,

review) [24]
Quality-based Metrics BLEU [109], ROUGE-L [77], Exact Match [15], F1 score [13]

Benchmarks
(§A.2)

Early Foundational ToolLLM [120], ToolAlpaca [160], Gorilla [113]
Standardized Platforms APIBench [113], API-Bank [70]
Domain-Specific ShortcutsBench [144], BigCodeBench [230], SEAL [62], RadABench [224], Noisy-

ToolBench [173], Mobile-Bench [31]
Task-Oriented IN3 [115], NESTFUL [12], UltraTool [50], AppWorld [165], TheAgentCom-

pany [191], AgentBoard [86], TravelPlanner [189], ChinaTravel [142]
Comprehensive Systems API-BLEND [13], NESTOOLS [45], MTU-Bench [171], WTU-EVAL [102]

A.1 Overall Performance

A.1.1 Function Selection Metrics. Several metrics are used to evaluate function selection effectiveness, including
Recall@K [228], which measures the proportion of correctly selected functions, NDCG@K [56] which considers both
relevance and ranking position, and COMP@K, which assesses whether all necessary functions are included in the
top-K selections, where 𝐾 represents the number of selected functions.

A.1.2 Core Evaluation Metrics. The Pass Rate calculates the proportion of successfully completed instructions
within limited budgets [120]. This metric assesses the executability of instructions for a language model in the context
of tool usage. However, it is considered a loose metric since the solution path is deemed a pass even if the final answer
does not resolve the original instruction after the model has attempted all the available APIs.

The Win/Success Rate, on the other hand, evaluates how well an instruction is completed [12]. The criteria for the
Win/Success Rate include factors such as information richness, factual accuracy, reasoning quality, milestones reached
during execution, exploration of potentially useful APIs, and minimization of repeated or redundant API calls. This
metric provides a more nuanced assessment of the model’s performance by considering the quality and efficiency of the
solutions generated. Pass Rate and Win/Success Rate serve as fundamental metrics in evaluating LLM performance,
with Pass Rate focusing on task completion and Win/Success Rate assessing solution quality. These complementary
metrics provide a basic framework for understanding model effectiveness in function calling tasks.

A.1.3 Comprehensive Assessment Framework. T-Eval decomposes the function calling evaluation into six fun-
damental abilities (planning, reasoning, retrieval, understanding, instruction following, and review) and provides
step-by-step assessment protocols to comprehensively evaluate LLMs’ tool utilization capabilities [24].
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A.1.4 Quality-based Evaluation. The fundamental objective of tool-learning methodological implementations
centers on enhancing operational capabilities of large-scale linguistic computational frameworks to address downstream
task requirements with elevated efficacy parameters. Consequently, the operational effectiveness of tool utilization mech-
anisms undergoes evaluation predominantly through performance metrics in resolving these downstream computational
tasks [160]. This evaluative paradigm necessitates that linguistic computational frameworks effectively consolidate
informational components acquired throughout the comprehensive operational process, ultimately generating precise
and contextually appropriate responses to user interrogative inputs. The qualitative assessment of terminal responses
can be quantified through implementation of sophisticated metrics including BLEU scoring methodology [109], ROUGE-
L analytical frameworks [77], Exact Match evaluation paradigms [15], F1 statistical measurement protocols [13], among
additional evaluative frameworks. These quantitative assessment methodologies evaluate multidimensional aspects
including correctness coefficients, completeness parameters, and linguistic qualitative dimensions of computational
responses generated by large-scale linguistic models.

A.2 Benchmarks

A.2.1 Early Foundational Frameworks. The evolution of function-calling benchmarks has seen substantial advance-
ments through several pioneering evaluation frameworks. The ToolLLM methodology [120] established a systematic
approach for assessing tool-augmented language models’ capabilities, providing a systematic approach to evaluating
tool-use capabilities. This foundation was enhanced by ToolAlpaca’s specialized metrics [160], which focused on
analyzing the alignment between model outputs and tool specifications in instruction-following tasks, specifically
analyzing alignment between model outputs and tool specifications. These foundational works have significantly
influenced current evaluations of LLMs’ function-calling capabilities.

A.2.2 Standardized Evaluation Platforms. The field has witnessed the emergence of comprehensive evaluation
platforms, notably through the Berkeley Function Calling Leaderboard developed via Gorilla [113]. This computational
integration platform facilitates authentic application programming interface operational interactions while main-
taining systematic updating protocols, whereas APIBench [113] has substantially enhanced its precision coefficients
through implementation of sophisticated analytical methodologies including Abstract Syntax Tree (AST) structural
evaluation paradigms. The API-Bank architectural framework [70] further expanded evaluative capabilities through
implementation of robust validation infrastructure for programmatic interface interaction mechanisms. Building upon
foundational benchmarking architectures such as ToolLLM [120] and ToolAlpaca [160], API-Bank encompasses a more
comprehensive functional spectrum, incorporating enterprise-grade and open-source technological implementations,
while simultaneously addressing multifaceted complexities inherent within multi-iterative conversational exchanges.
Its comprehensive methodological approach quantifies multiple operational dimensions ranging from parameter extrac-
tion protocols to sophisticated dialogical management capabilities, providing exhaustive analytical insights regarding
linguistic model functional invocation performance metrics. Contemporary benchmarking architectural frameworks,
exemplified through Gorilla [113] and API-Bank [70], emphasize authentic operational relevance through multidi-
mensional evaluative methodologies. These assessment protocols examine directive comprehension capabilities, tool
selection accuracy coefficients, parameter configuration precision metrics, and execution validation methodologies. By
incorporating enterprise functions and open-source tools, as pioneered by ToolLLM [120], these frameworks simulate
realistic deployment conditions.
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A.2.3 Domain-Specific Benchmarks. The field has developed specialized benchmarks for specific application
domains. ShortcutsBench [144] has emerged as a large-scale benchmark specifically designed for evaluating API-based
agents, featuring real APIs from Apple’s operating systems and human-annotated action sequences, with a focus on
tasks of varying difficulty levels and parameter-filling capabilities. BigCodeBench [230] presents a rigorous evaluation
framework for assessing LLMs’ function-calling capabilities through 1,140 practical programming tasks across 139
libraries and 7 domains, introducing both structured docstring-based completion and natural language instruction-based
generation scenarios to comprehensively measure models’ ability to understand and implement complex function
calls. SEAL [62] proposes a comprehensive tool evaluation framework that standardizes benchmarks, introduces a
GPT-4-powered API simulator with caching, and provides end-to-end evaluation of API retrieval, calls and responses.
RadABench [224] evaluates whether current LLMs can serve as agent cores in radiology by introducing RadABench-
Data with diverse cases across 6 anatomies/5 modalities/11 tasks, and RadABench-EvalPlat featuring dynamic tool set
simulation. NoisyToolBench [173] serves as a challenging benchmark for evaluating LLMs’ tool use under imperfect
instructions by systematically covering four types of instruction issues: missing key information, multiple references,
errors, and beyond tool capabilities. Mobile-Bench [31] proposes a benchmark for evaluating LLM-based mobile agents
in handling interleaved vision-language action streams through both UI operations and API calls.

A.2.4 Task-Oriented Evaluation Frameworks. Recent frameworks have emerged focusing on specific functional
aspects. The IN3 framework [115] proposes a novel benchmark for evaluating and improving intention understanding
in function mapping, with comprehensive metrics and annotations that enable effective training and assessment of
model-user interaction capabilities. NESTFUL [12] proposes a benchmark focusing on evaluating LLMs’ capability to
plan and execute nested sequences of API calls, where outputs from earlier calls serve as inputs to subsequent ones,
demonstrating the challenges in direct planning for complex API interactions. UltraTool [50] proposes a comprehensive
benchmark for evaluating LLMs’ capabilities in planning, creating and using tools within real-world complex scenarios,
focusing on task decomposition and direct planning without relying on memory augmentation. AppWorld [165]
proposes a comprehensive benchmark for interactive code generation with complex API calls, featuring real-world apps
and programmatic evaluation of LLMs. TheAgentCompany [191] presents a comprehensive benchmark that evaluates
LLM agents on realistic tasks in a software company setting, featuring self-hosted environment with internal websites
and structured professional tasks across software engineering, project management, HR and finance domains. The
benchmark adopts checkpoint-based evaluation for long-horizon tasks and enables agent-human interaction through
simulated colleagues. AgentBoard [86] proposes a comprehensive benchmark and visualization framework for evaluating
multi-turn LLM agents through interleaved vision, language and action interactions. TravelPlanner [189] proposes a
benchmark for evaluating language agents’ planning capability in real-world scenarios, featuring tools for accessing
millions of records, explicit and implicit constraints, and comprehensive evaluation metrics for assessing memory-
augmented planning abilities. Another notable travel benchmark is ChinaTravel [142], which evaluates language agents
on complex multi-day travel planning with authentic Chinese data, featuring a domain-specific language for scalable
constraint validation and both synthetic and human-derived queries.

A.2.5 Comprehensive Evaluation Systems. Recent developments have produced more holistic evaluation ap-
proaches. API-BLEND [13] presents a large-scale training and evaluation framework for API-focused LLMs, featuring a
hybrid approach to data generation, multi-domain API coverage, and systematic evaluation methods that demonstrate
superior out-of-domain generalization compared to existing tool-augmented solutions. NESTOOLS [45] proposes an
evaluation benchmark specifically for nested function calling capabilities of LLMs. It uses an automated method to
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Table 5. Overview of Industry Products for Function Calling

Industry
Products

Commercial Platforms (§ B.1) ChatGPT plugins [104], Claude’s tool use API [9], Cohere Com-
mand [27], Qwen [124, 125, 195, 196], and DeepSeek [30, 44]

Frameworks & SDKs (§ B.2) HuggingFace Transformer Agents [36], Semantic Kernel [92],
LangChain [4], WebCPM [118]

Autonomous Agent Systems (§ B.3) Auto-GPT [148], BabyAGI [97], BMTools [119], RestGPT [152],
xLAM [131], Octopus-v4 [22]

Open Source Models (§ B.4) GRANITE-20B [1], Mistral 7B [5], NexusRaven V2-13B [154], Go-
rilla [113], FireFunction V1 [3], Nous Hermes 2 [130]

Training Resources & Datasets (§ B.5) AgentInstruct [211], AgentOhana [215], Lumos [206]

generate large-scale examples with different nesting structures, ensures quality through manual review and refinement,
and provides four evaluation dimensions (tool selection, calling order, parameter filling, and nested parameter filling) to
comprehensively assess LLMs’ nested tool calling abilities. Experiments on 22 LLMs show that current models still
face challenges in handling complex nested tool calls. MTU-Bench [171] introduces a comprehensive multi-granularity
tool-use benchmark comprising MTU-Instruct for training and MTU-Eval for automatic evaluation, enabling LLMs
to effectively handle diverse tool-use scenarios across single/multi-turn dialogues and single/multi-tool interactions
through high-quality instruction data and fine-grained evaluation metrics. WTU-EVAL [102] presents the first eval-
uation framework to assess whether LLMs can accurately determine the necessity of tool usage, featuring eleven
datasets across different domains and demonstrating that most current LLMs struggle with tool usage decision-making,
especially in general tasks where tools are not required.

A.2.6 Evolution of Performance Metrics. Performance metrics have evolved considerably since these benchmarks’
inception. The evaluation methodology established by ToolAlpaca [160] and refined through subsequent research
[70, 113] now encompasses response time, resource efficiency, and scalability. Cross-platform compatibility testing, an
area initially addressed by ToolLLM [120], has become essential for evaluating LLMs’ ability to handle various API
protocols, authentication mechanisms, and data formats across different services. These technological progressions,
with substantial methodological contributions emanating from ToolLLM [120], ToolAlpaca [160], API-Bank [70], and
Gorilla [113], have established a robust epistemological infrastructure for the systematic evaluation and enhancement
of functional invocation capabilities within contemporary linguistic computational frameworks.

This progress is vital for advancing LLM performance in real-world applications and maintaining rigorous, evolving
evaluation standards. AgentBoard [86] introduces novel evaluation frameworks for assessing function-calling capabilities,
with AgentBoard focusing on multi-turn tool interactions across nine distinct tasks.

B INDUSTRY PRODUCTS

Current mature industry products capable of function calling include several notable tools, as summarized in Table 5.

B.1 Commercial Platforms

ChatGPT ChatGPT plugins [104] extend the capabilities of the ChatGPT model by enabling it to access and interact
with various external applications and services. This allows users to retrieve real-time information, perform tasks, and
integrate seamlessly with other tools. Claude’s tool use API [9] extends the model’s capabilities by enabling controlled
interactions with external functions and services. This allows developers to integrate external data sources, execute
specific tasks, and enhance Claude’s functionality through structured tool interactions. Similarly, Qwen [124, 195, 196],
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QwQ-32B [125], and DeepSeek [30, 44] have also implemented function calling capabilities, though DeepSeek’s current
implementation is noted to be unstable with potential issues like loop calls and empty responses.

B.2 Development Frameworks and SDKs

HuggingFace Transformer Agents [36] are particularly powerful for multimodal tasks, enabling large language models
(LLMs) to perform a wide range of tasks by leveraging pre-trained models and integrating them with various data
modalities such as text, images, and audio. Semantic Kernel [92] is an SDK that integrates LLMs like OpenAI, Azure
OpenAI, and Hugging Face with conventional programming languages such as C#, Python, and Java. This facilitates
the creation of sophisticated AI applications by allowing developers to seamlessly combine the strengths of LLMs with
traditional software development practices. Additionally, LangChain [4] is a versatile framework for developing appli-
cations powered by large language models. It facilitates the architectural implementation of sophisticated operational
workflows through enabling linguistic computational frameworks to engage in programmatic interface interactions with
Application Programming Interfaces, relational and non-relational data repositories, and heterogeneous computational
systems, rendering it particularly advantageous for the development of intelligent assistive frameworks and automated
procedural systems.

WebCPM [118] constitutes a comprehensive architectural framework engineered specifically for the development of
Chinese-language extended-form interrogative-responsive applications through implementation of interactive web-
based information retrieval methodologies. This framework enables large-scale linguistic computational models to
simulate anthropomorphic web navigation behavioral patterns to extract and synthesize informational content from
diversified digital repositories. WebCPM demonstrates particular efficacy in the construction of sophisticated operational
workflows wherein linguistic models interact with search engine infrastructures, extract contextually relevant data
components, and generate comprehensive informational responses.

B.3 Autonomous Agent Systems

Within contemporary technological progressions, numerous open-source computational libraries and developmental
toolkits have been proposed to augment tool-learning methodological implementations within large linguistic models.
Auto-GPT [148] constitutes an open-source computational application specifically engineered to facilitate autonomous
execution of complex operational tasks by large-scale linguistic models with minimal anthropogenic input requirements.
This framework enables computational models to decompose overarching objectives into sequential subtasks and
systematically execute these components, incorporating capabilities for accessing distributed information networks
and engaging with Application Programming Interfaces.

Correspondingly, BabyAGI [97] represents an open-source architectural framework designed for the development
of autonomous artificial intelligence operational agents capable of managing and executing complex task sequences
with minimal supervisory requirements. Its modularized architectural design facilitates developer extensibility through
integration of supplementary tools or programmatic interfaces, rendering it particularly suitable for flexible and scalable
automation implementations.

BMTools [119, 210] comprises an open-source code repository specifically engineered to enhance large linguistic
model capabilities through integration with diversified toolsets while simultaneously providing a community-oriented
developmental platform for the creation and dissemination of these auxiliary tools. This repository [119, 210] enables
streamlined plugin development through simplified Python functional implementations and supports integration with
external ChatGPT plugin architectures, establishing it as a significant resource for extending computational model
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operational capabilities. RestGPT [152] provides a framework for LLMs to interact with RESTful APIs through a
structured pipeline of planning, selection, and execution, while xLAM [131] and Octopus-v4 [22] demonstrate advanced
approaches for tool usage through specialized model architectures.

B.4 Open Source Models

GRANITE-20B-FUNCTIONCALLING [1] is an open-source function calling model from IBM based on multi-task
learning that achieves state-of-the-art performance among open models on the Berkeley Function Calling Leaderboard
and demonstrates strong generalization capabilities through training on seven fundamental function calling tasks.
Additionally, Cohere Command [27] provides APIs such as Command R and Command R+ that facilitate integration
with external tools and data sources, enhancing developer access to function-calling features. Mistral, an open-source
project, has released the Mistral 7B model, enabling custom function definitions for use during inference [5, 58].
NexusRaven [154] presents the NexusRaven V2-13B model, an open-source LLM that excels in advanced function
calling, often outperforming GPT-4 in cybersecurity tool and API invocation. Gorilla [113] OpenFunctions specializes
in API interactions, with its 7B model fine-tuned on API documentation to produce accurate function calls from natural
language prompts. The Fireworks FireFunction V1 model [3] builds upon the capabilities of the Mistral 7B model,
achieving near GPT-4 quality in structured information generation and decision-making tasks. Lastly, Nous Hermes 2
Pro [130, 161] incorporates elements from both Mistral 7B and Llama 3 8B models to deliver exceptional performance
in function calling and structured output generation, as evidenced by its high accuracy in evaluations.

B.5 Training Resources and Datasets

AgentInstruct [211], AgentOhana [215], and Lumos [206] represent comprehensive datasets and training pipelines that
span multiple domains and environments, providing valuable resources for training function-calling capable models.

These products collectively contribute to the advancement of LLM capabilities by enabling more sophisticated
interactions with external systems, enhancing autonomy, and supporting the development of complex AI applications
across various domains.
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