
Published in Transactions on Machine Learning Research (2/2024)

Graph Neural Networks Formed via Layer-wise Ensembles of
Heterogeneous Base Models

Jiuhai Chen ∗ jchen169@umd.edu
University of Maryland

Jonas Mueller jonasmueller@csail.mit.edu
Cleanlab

Vassilis N. Ioannidis vassilisnioannidis@gmail.com
Amazon

Tom Goldstein tomg@umd.edu
University of Maryland

David Wipf davidwipf@gmail.edu
Amazon

Reviewed on OpenReview: https: // openreview. net/ forum? id= LO02YHxrxd

Abstract

Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs
have demonstrated superior performance on various semi-supervised learning tasks with
graph data. However, the numerical node features utilized by GNNs are commonly extracted
from raw data which is of text or tabular (numeric/categorical) type in most real-world
applications. The best models for such data types in most standard supervised learning
settings with IID (non-graph) data are not simple neural network layers and thus are not
easily incorporated into a GNN. Here we propose a robust stacking framework that fuses
graph-aware propagation with arbitrary models intended for IID data, which are ensembled
and stacked in multiple layers. Our layer-wise framework leverages bagging and stacking
strategies to enjoy strong generalization, in a manner which effectively mitigates label leakage
and overfitting. Across a variety of graph datasets with tabular/text node features, our
method achieves comparable or superior performance relative to both tabular/text and graph
neural network models, as well as existing state-of-the-art hybrid strategies that combine the
two.

1 Introduction

Graph datasets comprise nodes of various data types and modalities linked by edges that encapsulate non-IID
conditional dependencies between them. While it is often assumed that graph neural networks (GNN)
(Kipf & Welling, 2016; Veličković et al., 2017) are preferable for handling such data relative to models
originally designed for IID instances, GNNs are nonetheless subject to various limitations. In particular,
the best architecture may be data-set specific and require appropriately setting many attendant structural
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hyperparameters, e.g., note the complex assortment of GNN architectures that populate the top of the Open
Graph Benchmark (OGB) leaderboard (Hu et al., 2020). Moreover, most GNNs implicitly assume that
node features are numerical, and may struggle to remain competitive with more complex text, tabular, or
composite alternatives.

In fact, with richer node feature sets it has even been observed that models tailored to IID data (which in
our setting simply operate on individual node features as though they were independent of the others) can
at times outperform GNNs if they are combined with simple graph propagation operations to account for
the graph structure (Huang et al., 2020; Chen et al., 2021). Moreover, for graph data with text features,
Chien et al. (2021) has demonstrated that leveraging a BERT Transformer in addition to a GNN can greatly
improve performance. And beyond these considerations, real-world applications of ML typically involve more
than just a single model, GNN or otherwise. Instead they usually require an ML pipeline composed of data
preprocessing and training/tuning/aggregation of many models to achieve the best results.

In this paper, we investigate how to adapt ML pipelines designed for supervised learning with IID data
(e.g., Transformers for text, gradient boosted decision trees or related for tabular data) to node classifica-
tion/regression tasks with graph-structured statistical dependencies between node features. We focus on using
K-fold bagging (Breiman, 1996), i.e. cross-validation, to avoid label leakage issues, with stack ensembling
methods for maximal flexibility (Wolpert, 1992; Van der Laan et al., 2007). These techniques are particularly
effective for achieving high accuracy across diverse IID datasets, and are utilized in many popular AutoML
frameworks (Erickson et al., 2020; LeDell & Poirier, 2020; Feurer et al., 2015), but have largely been ignored
within the context of graph data.

Within this context, our goal is to design a single architecture that integrates graph propagation or message
passing steps and stacked ensembles of arbitrary base models to flexibly accommodate diverse node/instance
types within a unified framework. In doing so, our contributions are as follows:

• We propose a framework of stack ensembling with graph propagation called BestowGNN for Bagged,
Ensembled, Stacked Training Of Well-balanced GNNs (see Figure 1) that can bestow arbitrary (non-graph)
base models intended for IID data with the capability of producing highly accurate node predictions in
the graph (i.e., non-IID) setting.

• Using only a single, unified architecture, our proposed methodology can match or outperform bespoke
dataset-specific models that top competitive leaderboards for popular node classification/regression tasks
(e.g., on OGB and elsewhere completely different network architectures typically dominate the top positions
for different datasets and data types).

• Label leakage is an unavoidable issue for many layer-wise training strategies (SAGN (Sun & Wu, 2021)
and GAMLP (Zhang et al., 2021)). To address this potential shortcoming, we formalize how our bagging
and stacking framework can effectively mitigate the label leakage issue within the graph setting using
analytical tools from differential privacy. This is the first work establishing that bagging with graph-based
predictors can be useful for ameliorating label leakage.

2 Related Work

2.1 From Scalability to Layer-wise Training

Currently, GNN training suffers from high computational cost as the number of layers grows. To improve the
scalability, the graph sampling scheme GraphSAGE (Hamilton et al., 2017) proposes to uniformly sampling a
fixed number of neighbours for a batch of nodes. Meanwhile, Cluster-GCN (Chiang et al., 2019) uses graph
clustering algorithms to sample a block of nodes that form a dense subgraph and then runs SGD-based
algorithms on these subgraphs. Quite differently, L2-GCN (You et al., 2020) proposes a layer-wise training
framework by disentangling feature aggregation and feature transformations to reduce time and memory
complexity.

Other approaches include SAGN (Sun & Wu, 2021), which iteratively trains models in several stages by
applying a graph structure-aware attention mechanism on node features and also combines a self-training
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approach with label propagation to further improve performance. GAMLP (Zhang et al., 2021) instead
proposes two attention mechanisms to explore the relation between features with different propagation steps.
Both SAGN and GAMLP achieve strong performance on two large open graph benchmarks (ogbn-products
and ogbn-papers100M), demonstrating the high scalability and efficiency of layer-wise training strategies.
However, SAGN and GAMLP suffer from the risk of label leakage: label information is included in the
enhanced training set, and can cause performance degradation if the model extracts and relies on these
labels. SAGN empirically shows that sufficient propagation depth can effectively alleviate label leakage, thus
they only use label information at one fixed propagation step. Meanwhile, GAMLP passes label information
between propagation steps using residual connections. Wang et al. (2021) further randomly masks nodes
during every training epoch to mitigate the label leakage issue. Even so, the efficacy of these methods in
mitigating label leakage issue remains somewhat speculative. In contrast, by using utilizing differential
privacy tools, we rigorously evaluate how our proposed bagging and stacking framework can explicitly reduce
label leakage concerns in node classification settings.

2.2 Graph models with Multifaceted Node Features

Traditional GNN models are mostly studied for graphs with homogeneous sparse node features, and leading
GNN models often fail to achieve competitive results for heterogeneous features with tabular or text node
attributes (Ivanov & Prokhorenkova, 2021; Huang et al., 2020; Chen et al., 2021). To remedy this, Ivanov &
Prokhorenkova (2021) jointly train Gradient Boosted Decision Trees (GBDT) and a GNN in an end-to-end
fashion, demonstrating a significant increase in performance on graph data with tabular node features. Chen
et al. (2021) removes the need for a GNN altogether, proposing a generalized framework for iterating boosting
with parameter-free graph propagation steps that share node/sample information across edges connecting
related samples. Still, both Ivanov & Prokhorenkova (2021) and Chen et al. (2021) only study regimes where
tabular node features favor the using of boosted decision trees, and are unlikely to remain competitive in
broader use cases, e.g., textural node features or numerical embeddings. In contrast, we demonstrate a flexible,
unified framework producing competitive performance across multiple domains involving tabular, numerical,
and/or textual node features. Correct and Smooth (C&S) (Huang et al., 2020) is a simple post-processing
method that applies label propagation to incorporate graph information into the outputs of a learning
algorithm that is otherwise agnostic to graph structure.

Turning to common GNN models that take numerical node features as inputs, one must establish a way
to extract numerical embeddings from raw data such as text and images. For example, the embeddings
of ogbn-arxiv data are computed by running the skip-gram model (Mikolov et al., 2013). Chien et al.
(2021) proposes self-supervised learning to fully utilize correlations between graph nodes, and extracts the
embeddings of three open graph benchmark datasets (ogbn-arxiv, ogbn-products and ogbn-papers100M).
Chien et al. (2021) demonstrates the superior performance of these new embeddings for the Open Graph
Benchmark datasets. Lin et al. (2021) proposes BertGCN, which combines the Bert model and transductive
learning for text classification in an end-to-end fashion and achieves superior performance on a range of text
classification tasks. However as with the boosting methods mentioned above, these techniques focus solely
on one task, in contrast to our approach, where the in-built flexibility to incorporate different base models
allows our method to adapt to a variety of input types with a unified overarching design.

3 Background

Consider an undirected graph G = (V, E) with n = |V| nodes. The node feature matrix is denoted by
X ∈ Rn×d, and the corresponding node label matrix is Y ∈ Rn×c with d and c being the dimension of
features and labels respectively. The unweighted adjacency matrix is A ∈ Rn×n. For training purposes we
only have access to the labels of a subset of nodes {yi}i∈L, with L ⊂ V. Given feature values of all nodes
{xi}i∈V , label data {yi}i∈L, and the connectivity of the graph E , the task is to predict the labels of the
unlabeled nodes {yi}i∈U , with U = V \L. We denote the labeled dataset {xi, yi}i∈L as DL and the unlabeled
dataset {xi}i∈U as DU .
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3.1 Bagging, Ensembling, and Stacking

For classification/regression with IID (non-graph) data, bagging, ensembling, and stacking represent practical
tools that can be combined in various ways to produce more accurate predictions relative to other strategies
across diverse tabular and text datasets (Shi et al., 2021; Blohm et al., 2020; Yoo et al., 2020; Fakoor
et al., 2020; Bezrukavnikov & Linder, 2021; Feldman, 2021). For example, in each stacking layer of an
ensemble-based architecture, bagging simply trains the same types of base models with out-of-fold predictions
from the previous layer models (obtained via bagging) as extra predictive features. These base models might
include various Gradient Boosted Decision Trees (Ke et al., 2017; Prokhorenkova et al., 2018), fully-connected
neural networks (MLP), K Nearest Neighbors (Erickson et al., 2020), or pretrained Electra Transformer
models (Clark et al., 2020). For instance, the AutoML package AutoGluon (Erickson et al., 2020) is an
open-source code which is capable of exploiting these techniques.

3.2 Graph-Aware Propagation Layers as Energy Function Minimization

Recently there has been a surge of interest GNN architectures with layers defined in one-to-one correspondence
with descent iterations that minimize a principled class of graph-regularized energy functions (Klicpera et al.,
2018; Ma et al., 2020; Pan et al., 2021; Yang et al., 2021; Zhang et al., 2020; Zhu et al., 2021). In this way GNN
models can benefit from the inductive bias afforded by energy function minimizers (or close approximations
thereof) whose specific form can be controlled by trainable parameters. For our purposes later in Section 4,
an attractive feature of this approach is that graph propagation can be conducted across an arbitrary number
of layers/iterations without encountering undesirable oversmoothing effects (for a representative empirical
demonstration of this capability, please see Yang et al. (2021)). The latter can degrade the performance deep
GNN models by pushing all node embeddings to similar values (Li et al., 2018; Oono & Suzuki, 2020).

Following Zhou et al. (2004), one relevant energy function capable of inducing such graph-aware propagation
is given by

ℓY (Y ) ≜ (1− λ) ∥Y −m (X; θ)∥2
F + λtr

[
Y ⊤LY

]
, (1)

where λ ∈ (0, 1) is a weight that determines the trade-off between the two terms. Y ∈ Rn×d is a learnable
d-dimensional embedding across n nodes, and m (X; θ) denotes a base model (parameterized by θ) that
computes an initial target embedding based on the node features X. L ∈ Rn×n is the graph Laplacian of G,
meaning L = D −A, where D represents the degree matrix.

Intuitively, the first term of (1) encourages Y to be close to initial target embedding, while the second term
introduces the smoothness over the whole graph. On the positive side, the closed-form optimal solution of
energy function (1) can be easily derived as

m̃∗ (X; θ) ≜ arg min
Y

ℓY (Y ) = P ∗m (X; θ) , (2)

with P ∗ ≜ (I + λL)−1. However, for large graphs the requisite inverse is impractical to compute, and
alternatively iterative approximations are more practically-feasible. To this end, we may initialize as
Y (0) = m (X; θ), and it follows that Y can be approximated by iterative descent in the direction of the
negative gradient. Given that

∂ℓY (Y )
∂Y

= 2λLY + 2Y − 2m (X; θ) , (3)

the t-th iteration of gradient descent becomes

Y (t) = Y (t−1) − α
[
(λL + I) Y (t−1) −m (X; θ)

]
, (4)

where α
2 serves as the effective step size. Considering that L is generally sparse, computation of (4) can

leverage efficient sparse matrix multiplications, and we may also introduce modifications such as Jacobi
preconditioning to speed convergence (Axelsson, 1996; Yang et al., 2021).

Furthermore, based on well-known properties of gradient descent, if t is sufficiently large and α is small
enough, then

m̃∗ (X; θ) ≈ m̃(t) (X; θ) ≜ P (t) [m (X; θ)] , (5)
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where the operator P (t) (·) computes t gradient steps via (4). The structure of these propagation steps, as well
as related variants based on normalized modifications of gradient descent, are analogous to principled GNN
layers, such as those used by GCN (Kipf & Welling, 2016), APPNP (Klicpera et al., 2018), and many others.
And per the energy function association, these steps can be trained within a broader bilevel optimization
framework without the risk of oversmoothing as described next.

4 Stack Ensembling for Graph Data (BestowGNN)

For node prediction tasks (either regression or classification), each (non-graph) base model is trained within
our BestowGNN framework by simply treating each node and its label as a separate IID training example
and fitting the model in the usual manner. Such a model may informatively encode tabular or text features
from the nodes, but its predictions will be uniformed by the additional information available in the graph
structure. To enhance such models with graph information we utilize graph-aware propagation.

4.1 Incorporating Graph-Aware Propagation

Let Ŷ L, Ŷ U denote the predictions of labeled (i.e. training) nodes and unlabeled (i.e. validation/test) nodes,
respectively. In node classification tasks, these may be predicted class probability vectors. Via iterative
application of the update in (4), we can apply graph-aware propagation to predictions {Ŷ L, Ŷ U} in order
to ensure they reflect statistical dependencies between nodes encoded by the graph structure. We denote
F (0) ≜ {Ŷ L, Ŷ U}, and for each propagation step t we compute the update F (t) = {Ŷ (t)

L , Ŷ
(t)
U } via (4). In

our method, Ŷ may actually be predictions from multiple models concatenated together at each node, but
the propagation procedure remains identical in this case.

4.2 Stack Ensembling

In stack ensembling, the predictions output by individually trained base models are concatenated together
as features that are subsequently used to train a stacker model whose target is still to predict the original
labels (Wolpert, 1992; Ting & Witten, 1997). A good stacker model learns how to nonlinearly combine the
predictions of base models into an even more accurate prediction. This process can be iterated in multiple
layers, a strategy that has been used to win high-profile prediction competitions with IID data (Koren, 2009).

In this work, we follow the stacking methodology of Erickson et al. (2020), but adapt it for graphs rather than
IID data. We allow stacker models to access the original node features X by concatenating X with the base
models’ predictions when forming the features used to train each stacker model. To produce a final prediction
for each node, we aggregate predictions from the topmost layer models via a simple weighted combination
where weights are learned via the efficient Ensemble Selection technique of Caruana et al. (2004). Our base
models before the first stacking layer are those which can effectively encode the original tabular or text
features observed at the nodes (like Gradient Boosted Decision Trees for tabular features and Transformers
for text features). Our stacker models are simply chosen as the same types of models as the base models.

4.3 Repeated K-fold Bagging to Mitigate Over-fitting

A problem that arises in the aforementioned stacking strategy is label leakage. If a base model is even slightly
overfit to its training data such that its predictions memorize parts of the training labels, then subsequent
stacker models will have low accuracy due to distribution shift in their features between training and inference
time (their features will be highly correlated with the labels during training but not necessarily during
inference). This issue is remedied by ensuring stacker models are only trained on features comprised of base
model predictions on held-out nodes omitted from the base model’s training set.

We achieve this while still being able to train stacker models using all labeled nodes by leveraging K-fold
bagging (i.e. cross-validation) of all models (Van der Laan et al., 2007; Parmanto et al., 1996; Erickson et al.,
2020). Here the training nodes are partitioned into K disjoint chunks and K copies of each (non-graph-aware)
model m are trained with a different data chunk held-out {X−k, Y −k}K

k=1 held out from each copy. After
training all K copies of model m, we can produce out-of-fold (OOF) predictions Ŷ k

m for each chunk Xk
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by feeding it into the model copy from which it was previously held-out. We repeat this K-fold bagging
procedure over N different random partitions of the training data to further reduce variance and distribution
shift that arises in stack ensembling with bagging. Thus for a labeled training node, the OOF prediction
from a model of type m is averaged over N different partitions (this node is held-out from exactly one model
copy in each partition):

Ŷ L =
{

1
N

N∑
n=1

Ŷ k
m,n

}K

k=1

. (6)

Since unlabeled (validation/test) nodes were technically held-out from every model copy, we can feed them
through any copy without harming stacking performance. For a particular type of model m, we simply make
predictions Ŷ U for unlabeled nodes by averaging over all N bagging repeats and all K copies of the model
within each repeat:

Ŷ U = 1
KN

K∑
k=1

N∑
n=1

Ŷ k
m,n. (7)

For IID data, this stack ensembling procedure with bagging can produce powerful predictors, both in theory
(Van der Laan et al., 2007) and in practice (Erickson et al., 2020).

4.4 Stacking with Graph-Aware Propagation

To extend this methodology to graph data, our proposed training strategy is precisely detailed in Algorithm
1. The main idea is to apply graph-aware propagation on the predictions of models at each intermediate layer
of the stack. Different amounts of propagation lead to different characteristics of the data being captured in
the resulting prediction (few steps of propagation means predictions are only influenced by local neighbors,
whereas many propagation steps allow predictions to be influenced by more distant nodes as well). Thus we
can further enrich the feature set of our stacker models by concatenating together the predictions produced
after different numbers of propagation steps. With this expanded feature set, our stacker models learn to
aggregate not only the predictions of different models, but differently smoothed versions of these predictions
as well. This allows the stacker model to adaptively decide how to best account for dependencies induced by
the graph structure.

More precisely, given F (t), the predictions (concatenated across all base model types) for labeled and unlabeled
nodes after t smoothing steps, then the feature input to each stacker model is given by the original node
features X concatenated with [F (0), ..., F (T )]. Here the predictions for labeled nodes are always OOF,
obtained via bagging. Another fundamental difference between our approach and stack ensembling in the IID
setting is the use of unlabeled (test) nodes at each intermediate layer of the stack. By including unlabeled
nodes in the propagation, these nodes influence the features used to train subsequent stacker models at labeled
nodes. This can even further reduce potential distribution shift in the stacker models’ features between the
labeled and unlabeled nodes, which ensures better generalization.

Graph machine learning models for non-IID data typically do not use bagging, seemingly because there
has not been a rigorous study on the effect of bagging in relation to propagation models. Furthermore,
bagging traditionally serves as a means of variance reduction which only brings limited performance benefits
for large datasets (Breiman, 1996). In contrast, our stacking framework adopts bagging primarily as a
means to mitigate the catastrophic effects of label leakage. While bagging can effectively mitigate label
information from being directly encoded in stacker model features in the IID setting, it is not clear whether
this property still holds with graph-structured dependence between nodes. A particular concern is the fact
that the propagation of base model predictions across the graph implies label information is shared across
the k-fold chunks used to hold-out some nodes from some models. In the next section, we theoretically study
this issue and prove that bagging can still mitigate the effects of label leakage even in the non-IID graph
setting. Our subsequent experiments (see Table 4) reveal that bagging produces substantial performance
gains in practical applications of stack ensembling with graph propagation.
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4.5 Consideration of Alternative GNN-based Message Passing

While we have adopted the energy-based message passing from Section 3.2 into our framework, it may
initially seem plausible to replace these graph propagation layers with a more traditional GNN architecture.
However, to incorporate GNNs in this way would require, at each stacking layer, a separate inner-loop training
process, meaning multiple epochs of forward and backward passes through the GNN model to train all the
parameters. In contrast, the descent steps of the graph-regularized energy functions (1) we adopt lead to
efficient, parameter-free message passing, so no inner-loop training is needed. Computationally speaking, our
approach is akin to just a single forward pass of a GNN, as opposed numerous forward and backward passes
as would be required with training.

And incidentally, if we were to remove the GNN model parameters and simply incorporate the graph-
propagation that remains, this would exacerbate the well-known oversmoothing problem mentioned in Section
3.2 whereby all node embeddings converge to similar values. In contrast, this does not occur with the
energy-based graph propagation we adopt, where even an infinite number of propagation steps does not
produce oversmoothing. To reiterate, this is possible because the energy minimizer itself is explicitly designed
not to oversmooth, and extra propagation steps only move closer to this minimum. Please see supporting
references to this effect (Ahn et al., 2022; Ma et al., 2020; Pan et al., 2021; Yang et al., 2021; Zhang et al.,
2020; Zhu et al., 2021).

Model 𝓶 ∈𝓜

OOF 
Prediction !𝒀𝓛𝓶

𝑻 steps Graph Propagation for 
𝑭(𝟎) = [ $𝒀𝓛𝓶 𝓶∈𝓜

$𝒀𝓤𝓶 𝓶∈𝓜]

{𝑭 𝟎 , 𝑭(𝟏)…𝑭(𝑻)}Input

Chunk 1

Input Data

Stacking  Layer

+

Chunk 2 Chunk 3

Test & Validation 
Prediction !𝒀𝓤𝓶

Output

Figure 1: BestowGNN with a single base learner m, 2
stacking layers, and 3-fold bagging (repeated bagging not
depicted here). The stacking layer repeats the operations
depicted between it and the input data.

Algorithm 1 BestowGNN Training Strategy
Input: Node features and labels (X, Y ) from graph
G with labeled (training) nodes L and unlabeled
(validation/test) nodes U , family of models intended
for IID data M, L stacking layers, N -repeated, K-
fold bagging, T propagation steps.
for l = 1 to L do {stacking}

for n = 1 to N do {repeated bagging}
Randomly split data into K chunks
{Xk, Y k}K

k=1
for k = 1 to K do

Train model m ∈M on {X−k, Y −k}
Make predictions Ŷ k

m,n on OOF data Xk

end for
end for
for m ∈M do

Get OOF predictions Ŷ m
L for labeled nodes via

(6)
Get predictions Ŷ m

U for unlabeled nodes via
(7)

end for
Concatenate all models’ predictions:
F (0) ≜ [{Ŷ m

L }m∈M, {Ŷ m
U }m∈M]

for t = 0 to T do {propagation}
Compute F (t) = [{Ŷ m

L }(t), {Ŷ m
U }(t)]m∈M us-

ing (4)
end for
X ← concatenate (X, {F (0), ..., F (T )})

end for
Output: weighted prediction

∑
m∈M

αmŶ m
U

with {αm} fitted via Ensemble Selection
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5 Theoretical Analysis of Label Leakage

Label utilization is a common technique in which the outputs of a model are concatenated with input features
and then used to train a stacking layer. Unfortunately, layer-wise training with label utilization is susceptible
to the label leakage problem. Recall that previous layer-wise training methods SAGN (Sun & Wu, 2021) and
GAMLP (Zhang et al., 2021) both suffer from the risk of label leakage: in the first layer, SAGN and GAMLP
train the model and predict the label of training points, then predicted labels are included in the enhanced
training set. In the second layer, they use the enhanced training set as the new feature to train a new model.
Notice here including predicted labels as training features can cause performance degradation if the model
extracts and relies on these predicted labels. The second layer training upon first-layer predictions could
amplify over-fitting issues and introduce the covariate shift at test time. Although prior work (Sun & Wu,
2021; Zhang et al., 2021) has mentioned heuristic ways to address label leakage via graph propagation, it is
unclear how generally applicable this strategy is in practice. Moreover, there is a natural trade-off between
avoiding label leakage via graph propagation, and well-known oversmoothing effects in GNN models.

In this section we employ a powerful theoretical tool, Differential Privacy (Mironov, 2017), to showcase the
advantage of bagging in our proposed BestowGNN. Our analysis will show that BestowGNN enjoys strong
generalization under the Rényi Differential Privacy framework. In fact this is the first work that establishes
that bagging in graph predictors is useful and mitigates label leakage. Specifically, BestowGNN can preserve
the privacy (or information sharing) of labels between bags, that would otherwise be compromised by graph
propagation.

To this end, we first introduce the definition of Rényi Differential Privacy, which is a relaxation of Differential
Privacy based on the Rényi Divergence.
Definition 1. (Rényi Differential Privacy (Mironov, 2017)). Consider a randomized algorithm M mapping
from D to a real-value R. Such an algorithm is said to have ϵ-Rényi Differential Privacy of order α if for any
D, D′ ∈ D with dH(D, D′) = 1, where dH is the Hamming distance (D, D′ are also referred to as adjacent
datasets), we have that

Dα(M(D)||M(D′))

≜
1

α− 1 log Ex∼M(D′)

(
M(D)
M(D′)

)α

≤ ϵ.
(8)

In plain words, this definition establishes that the output of an algorithm does not change significantly, as
measured by the Rényi divergence Dα(M(D)||M(D′)), when the data changes slightly. The idea behind this
framework is that if each individual data sample has only a small effect on the resulting model, the model
cannot be used to infer information about any single individual.

We then have the following result:
Theorem 1. Assume base model m is a multi-layer (two-layer) perceptron and that node features X are
sampled from a multivariate Gaussian as in (Jia & Benson, 2021):

X ∼ N (0, Γ−1), Γ = c1In + c2L,

where In is an identity matrix and L is the normalized graph Laplacian. Here c1 controls a noise level and
c2 the smoothness over the whole graph. E(x0; DL) and F (x0; DL) are predictions produced by BestowGNN
for a data point x0 with and without bagging mode, respectively. If E has sensitivity 1 and lower magnitude
bound L, i.e., for any two adjacent D, D′ ∈ D : |E(x0; D)−E(x0; D′)| ≤ 1 and |E| ≥ L, then E satisfies
( 1

2 , 1
4σ2L2 + 1

2L2 )-Rényi Differential Privacy, where σ2 depends on graph structure G. Meanwhile, F has no
privacy guarantee, i.e., the Rényi differential privacy loss (8) is unbounded.

The proof is deferred to the appendix. Theorem 1 indicates that bagging with graph propagation can well
preserve the privacy of DL = {xi, yi}i∈L between different chunks while non-bagging would have a high risk
of leaking the information of DL. For layer-wise training with label utilization, the output of the model
E(x0; DL) is concatenated with input features and then used to train next stacking layer, and bagging can
effectively mitigate the label leakage issue since the information of true label is well preserved at the first
layer, while no-bagging exposes the true labels and can lead to over-fitting issue for next stacking layer.
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6 Experiments

Datasets. We study the effectiveness of our approach by comparing performance against a variety of
baselines in node regression and classification tasks. For node regression with tabular node features, we
consider four real-world graph datasets used for benchmarking by Ivanov & Prokhorenkova (2021): House,
County, VK and Avazu. As node classification tasks, we adopt one dataset with numerical features: Reddit;
and two datasets with raw text features: OGB-Arxiv and OGB-Products. We also consider the OGB
datasets using original OGB provided features. More details about the datasets are provided in the appendix.

Baseline approaches. We compare our method against various baselines, starting with purely tabular
baseline models or language models where the graph structure is ignored. Our first baseline is Autogluon
(Erickson et al., 2020), an AutoML system for IID tabular or text data that is completely unaware of the
graph structure (here we simply treat nodes as IID). Next, we consider AutoGluon + C&S, which performs
Correct and Smooth (Huang et al., 2020) as a post hoc processing step on top of AutoGluon’s predictions, in
order to at least account for the graph structure during inference. For node regression tasks we also consider
some popular GNN models: GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), and a hybrid
strategy BGNN (Ivanov & Prokhorenkova, 2021), which combines Gradient Boosted Decision Trees (also a
model intended for IID data) with GNNs via end-to-end training in a manner that is graph-aware.

For node classification using Reddit with original numerical features, we also compare with GraphSAGE
(Hamilton et al., 2017) and PCAPass + Tree (Sadowski et al., 2022), which combines PCA and message
passing to generate node embeddings and leverages tree-based model for node classification.

For OGB-Arxiv and OGB-Products with original OGB features (pre-computed low-dimensional text em-
beddings as node features provided by OGB), we consider standard GNN models: GCN (Kipf & Welling,
2016) and GAT (Veličković et al., 2017) variants, and Ensemble GCN, a natural baseline/competitor
which divides all training nodes into K chunks, trains a GCN model for each chunk and then ensembles
the results. We also compare against SOTA models for OGB-Arxiv and OGB-Products from the OGB
leaderboard (restricted to original features, no text augmentation) when we initially started the experiments
(AGDN+BoT+self-KD+C&S for Arxiv and GAMLP+RLU+SCR+C&S for Products).

For OGB-Arxiv and OGB-Products with raw text as node features (these are necessarily more informa-
tive than the compressed original OGB features), we chose the method that topped the respective OGB
leaderboard at the time of our submission: this was TAPE+RevGAT (He et al., 2023) for OGB-Arxiv
and GLEM+GIANT+SAGN+SCR (Zhao et al., 2023) for OGB-Products. To assess the adaptability of
these two approaches, we retrain both models with standard hyperparameter tuning on the opposite dataset
for which they topped the leaderboad, meaning we also tested TAPE+RevGAT on OGB-Products and
GLEM+GIANT+SAGN+SCR on OGB-Arxiv. This is a reasonable scenario since both models are designed
to handle text features, and yet given their complex, composite natures, it is unclear how well they might
reliably transfer to different datasets.

BestowGNN details. We evaluate our method BestowGNN, which incorporates base models and graph
information through propagation operations within each stacking layer. For the base models, we consider
LightGBM boosted Tress (GBM) (Ke et al., 2017), CatBoost boosted trees (CAT) (Prokhorenkova et al.,
2018), fully-connected neural networks (NN), Extremely Randomized Trees (RT), Random Forests (RF),
K Nearest Neighbors (KNN), Label Propagation (LP) (Huang et al., 2020) and Transformer with electra
pretrained model (Text) (Training epoch is 12) (Clark et al., 2020). For the first layer, we keep the typical
models, for example, Gradient Boosted Decision Trees for Tabular data, Transformer models for text data.
For second stacking layer, we use all of models except extremely low-efficient models for large dataset, for
example, KNN and Catboost slow down the training procedure for the OGB-products dataset. All details
regarding the base models, as well as the minor/standard hyperparameter tuning used by BestowGNN to fit
all datasets, can be found in the appendix.

Results. In Table 1 we present the results for the node regression task with tabular node features. The
baseline GNN models are challenged by the tabular node features. AutoGluon is an ensemble of various base
models (e.g., Gradient Boosted Decision Trees, fully-connected neural networks) intended for IID data without
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Data set House County Vk Avazu
GCN 0.63 ± 0.01 1.48 ± 0.08 7.25 ± 0.19 0.1141 ± 0.02
GAT 0.54 ± 0.01 1.45 ± 0.06 7.22 ± 0.19 0.1134 ± 0.01
BGNN 0.50 ± 0.01 1.26 ± 0.08 6.95 ± 0.21 0.109 ± 0.01
AutoGluon 0.618 ± 0.01 1.379 ± 0.08 7.176 ± 0.21 0.117 ± 0.018
AutoGluon + C&S 0.477 ± 0.01 1.162 ± 0.09 6.995 ± 0.21 0.107 ± 0.015
BestowGNN 0.467 ± 0.007 1.145 ± 0.083 6.918 ± 0.220 0.105 ± 0.013

Table 1: Mean squared error of different methods for four different node regression datasets (The top model is
boldfaced, the second-best model is underlined).

Table 2: Node classification accuracy for Reddit with numerical node features (The best model is boldfaced, the
second-best model is underlined).

Method Reddit
PCAPass + XGBoost 96.26 ± 0.02
GraphSAGE 95.40 ± 0.22
AutoGluon 95.83 ± 0.00
AutoGluon + C&S 96.00 ± 0.00
BestowGNN 96.44 ±0.00

considering graph structure. We observe that Autogluon + C&S outperforms Autogluon, demonstrating
that graph information can greatly boost the performance of models intended for IID data. Incorporating
the graph structure at each stacking layer, our BestowGNN method performs better than prior baselines on
all datasets. While the performance difference relative to the top performing alternatives may be modest
at times, as we will soon observe, BestowGNN is consistently at or near the top spanning all datasets and
scenarios. As such, a cumulative case can be made for the efficacy of BestowGNN relative to other approaches
that excel only in limited domains.

Next, Table 2 shows that BestowGNN outperforms the baselines for the Reddit dataset with numerical
embeddings, while PCAPass + XGBoost is second. Turning to Table 3, we display results for OGB-Arxiv and
OGB-Products, and highlight the superior performance of models trained using raw text features as would be
expected. Of particular note though is the performance of the top OGB leaderboard methods when retrained
on a different dataset. Specifically, while GLEM+GIANT+SAGN+SCR may be best on OGB-Products (at
the time of our submission), when transferred to OGB-Arxiv there is a considerable drop-off (its accuracy
of 77.50 here would only rank 16th on the current Arxiv leaderboard). Similarly, although TAP+RevGAT
may have been tops for OGB-Arxiv, it is not especially competitive on OGB-Products (its accuracy of 82.16
places only 30th as of the current OGB-Products leaderboard). We also note that AutoGluon+C&S, which
was competitive on the tabular benchmarks in Table 1, is far less competitive using OGB data, especially
on OGB-Products. In contrast, BestowGNN uses essentially the same core architecture, which includes the
incorporation of graph information within each stacking layer, to fit all datasets spanning Tables 1, 2, and 3.

Ablation. The key ingredients of our framework are bagging/ensembling and graph propagation. Table
4 shows an ablation study involving these components using OGB-Arxiv with original OGB embeddings.
From the above results, we observe that in each case the training performance under the no-bagging setting
is always higher than bagging as would be expected if some degree of overfitting were occurring. In contrast,
on the test (and validation) sets, the situation is reversed and no-bagging now outperforms bagging. This
indicates that bagging has helped to mitigate some of the effects of overfitting by reducing the gap between
training and testing accuracy. For additional ablations, please see the appendix.
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Table 3: Node classification accuracy for OGB-Arxiv and OGB-Products (The best model is boldfaced, the second-
best model is underlined). Rows labeled TEXT contain involve models trained on raw text embeddings/features,
while those labeled OGB indicate models trained on precomputed numerical embeddings provided by OGB as node
features. As of the time of our submission TAPE+RevGAT was the top performing model on OGB-Arxiv while
GLEM+GIANT+SAGN+SCR was the top performing model on OGB-Products; however, in both cases relative
performance degrades when shifting to a different dataset, despite the similar text-based modeling scenarios. Meanwhile,
BestowGNN maintains competitive performance spanning these and other datasets/scenarios.

OGB-Arxiv

Feature Method Test Acc (Validation)

OGB
GCN 73.06 ± 0.24 (74.42 ± 0.12)

GAT + C&S 73.86 ± 0.14 (74.84 ± 0.07)
AGDN+BoT+self-KD+C&S 74.31 ± 0.14 (75.18 ± 0.09)

Ensemble GCN 73.22 ± 0.12 (74.64 ± 0.01)

TEXT GLEM+GIANT+SAGN+SCR 75.50 ± 0.11 (76.87 ± 0.09)
TAPE+RevGAT 77.50 ± 0.12 (77.85 ± 0.16)

TEXT AutoGluon 73.05 ± 0.00 (74.33 ± 0.00)
AutoGluon + C&S 75.34 ± 0.00 (76.67 ± 0.00)

TEXT BestowGNN 76.19 ± 0.02 (77.25 ± 0.05)

OGB-Products

Feature Method Test Acc (Validation)

OGB DeeperGCN + FLAG 81.93 ± 0.31 (91.03 ± 0.01)
GAT + FLAG 81.76 ± 0.45 (92.51 ± 0.06)

GAMLP+RLU+SCR+C&S 85.20 ± 0.08 (93.04 ± 0.05)
Ensemble GAT 80.01 ±0.20 (93.24 ± 0.05)

TEXT GLEM+GIANT+SAGN+SCR 87.37 ± 0.06 (94.00 ± 0.03)
TAPE+RevGAT 82.16 ± 0.28 (92.10 ± 0.09)

TEXT AutoGluon 77.10 ± 0.06 (91.78 ± 0.03)
AutoGluon + C&S 79.03 ± 0.12 (93.62 ± 0.03)

TEXT BestowGNN 85.48 ± 0.03 (93.93 ± 0.02)

Table 4: BestowGNN ablation study with (✓) and without bagging (✗). Here T is the number of graph propagation
steps, thus T = 0 represents a baseline model that completely ignores graph structure.

step T Train Validation Test

✓ ✗ ✓ ✗ ✓ ✗

0 0.64 0.68 0.58 0.56 0.56 0.54
1 0.76 0.78 0.67 0.66 0.67 0.65
2 0.77 0.78 0.70 0.68 0.70 0.68
3 0.77 0.78 0.71 0.69 0.70 0.68
4 0.77 0.79 0.71 0.70 0.70 0.69
50 0.79 0.81 0.72 0.71 0.71 0.69

Table 5: Training time tested on AWS g4dn.12xlarge machine.

Dataset Base Model Time(s)

House GBM, NN 52

County GBM, NN 18

VK GBM, NN 119

Avazu GBM, NN 15

OGB-Arxiv NN 199

OGB-Products NN 837

Computing cost. The computing cost depends on the ensemble models we select (e.g., transformer models
can take more computing resources relying on the implementation, including more emsemble models leads
to more computing cost). As a result, it is difficult to consistently measure the training/inference time or
memory consumption. Nonetheless, the computing cost lies in a competitive range since the integration of
the bagging and ensembling parts key to our model can be efficiently implemented, e.g., via open source
packages like AutoGluon that we used. In Table 6, we present the training time for different datasets with
basic ensemble models on an AWS g4dn.12x Large machine.
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7 Discussion

While real-world graph data come with heterogeneous feature types, existing GNN models are primarily suited
for (adequately preprocessed) numerical features. For IID supervised learning, it is well-known that the best
models for different feature types vary based on dataset and data-type, and that a learning system aiming to
output good predictions across a variety of datasets should leverage a heterogeneous collection of different
types of models (Erickson et al., 2020). There is little reason the situation should be different for graph data.
In this paper, we demonstrate the first working system that can utilize arbitrary heterogeneous collections of
models for arbitrary graph datasets with heterogeneous feature-types (numerical, categorical, text). This is
achieved by means of a novel graph-aware stack ensembling technique that takes the graph structure into
account without restricting how individual models are trained. Our graph-aware propagation techniques
leverage specific properties of stack ensembling that allow our proposed methodology to outperform both
many complex GNNs as well as existing approaches in which propagation is only applied to the predictions
output by an IID base model (e.g., AutoGluon+C&S, etc.).
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Appendix:

A Proof of Theorem 1.

Preliminary 1. Firstly, we derive the format of E(x0; DL) and F (x0; DL). Suppose BestowGNN randomly
splits the labeled nodes DL into 2 disjoint chunks D1 = {X1, Y 1}, D2 = {X2, Y 2}. BestowGNN trains a
model m ∈M with a different data chunk held-out. Model m is defined by a set of parameters collected in
θ namely, which is defined as m(X; θ). In the following, we will express the predicted labels from model
m under the bagging and non-bagging settings. We compare the predicted labels under both settings and
establish that our bagging solution is less amenable to label leakage.

The model m will learn different parameters for each chunk and those are denoted as θ1 for the chunk I and
θ2 for the chunk II, namely θ1 = θ(D1) and θ2 = θ(D2). Next, BestowGNN produces prediction Ŷ 1, Ŷ 2
on out-of-fold data, i.e., Ŷ 1 = m(X1; θ2) and Ŷ 2 = m(X2; θ1). The prediction for unlabeled nodes is
Ŷ U = 1

2 [m(XU ; θ1) + m(XU ; θ2)] as explained in (7). Consider one data point x0 from the unlabeled dataset
DU , the prediction of x0 is given by ŷ0 = 1

2 [m(x0; θ1) + m(x0; θ2)]. Next, we perform one step graph-aware
propagation on ŷ0.

ŷ
(1)
0 =

∑
u∈N (x0)∩DU

ŷu +
∑

v∈N (x0)∩D1

ŷv +
∑

w∈N (x0)∩D2

ŷw

=
∑

u∈N (x0)∩DU

1
2 [m(xu; θ1) + m(xu; θ2)] +

∑
v∈N (x0)∩D1

m(xv; θ2) +
∑

w∈N (x0)∩D2

m(xw; θ1),
(9)

where ŷ
(1)
0 is the aggregated results from one-hop neighbor N (x0), which may belongs to DU , D1 and D2.

Next, we consider the no-bagging mode, where the predictions of X1, X2 are changed into Ỹ 1 = m(X1; θ1)
and Ỹ 2 = m(X2; θ2). Notice that with bagging mode we use the parameters from a different bag, while
without bagging we use the parameters from the same bag. The prediction of the test point x0 is once again
ỹ0 = 1

2 [m(x0; θ1) + m(x0; θ2)], which is identical to the bagging mode. We perform the same graph-aware
propagation on ỹ0.

ỹ
(1)
0 =

∑
u∈N (x0)∩DU

ỹu +
∑

v∈N (x0)∩D1

ỹv +
∑

w∈N (x0)∩D2

ỹw

=
∑

u∈N (x0)∩DU

1
2 [m(xu; θ1) + m(xu; θ2)] +

∑
v∈N (x0)∩D1

m(xv; θ1) +
∑

w∈N (x0)∩D2

m(xw; θ2).
(10)

Next, we compare the terms among the predicted labels from the two settings, namely (9) and (10). The first
term

∑
u∈N (x0)∩DU

1
2 [m(xu; θ1) + m(xu; θ2)] is the same for (9) and (10) and can be cancelled. In order to

facilitate the exposition of the theoretical contributions we will define functions for the different terms in (9)
and (10). We define E(x0; DL), that is a function formulating the relation between training data DL and the
prediction for test data x0 under bagging mode.

E(x0; DL) :=
∑

v∈N (x0)∩D1

m(xv; θ(D2)) +
∑

w∈N (x0)∩D2

m(xw; θ(D1)). (11)

Similarly, we define the function F (x0; DL) formulating the relation between training data DL and the
prediction for test data x0 under the no-bagging mode:

F (x0; DL) :=
∑

v∈N (x0)∩D1

m(xv; θ(D1)) +
∑

w∈N (x0)∩D2

m(xw; θ(D2)). (12)

Notice here θ(D1) is the model parameters of Chunk I involving information of true label Y 1. We aim to
examine bagging and stacking strategies effectively preserve the information of label Y 1 via introducing
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randomness to the function E(x0; DL) while F (x0; DL) has high risk of leaking the information of true label
Y 1.

We first reiterate the definition of Rényi Differential Privacy.
Definition 1. (Rényi Differential Privacy (Mironov, 2017)). Consider a randomized algorithm M mapping
from D to real-value R. Such an algorithm is said to have ϵ-Rényi Differential Privacy of order α (α > 1) if
any D, D′ ∈ D with dH(D, D′) = 1, where dH is the Hamming distance (D, D′ are also referred to as adjacent
datasets):

Dα(M(D)||M(D′)) = 1
α− 1 log Ex∼M(D′)

(
M(D)
M(D′)

)α

≤ ϵ. (13)

To proceed in a quantifiable way, we rely on some preliminary results for Rényi Differential privacy and
generative model for graph learning algorithms.
Proposition 1. Rényi differential privacy is preserved by post-processing (Mironov, 2017). If F (·) has
ϵ-Rényi Differential Privacy, then for any randomized or deterministic function g, g(F (·)) satisfies ϵ-Rényi
Differential Privacy.
Proposition 2. The closed-form expression of the Rényi divergence between any two Gaussian distributions
is given by Dα(N (µ0, σ2

0)||N (µ1, σ2
1)) = α(µ1−µ0)2

2σ2
α

+ 1
1−α ln σα

σ1−α
0 σα

1
, provided that σ2

α = (1− α)σ2
0 + ασ2

1 > 0
(Van Erven & Harremos, 2014).
Proposition 3. Assume f has sensitivity 1 and lower magnitude bound L, i.e., for any pair of adjacent
datasets D, D′ ∈ D: |f(D)− f(D′)| ≤ 1 and |f | ≥ L, and define the Gaussian multiplicative mechanism

GMµ,σf(D) = f(D)N (µ, σ2).

Then GMµ,σf satisfies ( 1
2 , 1

4σ2L2 + 1
2L2 )-Rényi Differential Privacy.

Proof. According to Proposition (2):

D1/2
(
N (f(D) + µ, f2(D)σ2)||N (f(D′) + µ, f2(D′)σ2)

)
= (f(D)− f(D′))2

2σ2 (f2(D) + f2(D′)) + ln[12
(
f2(D) + f2(D′)

)
]− ln |f(D)| − ln |f(D′)|

= 1
2σ2 −

f(D)f(D′)
σ2 (f2(D) + f2(D′)) + ln[12

(
f2(D) + f2(D′)

)
]− ln |f(D)f(D′)|

= 1
2σ2 −

f(D)f(D′)
σ2 (f2(D) + f2(D′)) + ln |f

2(D) + f2(D′)
2f(D)f(D′) |

≤ 1
2σ2

1
f2(D) + f2(D′) + ln( 1

2|f(D)f(D′)| + 1)

≤ 1
4σ2L2 + ln( 1

2L2 + 1)

≤ 1
4σ2L2 + 1

2L2 .

The first inequality follows from |f(D)−f(D′)| ≤ 1, take square for both side f2(D)+f2(D′) ≤ 1+2f(D)f(D′).
Then we have 1

2σ2− f(D)f(D′)
σ2(f2(D)+f2(D′)) ≤

1
2σ2

1
f2(D)+f2(D′) and f2(D)+f2(D′)

2|f(D)f(D′)| ≤
1

2|f(D)f(D′)| +1, the first inequality
holds.

Proposition 4. If f has sensitivity 1, i.e., for any pair of adjacent datasets D, D′ ∈ D: |f(D)− f(D′)| ≤ 1.
Define the Gaussian additive mechanism

GAσf(D) = f(D) +N (0, σ2),

then Gaussian additive mechanism GAσf satisfies (α, α
2σ2 )-Rényi Differential Privacy (Mironov, 2017).
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Proposition 5. Consider a multivariate Gaussian distribution, and the random variables are partitioned
into two groups (zP , zQ), the distribution is block matrix format(

zP

zQ

)
∼ N

([
z̄P

z̄Q

]
,

[
ΓP P ΓP Q

ΓQP ΓQQ

]−1)
,

where
[
ΓP P ΓP Q

ΓQP ΓQQ

]
is precision (inverse covariance) matrix. Then the marginal and conditional distribution

can be written as
zP ∼ N

(
z̄P , (ΓP P − ΓP QΓ−1

QQΓQP )−1
)

, (14)

zP |zQ = zQ ∼ N
(
z̄P − Γ−1ΓP Q(zQ − z̄Q)

)
. (15)

Before proceeding to our specific results in the main paper, we also need to describe the graph setting.

Preliminary 2. Let G = (V, E) be an undirected graph, where V is the set of n nodes and E is the set of
edges. The adjacency matrix of G is W ∈ Rn×n, the diagonal degree matrix is D ∈ Rn×n. The normalize
graph Laplacian can be written as N = I −D−1/2W D−1/2 = I − S. We use X ∈ Rn×p for the feature
matrix, where p is the dimension of features. We assume all vertex features X are jointly sampled from a
multivariate Gaussian distribution (Jia & Benson, 2021), namely

X ∼ N (0, Γ−1), Γ = c1In + c2N , (16)

where In is identical matrix, N is normalized graph Laplacian. Here c1 controls noise level and c2 controls
the smoothness over the whole graph.

We now proceed to our specific results in the main paper.
Theorem 1. Assume base model m to be a multi-layer (two-layer) perceptron and node features X is sampled
from a multivariate Gaussian as in Jia & Benson (2021):

X ∼ N (0, Γ−1), Γ = c1In + c2L,

where In is an identity matrix and L is the normalized graph Laplacian. Here c1 controls noise level and
c2 controls the smoothness over the whole graph. E(x0; DL) and F (x0; DL) are predictions produced by
BestowGNN for a data point x0 with and without bagging mode, respectively. If E has sensitivity 1 and lower
magnitude bound L, i.e., for any two adjacent D, D′ ∈ D : |E(x0; D)−E(x0; D′)| ≤ 1 and |E| ≥ L, then E
satisfies ( 1

2 , 1
4σ2L2 + 1

2L2 )-Rényi Differential Privacy, where σ2 depends on graph structure G. Meanwhile, F
has no privacy guarantee, i.e., the Rényi differential privacy loss (8) is unbounded.

Proof. Given the definition of function E from above, we have that

E(x0; DL) =
∑

v∈N (x0)∩D1

m(xv; θ(D2)) +
∑

w∈N (x0)∩D2

m(xw; θ(D1))

=
∑

v∈N (x0)∩D1

m(xvθ(D2)) +
∑

w∈N (x0)∩D2

m(xwθ(D1)),
(17)

where the second equality follows from the MLP assumption. Similarly for F we have

F (x0; DL) =
∑

v∈N (x0)∩D1

m(xv; θ(D1)) +
∑

w∈N (x0)∩D2

m(xw; θ(D2))

=
∑

v∈N (x0)∩D1

m(xvθ(D1)) +
∑

w∈N (x0)∩D2

m(xwθ(D2)).
(18)

We now define the adjacent datasets D and D′ as follows. Assume D = D1; one data point {x′, y′} is then
randomly selected from Chunk I and removed {x′, y′} from D1 forming D′ = D1\{x′, y′}. Meanwhile, the
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Table 6: Training time tested on AWS g4dn.12xlarge machine.

Dataset Base Model Time(s)

House GBM, NN 52

County GBM, NN 18

VK GBM, NN 119

Avazu GBM, NN 15

OGB-Arxiv NN 199

OGB-Products NN 837

unlabeled set DU and D2 remain the same. Our goal is to examine the extent to which E and F may leak
information pertaining to {x′, y′} when {x′, y′} is removed from D1 as described above.

Denote xv, xw as training data in chunk I and chunk II. Assume
(

xv

xw

)
is drawn from a multivariate Gaussian

distribution: (
xv

xw

)
∼ N

([
0
0

]
,

[
Γvv Γvw

Γwv Γww

]−1)
, (19)

where
[

Γvv Γvw

Γwv Γww

]
= aI + bN , I is identical matrix, N is normalized graph Laplacian, a controls noise

level and b controls the smoothness over the whole graph.

From Proposition 5, the condition distribution of xw given xv = xv can be written as

xw|xv = xv ∼ N (−Γ−1
wwΓwvxv, Γ−1

ww).

Condition on the data D1, the distribution of D2 is a conditional multivariate Gaussian distribution with
mean −Γ−1

wwΓwvxv and variance Γ−1
ww. Furthermore, multiplicative Gaussian distribution xwθ(D1) introduces

a Gaussian random noise into (17). According to Proposition (1) and (3), E satisfies ( 1
2 , 1

4σ2L2 + 1
2L2 )-Rényi

Differential Privacy, where σ2 depends on Γ−1
ww decided by graph structure.

Meanwhile, although (18) is deterministic, we can manually add Gaussian noise N (0, σ2) such that F satisfies
α

2σ2 -Rényi Differential Privacy via Proposition (4). However, if we then let σ → 0 to reproduce F , we have
that α

2σ2 →∞, indicating that in fact F has no privacy guarantee.

B Experiment Details

B.1 Data descriptions

House: node features are the property of house, edges connect the neighbors, the task is to predict the
price of the house. County: each node is a county and edges connect two counties sharing a border, the
task is to predict the unemployment rate for a county. VK: each node is a person and edges connect two
people based on the friendships, the task is to predict the age of each person. Avazu: each node is a device
and edges connect two devices if they appear on the same site with the same application, the target is the
click-through-rate of a node. For House, County, VK and Avazu datasets, Training/validation/testing are
randomly split with 6/2/2 ratio and all experiments results are averaged over 5 trails.

OGB-Arxiv, OGB-Products are standard datasets from OGB-leaderboards and all training/validation/testing
splits follow the standard data splitting from OGB-leaderboards. Reddit is standard datset from Deep Graph
Library (DGL).
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Table 7: Dataset Statistics (- in Number of Classes means regression task)

Dataset Number of nodes Number of edges Number of classes

House 20,640 182,146 -

County 3,217 12,684 -

VK 54,028 213,644 -

Avazu 1,297 54,364 -

OGB-Arxiv 169,343 1,166,243 40

OGB-Products 2,449,029 61,859,140 47

Table 8: Hyperparameters

Dataset λ Input for stacking layer

House/County/VK/Avazu 0.9 (X, {F
(0)
m , F

(1)
m , F

(2)
m , F

(3)
m , F

(4)
m , F

(5)
m })

OGB-Arxiv 0.95 (X, {F
(0)
m , F

(1)
m , F

(3)
m , F

(5)
m , F

(7)
m , F

(9)
m })

OGB-Products 0.97 (X, {F
(0)
m , F

(1)
m , F

(3)
m , F

(5)
m , F

(7)
m , F

(9)
m })

Table 9: Hyperparameters for C&S

Dataset λ1 kernel type λ2 kernel type num_propagation

House/County/Avazu 0.8 DA 0.5 DA 5

VK 0.8 DA - - 5

OGB-Arxiv 0.9 DA 0.1 AD 50

OGB-Products 0.3 DAD 0.3 AD 50

k 2 3 4
Test Acc. 0.710 ± 0.001 0.708 ± 0.002 0.712 ± 0.001

Table 10: Ablation study for k.

B.2 Parameters for Graph-aware propagation

We do graph-aware propagation for the prediction to incorporate the graph structure. Table 8 shows two
hyperparameters considered in the propagation part: weight λ and number of propagation step T . We also
present the hyperparameters for Correct and Smooth in Table 9.

C Additional Ablations

The following tables show the performance with respect to k and L (refer to Table 10 and 11) . (Experiments
on OGB-Arxiv with numerical embedding). From the following table, when L ≥ 2, the outcome is not
significantly affected by the value of L (owing to the incorporation of the graph signal from the second
layer). Therefore, we typically opt for L = 2. Typically, the Repeat bagging (N) is set to 1, which is the
default value in the AutoGluon package. While a higher N might enhance performance, it also significantly
raises computational cost. Notice here, for both L and N , in the main paper, we present a more generalized
framework for our approach, which explains why we employ a for loop. The base models are determined by
the input data type (e.g, Bert for text node feature and Tree-base model for tabular data). In our study, the
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L 1 2 3 4
Test Acc. 0.550 ± 0.01 0.712 ± 0.02 0.711 ± 0.03 0.707 ± 0.01

Table 11: Ablation study for L.

λ 1.0 0.9 0.8 0.7
Test Acc. 0.707 ± 0.01 0.706 ± 0.02 0.697 ± 0.02 0.694 ± 0.02

Table 12: Ablation study for λ.

base models were designed in such a way that they are specific to a single modality, we do not do ablation
study on them. Table 12 shows the performance is not sensitive to λ (Experiments on OGB-Arxiv with
numerical embedding).
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