
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PERFORMANCE CONTROL IN EARLY EXITING TO
DEPLOY LARGE MODELS AT THE SAME COST OF
SMALLER ONES

Anonymous authors
Paper under double-blind review

ABSTRACT

Early Exiting (EE) is a promising technique for speeding up inference at the cost
of limited performance loss. It adaptively allocates compute budget to data points
based on their difficulty by exiting at earlier layers when predictions are confident.
In this study, we first present a novel perspective on the EE approach, demonstrat-
ing that larger models, when deployed with EE, can achieve higher performance
than smaller models while maintaining similar computational costs. As existing
EE approaches rely on confidence estimation at each exit point, we further study
the impact of overconfidence on the controllability of the compute/performance
trade-off. We introduce Performance Control Early Exiting (PCEE), a method
that enables accuracy thresholding by basing decisions not on a datapoint’s cond-
fidence but on the average accuracy of samples with similar confidence levels
from a held-out validation set. In our experiments with MSDNETS and VISION
TRANSFORMER architectures on CIFAR-10, CIFAR-100, and IMAGENET, we
show that PCEE offers a simple yet computationally efficient approach that pro-
vides better control over performance than standard confidence-based approaches,
and allows us to scale up model sizes to yield performance gain while reducing
the computational cost.

1 INTRODUCTION

Scale, both in terms of model size and amount of data, is the main driver of recent AI develop-
ments, as foreseen by Kaplan et al. (2020) and further evidenced by Hoffmann et al. (2022). Re-
markably, even model architectures are designed to enable scaling, such as the standard TRANS-
FORMER (Vaswani et al., 2017) which was built to maximize parallelization, facilitating the training
of very large models. Similarly, recent recurrent architectures such as RWKV (Peng et al., 2023),
MAMBA (Gu & Dao, 2023), and XLSTM (Beck et al., 2024) enable scaling for the otherwise ineffi-
cient legacy recurrent architectures (Greff et al., 2016) that require sequential processing (Dehghani
et al., 2018). The improved prediction performance unlocked with scale unfortunately comes at
high memory footprint and latency at inference. Several approaches have been proposed to tackle
these limitations, namely quantization (Dettmers et al., 2022; Ma et al., 2024; Dettmers et al., 2024),
knowledge distillation (Hinton et al., 2015; Gu et al., 2023; Hsieh et al., 2023) and speculative de-
coding (Leviathan et al., 2023; Chen et al., 2023) (although specifically for autoregressive models).
These methods trade performance for reduced computational cost across all samples, irrespective of
their difficulty, with the exception of speculative decoding which uses adaptive computation. How-
ever, the speed-up gains from this method are bounded by the quality of the draft model used for
speculating predictions. More discussion on related work can be found in Section 6.

In this work, we focus on Early-Exiting (EE), an inference optimization technique that allocates
budget adaptively to the test samples, based on their perceived difficulty. Early-exit strategies (Grubb
& Bagnell, 2012; Huang et al., 2017; Elbayad et al., 2019a; Schuster et al., 2021; Chen et al., 2023)
involve establishing exit points at intermediate layers of a network based on the confidence levels
of the predictions at each layer. The most common approach within these strategies is to make
predictions at each intermediate layer and evaluate their confidence, allowing the model to exit early
if the confidence exceeds a predetermined threshold. Figure 2 shows the potential compute savings

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Larger models coupled with early exiting can achieve lower prediction errors for
the same computational budget compared to smaller models. This plot shows prediction error
(%) versus average flops used (left) and average layers used (right) for different MSDNET sizes
on CIFAR-10: small (4 layers) and large (8 layers). Various exiting strategies are compared: ours
(PCEE, PCEE-WS) and Oracle (exiting as soon as a layer’s prediction matches that of the final
layer). Each green and yellow dot corresponds to a model seed and a threshold δ. Oracle is computed
by averaging over 3 seeds. The large model with any early-exiting strategy gets to lower prediction
errors than the full small model with even less compute.

achievable with an Oracle EE strategy that exits at the first layer whose prediction matches that of
the last layer.

Figure 2: Heatmap of the layers used by an Oracle EE strategy of a VIT on 64 random samples from
IMAGENET-1K. The dark bars indicate the layers used for each sample and the light-colored area
shows the amount of compute that can be saved without losing performance.

While Early Exiting is commonly used to speed up inference at the cost of performance, in this paper
we present a novel perspective by demonstrating that we can achieve the low computational cost of
small models and the high performance of large models simultaneously, by training and applying
Early Exiting on the large model. In other words, our findings suggest that scaling up models and
applying EE is advantageous for both performance and computational efficiency, as depicted in
Figure 1 (we observe similar results across several architectures and datasets, as reported in TODO).
To achieve such results, performance control is of the essence, i.e., reliably estimating the accuracy
of an intermediate prediction so that the model is not prematurely exited. Current EE methods that
rely on confidence estimates at each exit point in a multi-layer model are however bound to fail
as neural networks are typically miscalibrated (Guo et al., 2017; Wang et al., 2021). To address
this, we introduce PCEE, Performance Control Early Exiting, a method that ensures a lower bound
on accuracy by thresholding based not on a datapoint’s confidence but on the average accuracy of
its nearest samples from a held-out validation set with similar confidences. This approach offers a
simple yet computationally efficient alternative that provides control over performance, facilitating
accurate adaptation of EE methods for practical use.

Moving from confidence thresholding to accuracy thresholding has a number of advantages. Un-
like confidence, accuracy is an indicator of the actual model performance, hence one can easily
decide on to determine a threshold. Confidence estimates can also present inconsistent behavior
throughout layers, hence requiring the selection of a different threshold per layer, which is in itself
a difficult problem to solve. As discussed in more detail in Section 4 and empirically demonstrated
in Section 5, accuracy thresholds offer a simple approach to determine the earliest exit point that
guarantees at least the desired accuracy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Contributions Our contributions are summarized as follows:

• We introduce a post-hoc early-exit approach called Performance Control Ealy Exiting
(PCEE) to provide control over accuracy for any model returning a confidence score and a
classification decision at each exit point, regardless of how well-calibrated it is.

• Our early exit method requires selecting one single threshold for all layers, unlike existing
early exit methods that require learning a threshold per layer. This threshold is a simple
accuracy lower bound—based on the target accuracy level chosen by the user—rather than
an abstract confidence level unrelated to prediction performance.

• For the first time to our knowledge, we show that scale can also yield inference efficiency.
That is, larger models require a reduced amount of computation to attain a certain accuracy
level by exiting at very early layers, more so than a smaller model.

2 BACKGROUND AND SETTING

We focus on the K-way classification setting where data instances correspond to pairs x, y ∼ X×Y ,
with X ⊂ Rd and Y = {1, 2, 3, ...,K}, K ∈ N. Classifiers then parameterize data-conditional
categorical distributions over Y . That is, a given model f ∈ F : X 7→ ∆K−1 will project data onto
the probability simplex ∆K−1.

Early Exit Neural Networks Early Exit Neural Networks enable dynamic resource allocation
during model inference, reducing computational demands by not utilizing the entire model stack
for every query. These approaches strategically determine the exit point for processing based on
the perceived difficulty of the data, allowing for a reduction in resource use for simpler examples
while allocating more compute power to more complex cases. This is commonly achieved through
a confidence threshold δ ∈ [0, 1], where the decision to exit early is made if the confidence mea-
sure ci(x) at a given layer i—often derived from simple statistics (e.g., max(·)) of the softmax
outputs—exceeds δ. While seemingly effective, confidence thresholding is brittle, as it is sensitive
to miscalibration, and requires extensive search on a left-out validation dataset to find optimal per-
layer thresholds. For example, without properly tuned thresholds, overconfident exit layers result in
premature predictions, hence degraded accuracy. We provide a simple fix to this issue in Section 4.

Calibration and Expected Calibration Error (ECE) Calibration in multi-class classifiers mea-
sures how well the predicted confidence levels (e.g., max softmax(·)) match the true probabilities
of correct predictions (Guo et al., 2017; Nixon et al., 2019). A well-calibrated model means that
if a model assigns a 70% confidence to a set of predictions, then about 70% of these predictions
should be correct. The Expected Calibration Error (ECE) Naeini et al. (2015) quantifies model cal-
ibration by calculating the weighted average discrepancy between average confidence and accuracy
across various confidence levels. The formula divides confidence ranges into bins and computes the
absolute difference in accuracy and confidence per bin, with an ECE of zero indicating perfect cali-
bration. The formal definition of ECE is available in Section B in the appendix. Reliability diagrams
visually assess calibration by comparing confidence levels against actual accuracy in a plot, where
deviations from the diagonal (y = x) show miscalibration. Overconfidence occurs when confidence
exceeds accuracy, while underconfidence happens when it falls short. We will use these reliability
diagrams to map confidence to accuracy as discussed in Section 4.2.

3 BENEFITS OF INCREASING MODEL SIZE COUPLED WITH EARLY EXITING

Our first contribution is to show that Early Exiting does not necessarily compromise performance for
faster inference, but can be used to run larger models at the cost of smaller ones. Figure 1 provides
compelling evidence in support of the observation that larger models can lead to greater inference
efficiency. Green and yellow dots indicate test error and average FLOPs on the left plot and average
layers on the right plot used by EE using the specified method. The prediction error of each layer of
the small model (without early exiting) is also shown. The results demonstrate a clear trend: larger
models achieve lower prediction errors with fewer FLOPs compared to smaller models if we use
early exiting. For instance, the large model with PCEE (our method) achieves a prediction error
of around 6% using 2 layers (approximately 26 × 106 FLOPs) on average. In contrast, the smaller

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

model utilizing the same amout of FLOPs has a higher level of prediction error (about 7.4%). This
difference highlights that larger models can make accurate predictions earlier in the network for
most samples, thus saving computational resources on average.

Table 1: Top row shows the accuracy (%) of MSDNET small using the full capacity of the model
on three different datasets: CIFAR-10, CIFAR-100 and IMAGENET-1K. The bottom row shows
the accuracy we can get from MSDNET Large using our EE strategies (PCEE, PCEE-WS) with the
same or less computational cost as the full small model.

MSDNET CIFAR-10 CIFAR-100 IMAGENET-1K

Full Small model 93.04 71.24 70.7
Large Model with EE 93.88 73.06 72.13

This observation underscores a significant insight: scaling up model size can enhance computational
efficiency by enabling early exits in the inference process. Larger models can leverage their deeper
architecture to make correct predictions at earlier stages for easy samples, while benefiting from
later layers for hard ones, reducing the need for extensive computation across all layers for all sam-
ples. This efficiency is crucial for practical applications, where computational resources and time
are often limited. Therefore, our findings challenge the conventional view that larger models are in-
herently more computationally expensive. Instead, we show that larger models can be more efficient
in terms of accuracy for a fixed compute budget, providing a compelling case for scaling up models
to improve inference computational efficiency while maintaining or even enhancing prediction ac-
curacy. Table 1 summarizes this observation for CIFAR-10, CIFAR-100, and IMAGENET-1K by
showing that the large model with EE can achieve higher performance at the same cost (in FLOPs)
of the small model. The inference efficiency plots for these datasets are available in Figures 8 and 9
in the Appendix for prediction error versus both average layers used and average FLOPs used.

Finally, note that these compute gains also translate to reduced latency when using dynamic batch-
ing, so that inference is batchified (as for any model without EE) and resources are used at full
capacity. Indeed, techniques such as on-the-fly batching (Neubig et al., 2017)1 enable dynamic
batching during inference, allowing the system to start processing new requests as soon as other
requests in the batch are completed.

4 PERFORMANCE CONTROL EARLY EXITING

In this section, we first examine the miscalibration of Early Exit Neural Networks, demonstrating
through experiments that they tend to be overconfident, with miscalibration escalating as layer depth
increases. Then we introduce PCEE (Performance Control Early Exiting), a method that ensures a
lower bound on accuracy by thresholding not on the confidence estimate of a given test example, but
on the average accuracy of samples with similar confidence from a held-out dataset. Our early exit
method requires selecting a single threshold rather than one per layer. This threshold is a simple ac-
curacy lower bound, based on the target accuracy chosen by the user, rather than a confidence level
that might not relate directly to prediction performance. We emphasize this advantage by highlight-
ing that selecting a threshold per layer involves an exhaustive search over a large space as in existing
methods (Elbayad et al., 2019b). For instance, with a 8-layer model, searching for the best thresh-
old for each layer to maximize validation accuracy, even within a narrow range of (0.8, 0.9] and a
step size of 0.01, results in 108 combinations. This extensive search, performed before inference,
demands significant computational resources. Additionally, if we need to adjust for lower accuracy
due to budget constraints, the entire process must be repeated. In contrast, our method allows easy
adjustment of the threshold based on the desired accuracy level, offering significant computational
savings and flexibility.

4.1 CHECKING FOR MISCALIBRATION IN EARLY EXIT NEURAL NETWORKS

Performing EE at inference to allocate adaptive computation to unseen data requires reliable confi-
dence estimation at each exit point in a multi-layer model. However, this is non-trivial to achieve

1NVIDIA TensorRT provides libraries to accelerate and optimizer inference performance of large models:
https://developer.nvidia.com/tensorrt

4

https://developer.nvidia.com/tensorrt

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Confidence levels across different layers of a VIT with layerwise classifiers trained on
IMAGENET-1K tested on the visually simple snake image shown on the plot. Red bars indicate lay-
ers that made incorrect predictions, while blue layers indicate layers that made correct predictions.
Overconfident early layers trigger a (premature) exit on layer 5, the first layer surpassing the thresh-
old of 0.75. The test accuracy for each layer is also shown.

as it’s well-known that neural networks are typically overconfident (Wang, 2023; Guo et al., 2017).
That is, simply relying on commonly used confidence indicators would trigger very early exits at a
high rate, damaging overall model performance. Moreover, commonly used confidence estimates
are typically somewhat abstract quantities, decoupled from metrics of interest such as prediction
accuracy, and it’s not easy to decide on confidence thresholds that guarantee a certain performance
metric of interest. Jiang et al. (2018) highlights that the model’s reported confidence, e.g. probabil-
ities from the softmax layer, may not be trusted especially in critical applications such as medical
diagnosis.

Figure 4: Reliability Diagrams for Layers 1, 5, 8 of MSDNET-LARGE with 8 layers on CIFAR-100

Indeed, if one considers the VIT (Dosovitskiy et al., 2020) with multiple classifiers (i.e., one clas-
sifier or exit point per layer) trained on IMAGENET-1K (Deng et al., 2009) illustrated in Figure 3,
the overconfidence issue becomes noticeable.2 In the simple example image displayed on the plot,
which does not contain distracting objects or a complex background, a confidence threshold of 0.75
would result in a premature exit since early layers are too confident even when wrong, resulting in
misclassification. This suggests that accurate exit strategies must be designed. Figure 10 in Ap-
pendix D shows a similar phenomenon for MSDNet-Large on an example of CIFAR-100.

Table 2: MSDNET-LARGE on CIFAR-100: Accuracy and ECE of exit points at each of the 8
layers

Layer 1 2 3 4 5 6 7 8

Accuracy (%) 65.08 66.59 69.24 71.67 73.01 74.17 74.68 74.92
ECE 0.062 0.083 0.089 0.091 0.107 0.102 0.119 0.139

We further evaluated how commonly used models behave layerwise in terms of overconfidence.
To do so, we trained models of varying sizes on CIFAR-10 and CIFAR-100 while adding exit
points at every layer. A subset of these results is shown in the reliability diagrams in Figure 4 for
certain layers of a MSDNET-LARGE (Huang et al., 2017) with the confidence given the maximum

2The VIT backbone (without layerwise classifiers) used here is vit base patch32 clip 224.laion2b ft in1k
from TIMM (Wightman, 2019).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: PCEE: The structural overview of PCEE. In a multi-layer model with exit points at each
layer, the input representation ri is processed through an exit layer block Ei. The exit layer cal-
culates a confidence score ci and uses a reliability diagram (confidence-to-accuracy mapping) to
determine whether to exit or continue processing. If the estimated accuracy from the reliability di-
agram exceeds an accuracy threshold δ, the model exits and outputs prediction predi; otherwise, it
proceeds to the next layer, passing the representation forward.

of the softmax outputs at each exit point. Additional results with the VIT architecture are shown
in Appendix D. Perfectly calibrated models would be such that the bars would hit the y = x line.
However, the evaluated model deviates from that, especially so for deeper layers. Table 2 presents
ECE for each layer, which increases with depth as already noted from the reliability diagrams.

Also, as discussed in Appendix D, MSDNET-LARGE demonstrates a higher level of overconfidence
than MSDNET-SMALL which supports results by Wang (2023) showing that increasing the depth
of neural networks increases calibration errors.

4.2 PERFORMANCE CONTROL EARLY EXITING (PCEE)

We now introduce PCEE, a method to gain control over performance in Early Exit Neural Networks.
The method is illustrated in Figure 5. For a multi-layer model with n layers {Li}ni=1, we incorporate
exit points at the end of each layer. At any layer i, the input representation of sample x is processed
through an exit layer block, denoted as Ei, which determines whether the model should terminate
at this stage or continue. The exit layer Ei transforms the representation ri = Li(x) into a vector of
size corresponding to the number of classes.

At this step, a confidence score, ci, for sample x, is computed. This score can be derived either as
the maximum value or the entropy of the probability distribution obtained after applying softmax.
The decision to exit at this layer is then based on the confidence score. As discussed, existing
methods rely only on the confidence score itself, which reduces control over accuracy because of
the miscalibration issue. To make this decision, we instead employ the reliability diagram for layer
i, which is constructed from the validation dataset. This diagram provides an estimate of the average
accuracy for samples with a confidence level similar to ci at layer i. Suppose ci falls into bin m of the
reliability diagram for layer i. If the accuracy corresponding to bin m exceeds a predefined threshold
δ, the model exits at layer i, outputting the prediction derived from the exit layer. Otherwise, the
model proceeds to the next layer. The representation passed to layer i+ 1 is ri, the one produced at
the end of layer i before it goes through Ei. Further details of PCEE are outlined in Algorithm 1.

PCEE-WS PCEE-WS is a variant of PCEE with a smoothing technique applied to the reliability
diagrams of the validation dataset. We observed that some bins in the reliability diagrams could
contain very few examples, leading to inaccurate representations of the bin’s accuracy. To address
this, we smooth the accuracy of each example from a binary value (0 or 1) to the average accuracy of
its H nearest neighbors based on confidence scores, where H is a hyperparameter. This smoothing
is performed before the binning process. The average of these smoothed accuracies is then used to
form the bins for the reliability diagrams. Our experimental results demonstrate that this approach

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

can yield improvements in the performance of the model during inference. We set H = 150 in our
experiments and used 50 bins for the reliability diagrams.

Implementation and Training details In practice, we implement the exit layers as fully-
connected layers that output logits for a softmax layer. We use the softmax maximum as the pre-
diction and its mass as a confidence estimate for that exit layer. Let zi ∈ ∆K−1 be the softmax
outputs from exit layer i, Ei, for a single data instance x with ground truth one-hot encoded label
y. The cross-entropy loss for Ei is given by: Li = −y⊤ log(zi), and the total loss L is the average
of the cross-entropy losses across all layers: L = 1

n

∑n
i=1 −y⊤ log(zi). We jointly train the orig-

inal model architecture and the exit layers by minimizing L using Stochastic Gradient Descent for
CIFAR-10 and CIFAR-100 and AdamW (Loshchilov & Hutter, 2017) for IMAGENET.

Table 3 shows that the addition of intermediate exit layers has a minimal impact on the performance
of the original model. This experiment includes two training setups: one with intermediate exit lay-
ers on all layers and minimizing L as described above, and one without intermediate exit layers, i.e.,
only one classification head at the end. The results indicate that the performance drop from adding
intermediate exit layers is negligible considering the error bars, and there is even the possibility of
slight accuracy improvement. Overall, the computational savings achieved through early exiting
significantly outweigh the minor variation in accuracy.

Table 3: Accuracy comparison of the last layer of MSDNet models with and without intermediate
exit layers, showing minimal impact on performance while training with exit layers.

MSDNET CIFAR-10 CIFAR-100

Small without intermediate exit layers 92.05 ± 0.11 71.47 ± 0.40
Small with intermediate exit layers 92.3 ± 0.29 71.23 ± 0.81

Large without intermediate exit layers 94.23 ± 0.24 74.71 ± 0.53
Large with intermediate exit layers 93.86 ± 0.13 74.85 ±0.10

5 EXPERIMENTS

We evaluate PCEE and PCEE-WS on widely used image classification benchmarks, and report per-
formance both in terms of accuracy, and computational efficiency. In all experiments, we use 10%
of the training data for the CIFAR datasets and 4% for IMAGENET respectively as held-out valida-
tion set to learn the confidence-to-accuracy mappings in reliability diagrams for our method, and the
hyper-parameters for the baselines. These portions are standard for validation sets on these datasets.
For fair comparison, we run all EE methods with thresholds set to the same value for all intermediate
layers.

Baselines We compare our methods with four baseline approaches: Oracle, Confidence Thresh-
olding (referred to as “Confidence” in the tables and figures), the Laplace approximation introduced
by Meronen et al. (2024), and Confidence Thresholding with Temperature Scaling (referred to as
”TS+Confidence”). Oracle refers to a setting with privileged information whereby exits happen
as soon as an intermediate layer’s prediction matches that of the final layer, showing the potential
compute gain of an optimal exiting strategy. The results of Oracle do not depend on the threshold
δ. Confidence Thresholding checks the confidence of the prediction; if it is above the threshold,
it exits. The Laplace approximation is a post-hoc calibration method that does not require retrain-
ing, like our approach. It approximates a Bayesian posterior for each exit layer with a multi-variate
Gaussian, centered on the deterministic exit layer and with covariance equal to the inverse of the
exit layer Hessian. Predictions are then obtained via a Monte Carlo estimate that we perform with
sample size equal to 1, and with temperature and prior variance set to their default values, following
the released codebase. Finally we compare our method to temperature scaling (Guo et al., 2017), a
post-hoc calibration technique that divides logits by a scalar parameter, T , before applying softmax.
In our implementation, we learn one temperature parameter per layer, starting with T = 1, and de-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

termine its optimal value using the validation set3. The TS+Confidence method applies the learned
temperature values to the test data, followed by confidence thresholding for early exiting.

Figure 6: Performance of three MSDNET models (Small, Medium, and Large) evaluated with dif-
ferent thresholds. Each model exits with one of the following methods: confidence (blue), PCEE
(orange), and PCEE-WS (green). The threshold values correspond to confidence levels that translate
to target percentage accuracy. Both PCEE and PCEE-WS methods consistently show higher accu-
racy than the confidence thresholding, maintaining accuracy above the set threshold. The maximum
threshold reflects the peak accuracy achievable by the full model.

Performance Control Figure 6 reports results for models of increasing size. We first notice that
PCEE (orange) and PCEE-WS (green) show higher controllability relative to Confidence Threshold-
ing: resulting accuracy is consistently higher than the threshold for PCEE and PCEE-WS, which is
by design and enables simpler inference pipelines where one can compromise accuracy for compute
(or vice-versa) more easily than with Confidence Thresholding.

Tables 4 provide a detailed comparison across methods along with computation cost on CIFAR-100.
For various threshold values (δ), PCEE and PCEE-WS exhibit higher accuracy compared to base-
lines. Notably, for the MSDNET-SMALL model, PCEE and PCEE-WS achieve up to 71.81% accu-
racy at δ = 0.71, outperforming the Confidence’s 71.35%. Similarly, PCEE and PCEE-WS reach
up to 73.97% accuracy at δ = 0.73 for MSDNET-LARGE, surpassing the Confidence’s 72.72%
that does not meet the desired threshold. We also highlight that, despite the increase in average
number of used layers, PCEE and PCEE-WS achieve higher performance, potentially justifying the
computational trade-offs in situations where accuracy is of priority. For example, at δ = 0.73,
the MSDNET-LARGE model with PCEE-WS uses 3.02 layers on average, compared to the Confi-
dence’s 2.43, reflecting a balance between computational resources and accuracy gains. The Laplace
baseline, although using the fewest average layers, falls below the threshold for most of δ values and
therefore does not provide performance control.

Effect of Calibration Another finding from Table 4 is that the integration of Temperature Scaling
with confidence thresholding enhances performance relative to the confidence baseline. This is an
expected result, as TS improves model calibration, and hence accuracy of predictions when early
exiting. Still, TS results are slightly worse than those of our proposed PCEE and PCEE-WS methods.
It is also important to note that temperature scaling requires additional training and hyperparameter
tuning, while our approach offers a simpler alternative that does not necessitate any extra training
and remains effective in mitigating overconfidence in models. As highlighted in the related work,
model calibration could be a challenging task influenced by various architectural and hyperparameter
factors, such as depth, width, and choice of optimizer. Nevertheless, in principle our methods and
the TS+Confidence baseline would yield comparable performance with a perfectly calibrated model.

More notably, PCEE and PCEE-WS can also be combined with temperature scaling. As shown
in the table, this extra calibration step enhances the performance of our methods, surpassing the
other baselines across most thresholds. While our methods are designed to perform well without the
need for additional calibration, applying temperature scaling can yield even better results. There-
fore, if time and computational resources permit, this step is advisable prior to applying PCEE or
PCEE-WS.

3For the implementation of temperature scaling, we followed https://github.com/gpleiss/
temperature_scaling

8

https://github.com/gpleiss/temperature_scaling
https://github.com/gpleiss/temperature_scaling

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We observe an interesting result in Table 4, where our methods can achieve higher accuracy than
the Oracle while using only a fraction of layers. For example, for the small MSDNet, PCEE-WS
can achieve 71.76% accuracy for δ = 0.68 and 71.81% for δ = 0.71, surpassing Oracle’s 71.64%
accuracy with using only around 50% of the available layers on average. This surprising result
can happen when intermediate layers predict the correct label while the last layer does not, known
as destructive overthinking (Kaya et al., 2018). This suggests that early exiting (EE) may have a
regularizing effect, allowing us to leverage both accuracy and compute efficiency.

Additional results on CIFAR-10 (Figure 13 and Table 7) and IMAGENET (Table 8) are provided in
the appendix. Appendix A provides the implementation details of the MSDNET and VIT architec-
tures we use for the experiments throughout the paper.

Table 4: Comparison of EE strategies for MSDNet Small and Large on CIFAR-100. Both PCEE
and PCEE-WS consistently show higher accuracy than the other baselines, maintaining accuracy
above the set threshold, enabling performance control. Accuracies are averaged over 3 seeds with
the standard deviations (std) shown in front of them. The results of Oracle does not depend on δ.
Accuracies below the threshold (without considering std) are shown in red. The first and second best
accuracies in each row are highlighted in bold. For the small model, PCEE-WS surpasses the oracle
accuracy using only about 50% of the available layers on average.

δ MSDNET SMALL Oracle Confidence Laplace TS+Confidence PCEE (ours) PCEE-WS (ours) TS+PCEE-WS (ours)

0.65
ACC ↑ 71.64 70.79± 0.16 64.90± 0.49 71.16± 0.19 71.61± 0.39 71.62± 0.33 71.62± 0.25
Avg Layers ↓ 1.63 1.64± 0.01 1.31± 0.05 1.73± 0.01 1.96± 0.02 1.95± 0.02 1.96± 0.05
Avg FLOPs (106) ↓ 13.02 12.92± 0.11 10.01± 0.42 13.89± 0.09 16.30± 0.28 16.16± 0.12 16.24± 0.46

0.68
ACC ↑ 71.64 71.12± 0.16 64.17± 0.38 71.33± 0.24 71.66± 0.31 71.76± 0.30 71.78± 0.39
Avg Layers ↓ 1.63 1.71± 0.01 1.29± 0.05 1.81± 0.01 2.01± 0.04 2.05± 0.02 2.03± 0.02
Avg FLOPs (106) ↓ 13.02 13.61± 0.11 10.13± 0.43 14.68± 0.1 16.77± 0.44 17.16± 0.30 16.94± 0.2

0.71
ACC ↑ 71.64 71.35± 0.27 63.26± 0.48 71.55± 0.39 71.77± 0.19 71.81± 0.30 71.79± 0.33
Avg Layers ↓ 1.63 1.78± 0.01 1.27± 0.05 1.88± 0.01 2.10± 0.07 2.10± 0.04 2.10± 0.02
Avg FLOPs (106) ↓ 13.02 14.36± 0.14 9.88± 0.43 15.44± 0.12 17.74± 0.65 17.77± 0.35 17.78± 0.17

δ MSDNET LARGE

0.67
ACC ↑ 74.9 71.70± 0.34 69.41± 0.39 72.62± 0.21 73.05± 0.38 72.97± 0.37 73.11± 0.14
Avg Layers ↓ 2.09 2.16± 0.01 1.94± 0.08 2.40± 0.01 2.64± 0.05 2.62± 0.06 2.62± 0.01
Avg FLOPs (106) ↓ 27.47 27.24± 0.37 23.68± 1.07 33.63± 0.34 39.96± 1.03 39.77± 1.37 40.19± 0.89

0.7
ACC ↑ 74.9 72.21± 0.33 69.18± 0.51 73.09± 0.36 73.46± 0.37 73.48± 0.41 73.54± 0.27
Avg Layers ↓ 2.09 2.29± 0.02 1.98± 0.06 2.54± 0.01 2.80± 0.07 2.82± 0.07 2.78± 0.06
Avg FLOPs (106) ↓ 27.47 30.20± 0.43 24.75± 0.89 37.17± 0.43 44.21± 1.76 44.72± 1.65 44.09± 1.73

0.73
ACC ↑ 74.9 72.72± 0.32 68.80± 0.77 73.62± 0.23 73.85± 0.58 73.97± 0.46 73.93± 0.36
Avg Layers ↓ 2.09 2.43± 0.01 2.00± 0.06 2.70± 0.01 2.99± 0.09 3.02± 0.11 2.98± 0.09
Avg FLOPs (106) ↓ 27.47 33.52± 0.37 25.59± 0.85 40.97± 0.35 49.04± 2.08 50.18± 2.55 49.32± 1.99

6 RELATED WORK

Inference Efficiency Inference efficiency has been tackled in many different ways. For instance,
quantization approaches (Dettmers et al., 2022; Ma et al., 2024; Dettmers et al., 2024) reduce the
numerical precision of either model parameters or data, although typically at the expense of accu-
racy. Knowledge distillation approaches (Hinton et al., 2015; Gu et al., 2023; Hsieh et al., 2023)
were also introduced with the aim of accelerating inference by training a small model to imitate
a large one. While yielding improvements in inference speed, distilled models may miss certain
capabilities that only manifest at scale (Wei et al., 2022). A recent line of work, called specula-
tive decoding (Leviathan et al., 2023; Chen et al., 2023), uses instead a small model for drafting
a proposal prediction but keeps the large one for scoring and deciding whether to accept or reject
it. Although exact, speculative decoding speed-up relies on the quality of the small model used for
drafting, as a better drafter results in higher token acceptance rates and longer speculated sequences.
Moreover, such techniques are not suited to non-autoregressive models, such as classifiers.

Early Exit Neural Networks The first instance of EE was introduced by Teerapittayanon et al.
(2016) where exit classifiers are placed after several layers, operating on top of intermediate repre-
sentations. At training time, the joint likelihood is maximized for all exit points, while at inference
the decision of whether or not to exit at each exit point is made by thresholding the entropy of the
predicted categorical. This approach suffers from the overconfidence of neural networks, which
triggers premature exits. While there exist approaches aimed at improving overconfidence such as
nonparametrical TRUST SCORES Jiang et al. (2018) or simply improving the accuracy of the under-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

lying classifier (Vaze et al., 2021; Feng et al., 2022), those wouldn’t scale to the early-exit setting
that requires overconfidence to be tackled for every exit point. Recent work (Meronen et al., 2024)
also tackles the overconfidence issue by better estimating uncertainty via a post-hoc Bayesian ap-
proach and leveraging model-internal ensembles. This approach is specific to linear exit layers and
adds a significant overhead, as it requires estimating for each exit layer its Hessian to approximate
a Bayesian posterior and sample from it. Görmez et al. (2021) propose instead an architecture vari-
ation that leverages prototypical classifiers (Papernot & McDaniel, 2018) at every layer to avoid
training early exit classifiers, at the cost of having to threshold on unbounded distances.

Even for well-calibrated models, challenges persist as they require careful tuning of a threshold
per exit point, which is far from trivial and involves mapping abstract confidence measures such
as entropy to some performance metric of interest. Ilhan et al. (2024) propose training a separate
model parameterizing a policy that decides on exit points. Alternatively, we seek to do so with an
efficient non-parametric approach that thresholds on target accuracy levels. We would go as far
as to speculate that the difficulty in selecting thresholds yielding a certain level of performance is
the main reason why early exit approaches are not currently widely used in practical applications.
Extensions to the sequence setting were also proposed recently, such as Schuster et al. (2022), but
as with any other existing approach, a threshold needs to be picked for every layer, and it’s difficult
to anticipate the downstream performance for a given choice of the set of thresholds.

Model Calibration Confidence estimation plays a central role in EE approaches since calibrated
models enable deciding when to early exit by simply comparing confidence levels with user-
specified thresholds. However, recent work (Guo et al., 2017) pointed out that neural networks
tend to be poorly calibrated despite having high predictive power and achieving high accuracy, and
larger models tend to be primarily overconfident (Carrell et al., 2022; Hebbalaguppe et al., 2022;
Wang, 2023). Calibrating models is a complex challenge due to the interplay of multiple architec-
tural and hyperparameter factors (Hebbalaguppe et al., 2022). Indeed, recent work showed that the
depth, width, weight decay, batch normalization, choice of optimizers and activation functions, and
even the datasets themselves significantly influence calibration (Guo et al., 2017; Hein et al., 2018).

7 CONCLUSION AND DISCUSSION

We have presented a computationally efficient method for reliably early exiting and showed that
we can achieve the accuracy of large models with a fraction of the compute required even by small
ones. Our method makes use of a held-out validation set to estimate the mapping from confidence to
accuracy in intermediate layers. This provides the user with better control over the model to match
a desired accuracy target and simplifies the threshold selection procedure. Compared to confidence
thresholding, we have shown that our method consistently improves the final accuracy when applied
to models that are overconfident, as typically observed in the literature. We note however that this
behavior is not necessarily true for underconfident models, as reported in Appendix E.4. Finally,
like when running the original model without EE, our method does not handle out-of-distribution
data well and suffers from discrepancies between the validation and test sets (a weakness shared with
Temperature Scaling that is shown to be not effective for calibration under distribution shifts (Ovadia
et al., 2019; Tada & Naganuma, 2023; Chidambaram & Ge, 2024)). This issue can be mitigated in
deployment by continuously updating our reliability diagrams using fresh data as they come to
account for distribution shifts over time. Another solution to this problem is to enable rejection
(e.g., by adding an “I don’t know” class) to make the model more robust to distribution shifts (see
for instance Liu et al. (2019)). Studying the compatibility of such an approach with EE is the subject
of future work.

REFERENCES

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

A. Michael Carrell, Neil Mallinar, James Lucas, and Preetum Nakkiran. The calibration generaliza-
tion gap. ICML 2022 Workshop on Distribution-Free Uncertainty Quantification, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Muthu Chidambaram and Rong Ge. On the limitations of temperature scaling for distributions with
overlaps. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=zavLQJ1XjB.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G. Heigold, S. Gelly, Jakob Uszkoreit, and
N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations, 2020.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. arXiv
preprint arXiv:1910.10073, 2019a.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. Interna-
tional Conference on Learning Representations, 2019b.

Leo Feng, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, and Amir Abdi. Towards better
selective classification. arXiv preprint arXiv:2206.09034, 2022.

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):
2222–2232, 2016.

Alex Grubb and Drew Bagnell. Speedboost: Anytime prediction with uniform near-optimality. In
Artificial Intelligence and Statistics, pp. 458–466. PMLR, 2012.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. In The Twelfth International Conference on Learning Representations, 2023.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1321–1330. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
guo17a.html.

Alperen Görmez, Venkat R. Dasari, and Erdem Koyuncu. E2cm: Early exit via class means for
efficient supervised and unsupervised learning. arXiv preprint arXiv: 2103.01148, 2021.

Yizeng Han, Yifan Pu, Zihang Lai, Chaofei Wang, Shiji Song, Junfeng Cao, Wenhui
Huang, Chao Deng, and Gao Huang. Learning to Weight Samples for Dynamic Early-
Exiting Networks, pp. 362–378. Springer Nature Switzerland, 2022. doi: 10.1007/
978-3-031-20083-0 22. URL https://link.springer.com/content/pdf/10.
1007/978-3-031-20083-0_22.

11

https://openreview.net/forum?id=zavLQJ1XjB
https://openreview.net/forum?id=zavLQJ1XjB
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://link.springer.com/content/pdf/10.1007/978-3-031-20083-0_22
https://link.springer.com/content/pdf/10.1007/978-3-031-20083-0_22

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ramya Hebbalaguppe, Jatin Prakash, Neelabh Madan, and Chetan Arora. A stitch in time saves
nine: A train-time regularizing loss for improved neural network calibration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16081–
16090, June 2022.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the problem. Computer
Vision and Pattern Recognition, 2018. doi: 10.1109/CVPR.2019.00013.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperform-
ing larger language models with less training data and smaller model sizes. arXiv preprint
arXiv:2305.02301, 2023.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, L. Maaten, and Kilian Q. Weinberger. Multi-scale
dense networks for resource efficient image classification. International Conference on Learning
Representations, 2017.

Fatih Ilhan, Ka-Ho Chow, Sihao Hu, Tiansheng Huang, Selim Tekin, Wenqi Wei, Yanzhao Wu,
Myungjin Lee, Ramana Kompella, Hugo Latapie, Gaowen Liu, and Ling Liu. Adaptive deep
neural network inference optimization with eenet. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), pp. 1373–1382, January 2024.

Metod Jazbec, James Urquhart Allingham, Dan Zhang, and Eric Nalisnick. Towards anytime clas-
sification in early-exit architectures by enforcing conditional monotonicity. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=Akslsk891N.

Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier.
Advances in neural information processing systems, 31, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. International Conference on Machine Learning, 2018.

Stefanos Laskaridis, Alexandros Kouris, and Nicholas Donald Lane. Adaptive inference through
early-exit networks: Design, challenges and directions. Proceedings of the 5th Interna-
tional Workshop on Embedded and Mobile Deep Learning, 2021. URL https://api.
semanticscholar.org/CorpusID:235377371.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Ziyin Liu, Zhikang Wang, Paul Pu Liang, Russ R Salakhutdinov, Louis-Philippe Morency, and
Masahito Ueda. Deep gamblers: Learning to abstain with portfolio theory. Advances in Neural
Information Processing Systems, 32, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

12

https://openreview.net/forum?id=Akslsk891N
https://openreview.net/forum?id=Akslsk891N
https://api.semanticscholar.org/CorpusID:235377371
https://api.semanticscholar.org/CorpusID:235377371

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lassi Meronen, Martin Trapp, Andrea Pilzer, Le Yang, and Arno Solin. Fixing overconfidence in
dynamic neural networks. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pp. 2680–2690, January 2024.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, pp. 2901–2907. AAAI Press, 2015. ISBN 0262511290.

Graham Neubig, Yoav Goldberg, and Chris Dyer. On-the-fly operation batching in dynamic com-
putation graphs. Advances in Neural Information Processing Systems, 30, 2017.

Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran.
Measuring calibration in deep learning. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA, June
16-20, 2019, pp. 38–41. Computer Vision Foundation / IEEE, 2019. URL http:
//openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_
Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_
in_Deep_Learning_CVPRW_2019_paper.html.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019.

Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confident, interpretable
and robust deep learning. arXiv preprint arXiv:1803.04765, 2018.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Tal Schuster, Adam Fisch, Tommi Jaakkola, and Regina Barzilay. Consistent accelerated inference
via confident adaptive transformers. arXiv preprint arXiv:2104.08803, 2021.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456–17472, 2022.

Keigo Tada and Hiroki Naganuma. How image corruption and perturbation affect out-of-distribution
generalization and calibration. In 2023 International Joint Conference on Neural Networks
(IJCNN), pp. 1–6, 2023. doi: 10.1109/IJCNN54540.2023.10191806.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd international conference on pattern
recognition (ICPR), pp. 2464–2469. IEEE, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need? 2021.

Cheng Wang. Calibration in deep learning: A survey of the state-of-the-art. arXiv preprint arXiv:
2308.01222, 2023.

Deng-Bao Wang, Lei Feng, and Min-Ling Zhang. Rethinking calibration of deep neural networks:
Do not be afraid of overconfidence. Advances in Neural Information Processing Systems, 34:
11809–11820, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Ross Wightman. Pytorch image models. https://github.com/huggingface/
pytorch-image-models, 2019.

13

http://openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.html
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

MSDNets MSDNets, proposed by (Huang et al., 2017), serve as a benchmark for EENNs (Jazbec
et al., 2023; Laskaridis et al., 2021; Han et al., 2022) known for their overconfidence issues (Mero-
nen et al., 2024). MSDNet’s architectural design addresses significant challenges in incorporating
intermediate exits into Convolutional Neural Networks (CNNs). One major challenge is the lack of
coarse features in the early layers, which are essential for effective classification. Capturing essential
coarse features, such as shape, is critical in the early layers, as classifying based on shape is easier
and more robust than using edges or colors. Another challenge is the conflict of gradients arising
from multiple sources of loss from the exit layers, which hinders the transmission of rich information
to the end of the network. To tackle these challenges, MSDNet incorporates vertical convolutional
layers—also known as scales—that transform finer features into coarse features at every layer and
introduce dense connectivity between the layers and scales across the network, effectively reduc-
ing the impact of conflicting gradients. MSDNets used throughout the paper are in 3 different sizes:
Small, Medium, and Large. For CIFAR datasets, they only differ in the number of layers, 4 layers for
Small, 6 layers for Medium, and 8 layers for Large. For ImageNet, they all have 5 layers but the base
is 4, 6, 7 respectively. For the arguments specific to MSDNets and the learning rate scheduler, we
followed the code in this repository: https://github.com/AaltoML/calibrated-dnn.
To train the models, we used an SGD optimizer with a training batch size of 64, an initial learning
rate of 0.01, a momentum of 0.9, and a weight decay of 1e-4 for CIFAR datasets and AdamW with
an initial learning rate of 0.4, a weight decay of 1e-4 and batch size of 1024 for ImageNet.

ViT The ViT (Dosovitskiy et al., 2020) model we used for the experiments on CIFAR datasets is
a 12-layer self-attentive encoder with 8 heads, trained with AdamW with a learning rate of 1e-3,
a weight decay of 5e-5, a cosine annealing learning rate scheduler and a training batch size of 64.
The Vit Small model in Table 9 has the same architecture as the 12-layer larger model but has 6
layers. The evolution of train and test errors through epochs of the last layer of the ViT trained on
CIFAR-10 in Figure 11b is plotted in Figure 7. The reliability diagrams were plotted at an epoch
where the model demonstrated good generalization performance, characterized by low train error
and stabilized test error.

Most of our experiments can be carried out in single-gpu settings with gpus with at most 16 Gb of
memory, under less than a day. For ImageNet, training was carried out with data parallelism over 4
32 Gb gpus, which took less than two days.

Figure 7: The evolution of train and test errors for ViT on CIFAR-10. The vertical dashed line is
where we plotted the reliability diagrams in Fig 11b.

B ECE FORMAL DEFINITION

As discussed in the Background Section 2, calibration of a multi-class classifier refers to how well
the predicted confidence levels (e.g., max softmax(·)) match the actual probabilities of correct pre-
dictions. In other words, a model is considered well-calibrated if, for any given confidence level,
the predicted probability of correctness closely matches the observed frequency of correctness. For
example, if a model assigns a 70% confidence to a set of predictions, ideally, approximately 70% of
those predictions should be correct. The Expected Calibration Error (ECE) (Naeini et al., 2015) is

14

https://github.com/AaltoML/calibrated-dnn

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

often used to quantify the calibration of a model since it measures the weighted average difference
between the average confidence and accuracy, across multiple confidence levels. More formally,
ECE is defined as follows if we split the range of confidences observed by f ∈ F from a sample of
data points X into M bins:

ECE(f,X) =

M∑
m=1

|Bm|
n

|acc(Bm, f)− conf(Bm, f)| (1)

where Bm is the set of data instances whose predicted confidence scores fall into the m-th bin,
acc(Bm, f) is the accuracy of the model measured within Bm, and conf(Bm, f) is the average
confidence of predictions in Bm, assuming measures of confidence within the unit interval. An ECE
of 0 would indicate a perfectly calibrated f on X . Reliability diagrams are visual tools used to eval-
uate calibration by plotting confidence bins against accuracy. Deviations from the y = x diagonal
line in a reliability diagram indicate miscalibration, with overconfidence and underconfidence rep-
resenting predictions where the model’s confidence consistently exceeds or falls short of the actual
accuracy, respectively.

C PCEE ALGORITHM

Algorithm 1 shows our methodology for performance controllability.

Algorithm 1 Inference with PCEE

1: Require: Model A with n layers, accuracy threshold δ, reliability diagrams D
2: for each layer i = 1 to n− 1 in A do
3: Process input by Li, then pass its output ri to Ei

4: Compute confidence score ci from ri
5: Obtain accuracy acci from reliability diagram Di for ci
6: if acci ≥ δ then
7: exit and output prediction predi
8: else
9: Pass ri to the next layer Li+1

10: end if
11: end for
12: Output prediction predn from the last exit En

(a) CIFAR-10 (b) CIFAR-100 (c) IMAGENET-1K

Figure 8: Effect of model size on inference efficiency for MSDNet on three datasets: Prediction
error (%) vs. average layers used.

D ADDITIONAL RESULTS EVALUATING OVERCONFIDENCE

In this section, we provide more experimental details and results to complement those of Section
4.1. Figure 10 shows a similar phenomenon to Figure 3 for MSDNet on a simple example of CI-
FAR-100. This figure shows that the model surpasses the threshold of 0.75 at the first layer although
being wrong until layer 6.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) CIFAR-10 (b) CIFAR-100 (c) IMAGENET-1K

Figure 9: Effect of model size on inference efficiency for MSDNet on three datasets: Prediction
error (%) vs. average FLOPs used.

Figure 10: Confidence levels across different layers of a MSDNET with layerwise classifiers trained
on CIFAR-100 tested on a random image from this dataset. Red bars indicate layers that made
incorrect predictions, while blue layers indicate layers that made correct predictions. Overconfident
early layers trigger a (premature) exit on layer 1, the first layer surpassing the threshold of 0.75
although the model makes incorrect predictions until layer 6. The test accuracy for each layer is also
shown.

Figure 11 shows the reliability diagrams for MSDNet Large on CIFAR-100 and VIT on CIFAR-10
through different exit layers. The confidence measure here is the maximum softmax output. Results
led to the two following observations:

• Effect of depth: Calibration degrades and models become overconfident for deeper layers.
Table 5 presents ECE for each layer, which increases with depth in both architectures.

• Effect of model size: MSDNET-LARGE demonstrates a higher level of overconfidence
than MSDNet Small, particularly towards the later layers, which supports the claim in
Wang (2023) empirically that increasing the depth of neural networks increases calibration
errors (see Figure 12 and Table 6).

For VIT on CIFAR-10 we compare our plots with Carrell et al. (2022). While Carrell et al. (2022)
does not provide code for their plots, our results align well with theirs in terms of the reliability
diagram for the last layer and the test error.

E FURTHER EXPERIMENTAL RESULTS

E.1 CIFAR-10

For the results of MSDNet on CIFAR-10, refer to Figure 13 and table 7. All methods perform well
on this relatively simple dataset, achieving top-1 accuracies above the threshold.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Reliability Diagrams for Layers 1, 5, 8 of MSDNet-Large with 8 layers on CIFAR-100

(b) Reliability Diagrams for layers 1, 6, and 12 of ViT with 12 layers on CIFAR-10

Figure 11: Reliability diagrams for MSDNet-Large and ViT on CIFAR datasets

Table 5: ECE for different layers of the models shown in Figure 11

(a) MSDNet-Large on CIFAR-100: Accuracy and ECE for each of the 8 layers

Layer 1 2 3 4 5 6 7 8

Accuracy (%) 65.08 66.59 69.24 71.67 73.01 74.17 74.68 74.92
ECE 0.062 0.083 0.089 0.091 0.107 0.102 0.119 0.139

(b) ViT on CIFAR-10: Accuracy and ECE of each of the 12 layers

Layer 1 2 3 4 5 6 7 8 9 10 11 12

Accuracy (%) 62.14 72.33 75.76 77.79 78.29 78.37 78.77 78.94 79.06 79.10 79.15 79.25
ECE 0.051 0.143 0.191 0.231 0.254 0.269 0.277 0.282 0.282 0.286 0.294 0.299

E.2 IMAGENET

In Table 8, we report results for MSDNet Large on ImageNet where our method consistenly achieves
accuracy higher than the target ones (as indicated by the chosen threshold). Interestingly, in this
setting the Confidence baseline also satisfies the control property, and generally results in higher
accuracy at the cost of higher compute.

E.3 BENEFITS OF USING A LARGER MODEL COUPLED WITH EE

Table 9 on CIFAR-10 and CIFAR-100 shows that by using a large VIT model with EE, we can get
a better performance than the full small VIT with the same or less computational cost.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Reliability Diagrams for all layers of MSDNet-Small on CIFAR-100

(b) Reliability Diagrams for layers 1, 5, and 8 of MSDNet-Large on CIFAR-100

Figure 12: Reliability diagrams for MSDNet Small and Large on CIFAR-100

Table 6: MSDNet-Small and Large on CIFAR-100: per-layer Expected Calibration Errors

(a) MSDNet-Small with 4 layers

Layer 1 2 3 4

Accuracy (%) 64.61 69.02 70.92 71.40
ECE 0.093 0.099 0.104 0.1173

(b) MSDNet-Large with 8 layers

Layer 1 2 3 4 5 6 7 8

Accuracy (%) 65.08 66.59 69.24 71.67 73.01 74.17 74.68 74.92
ECE 0.062 0.083 0.089 0.091 0.107 0.102 0.119 0.139

E.4 RESULTS ON AN UNDERCONFIDENT MODEL

The models we tested so far where generally overconfident, which is a typical characteristic of deep
learning models. We here report results for a pre-trained ViT model4, that we observe to be un-
derconfident for most of its layers on ImageNet as shown in Figure 14. In this setting, we observe
that the final accuracy of our method is still above the target one, as reported in Figure 15. How-
ever, thresholding on confidence achieves higher performance in this particular case, even though
consuming more compute. When analyzing the accuracy/compute trade-off in Figure 16, the gap
between our method and the baseline are not noticeable, indicating that our method does not degrade
performance at the very least. One noticeable difference is the lack of low accuracy/low compute
points for the confidence thresholding baseline. Indeed using a confidence estimate that is lower
than the actual accuracy (underconfidence) makes the model use more layers to meet the thresh-
old. In contrast, our methods check the accuracy of the bin where the threshold falls and can exit
early because its accuracy estimate meets the threshold. Therefore, in Figure 16, we see that our
methods can output low accuracies (i.e., higher prediction errors) and show the controllability over
low accuracy region that would not be achievable with only confidence thresholding. This con-
firms the intuition that miscalibration causes different types of problems for early exiting, even in
underconfidence scenarios, which are typically not seen.

4vit base patch32 clip 224.laion2b ft in1k from timm (Wightman, 2019)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 13: The plot shows the performance of MSDNet Small and Large evaluated with different
threshold values on CIFAR-10. Each model’s performance is represented by three methods: Confi-
dence baseline (blue), PCEE (orange), and PCEE-WS (green). The threshold values correspond to
confidence levels that translate directly to accuracy (accuracy = 100 × threshold). Both PCEE and
PCEE-WS methods consistently show higher accuracy than the Confidence baseline, maintaining
accuracy above the set threshold. The maximum threshold reflects the peak accuracy achievable by
the full model.

Figure 14: Reliability Diagrams for Layers 1, 5, 9, 12 of ViT with 12 layers on IMAGENET. Early
layers are underconfident, and the model smoothly becomes more confident as depth increases,
turning overconfident past layer 9.

Figure 15: Performance of pre-trained ViT on ImageNet as a function of the selected threshold.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: This table compares PCEE and PCEE-WS with the Confidence baseline for MSDNet Small
and Large on CIFAR-10. Both PCEE and PCEE-WS consistently show higher accuracy than the
other methods, maintaining accuracy above the set threshold that fulfills our claim of more control-
lability on the accuracy.

ACC ↑ Avg Layers ↓ FLOPs (106) ↓
Small
MSDNet (Oracle) 92.94 1.13

δ = 0.75
- PCEE (ours) 92.32 1.34 10.13
- PCEE-WS (ours) 92.26 1.33 9.99
- Confidence 91.86 1.13 7.98
- Laplace 91.09 1.13 8.07

δ = 0.85
- PCEE (ours) 92.69 1.47 11.42
- PCEE-WS (ours) 92.71 1.49 11.53
- Confidence 92.30 1.20 8.73
- Laplace 89.89 1.15 8.37

δ = 0.92
- PCEE (ours) 92.93 1.63 12.98
- PCEE-WS (ours) 92.91 1.62 12.85
- Confidence 92.61 1.31 9.74
- Laplace 87.40 1.15 8.48
Large
MSDNet (Oracle) 94.04 1.21

δ = 0.75
- PCEE (ours) 92.31 1.34 11.88
- PCEE-WS (ours) 92.46 1.35 12.16
- Confidence 91.69 1.18 9.22
- Laplace 92.09 1.25 10.39

δ = 0.85
- PCEE (ours) 93.11 1.57 17.00
- PCEE-WS (ours) 93.19 1.60 17.65
- Confidence 92.55 1.32 11.72
- Laplace 92.21 1.39 12.83

δ = 0.93
- PCEE (ours) 93.75 1.95 25.30
- PCEE-WS (ours) 93.77 1.96 25.63
- Confidence 93.20 1.54 16.36
- Laplace 91.11 1.52 15.67

Table 8: Comparison of EE strategies for MSDNet Large on ImageNet.

δ MSDNET LARGE Oracle PCEE (ours) PCEE-WS (ours) Confidence

best ACC ↑ 75.51 75.25 75.25 75.41
Avg Layers ↓ 1.63 3.03 3.03 3.23

0.71
ACC ↑ - 74.20 74.19 74.90
Avg Layers ↓ - 2.48 2.48 2.71

0.74
ACC ↑ - 74.39 74.36 75.08
Avg Layers ↓ - 2.56 2.55 2.82

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Top row shows the accuracy (%) of VIT Small using the full capacity of the model on
CIFAR-10 and CIFAR-100. The bottom row shows the accuracy we can get from VIT Large
using our EE strategies (PCEE, PCEE-WS) with the same or less computational cost as the full
small model.

Model Size CIFAR-10 CIFAR-100

VIT Full Small model 88.15 62.94
Large Model with EE 90.16 63.38

Figure 16: Accuracy/compute trade-off for pre-trained ViT on ImageNet, averaged over 5 runs and
with points on the Pareto front circled in black.

21

	Introduction
	Background and Setting
	Benefits of Increasing Model Size Coupled with Early Exiting
	Performance Control Early Exiting
	Checking for Miscalibration in Early Exit Neural Networks
	Performance Control Early Exiting (PCEE)

	Experiments
	Related Work
	Conclusion and Discussion
	Implementation details
	ECE formal definition
	PCEE Algorithm
	Additional results evaluating overconfidence
	Further experimental results
	CIFAR-10
	ImageNet
	Benefits of using a larger model coupled with EE
	Results on an Underconfident Model

