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Abstract
We introduce Sundial, a family of native, flexible,
and scalable time series foundation models. To
predict the next-patch’s distribution, we propose
a TimeFlow Loss based on flow-matching, which
facilitates native pre-training of Transformers on
continuous-valued time series without discrete to-
kenization. Conditioned on arbitrary-length time
series, our models are pre-trained without specify-
ing any prior distribution and can generate multi-
ple probable predictions, achieving more flexibil-
ity in representation learning than using paramet-
ric densities. Towards time series foundation mod-
els, we leverage minimal but crucial adaptations
of Transformers and curate TimeBench with one
trillion time points, comprising mostly real-world
datasets and synthetic data. By mitigating mode
collapse via TimeFlow Loss, we pre-train a family
of Sundial models on TimeBench, which achieve
unprecedented model capacity and generalization
performance. In addition to excellent scalability,
Sundial achieves state-of-the-art results on both
point and probabilistic forecasting benchmarks
with a just-in-time inference speed, i.e., making
zero-shot predictions within a few milliseconds.
We believe that Sundial’s pioneering generative
forecasting capability can improve model reliabil-
ity in real-world decision-making. Code is avail-
able at: https://github.com/thuml/Sundial.

1. Introduction
Time series forecasting has fascinated people for thousands
of years. Although people have been able to determine the
time using instruments like sundials in 3000 BC, time se-
ries forecasting is intrinsically non-deterministic (Box et al.,
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Figure 1. A native time series model operates on the original series
of continuous values. A flexible foundation model is pre-trained
without specifying prior distributions. Sundial is the first family of
native and flexible time series foundation models.

2015). Therefore, generating a variety of probable predic-
tions is crucial for decision-making. The growing demand
has facilitated numerous statistical approaches over the past
decades (Hyndman, 2018; Box, 2013), which provide high-
profile theories and probabilistic tools for making reliable
schedules. Recent advancements bring the boom of deftly
designed models that automatically learn intricate dynamics
and correlations from raw data (Oreshkin et al., 2019; Nie
et al., 2022; Zhang & Yan, 2023; Liu et al., 2023a). Despite
the impressive performance, deep models necessitate task-
specific training on sufficient in-distribution data. Motivated
by advances in large models (Bommasani et al., 2021), pre-
trained time series foundation models have shown promising
capabilities in out-of-distribution tasks (Das et al., 2023b;
Liu et al., 2024b; Woo et al., 2024; Ansari et al., 2024).

Current research on time series foundation models has con-
verged on building unified, scalable, and out-of-the-box fore-
casters, exhibiting zero-shot performance close to or some-
times surpassing supervised methods (Aksu et al., 2024).
Notably, Transformers (Radford et al., 2018) are currently
the de facto architecture of these models. While pre-trained
Transformers with an inherent generative ability have facil-
itated great success in language, image, and video genera-
tion (Ramesh et al., 2021; OpenAI, 2023; Liu et al., 2024c),
most time series foundation models are not “generative” or,
more specifically, probabilistic forecasters, thereby limiting
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reliability in decision-making. Although parametric densi-
ties specified with prior distributions (Wen et al., 2017; Woo
et al., 2024) can be adopted to address uncertainty in time
series forecasting, they can reduce the capacity of distribu-
tions learned by pre-trained models, especially on time se-
ries modality characterized by high heterogeneity. To learn
arbitrarily intricate distributions without mode collapse, lan-
guage modeling (Bengio et al., 2000) that learns the categor-
ical distribution via cross-entropy loss inspires subsequent
works (Gruver et al., 2023; Ansari et al., 2024), which treat
time series as a foreign language using discrete tokenization.
Still, discrepancies between continuous-valued time series
and discrete language tokens can lead to out-of-vocabulary
issues and coarse-grained prediction intervals.

As shown in Figure 1, Sundial is presented as the first family
of generative models among time series foundation models.
As foundation models intend to learn complicated distribu-
tions from extensive datasets and facilitate transferability
across agnostic downstream datasets, we do not specify any
prior parametric densities, such as unimodal and multimodal
Gaussian mixtures. Instead, we delve into generative mod-
eling to tame Transformers as native, flexible, and scalable
time series foundation models. By comparing to denoising
diffusion models (Li et al., 2024), we opt for a simple yet
effective flow-matching framework (Lipman et al., 2022),
which provides notable efficiency and sample quality (Tong
et al., 2023). We propose TimeFlow Loss, a parameterized
training objective (Zhang et al., 2018) for autoregressive
models to learn and sample from each token’s predictive
distribution. Optimizing models in the original continuous-
valued domain, TimeFlow Loss facilitates patch-level gen-
eration and enables fast inference, which is naturally com-
patible with the time series modality.

In addition to TimeFlow, we enhance the Transformer with
minimal but critical adaptations. We develop feasible patch
tokenization for arbitrary-length input time series. We adopt
RoPE (Su et al., 2024), Pre-LN (Xiong et al., 2020), FlashAt-
tention (Dao et al., 2022), and KV Cache (Pope et al., 2023),
which are crucial but generally neglected in the development
of time series foundation models. Besides, we pre-train our
models by multi-patch prediction to reduce autoregression
steps. We realize a rapid generation of multiple samples by
reusing a shared lookback representation. Beyond facilitat-
ing scalable pre-training, these adaptations help real-time
long-context inference and long-term generation.

To validate the scaling law of time series foundation models,
we collect and curate TimeBench with an unprecedented vol-
ume of a trillion time points. We present Sundial as a family
of highly capable foundation models, which achieve state-of-
the-art on three large-scale and best-recognized benchmarks,
including Time-Series-Library (TSLib) (Wu et al., 2022),
GIFT-Eval (Aksu et al., 2024), and FEV (Ansari et al., 2024).

Our contributions lie in these aspects:

• We propose TimeFlow Loss to predict next-patch’s dis-
tribution, allowing Transformers to be trained without
discrete tokenization and make probable predictions.

• We present Sundial, a family of scalable and efficient
time series foundation models built upon our enhanced
Transformer and pre-trained on a trillion time points.

• Experimentally, Sundial achieves state-of-the-art zero-
shot performance on point and probabilistic forecasting
benchmarks, including TSLib, GIFT-Eval, and FEV, in-
dicating a promising generative approach for the future
improvement of time series foundation models.

2. Related Work
2.1. Time Series Forecasting

Forecasting is essential for decision-making. Advancements
in deep learning for time series include theory-inspired deep
modules (Wu et al., 2021; Liu et al., 2023b; Wu et al., 2022),
architecture-oriented adaptations (Bai et al., 2018; Salinas
et al., 2020; Lim et al., 2021), and time series preprocess-
ing (Kim et al., 2021; Nie et al., 2022). Deep models learn
the dataset-level distribution and benefit from strong gener-
alization and model capacity. Statistical methods conduct
case-by-case fitting on input series, achieving notable per-
formance on small data (Ke et al., 2017; Hyndman, 2018).

One of the efforts towards more capable forecasters focuses
on the foundation models (Bommasani et al., 2021), which
address data-scarce scenarios by pre-training. More capable
models support zero-shot forecasting, making inferences as
fast as statistical methods and possessing large model capac-
ity as deep models. Another aspect is to address uncertainty
in time series forecasting. There is a growing research em-
phasis on probabilistic forecasting (Woo et al., 2024; Ansari
et al., 2024). While parametric densities can be adopted as
training objectives of probabilistic forecasting, they can be
too specific to meet the heterogeneity of large-scale datasets,
resulting in mode collapse in representation learning and
over-smooth predictions (Figure 14-15). In this work, we
introduce generative time series foundation models, which
naturally address the uncertainty in forecasting.

2.2. Time Series Foundation Models

Recent research has concentrated on building versatile large
time series models (Liang et al., 2024). With the advances
made in large language models, Transformer has become the
dominant architecture. Several works adapt Transformers
to address the unique 2D-dimensionality and heterogeneity
of time series (Woo et al., 2024; Liu et al., 2024a). Specif-
ically, our work delves into tokenization and optimization.
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Models such as TimesFM (Das et al., 2023b), Timer (Liu
et al., 2024a;b), and Time-MoE (Shi et al., 2024b) embed
continuous values and fit unimodal distributions via MSE
or quantile loss (Wen et al., 2017). However, prior loss may
result in mode collapse because predictive distributions are
highly divergent across different domains. Besides, these
models cannot provide the confidence level of predictions,
limiting reliability for decision-making. Based on continu-
ous tokenization, Moirai (Woo et al., 2024) presents a prob-
abilistic model learning a mixture of distributions, but this
prior can still fail to accommodate complex distributions. In-
spired by language modeling, Chronos (Ansari et al., 2024)
discretizes series via bucket quantization, learning more flex-
ible categorical distributions by cross-entropy. Still, discrete
tokenization is applied at each time point, which can lead to
long contexts. Also, the final performance can be sensitive
to quantization techniques. Unlike before, we tame Trans-
formers as native time series foundation models, learning
flexible distributions without discrete tokenization.

2.3. Generative Modeling for Time Series

By addressing complicated distributions during pre-training,
generative modeling has become a focal point in the devel-
opment of various foundation models (Zhao et al., 2023; Liu
et al., 2024c). While this direction for time series mostly
focused on time series generation (Tashiro et al., 2021) and
task-specific forecasters (Rasul et al., 2021; Shen & Kwok,
2023; Kollovieh et al., 2024), generative modeling for time
series foundation models is hardly explored. With the com-
parable flexibility in distribution learning as language mod-
eling, diffusion denoising (Sohl-Dickstein et al., 2015) and
flow-matching (Lipman et al., 2022) have gained increasing
prevalence in continuous-valued modalities (Lipman et al.,
2024). Compared with diffusion denoising models, flow-
matching provides a simple yet efficient framework. With
fewer steps involved in the forward and reverse processes,
large models based on flow-matching have shown superior
performance in image generation (Esser et al., 2024).

Despite the connection in value continuity, generating im-
ages and future time series are fundamentally different tasks
due to the autoregressive property of forecasting. Our pro-
posed TimeFlow Loss is designed for autoregressive models
to conduct conditional generation, which is a parameterized
loss function (Zhang et al., 2018) for arbitrary distributions
and enhances representation learning of foundation models.

3. Preliminaries
3.1. Flow-Matching

The goal of generative modeling is to learn the underlying
probability distribution that generates the data. The frame-
work of flow-matching transforms a sample x0 ∼ p0 drawn

from a source distribution into a sample x1 ∼ p1 drawn
from a target distribution. The transformation is continuous
in time. For d-dimensional distributions, it is defined by a
time-dependent velocity field ut : [0, 1]×Rd → Rd , which
is the solution of the ordinary differential equation (ODE):

d

dt
ψt(x) = ut

(
ψt(x)

)
and ψ0(x) = x.

The velocity field ut determines a flow ψt. For all t ∈ [0, 1],
ψt generates the probability path pt that interpolates p0 and
p1, i.e., xt = ψt (x0) ∼ pt for x0 ∼ p0. The implementa-
tion of flow-matching is to train a network uθt parametrized
by θ to fit the velocity field ut, which is a regression-based
task formulated as the Flow-Matching objective:

LFM(θ) = Et,xt

∥∥uθt (xt)− ut(xt)
∥∥2 .

Furthermore, Lipman et al. (2022) proved the equivalence
of optimizing the Conditional Flow-Matching objective:

LCFM(θ) = Et,xt,x1

∥∥uθt (xt)− ut(xt|x1)
∥∥2 .

Leveraging the conditional optimal-transport (linear) path
and a source Gaussian, the objective can be formulated as:

LGauss
CFM (θ) = Et,ϵ,x1

∥∥uθt (xt)− (x1 − x0)
∥∥2 . (1)

where t ∼ U [0, 1],x0 ∼ N (0, 1) and xt = tx1 + (1− t)ϵ.

Consequently, we can train a generative network on given
samples from the target distribution, and generate new sam-
ples by applying a push-forward process on samples drawn
from a simple source Gaussian distribution:

xt+∆t − xt = uθt (xt)∆t, x0 ∼ N (0, I), t ∈ [0, 1]. (2)

3.2. Generative Models for Probabilistic Forecasting

Given a historical observation x1:t = {x1, ..., xt}, the tar-
get of time series forecasting is to predict future time series
xt+1:t+f = {xt+1, . . . , xt+f}. The task can be generally
formulated as p(xt+1:t+f |ht), where ht = fϕ(x1:t) is the
learned representation from a deep model fϕ. In probabilis-
tic forecasting, explicit optimization objectives are utilized
to predict the statistics of future series, e.g., MSE or quantile
loss, which have specified p as a prior distribution. While
using one parametric density generally fits well on a small
amount of data, it can be the major bottleneck for scaling
time series foundation models. Inspired by the success of
large generative models (Rombach et al., 2022; OpenAI,
2023; Esser et al., 2024), we introduce generative modeling
to realize probabilistic forecasting:

p(xt+1:t+f |ht) = gθ
(
fϕ(x1:t)

)
. (3)

gθ is a small trainable generative network conditioned on
the learned representations of fϕ, which is jointly optimized
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Figure 2. Overall architecture of Sundial. The input time series is divided into patch tokens, which are embedded from original continuous
values. The patch embeddings are fed into a decoder-only Transformer, a stable and speedup version that learns token representations via
causal self-attention. The model is optimized using our TimeFlow Loss, a parameterized loss function that models per-token probability
distribution conditioned on the learned representations, and generates multiple plausible predictions under the flow-matching framework.

with fϕ. While the generative model automatically fits the
target distribution, it can sample raw predictions and calcu-
lating their statistics for probabilistic forecasting. The aim
is conceptually related to conformal prediction (Vovk et al.,
2005) but models uncertainty beyond prediction intervals.

4. Approach
In this work, we conduct a univariate pre-training paradigm,
which adopts the S3 format proposed by Liu et al. (2024b)
to address multivariate data. To mitigate value range discrep-
ancy, we conduct normalization on time series individually
per variable. Afterwards, we sample varying-length training
samples with the maximum context length of 2880. As a
foundation model, Sundial is required to predict on out-of-
distribution series with varied lengths during inference.

4.1. Sundial

As shown in Figure 2, the Sundial models consist of three
parts: (1) time series tokenization, including a context-level
re-normalization and a patch embedding that addresses any-
length time series, (2) a Transformer backbone that learns
the per-token representation of time series, and (3) Time-
Flow Loss, a parameterized loss function to model the per-
token distribution and generate raw series during inference.
Intuitively, Sundial can be regarded as an ARMA (Auto-
Regression and Moving-Average) deep model, i.e., Trans-
former learns token representations autoregressively. Con-
ditioned on the lookback representations, TimeFlow trans-
forms random noises into non-deterministic predictions.

4.1.1. TIME SERIES TOKENIZATION

Re-Normalization We adopt stationarization (Liu et al.,
2022), a non-parametric two-stage instance normalization
conducted within each sample, which is initially proposed to
mitigate non-stationarity of time series. Here, it helps to ad-

dress temporal distribution shift and outlier ranges in input
series, improving generalizability for zero-shot forecasting.

Patch Embedding Given a univariate time series X =
{x1, . . . , xT }, it is divided into patches xi = x1+(i−1)P :iP

with the length of P . To address non-divisible length, we
pad the input at the beginning and use a binary mask mi ∈
RP for each patch to indicate the padded position. It will
lead to N = ⌈T/P ⌉ such input tokens. Subsequently, we
use a shared MLP : R2P 7→ RD to embed all patch tokens:

hi = PatchEmbed
(
Concat(xi,mi)

)
, (4)

where hi ∈ RD andD is the dimension of token embedding.
Unlike point-level quantization (Ansari et al., 2024), we
reserve original values without discrete quantization. It also
reduces the context length (in token) of the Transformer.

4.1.2. TRANSFORMER BACKBONE

Given N token embeddings {hi}, we adopt several crucial
adaptations on a decoder-only Transformer to obtain per-
token representations aggregated from all previous tokens.
First, we adapt Pre-LN (Xiong et al., 2020) to improve pre-
training stability. Second, we leverage a causal self-attention
mechanism with RoPE (Su et al., 2024) that introduces the
position information of patch tokens. It can be formulated
as follows (the layer index is omitted for simplicity):

Aij = h⊤
i WqRΘ,i−jW

⊤
k hj ,

Attention(H) = Softmax

(
Mask(A)√

d

)
HWv,

(5)

where Wq,Wk,Wv ∈ RD×d project token embeddings
H = {hi} into d-dimensional queries, keys, and values.
RΘ,t ∈ Rd×d is the rotary matrix with rotation degree (t·Θ).
Lastly, we implement FlashAttention (Dao et al., 2022) and
KV Cache (Pope et al., 2023), since these enhancements for
deployment are increasingly emphasized in large foundation
models (Shoeybi et al., 2019; Rasley et al., 2020).
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4.1.3. TIMEFLOW LOSS

Given representations {hi} extracted by the last layer of
the Transformer, we aim to generate length-F predictions
ŷi = x̂1+iP,F+iP at each position i via our autoregressive
model. Motivated by the empirical observation that a larger
patch size improves the performance in decoder-only Trans-
formers (Das et al., 2023b) while a small patch size can be
more flexible to accommodate data of different frequencies,
we adopt multi-patch predictions (F > P ) for pre-training,
which also reduces the steps of autoregressive inference.

Based on Equations 1 and 3, we formulate a new generative
forecasting conditioned on a sequential representation hi:

L(θ,hi) = Et,ϵ,yi

∥∥∥uθt (y(t)
i |hi

)
−
(
yi − y

(0)
i

)∥∥∥2 . (6)

where yi ∈ RF is the groundtruth value and y
(0)
i is a d-

dimensional Gaussian noise, t is sampled from U [0, 1], and
y
(t)
i = tyi + (1− t)y(0)

i is constructed by the conditional
optimal-transport path. It is important to note that the con-
ditional representation hi differs from the conditional path
and the conditional source distribution. Instead, hi is a con-
dition of position i, also a time-invariant condition of the
whole flow-matching process t ∈ [0, 1]. Technically, we
implement the flow-matching network by a small MLP:

uθt
(
y
(t)
i |hi

)
= FM-Net

(
y
(t)
i , t,hi

)
. (7)

The training process involves sampling the noised y
(t)
i , and

jointly input it with t. The condition hi is integrated into the
flow-matching network via AdaLN (Peebles & Xie, 2023).
TimeFlow Loss for autoregressive models is formulated as:

LTimeFlow =

N∑
i=1

∥∥∥FM-Net
(
y
(t)
i , t,hi

)
−
(
yi − y

(0)
i

)∥∥∥2 .
(8)

Inference Based on Equation 2, the push-forward process
conditioned on a learned representation hi is formulated as

y
(t+∆t)
i = y

(t)
i + uθt

(
y
(t)
i |hi

)
∆t. (9)

Technically, we adopt a K-step uniform trajectory, and set
∆t = 1/K. The sampling is done via starting from an initial
Gaussian noise and advancing with the velocity generated
by the trained FM-Net iteratively, as shown in Algorithm 1.

This procedure generates a predicted sample ŷi at position
i. To calibrate probabilistic forecasting results during infer-
ence, we repeat this procedure using different initial noises
and estimate statistics such as the median and quantiles from
a set of generated predictions. We implement an efficient
repeated-sampling in the TimeFlow module. The condition
(representation) of lookback series is shared and reused for
different initial noises, thereby reducing the overhead of
repeated forwarding in the Transformer backbone.

Algorithm 1 TimeFlow Loss: Sampling
Require: condition hi ∈ RD, path steps K.

1: Sample initial noise ŷi ∼ N (0, I).
2: ∆t = 1/K
3: for k in {0, 1 . . . ,K − 1} do
4: for ŷi ← ŷi + FM-Net

(
ŷi, k∆t,hi

)
∆t

5: end for
6: Return: ŷi

4.2. TimeBench

We collected and curated TimeBench, which comprises over
a trillion time points from various sources, as shown in Fig-
ure 3. Several datasets originate from research teams (Woo
et al., 2024; Ansari et al., 2024; Liu et al., 2024a;b). While
most datasets are collected from real-world records, a small
portion (0.05%) is generated synthetically to enhance pat-
tern diversity, following KernelSynth proposed by Ansari
et al. (2024). We also leverage substantial meteorological
data (Hersbach et al., 2020) because of the predictability of
weather systems. Data of different frequencies encompasses
common and comprehensive temporal dynamics.
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Figure 3. Ratios of data sources in TimeBench, the pre-training
corpora of Sundial. Detailed statistics are provide in Table 4.

5. Experiments
We evaluate Sundial on best-recognized zero-shot forecast-
ing benchmarks (Section 5.1) and investigate the scaling
behavior of Sundial (Section 5.2). We compare TimeFlow
with other training objectives (Section 5.3). We delve into
test-time calibration of generative forecasters (Section 5.4).
We conduct model adaptation of Sundial, i.e., instruction
tuning (Section 5.5) and provide in-depth ablation studies
to evaluate our modular enhancement (Section 5.6).

5.1. Time Series Forecasting

In this section, we focus on zero-shot forecasting, we com-
pare Sundial with advanced time series foundation models
on various benchmarks, including (1) point forecasting: we
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Table 1. Zero-shot forecasting results of time series foundation models on long-term forecasting datasets (Time-Series-Library) (Wu et al.,
2022). Corresponding prediction lengths include {96, 192, 336, 720}. A lower MSE or MAE indicates a better prediction. Averaged
results of four prediction lengths are reported here. 1st Count represents the number of wins achieved by a model under all prediction
lengths and datasets. Results of baseline models are officially reported by Shi et al. (2024b). Datasets in pre-training are not evaluated on
corresponding models, which are denoted by the dash (−). Full results under all prediction lengths are provided in Table 9.

Models SundialSmall SundialBase SundialLarge Time-MoEBase Time-MoELarge Time-MoEUltra Timer-XL MoiraiBase MoiraiLarge ChronosBase ChronosLarge TimesFM
(Ours) (Ours) (Ours) (2024b) (2024b) (2024b) (2024a) (2024) (2024) (2024) (2024) (2023b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.354 0.388 0.336 0.377 0.331 0.369 0.394 0.415 0.376 0.405 0.356 0.391 0.373 0.392 0.406 0.385 0.422 0.391 0.645 0.500 0.555 0.465 0.433 0.418

ETTm2 0.265 0.324 0.258 0.320 0.254 0.315 0.317 0.365 0.316 0.361 0.288 0.344 0.273 0.336 0.311 0.337 0.329 0.343 0.310 0.350 0.295 0.338 0.328 0.346

ETTh1 0.390 0.418 0.411 0.434 0.395 0.420 0.400 0.424 0.394 0.419 0.412 0.426 0.404 0.417 0.417 0.419 0.480 0.439 0.591 0.468 0.588 0.466 0.473 0.443

ETTh2 0.340 0.387 0.333 0.387 0.334 0.387 0.366 0.404 0.405 0.415 0.371 0.399 0.347 0.388 0.362 0.382 0.367 0.377 0.405 0.410 0.455 0.427 0.392 0.406

ECL 0.169 0.265 0.169 0.265 0.166 0.262 - - - - - - 0.174 0.278 0.187 0.274 0.186 0.270 0.214 0.278 0.204 0.273 - -

Weather 0.233 0.271 0.234 0.270 0.238 0.275 0.265 0.297 0.270 0.300 0.256 0.288 0.256 0.294 0.287 0.281 0.264 0.273 0.292 0.315 0.279 0.306 - -

1st Count 7 2 8 5 16 16 0 1 0 0 2 1 1 3 0 2 0 6 0 0 0 0 0 0

Table 2. GIFT-Eval comprises 23 datasets characterized by a variety of frequencies, variate numbers, and prediction lengths. We evaluate
zero-shot performance using 100 generated series, being consistent with Woo et al. (2024). A lower MASE or CRPS indicates a better
performance. Rank assigns a numerical ranking of all 97 configurations. Baseline results are officially reported by Aksu et al. (2024).

Type Statistical Methods Task-Specific Models (Superwised) Time Series Foundation Models (Zero-Shot)

Model Naı̈ve Seasonal Auto Auto DeepAR TiDE N-BEATS PTST. iTrans. TimesFM TabPFN Chronos Moirai Sundial
Naı̈ve ARIMA Theta (2020) (2023a) (2019) (2022) (2023a) (2023b) (2025) (2024) (2024) (Ours)

MASE 1.260 1.000 0.964 0.978 1.206 0.980 0.842 0.762 0.802 0.680 0.748 0.786 0.809 0.673
CRPS 1.383 1.000 0.770 1.051 0.721 0.652 0.689 0.496 0.524 0.465 0.480 0.551 0.515 0.472
Rank 28.072 26.175 21.515 24.031 18.938 18.557 21.381 10.052 11.320 8.237 8.268 14.309 10.175 9.062

adopt the long-term forecasting benchmark (Wu et al., 2022),
which assesses the performance under different forecasting
horizons using MSE and MAE; (2) probabilistic forecasting:
we experiment on GIFT-Eval (Aksu et al., 2024) and FEV
leaderboard (Ansari et al., 2024), following their official
evaluation suite and assessing point (MASE) and probabilis-
tic (CRPS and WQL) metrics. All evaluated datasets are
excluded from the pre-training dataset. Model is available
on HuggingFace1 and configurations are detailed in Table 5.

5.1.1. POINT FORECASTING

As shown in Table 1, Sundial consistently outperforms other
advanced time series foundation models. Compared with
the previous state-of-the-art model Time-MoE (Shi et al.,
2024b), the Sundial family using fewer parameters achieves
the average MSE reduction of 7.57% and averaged MAE re-
duction of 4.71%. Notably, continuous tokenization allows
our model to conduct patch-level forecasting with fewer au-
toregression steps, while Chronos using point-wise discrete
tokenization may not be suitable in long-term forecasting.

5.1.2. PROBABILISTIC FORECASTING

Beyond point forecasting, Sundial possesses a unique gen-
erative capability for making probabilistic predictions. Fol-

1https://huggingface.co/thuml/sundial-base-128m.

lowing Ansari et al. (2024), we calculate the median and
quantiles using a set of raw predictions of Sundial. While
several baseline models have been pre-trained by the con-
sistent objective function for probabilistic evaluation, e.g.,
quantile loss for WQL, Sundial calculates these statistics
for evaluation without any prior knowledge.

GIFT-Eval Aggregated results are presented in Table 2.
The benchmark evaluates performance from 23 datasets
and 13 baseline models, encompassing statistical methods,
task-specific models, and time series foundation models.
Among supervised models and advanced foundation models,
Sundial attains the first place in MASE and second place in
CRPS on all unseen datasets. While the top PatchTST (Nie
et al., 2022) is exhaustively trained and tweaked on each
dataset, the zero-shot performance of Sundial highlights its
simplicity and robustness on this comprehensive benchmark.

FEV Leaderboard We evaluate our Sundial on the open
leaderboard established by AutoGluon (Ansari et al., 2024),
which includes 27 datasets for probabilistic forecasting. As
shown in Figure 4, the zero-shot forecasting performance of
Sundial exceeds 70% statistical methods and deep models
that are superwisedly trained in distribution. While Sundial
is ranked as the second zero-shot pre-trained models after
Chronos, Sundial realizes 35× inference speedup as shown
in Figure 5. Based on patch-wise tokenization and multi-
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Figure 4. Model evaluation on the FEV leaderboard, which includes 27 datasets not seen by Sundial. Baseline models can be categorized
into statistical methods fitting on each time series, task-specific deep models trained on each dataset, and pre-trained foundation models.
Pre-trained Models that have seen several datasets during pre-training are denoted as Pre-trained Models (Other). A lower MASE/WQL
indicates a better result. Sundial makes probabilistic predictions using 20 generated series, being consistent with Ansari et al. (2024).

patch prediction, our inference speed is near to N-BEATS.

Besides, we provide qualitative showcases in Appendix D.
TimeFlow can generate highly eventful and coherent tempo-
ral patterns with input series. Beyond the mean or quantiles,
our model enables the estimation of arbitrary statistics by
sampling directly from the predictive distribution.

Figure 5. Inference time evaluation following Ansari et al. (2024),
which is averaged from the FEV leaderboard. Computing resources
of different models are marked. We plot the logarithmic x-axis.

5.2. Scalability

From Table 1, the larger Sundial model consistently achieves
better performance with the scaling of parameters. Beyond
downstream performance, we delve into the utilization of
model capacity. Figure 6 shows training curves of different

sizes. Compared to Sundial (Small), the large version leads
to 15.38% reduction in the converged training loss, exhibit-
ing promising model capacity of generative forecasters.

Figure 6. Training curves on TimeBench of different model sizes.

5.3. TimeFlow Loss

Based on the flow-matching framework, TimeFlow Loss
allows autoregressive models to learn and generate flexible
distributions while enhancing representation learning. To
validate the effectiveness of this design, we implement two
alternatives: (1) an MLP network and MSE Loss and (2)
a parameterized training objective based on the denoising
diffusion procedure (Li et al., 2024). We adopt the same
parameterized network and Transformer backbone and pre-
train them on TimeBench. Since the converged training loss
is not comparable across different objective functions, we
compare zero-shot performance in Table 3. Despite allowing
for sampling predictions, performance using diffusion-based
objective is notably inferior to TimeFlow Loss.

In addition to zero-shot performance, we provide showcases
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Table 3. Zero-shot performance using different training objectives.
We use the same model configuration and pre-training scale. Aver-
aged MSE of four prediction lengths are reported here.

Objective ETTm1 ETTm2 ETTh1 ETTh2 ECL Weather Avg.

TimeFlow 0.336 0.258 0.411 0.333 0.169 0.234 0.290
Diffusion 0.362 0.265 0.444 0.360 0.202 0.252 0.314

MSE 0.360 0.264 0.404 0.341 0.175 0.231 0.296

for quality evaluations in Appendix D.2. Pre-trained models
optimized by the specific MSE Loss can only output a single
prediction. And the prediction is sometimes over-smooth
due to mode collapse (refer to Appendix C.1). Instead, gen-
erative modeling can accommodate significantly different
future variations even if their lookback series are similar.
We also provide a probablistic metric CRPS to compare
different objectives in Table 7, which validate that the pre-
dictive distribution modeled by TimeFlow is more coherent
and diverse than counterpart training objectives. It benefits
downstream tasks by generating multiple plausible predic-
tions, conveys various future possibilities and enhances the
reliability of decision-making.

5.4. Test-Time Calibration

Generative modeling facilitates the flexibility to calibrate
the final prediction during inference. Based on the median-
based forecasting strategy, i.e., starting from multiple noise
of a standard Gaussian and calculating the median of raw
predictions, there are two configurations to calibrate final
predictions: (1) the number of samples to calculate statistics
and (2) sampling steps K used for flow-matching. Figure 7
shows the results using different configurations.

The top two figures conform to the central limit theorem.
Generating more samples leads to more calibrated estima-
tion of prediction and confidence interval. The bottom two
figures indicate that using fine-grained steps during the push-
forward process can leads to more precise predictions.

The trade-off between inference time and performance re-
veals the potential of test-time calibration, which does not
require retraining models. The generative capability of Sun-
dial provides flexibility for various use cases requiring dif-
ferent levels of uncertainty. In our experiments, sampling
20 predictions with each generated by 50 steps consumes
nearly one second on a CPU, which is notably more efficient
than tuning deep models or statistical methods. Advanced
strategies of sampling and post-processing of raw prediction
leave interesting directions for future exploration.

5.5. Model Adaptation

Inspired by the prevalence of instruction tuning (Wei et al.,
2021) that adapts foundation models on a collection of tasks.

Figure 7. We show the MASE (left) and WQL (right) on FEV w.r.t.
the number of generated raw predictions (top) and the steps to
sample a prediction (down). More predictions or more sampling
steps generally achieve better probabilistic metrics.

We fine-tune pre-trained Sundial (Base) on the FEV leader-
board, including short-term tasks with different prediction
lengths. Our model is tuned once on all aggregated datasets.
We evaluate the performance on unseen test splits (Figure 8).
We observe that the performance can be further improved
compared to zero-shot forecasting. Furthermore, training
from scratch on aggregated datasets results in inferior perfor-
mance, implying knowledge transfer in pre-trained models.

Figure 8. Performance on the FEV leaderboard, including (1) train-
ing Sundial from scratch on all datasets from the FEV leaderboard,
(2) zero-shot forecasting using pre-trained Sundial, and (3) fine-
tuning once on all datasets from the FEV leaderboard.

5.6. Ablation Study

We conducted several ablation studies that provide insights
into the enhancement made to Sundial’s architecture. We
evaluate the overall zero-shot performance on TSLib, which
covers six different datasets and four prediction lengths.
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Figure 9. Ablation studies with respect to architectural enhancements. We report the averaged results of TSLib datasets (Wu et al., 2022)
from four prediction lengths {96, 192, 336, 720} and all six datasets. The context length is set to 2880 and the patch length is 16.

RoPE Prior research (Liu et al., 2024a) observed that the
introduction of RoPE (Su et al., 2024) yields better results
in supervised forecasting tasks. As shown in Figure 9 (a),
RoPE can also improve zero-shot forecasting, presenting a
general enhancement for time series foundation models.

Layer Normalization Pre-LN (Baevski & Auli, 2018) is
widely adopted in large language models (Touvron et al.,
2023) due to the training stability. As depicted in Figure 9
(b), training with Pre-LN for more iterations yield better
performance. In contrast, training with Post-LN, which is
the predominant choice in supervised models, may adversely
affect downstream results.

FlashAttention and KV Cache We make it to leverage
FlashAttention (Dao et al., 2022) and KV Cache to reduce
the computational costs. As shown in Figure 9 (c) and (d),
they notably reduce 14.8% memory footprint and 43.6%
inference time without affecting performance.

6. Conclusion
In this work, we collect and curate TimeBench, a trillion-
scale time series dataset for building time series foundation
models, which can benefit the research community. Towards
time series foundation models, we delve into tokenization
and optimization, presenting contributions in two aspects.
First, we demonstrate that continuous tokenization, such
as patch tokens, can be more effective and efficient for the
time series modality, and generative modeling presents a na-
tive approach for learning on continuous-valued time series.
Second, we propose a novel training objective to accom-
modate heterogeneous time series distribution. It endows
autoregressive models with an inherent capability to sample

from non-categorical distribution. Our pre-trained Sundial
models make substantial advances on best-recognized fore-
casting leaderboards. We hope this work can inspire future
paradigms for pre-training time series foundation models
and enhance their applicability to real-world applications.
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Hassen, N. V., Schneider, A., et al. Lag-llama: Towards
foundation models for time series forecasting. arXiv
preprint arXiv:2310.08278, 2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

11

http://pems.dot.ca.gov/


Sundial: A Family of Highly Capable Time Series Foundation Models

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski,
T. Deepar: Probabilistic forecasting with autoregressive
recurrent networks. International journal of forecasting,
36(3):1181–1191, 2020.

Shen, L. and Kwok, J. Non-autoregressive conditional
diffusion models for time series prediction. In Inter-
national Conference on Machine Learning, pp. 31016–
31029. PMLR, 2023.

Shi, J., Ma, Q., Ma, H., and Li, L. Scaling law for time series
forecasting. arXiv preprint arXiv:2405.15124, 2024a.

Shi, X., Wang, S., Nie, Y., Li, D., Ye, Z., Wen, Q., and
Jin, M. Time-moe: Billion-scale time series founda-
tion models with mixture of experts. arXiv preprint
arXiv:2409.16040, 2024b.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Tashiro, Y., Song, J., Song, Y., and Ermon, S. Csdi: Con-
ditional score-based diffusion models for probabilistic
time series imputation. Advances in Neural Information
Processing Systems, 34:24804–24816, 2021.

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang, Y.,
Rector-Brooks, J., Wolf, G., and Bengio, Y. Improving
and generalizing flow-based generative models with mini-
batch optimal transport. arXiv preprint arXiv:2302.00482,
2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world, volume 29. Springer, 2005.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Wen, R., Torkkola, K., Narayanaswamy, B., and Madeka,
D. A multi-horizon quantile recurrent forecaster. arXiv
preprint arXiv:1711.11053, 2017.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and
Sahoo, D. Unified training of universal time series fore-
casting transformers. arXiv preprint arXiv:2402.02592,
2024.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. Advances in Neural Information Pro-
cessing Systems, 34:22419–22430, 2021.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M.
Timesnet: Temporal 2d-variation modeling for general
time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 586–595,
2018.

Zhang, Y. and Yan, J. Crossformer: Transformer utilizing
cross-dimension dependency for multivariate time series
forecasting. In The eleventh international conference on
learning representations, 2023.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

12



Sundial: A Family of Highly Capable Time Series Foundation Models

A. Dataset Statistics
Large-scale datasets are of paramount importance for pre-training foundation models. Recent research has contributed
significant time series datasets (Das et al., 2023b; Liu et al., 2024b; Shi et al., 2024b). While the scaling law of time series
foundation models has been explored in the recent work (Shi et al., 2024a), the pre-training scale remains relatively limited.
Given the heterogeneity of time series compared to other modalities, it raises the question of whether it is feasible to learn
from enormous series. To address the question, we curated TimeBench with a trillion time points from various domains.

Unlike other modalities, most time series are unavailable on open websites or repositories. There are also limited domains
that encompass typical and predictable time series, leading to slow progress on dataset construction. Therefore, we conducted
tedious preprocessing, including missing values imputation, abnormalities exclusion, and normalization techniques. We
conducted statistical analysis, examining time series through the lenses of intrinsic properties, e.g., non-stationarity,
forecastability, and seasonality. This approach allows us to characterize the data quality inherent to time series, which affects
the training stability of next-token prediction. We also adopt synthetic techniques to improve pattern diversity. Further, we
adopt ERA5 (Muñoz-Sabater et al., 2021), including systematic real-world temporal observations.

The statistical details of TimeBench are summarized in Table 4. In addition to open-source datasets from research teams on
time series foundation models (Woo et al., 2024; Ansari et al., 2024; Liu et al., 2024b;a), we collected substantial real-world
time series from various domains such as finance, IoT, meteorology, and healthcare (Goldberger et al., 2000). These
resources enable us to construct large-scale time-series corpora exceeding a trillion time points. The corpora include highly
credible and predictable data with a wide range of frequencies, lengths, and numbers of variates, providing comprehensive
temporal dynamics and variation patterns to facilitate downstream applications. To prevent data leakage, we exclude all
datasets evaluated in Section 5.1 to make sure that Sundial conducts zero-shot forecasting.

Table 4. Key statistics of TimeBench, the pre-training dataset of Sundial.

Source Chronos ECG Finance IoT LOSTA Synthetic ERA5 3h ERA 12h ERA5 Daily ERA5 Weekly ERA5 Monthly ERA5 Quarterly Total(2024) (2000) (Ours) (Ours) (2024) (2024) (2021) (2021) (2021) (2021) (2021) (2021)

# Pts. 94B 48B 10.5B 5.8B 230B 0.5B 129B 32B 406B 58B 13.5B 4.5B 1032B
% 9.11 % 4.65 % 1.02 % 0.56 % 22.29 % 0.05 % 12.50 % 3.10 % 39.35 % 5.62 % 1.31 % 0.44 % 100%

B. Implementation Details
All experiments are implemented using PyTorch (Paszke et al., 2019) and executed with 32 NVIDIA A100 GPUs. We
employ the AdamW optimizer (Kingma & Ba, 2014) for model optimization. We adopt S3 format (Liu et al., 2024b) for
univariate pre-training. During training, data from different domains is sampled according to a predefined ratio to balance
the domain weightings and ensure diversity in the training data. We implement a global shuffle strategy by loading time
series into a standard parquet format. We use variable-wise normalization to unify the scope of values.

On the FEV leaderboard (Ansari et al., 2024), which consists of short-term forecasting datasets, we train Sundial models by
TimeFlow Loss with the prediction length of F = 16. For the point forecasting (Wu et al., 2022) and GIFT-Eval (Aksu
et al., 2024), which consist of forecasting datasets with a prediction length ranging from 6 to 900, we train Sundial models
by TimeFlow Loss with the prediction length of F = 720. For the required prediction length less than the model prediction
length, we truncate the output generated by Sundial. For the required length more than the prediction horizon, we conduct
rolling forecasting. Following Chronos (Ansari et al., 2024), we sample 20 raw predictions to calculate MASE and WQL
on FEV. Being consistent to Moirai (Woo et al., 2024), we sample 100 raw predictions to calculate MASE and CRPS for
GIFT-Eval. The sampling step is fixed as K = 50. Configurations of Sundial in different sizes are provided in Table 5. We
provide a model summary in Table 6, which summarizes several aspects of current time series foundation models.

C. Supplementary Results
C.1. Discussion of Mode Collapse

Mode collapse is a failure of representation learning, where a model generates a limited variety of outputs, ignoring the
diversity in the training data. For time series foundation models, mode collapse stems from the heterogeneity of the time
series distribution, e.g., a similar lookback time series goes into divergent trending. In other words, the semantics of time
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Table 5. Model configurations of the Sundial family.

Model
Patch Size Context Length Prediction Length Layers Dimension MHA Heads TimeFlow Total Parameters

(P ) (T ) (F ) (L) (D,Dff) H (Dtf, Ltf) #Count

SundialSmall 16 2880 {16, 720} 6 (512, 2048) 8 (512, 3) 32M

SundialBase 16 2880 {16, 720} 12 (768, 3072) 12 (768, 3) 128M

SundialLarge 16 2880 {16, 720} 24 (1024, 4096) 16 (1024, 6) 444M

∗ D is the embedding dimension of Transformer. Dff is the hidden dimension of FFN. Dtf is the hidden dimension of the flow-
matching network. L is the layer number of Transformer. Ltf is the layer number of the flow-matching network.

Table 6. Comparison of time series foundation models. Architecture denotes the Transformer category. Model Size presents parameter
counts of different model sizes. Pre-training Scale measures pre-training datasets in time points. Token Level presents the graininess of
time series tokens. Tokenization denotes what kind of values are embedded from time series. Context Length means the input length
supported by the model. Probabilistic means generating multiple probable predictions, which is the opposite of deterministic forecasters.

Method
Sundial Time-MoE Timer-XL Moirai MOMENT LLMTime Chronos Lag-Llama TimesFM
(Ours) (2024b) (2024a) (2024) (2024) (2024) (2024) (2023) (2023b)

Architecture Decoder Decoder Decoder Encoder Encoder Decoder EncDec Decoder Decoder

Model Size
32M 113M 84M 14M 40M - 46M 200M 17M

128M 453M 91M 125M 200M 70M
444M 2.4B 311M 385M 710M 200M

Pre-training Scale 1032B 300B 260B 231B 1.13B - 84B 0.36B 100B

Token Level Patch Point Patch Patch Patch Point Point Point Patch

Tokenization Continuous Continuous Continuous Continuous Continuous Discrete Discrete Continuous Continuous

Context Length ≤2880 ≤4096 ≤2880 ≤5000 = 512 - ≤512 ≤1024 ≤512

Probabilistic True False False True False True True True False

series patterns are highly unstable. It sometimes leads to over-smooth predictions from models optimized by MSE becuase
the results are global-optimal for this loss (See showcases on the right of Figure 14-15). Such a training objective pre-defines
a unimodal predictive distribution of data, which struggles to accommodate large-scale datasets like TimeBench.

Our work addresses this phenomenon through generative modeling. Generative forecasters learn flexible distributions
without relying on probabilistic priors. We evaluate the distributional metric Continuous Ranked Probability Score (CRPS)
to assess the quality of generated predictions across different training objectives. The results indicate that the predictive
distribution modeled by TimeFlow is more coherent and diverse compared to alternative training objectives, particularly on
the highly diverse GIFT-Eval (Aksu et al., 2024). It validates the effectiveness of TimeFlow in mitigating mode collapse.

Table 7. Zero-shot probabilistic forecasting performance using different training objectives. Averaged CRPS is reported here.

Objective ETTh1 ETTh2 ETTm1 ETTm2 ECL Weather GIFT-Eval

TimeFlow Loss 0.0059 0.0037 0.0057 0.0029 0.0082 0.0021 0.5050

Diffusion Loss 0.0082 0.0053 0.0070 0.0039 0.0095 0.0032 0.5340

MSE Loss 0.0063 0.0040 0.0058 0.0032 0.0080 0.0023 0.6420
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C.2. Scaling Behavior Using More Data

We compare Sundial with other time series foundation models that are pre-trained with smaller datasets: Chronos (Ansari
et al., 2024) is pre-trained on 94 billion time points, and Moirai is pre-trained on 230 billion time points. As their pre-training
datasets are part of the subset of TimeBench, we also conduct pre-training on Sundial using these subsets. As shown in
Table 8, these results highlight the scaling behavior of Sundial using larger datasets. Additionally, Sundial still achieves
better zero-shot forecasting than its counterpart models with the same pre-training dataset.

Table 8. Zero-shot forecasting performance of models trained on different scales of datasets (measured in time points, pts, and 1B means a
billion). We report the averaged results from four prediction lengths {96, 192, 336, 720} on Time-Series-Library (Wu et al., 2022).

Model (pts.) Chronos (94B) Moirai (230B) Sundial (94B) Sundial (230B) Sundial (1032B)

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.591 0.468 0.417 0.419 0.402 0.429 0.403 0.419 0.411 0.434

ETTh2 0.405 0.410 0.362 0.382 0.377 0.414 0.364 0.398 0.333 0.387

ETTm1 0.645 0.500 0.406 0.385 0.367 0.402 0.352 0.385 0.336 0.377

ETTm2 0.310 0.350 0.311 0.337 0.280 0.341 0.273 0.334 0.258 0.320

ECL 0.214 0.278 0.187 0.274 0.172 0.269 0.171 0.267 0.169 0.265

Weather 0.292 0.315 0.287 0.281 0.254 0.301 0.252 0.297 0.234 0.270

C.3. Performance with Varying Lookback Lengths

Time series foundation models operate independently of training, functioning similarly to statistical methods. Given specific
forecasting tasks, one of the most important hyperparameters is the lookback length. Unlike fixed-context models, Sundial
offers flexibility for practitioners, allowing the context length to be dynamically adjusted during inference. In Figure 10,
we present the performance of Sundial utilizing various lookback lengths. Based on our observations, we contend that
performance is largely dependent on the forecasting task itself. Specifically, the size of the lookback window can be tuned to
meet the forecasting horizon and data periodicity. Time series foundation models provide a training-free approach for rapid
adjustments; still, they should enhance their fundamental long-context capabilities to handle high-frequency data.
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Figure 10. Zero-shot forecasting performance using different lookback lengths in {480, 960, 1440, 1920, 2400, 2880}. We report the
averaged results from four prediction lengths {96, 192, 336, 720} on Time-Series-Library (Wu et al., 2022).

15



Sundial: A Family of Highly Capable Time Series Foundation Models

C.4. Zero-Shot Results of Point Forecasting

Table 9 provides full zero-shot results on Time-Series-Library forecasting benchmark (Wu et al., 2022), including prediction
horizons in {96, 192, 336, 720}. We build Sundial with different model sizes with configurations in Table 5. The context
length is fixed as 2880. We truncate the model’s predictions for tasks requiring a prediction length less than F = 720.

We compare the most advanced time series foundation models based on their official checkpoints, including Time-MoE (Shi
et al., 2024b), Timer (Liu et al., 2024a;b), Moirai (Woo et al., 2024), TimesFM (Das et al., 2023b), and Chronos (Ansari
et al., 2024). We conduct zero-shot evaluations on datasets that are not included during the pre-training of the corresponding
models. For each of the evaluated model, we use their maximum input length during inference. Metrics (MSE/MAE) are
calculated from all predicted windows in the test split of each dataset following Liu et al. (2024a).

C.5. Zero-Shot Results on GIFT-Eval and FEV Leaderboard

We evaluate our models on GIFT-Eval, a benchmark designed to comprehensively assess forecasting performance across
diverse time series. GIFT-Eval includes 23 datasets covering 144, 000 time series and 177 million data points, which
constitute a total of 97 forecasting configurations. We use the official evaluation suite established by the research team of
Salesforce and report aggregated results in Table 2. We evaluate the performance and inference time on the FEV leaderboard,
which was originally proposed by Ansari et al. (2024) and established by AutoGluon, which comprises 27 datasets for
zero-shot evaluation. We report aggregated metrics in Figure 4 and assess the inference time in Figure 5. We released the
detailed results by submitting Sundial to their open benchmark2.

D. Showcases
D.1. Showcases of Sundial

Figure 11-13 present zero-shot forecasting showcases on all the datasets from FEV (Ansari et al., 2024) and TSLib (Wu
et al., 2022). By generating 20 predictions with different initial noise, we estimate the median and 80% prediction interval.

D.2. Showcases of Generative Forecasters and Deterministic Forecasters

As we introduce generative modeling in time series foundation models, we compare zero-shot forecasting showcases from
two types of models, including (1) Sundial, a generative forecaster pre-trained by TimeFlow, which can predict multiple
future possibilities based on a lookback series. (2) Using the same backbone and TimeBench, a Transformer pre-trained by
MSE Loss. As a deterministic forecaster, the model can only output the mean prediction. As depicted in Figure 14-15, the
unimodal Gaussian prior specified by MSE can be infeasible to handle large-scale pre-training, manifested as sometimes
over-smooth predictions in downstream forecasting tasks. Therefore, we hope this work can inspire future paradigms for
pre-training time series foundation models and enhance their applicability to real-world scenarios.

E. Limitations
Our models represent an initial effort to incorporate generative modeling into time series foundation models, which enables
pre-training on heterogeneous time series without specifying any prior distribution. This approach mitigates mode collapse in
representation learning and generates a diverse range of probable predictions compared to previous deterministic forecasters.
Despite significant progress in enlarging model capacity, the Sundial family may still face hallucinations. The performance
on very high-frequency data is not guaranteed, since TimeBench contains many middle- and low-frequency time series.
Therefore, an important future direction is to generalize Sundial to multi-scale time series. This situation may also indicate
new opportunities during inference. As we only adopt a naı̈ve sampling strategy that begins with random Gaussian noise, it
leaves much room for future improvement in sampling strategy and post-processing, such as frequency normalization.

Another aspect of future development lies in model adaptation. Sundial is pre-trained in a univariate approach to address
the discrepancy in variate numbers, which prevents it from explicitly utilizing variate correlations or covariate information.
As an increasing number of studies address 2D dimensionality, multivariate pre-training is likely to be conducted for
domain-specific time series foundation models. Lastly, while autoregressive models provide flexibility in the input context
length, multiple steps of autoregression may still lead to over-smooth predictions and unreliable results.

2https://huggingface.co/spaces/Salesforce/GIFT-Eval.
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Table 9. Zero-shot forecasting results of time series foundation models on long-term forecasting datasets (Wu et al., 2022). A lower MSE
or MAE indicates a better prediction. Averaged results of four prediction lengths are reported here. 1st Count represents the number of
wins achieved by a model under all prediction lengths and datasets. Results of baseline models are officially reported by Shi et al. (2024b).
Datasets for pre-training are not evaluated on corresponding models, which are denoted by the dash (−).

Models SundialSmall SundialBase SundialLarge Time-MoEBase Time-MoELarge Time-MoEUltra Timer-XL MoiraiBase MoiraiLarge ChronosBase ChronosLarge TimesFM
(Ours) (Ours) (Ours) (2024b) (2024b) (2024b) (2024a) (2024) (2024) (2024) (2024) (2023b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.292 0.342 0.280 0.334 0.273 0.329 0.338 0.368 0.309 0.357 0.281 0.341 0.317 0.356 0.363 0.356 0.380 0.361 0.454 0.408 0.457 0.403 0.361 0.370
192 0.337 0.376 0.321 0.366 0.312 0.357 0.353 0.388 0.346 0.381 0.305 0.358 0.358 0.381 0.388 0.375 0.412 0.383 0.567 0.477 0.530 0.450 0.414 0.405
336 0.370 0.401 0.350 0.389 0.343 0.378 0.381 0.413 0.373 0.408 0.369 0.395 0.386 0.401 0.416 0.392 0.436 0.400 0.662 0.525 0.577 0.481 0.445 0.429
720 0.418 0.433 0.394 0.418 0.397 0.413 0.504 0.493 0.475 0.477 0.469 0.472 0.430 0.431 0.460 0.418 0.462 0.420 0.900 0.591 0.660 0.526 0.512 0.471

Avg 0.354 0.388 0.336 0.377 0.331 0.369 0.394 0.415 0.376 0.405 0.356 0.391 0.373 0.392 0.406 0.385 0.422 0.391 0.645 0.500 0.555 0.465 0.433 0.418

E
T

T
m

2

96 0.178 0.260 0.170 0.256 0.172 0.255 0.201 0.291 0.197 0.286 0.198 0.288 0.189 0.277 0.205 0.273 0.211 0.274 0.199 0.274 0.197 0.271 0.202 0.270
192 0.235 0.304 0.229 0.300 0.227 0.296 0.258 0.334 0.250 0.322 0.235 0.312 0.241 0.315 0.275 0.316 0.281 0.318 0.261 0.322 0.254 0.314 0.289 0.321
336 0.287 0.342 0.281 0.337 0.275 0.331 0.324 0.373 0.337 0.375 0.293 0.348 0.286 0.348 0.329 0.350 0.341 0.355 0.326 0.366 0.313 0.353 0.360 0.366
720 0.360 0.390 0.351 0.387 0.343 0.378 0.488 0.464 0.480 0.461 0.427 0.428 0.375 0.402 0.437 0.411 0.485 0.428 0.455 0.439 0.416 0.415 0.462 0.430

Avg 0.265 0.324 0.258 0.320 0.254 0.315 0.317 0.365 0.316 0.361 0.288 0.344 0.273 0.336 0.311 0.337 0.329 0.343 0.310 0.350 0.295 0.338 0.328 0.346

E
T

T
h1

96 0.341 0.381 0.348 0.385 0.346 0.383 0.357 0.381 0.350 0.382 0.349 0.379 0.369 0.391 0.376 0.392 0.381 0.388 0.440 0.393 0.441 0.390 0.414 0.404
192 0.381 0.408 0.393 0.418 0.386 0.410 0.384 0.404 0.388 0.412 0.395 0.413 0.405 0.413 0.412 0.413 0.434 0.415 0.492 0.426 0.502 0.524 0.465 0.434
336 0.405 0.424 0.422 0.440 0.410 0.426 0.411 0.434 0.411 0.430 0.447 0.453 0.418 0.423 0.433 0.428 0.485 0.445 0.550 0.462 0.576 0.467 0.503 0.456
720 0.433 0.458 0.481 0.493 0.438 0.459 0.449 0.477 0.427 0.455 0.457 0.462 0.423 0.441 0.447 0.444 0.611 0.510 0.882 0.591 0.835 0.583 0.511 0.481

Avg 0.390 0.418 0.411 0.434 0.395 0.420 0.400 0.424 0.394 0.419 0.412 0.426 0.404 0.417 0.417 0.419 0.480 0.439 0.591 0.468 0.588 0.466 0.473 0.443

E
T

T
h2

96 0.272 0.332 0.271 0.333 0.269 0.330 0.305 0.359 0.302 0.354 0.292 0.352 0.283 0.342 0.294 0.330 0.296 0.330 0.308 0.343 0.320 0.345 0.315 0.349
192 0.329 0.374 0.327 0.376 0.325 0.373 0.351 0.386 0.364 0.385 0.347 0.379 0.340 0.379 0.365 0.375 0.361 0.371 0.384 0.392 0.406 0.399 0.388 0.395
336 0.357 0.399 0.354 0.402 0.354 0.400 0.391 0.418 0.417 0.425 0.406 0.419 0.366 0.400 0.376 0.390 0.390 0.390 0.429 0.430 0.492 0.453 0.422 0.427
720 0.401 0.442 0.381 0.435 0.389 0.443 0.419 0.454 0.537 0.496 0.439 0.447 0.397 0.431 0.416 0.433 0.423 0.418 0.501 0.477 0.603 0.511 0.443 0.454

Avg 0.340 0.387 0.333 0.387 0.334 0.387 0.366 0.404 0.405 0.415 0.371 0.399 0.347 0.388 0.362 0.382 0.367 0.377 0.405 0.410 0.455 0.427 0.392 0.406

E
C

L

96 0.134 0.231 0.132 0.229 0.130 0.227 - - - - - - 0.141 0.237 0.160 0.250 0.153 0.241 0.154 0.231 0.152 0.229 - -
192 0.154 0.251 0.152 0.250 0.150 0.247 - - - - - - 0.159 0.254 0.175 0.263 0.169 0.255 0.179 0.254 0.172 0.250 - -
336 0.174 0.271 0.173 0.271 0.170 0.268 - - - - - - 0.177 0.272 0.187 0.277 0.187 0.273 0.214 0.284 0.203 0.276 - -
720 0.215 0.307 0.218 0.311 0.214 0.307 - - - - - - 0.219 0.308 0.228 0.309 0.237 0.313 0.311 0.346 0.289 0.337 - -

Avg 0.169 0.265 0.169 0.265 0.166 0.262 - - - - - - 0.174 0.278 0.187 0.274 0.186 0.270 0.214 0.278 0.204 0.273 - -

W
ea

th
er

96 0.158 0.206 0.157 0.205 0.157 0.208 0.160 0.214 0.159 0.213 0.157 0.211 0.171 0.225 0.220 0.217 0.199 0.211 0.203 0.238 0.194 0.235 - -
192 0.205 0.253 0.205 0.251 0.207 0.256 0.210 0.260 0.215 0.266 0.208 0.256 0.221 0.271 0.271 0.259 0.246 0.251 0.256 0.290 0.249 0.285 - -
336 0.254 0.290 0.253 0.289 0.259 0.295 0.274 0.309 0.291 0.322 0.255 0.290 0.274 0.311 0.286 0.297 0.274 0.291 0.314 0.336 0.302 0.327 - -
720 0.315 0.336 0.320 0.336 0.327 0.342 0.418 0.405 0.415 0.400 0.405 0.397 0.356 0.370 0.373 0.354 0.337 0.340 0.397 0.396 0.372 0.378 - -

Avg 0.233 0.271 0.234 0.270 0.238 0.275 0.265 0.297 0.270 0.300 0.256 0.288 0.256 0.294 0.287 0.281 0.264 0.273 0.292 0.315 0.279 0.306 - -

1st Count 7 2 8 5 16 16 0 1 0 0 2 1 1 3 0 2 0 6 0 0 0 0 0 0

∗ Traffic (PEMS) is not evaluated because it is included in the pre-training datasets of these time series foundation models.
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F. Societal Impacts
F.1. Real-World Applications

In this work, we present Sundial, a family of time series foundation models to facilitate out-of-the-box forecasting. Our
models employ native tokenization for continuous-valued time series and incorporate a flexible training objective, proposed
as TimeFlow Loss, to enable probabilistic forecasting. With an unprecedented model capacity and a trillion-scale dataset,
our models can be used directly or adapted for various forecasting scenarios, such as energy planning, weather forecasting,
and financial risk prevention. With multiple predictions generation and a just-in-time inference speed, our model enhances
the reliability of decision-making and streamlines the forecasting pipeline for practitioners. This paper primarily focuses on
scientific research and does not present any evident negative social impact.

F.2. Academic Research

We curate TimeBench, a trillion-level time series dataset for pre-training foundation models for time series analysis, which
we believe will be beneficial to the research community. Technically, we propose a TimeFlow Loss to facilitate the learning
of flexible next-patch distributions. Conditioned on the lookback representations acquired by autoregressive Transformers,
our model is endowed with a novel generative capability for probabilistic forecasting, enhancing representation learning
of Transformers without the need for discrete tokenization. Through pre-training on an unprecedented scale, we identify
subtle scalability bottlenecks that are not solely attributable to architectural design but are predominantly influenced by the
training objectives of foundation models. The proposed TimeFlow Loss applied to autoregressive and generative models
may provide insights for the future development of time series foundation models.
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Figure 11. Showcases of zero-shot predictions from Sundial (Base) on the FEV leaderboard (Ansari et al., 2024).
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Figure 12. Showcases of zero-shot predictions from Sundial (Base) on the FEV leaderboard (Ansari et al., 2024).
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Figure 13. Showcases of zero-shot predictions from Sundial (Base) on long-term forecasting datasets (Wu et al., 2022).
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Figure 14. Showcases of Sundial (Left) and the same Transformer backbone pre-trained by MSE Loss (Right). MSE Loss optimizes a
deterministic forecaster: given a lookback series, the model can only produce one prediction as the estimation of mean values. This
objective may fail to accommodate divergent future variations during large-scale pre-training, leading to mode collapse and over-smooth
results (as illustrated in the fourth row). TimeFlow optimizes a generative forecaster: it generates various possibilities observed in the
pre-training dataset. Based on these raw predictions, we can estimate the underlying complicated distribution and different statistics.
Besides, the greater concentration in generated predictions, the higher the model’s confidence in its predictions.
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Figure 15. Supplementary showcases of Sundial (Left) and the same Transformer backbone pre-trained by MSE Loss (Right).
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