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Abstract

Neural architecture search (NAS) seeks to automate neural network design to optimize
performance criteria, but designing a search space for NAS largely remains a manual effort.
When available, strong prior knowledge can be used to construct small search spaces, but
using such spaces inevitably limits the flexibility of NAS, and prior information is not always
available on novel tasks and/or architectures. On the other hand, many NAS methods have
been shown to be sensitive to the choice of search space and struggle when the search space is
not sufficiently refined. To address this problem, we propose a differentiable technique that
learns a policy to refine a broad initial search space during supernet training. Our proposed
solution is orthogonal to almost all existing improvements to NAS pipelines, is largely search
space-agnostic, and incurs little additional overhead beyond standard supernet training.
Despite its simplicity, we show that on tasks without strong priors, our solution consistently
discovers performant subspaces within an initially large, complex search space (where even
the state-of-the-art methods underperform), significantly robustifies the resultant supernet
and improves the performance across a wide range model sizes. We argue that our work
takes a step toward full automation of the network design pipeline.

1 Introduction

Over the last half-decade, neural architecture search (NAS), which aims to automate the design of neural
network architectures for various tasks, has seen great successes: for example, in a wide range of tasks (Zoph
et al., 2018; Chen et al., 2019; Liu et al., 2019a; Zhang et al., 2019), architectures designed by NAS often
outperform handcrafted networks designed by human experts. Many early NAS methods adopt a query-based
paradigm by repeatedly training and refining models via, for example, reinforcement learning (RL) (Zoph
et al., 2018; Tan et al., 2019; Baker et al., 2017)), evolutionary algorithms (Real et al., 2019; Liu et al., 2021;
Real et al., 2017) and/or Bayesian optimization/quadrature (White et al., 2021; Ru et al., 2021; Wan et al.,
2022a; Kandasamy et al., 2018; Hamid et al., 2023); these methods typically require prohibitive amounts
of computing resources even on simple vision tasks (e.g., early RL-based methods require thousands of
GPU-hours even on simple CIFAR tasks). More recent methods typically leverage weight-sharing supernets
to conduct architecture search in a one-shot manner without training candidate architectures individually
(Brock et al., 2018; Pham et al., 2018; Liu et al., 2019b; Guo et al., 2020; Li & Talwalkar, 2020; Cai
et al., 2019): typically, modern NAS methods first train all candidate networks in the search space A via
parameter-sharing supernets (supernet training), which is followed by architecture selection to identify the
most promising candidate sub-networks that lead to best trade-offs between performance and costs (e.g.,
in terms of model size, latency, etc.). While earlier supernet-based methods often require re-training the
resulting sub-networks (Pham et al., 2018; Liu et al., 2019b) or at least fine-tuning (Cai et al., 2020), more
recent advancements, such as the use of in-place knowledge distillation and sandwich sampling proposed by
Yu & Huang (2019) and subsequently widely used in related literature (Yu et al., 2020; Wang et al., 2021a;
Gong et al., 2022; Wang et al., 2021b), have enabled practitioners to obtain performant sub-networks by
simply slicing the supernet appropriately without further training (Yu et al., 2019).

Although these advances in the search methodology have democratized the usage of NAS by reducing its com-
putational costs, choosing a good search space remains a practical challenge that has received less attention.
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Figure 1: Illustration of an iteration in baseline supernet training (§2, left) and training with boundary
learning (§3, right): at each mini-batch, the max and min networks are always sampled alongside random
networks from A (sandwich sampling), and only the max network is trained with cross-entropy loss with
the true label; the other networks are trained with knowledge distillation using the soft logits of the max
network as the teacher (in-place KD). In baseline supernets (left), the max and min networks are fixed to
be the largest and smallest sub-networks in the search space. In contrast, we propose to learn max and min
policies and sample max and min networks from those policies at each iteration to use as the endpoints in
sandwich sampling. Importantly, the sampled max and min networks may differ from the ground-truth max
and min networks, respectively, and the policies are optimized in an end-to-end manner jointly with the
supernet training losses (CE and KD losses) (right).

While large and expressive search spaces are, in principle, desirable or even crucial for discovering high-
performing and novel architectures, it has been shown that NAS methods, particularly the supernet-based
methods, require meticulously designed search spaces. Previous works have shown that NAS performance is
sensitive to search space design—arguably more so than the choice of search algorithm (Wan et al., 2022b;
Yang et al., 2020). Moreover, directly applying many existing popular NAS methods in large, unrefined
search spaces has been observed to lead to sub-optimal performance (Ci et al., 2021; Zela et al., 2020)—
and as we will show, such issues persist even with modern, state-of-the-art search methods. As a result,
many works benchmark methods on carefully engineered search spaces often constructed by modifying and
inserting searchable dimensions on top of human-designed networks known to perform well and/or careful
handcrafting with human knowledge. Nonetheless, we argue that such practices inherently limit the utility
of NAS. For example, in new production use cases or if the task involves new architecture paradigms, prior
knowledge of effective search spaces may not be available, and such information may be expensive. More
fundamentally, the current reliance on handcrafted search spaces inhibits NAS from achieving its goal of
maximizing model performance “in an automated way with minimal human intervention” (Ren et al., 2021)
because human expertise is still required for selecting the search space.

In this paper, we tackle this issue by proposing a simple yet effective modification to the state-of-the-art su-
pernet training methods, where a policy that defines the search space is learned jointly with supernet weights
in an end-to-end, differentiable manner during supernet training. Starting with completely uninformative
priors about the search space at initialization, the policies jointly learn a subspace where NAS methods
perform well within the original broad search space1. Our proposed approach incurs negligible additional
computational overhead, requires no further retraining or fine-tuning, unlike several previous works (Pham
et al., 2018), and is orthogonal with respect to most existing improvements in the supernet training pipeline

1While we largely focus on search space shrinking as we primarily aim to address the problem of supernet-based NAS
struggling in large search spaces without prior, our method is also capable of search space expansion. We refer the readers to
§3 for details.
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(and thus offers complementary benefits). We show that our approach consistently discovers reasonable
search space boundaries in huge, realistic search spaces where even the current state-of-the-art methods fail
and yields high-performing supernets. Fundamentally, we argue that our method advances the applicability
of NAS in search spaces beyond those commonly benchmarked in academic settings (often with extensive
manual engineering) and thus represents a step towards full automation of the network architecture design
pipeline.

2 Preliminaries

Problem setup. We consider a generic, typically huge NAS search space A that can be represented as
the Cartesian product of multiple search dimensions s(i): A =

∏D
i=1 s(i), where D is the total number of

search dimensions. Each search dimension s(i) is an ordinal variable that is chosen from a list of possible
values {o(i)

1 , ..., o
(i)
di
} in an ascending order (where di is the number of candidate choices of the i-th search

dimension), which in turn determines a characteristic of the resulting candidate network, such as the channel
depth, width, kernel size, etc. of a layer of the network, and an architecture a ∈ A can thus be represented
by a D-dimensional vector that concatenates the search dimensions. The objective of NAS can then be
formulated as a multi-objective optimization problem. For simplicity but without loss of generality, we
denote the problem as a two-objective optimization problem where we aim to minimize both the validation
loss Lval(a, W ∗) and some cost metric (g(a)), such as the number of floating point operations (FLOPs) of
some architecture a:

min
a∈A

(
Lval(a, W ∗), g(a)

)
;

s.t.W ∗ = arg min
W
Ltrain(a, W ),

gL ≤ g(a) ≤ gU ,

(1)

where W denotes the network weights that are trained on some training set and [gL, gU ] denote some lower
and upper bounds on the cost metrics that are known a-priori (for example, for deployments of neural
networks on mobile devices, we typically roughly know the upper and lower bounds in terms of the number
of parameters or FLOPs of the architectures we are interested in searching).

Given the multi-objective nature of the problem, we typically search for a Pareto-optimal set of architectures
A∗ = {a∗

1, ..., a∗
|A|}: we say that an architecture a dominates another architecture a′ (denoted f(a′) ≺ f(a)) if

Lval(a, W ∗) ≤ Lval(a′, W ∗) and g(a) ≤ g(a′) and either Lval(a, W ∗) < Lval(a′, W ∗) or g(a) < g(a′). Denoting
f(a) := [Lval(a, W ∗), g(a)]⊤, the set of Pareto-optimal architectures A∗ are those that are mutually non-
dominated: A∗ = {a∗

i ∈ A | ∄ a′ ∈ A s.t. f(a′) ≺ f(a∗
i )}. The Pareto front P∗ is the image of the Pareto

set of architectures: P∗ = {f(a) | a ∈ A∗}.

Supernet training with in-place KD and sandwich sampling. As discussed, the current state-of-the-
art NAS methods often rely on the ability to train supernets effectively. For a search space A, the supernet
is the largest possible sub-network amax = [o(1)

d1
, ..., o

(D)
dD

] that selects the largest candidate o
(i)
di

along all
search dimensions. Letting amax be parameterized by weights W , the goal of supernet training is that all
sub-networks a ∈ A are optimized simultaneously to achieve good performance in downstream tasks. Recent
works show that in-place knowledge distillation and sandwich sampling (illustrated and explained in Fig. 1)
have significantly improved the supernet performance and eliminated the need for retraining (Yu & Huang,
2019; Yu et al., 2020). Formally, at time step t, the supernet is updated with Wt ← Wt−1 − η∇WL(Wt−1)
where η is the learning rate and ∇WL(Wt−1) is the gradient given by:

∇WL(Wt−1) = ∇W

(
LD([a, W ]) + LKD([a, a, W ]) + γEa∼Unif(a1,...,aD)LKD([a, a, W ])

)∣∣∣∣
W =Wt−1

(2)

where the first term denotes the standard cross-entropy (CE) loss (LD(·)) for the max network, the second
term denotes the knowledge distillation (KD) loss, given by the KL divergence between the logits the max
network a (the teacher) and the min network a (the student), and the final term denotes the KD loss (with
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Figure 2: Naïvely training supernets in large search spaces is ineffectual, but boundary learning closes the gap.
Distribution of CIFAR-100 validation accuracy across varying network sizes (measured in million-FLOPs
(MFLOPS) in increments of 10 MFLOPs. Each box shows the distribution over 30 randomly sampled
sub-networks over that FLOPs range, using the conditional sampling technique introduced in Wang et al.
(2021b) from supernets trained with sandwich sampling and in-place KD in search spaces of varying sizes and
complexity: W: searching widths (output width and expansion ratio in Inverted Residual blocks) only; W+K:
searching widths and kernel sizes (3×3, 5×5); W+D: searching widths and depth of each inverted residual block;
W+K+D: searching widths, kernel sizes, and depths simultaneously; W+K+D+BL: searching all three elements,
but with dynamic boundaries learning as described in §3. Boxes show medians and interquartile ranges.

the same teacher a) of the random networks and γ is a weighting factor. Unless stated otherwise, we follow
previous works (Yu et al., 2020; Wang et al., 2021b;a) and always sample 2 random networks in each iteration,
thus γ = 2.

3 Methods

Limitations of current methods and key intuition of our proposed method. Unlike previous
techniques (Liu et al., 2019b; Pham et al., 2018; Cai et al., 2019; 2020), the key advantage of the technique
described in §2 is that the resulting supernets may be directly deployed without retraining from scratch or
expensive fine-tuning (one only has to re-calibrate the batch normalization statistics of the desired subnet-
works without gradient back-propagation). Nonetheless, we find that the quality of the supernet training
from the aforementioned technique still heavily depends on the search space design, consistent with earlier
literature investigating methods on alternative search spaces (Ci et al., 2021). In Fig. 2, we train supernets
consisting of MobileNet-like inverted residual blocks on search spaces of varying search space complexities.
The smallest search space only contains the width search dimensions and sets other architecture parameters
to fixed values that are known to perform well a priori (e.g., values in the original MobileNetv2 network
specification – see Appendix A.1 for details), but the largest search space contains widths, depths, and
kernel sizes simultaneously. Even though larger search spaces are more expressive and theoretically contain
solutions not worse than smaller subspaces, we the empirical difficulties of supernet-based NAS methods
in navigating them effectively have nevertheless been observed: as the search space becomes larger, the
supernet performance generally deteriorates as measured by the accuracy of the sampled sub-networks of
varying FLOP ranges. Intuitively, as the search space becomes larger and more complicated, the subnetworks
become increasingly different from each other, and it is consequently more difficult for one-shot supernet
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to simultaneously improve all subnetworks as the optimization directions might conflict with each other
(known as gradient conflict (Peng et al., 2021; Gong et al., 2022)). Moreover, in a complex search space,
the ground-truth smallest network might be unreasonably small or contain many harmful operators, but in
naïve sandwich sampling, the supernet is still forced to sample it at each iteration even though its gradient
directions might not be useful for the other subnetworks. While previous works typically bypass this prob-
lem by manually fine-tuning the search space such that the min network is still a reasonable performance
lower bound, as we have discussed in §1, this is not always feasible. In the following sections, we propose a
method to dynamically learn such boundaries without relying on expert knowledge: At a high level, the key
insight lies in the fact that the boundaries of the search space are defined by the largest and the smallest
sub-networks. While previous works have largely fixed their configurations a-priori, we propose to jointly
optimize them as supernet training proceeds so that supernet weights can be optimized while promising
subspaces with lesser degrees of aforementioned conflict are discovered on the fly. However, given that the
sub-networks are typically specified in a discrete way, they may not be directly optimized with gradients,
and we instead propose to optimize their continuous reparameterizations. We describe the mechanism of our
proposed method in detail below.

Dynamic boundaries during supernet training. As discussed in §2, at each minibatch of supernet
training, the existing supernet training method always samples the max network (i.e., the supernet) ā and
the smallest network a and samples two random networks a ∈ A with uniform probability. We consider a
probabilistic formulation of sandwich sampling through a set of policies over the 3 different types of archi-
tectures, assuming the candidate values along each search dimension {o(i)

1 , ..., o
(i)
di
} are sorted in ascending

order:

Max: ā ∼
D∏

i=1
Cat(ā(i)|ϕ(i));

Min: a ∼
D∏

i=1
Cat(a(i)|θ(i));

Random: a ∼
D∏

i=1
Cat

(
a(i)
∣∣∣ω(i)

)
,

(3)

where ϕ(i), θ(i), ω(i) ∈ ∆di−1, the (di − 1)-simplex, and Cat(a(i)|·) denotes that variable a(i) follows a cate-
gorical distribution parameterized by (·). It is worth noting that here, we assume the search space consists
of a Cartesian product of categorical variables with modest cardinality as this setup is by far the most
common one in NAS – if, for example, one or more search dimensions are continuous or well-approximated
as continuous, it may be possible to directly differentiate against the search boundary during supernet opti-
mization. We do not, however, consider such a setup in the present paper. The baseline strategy (standard
sandwich sampling) can be expressed through this formulation by setting Cat(a(i)|ϕ(i)) and Cat(a(i)|θ(i)) to
be point-mass distributions on the largest and smallest values for each component, respectively, and setting
ω(i) = [ 1

di
, ..., 1

di
].

Instead of deterministically selecting the smallest architecture amin = [o(1)
1 , ..., o

(D)
1 ] and the largest architec-

ture amax = [o(1)
d1

, ..., o
(D)
dD

] over the entire search space as the minimum and maximum points of sandwich
sampling, we propose instead to learn the optimal boundaries. Specifically, we instantiate two policies for
the min and max networks, respectively, and learn parameters θ, ϕ ∈ R

∑D

i=1
di controlling the min and max

bounds of sandwich sampling, respectively. Although it is possible to use a more expressive policy to handle
the dependencies between different search dimensions, empirically, we find using the independent policies
outlined above Eq. (3) performs well. We propose to optimize the policy jointly weights {θ, ϕ} alongside su-
pernet weights W by first modifying losses (LD and LKD([a, W ])) associated with the max and min networks,
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Figure 3: Comparison of the Pareto fronts of top-1 accuracy vs. million FLOPs (MFLOPs) of architectures
in the width-only search space (§4.1) searched with standard techniques described in §2 with (Sandwich +
BL) and without (Sandwich) our proposed boundary learning in, from left to right, CIFAR-10, CIFAR-100,
and ImageNet-D. The upper and lower bounds in terms of MFLOPs ({gL, gU} in Eq. (1) are set to [6, 60]
MFLOPs in all experiments (the MFLOPs range of interest is marked in white in the figures).

respectively, with:

Max: Eā∼π̄(ā|ϕ)

[
LD([ā, W ]) + λℓ

(
gU − g(ā)

)]
;

Min: Ea∼π(a|θ)

[
LKD([a, a, W ]) + λℓ

(
(g(a)− gL)

)]
,

(4)

where ℓ(y) = max(0, y) is the hinge loss to penalize the max and min networks for moving too far away from
the pre-determined range defined in terms of some cost metric (FLOPs in this paper). These penalties are
in place to avoid missing out on portions of the Pareto front in the region of interest, and λ controls the
strength of penalization (set to 5 throughout). It is worth noting that the min and max networks are now
both sampled from some parameterized policies. Thus, the samples (and parameterized distributions) may
differ at each gradient update step.

We retain the uniform sampling strategy for the regular random architectures, but condition on the learned
min and max policies. Formally, at each search dimension i ∈ [1, D] we first, compute the cumulative density
functions (CDFs) of both the min and max policies. For the j-th choice of the i-th dimension, the CDFs of
the max and min policies are simply:

Max CDF: F (ϕ(i))j =
j∑

k=1
ϕ

(i)
k ;

Min CDF: F (θ(i))j =
j∑

k=1
θ

(i)
k ∀ j ∈ [1, di],

(5)

where ϕ(i) = [ϕ(i)
1 , ..., ϕ

(i)
di

] and θ(i) = [θ(i)
1 , ..., θ

(i)
di

]. The parameters ω = [ω(1), ..., ω(D)] for the random policy
random architectures are set to:

Random: ω
(i)
j := c(i)

1(1− F (ϕ(i))j − τ) · 1(F (θ(i))j − τ), (6)

where 1(·) is the Heaviside step function, τ is some threshold (set to 0.5 in all our experiments), and c(i) is
a normalization factor c(i) = 1∑

j
ω

(i)
j

. This strategy essentially performs uniform sampling but only in the

regions in the search space bounded by the min and max architectures with high probabilities. Specifically,
ω

(i)
j is 1 if and only if the cumulative probability that the index of max network for dimension i is greater

than j and the cumulative probability that the index of min network for dimension i is less than j are both
greater than τ .

Policy learning. To reflect an uninformative prior on the search space, we initialize the policy param-
eters to imitate the baseline sandwich sampling strategy by assigning the most probability to each search

6



Under review as submission to TMLR

dimension’s smallest/largest choices for the min/max policies, respectively. Formally, for the i-th search
dimension, we initialize the policy weights as follows:

Max: ϕ(i) ← σ

([
a0, a0 + ϵ0, ..., a0 +

di−1∑
j=1

ϵ0

]⊤/
T

)
;

Min: θ(i) ← σ

([
a0 +

di−1∑
j=1

ϵ0, a0 +
di−2∑
j=1

ϵ0, ..., a0)
]⊤/

T

)
,

(7)

where a0 is a constant set to 0.1, ϵ0 are positive random weights sampled from a normal distribution
N (0, 10−3), σ(·) denotes the softmax function, and T is the softmax temperature (we use a T = 0.1 through-
out). This initialization formula ensures that the weights sum up to 1 and that at initialization, the prob-
ability masses that we assign on each candidate value are in ascending order (with the largest probability
for the largest possible choice) for the max policy and descending order for the min policy along each search
dimension. It is worth noting that the above initialization recipe can be adapted to incorporate prior knowl-
edge, if available, by simply re-allocating the probability masses appropriately. An exemplary use case of
this is if one would like to adaptively expand search spaces in addition to shrinking: one may define an even
larger search space and initialize the most probability mass of the max policy on a candidate value other
than the largest choice; this allows the policy to potentially grow the search space as joint supernet and
learning space boundary learning takes place.

To enable learning {ϕ, θ} and W jointly in a differentiable manner using Eq. (4), we need to compute gradients
∇ϕEā∼π̄(ā|ϕ)

[
LD([ā, W ])+λℓ

(
gU−g(ā)

)]
and∇θEa∼π(a|θ)

[
LKD([a, W ])+λℓ

(
(g(a)−gL)

)]
. It is worth noting

that the partial derivatives for the activated weights (i.e., the weights included in the current subnetwork) are
the same as the partial derivatives in Eq. (2), and the partial derivatives for the inactivated weights are zero
since the modification to the loss function is independent of W . To achieve this, we use the Gumbel-softmax
relaxation (Jang et al., 2017) for the categorical policies in Eq. (3) for gradient approximation. Specifically,
we use the straight-through variant where we always discretize an architecture during a forward pass (i.e.,
sample exactly from the categorical distributions) but backpropagate using the gradient of the non-one-
hot Gumbel-softmax sample. Although other gradient estimators such as the score-based (Williams, 1992;
Fu, 2006) and measure-valued (Mohamed et al., 2020) alternatives may also be used, we opt for Gumbel-
softmax because we have a differentiable objective function and pathwise methods are likely to yield lower
gradient variances (Carvalho et al., 2021). We also use an analytical formula to compute FLOPs during
the forward pass to ensure the constraint term in Eq. (4) is also differentiable. In the case where no such
analytical formula is available for an alternative cost metric, such as latency in mobile devices, we may still
use techniques such as pre-computed look-up tables proposed in FBNet (Wu et al., 2019) or differentiable
latency modules (Xu et al., 2020) to retain differentiability. The overall pipeline of the proposed algorithm
is presented in Algorithm 1, with the key differences from the standard sandwich sampling highlighted in
magenta.

Algorithm 1 Sandwich sampling with boundary learning
Initialize policy weights of {ϕ, θ} according to Eq. (7).
while not converged do

Sample a mini-batch of data B from train data D.
Draw a max network ā ∼ π̄(ā|ϕ).
Train the max network ā with true labels from B
Draw a min network a ∼ π(a|θ) to mimic the max network with the KD loss
Compute & store gradient of policy parameters ϕ and θ w.r.t. loss in Eq. (4)
Sample max(n − 2, 0) random network(s) according to Eq. (3) with a training objective to mimic the
output logits of the max network with the KD loss.
Update supernet weights W and policy parameters ϕ, θ via gradient descent.

end while
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Figure 4: Comparison of the Pareto fronts of top-1 accuracy vs. MFLOPs of architectures for Weight-sharing
NAS experiments (§4.2) in CIFAR-10, CIFAR-100, ImageNet-D, and the original ImageNet (left to right).
The upper and lower bounds in terms of MFLOPs for all datasets are set to [10, 90].

Analysis of computing costs. Our method incurs minimal additional computational overhead over
standard supernet training: The only additional cost is the cost to train & backpropagate the gradients of
the policies (i.e., ϕ and θ in Eq. 3; note that ω are not free parameters and are linked to ϕ and θ through
Eq. 6). There are a total of 2

∑D
i=1 di such free parameters parameterizing the two categorical distributions

for the max and min policies, where D, the number of search dimensions in the search space, is typically ≤
50, and di, the number of choices of the i-th search dimension, is typically ≤ 10. The additional number of
parameters to train is thus ∼ O(103), which is negligible compared to the number of parameters of modern
neural networks, which is at least O(106).

4 Experiments

In this section, we i) empirically investigate the effectiveness of boundary learning in various search spaces
inspired and generalized from well-known architectures like Slimmable networks (Yu et al., 2019) and
MobileNet-family CNNs and ii) analyze the learned boundaries. It is worth noting that we deliberately
focus on expanded, less hand-tuned search spaces rather than the existing, commonly used search spaces.
This is because, as discussed in §1, existing search spaces, such as those used in previous works like Wang
et al. (2021b) and Wang et al. (2021a), feature per-layer handcrafted boundaries and some fixed search
dimensions. These search spaces are often heavily engineered by human experts such that NAS works well,
and it is unknown how well the results may generalize. Thus, rather than focusing on search spaces that
have undergone extensive handcrafting, we focus on less hand-tuned search spaces as a closer proxy to arbi-
trary, novel search spaces likely encountered in practical settings. We also opt not to study cell-based search
spaces such as the DARTS (Liu et al., 2019b) or the NAS-Bench spaces (Ying et al., 2019; Dong et al.,
2021) because the objective of our work is to improve the retraining-free NAS and to identify a family of
Pareto-optimal architectures over a wide range of costs similar to previous works like Wang et al. (2021b),
Yu et al. (2020) and Cai et al. (2020). In contrast, the aforementioned cell-based search spaces typically
feature a small variation in model size, and usually, the objective is to identify a single best architecture.

4.1 Width-only Search Space

Search space. We first experiment on a width-only search space that we adapt and enlarge from the
one introduced in Slimmable networks (Yu et al., 2019). The search space admits a wide range of channel
width configurations with other search dimensions, such as kernel sizes and depths, fixed. In contrast with
Slimmable networks, we follow Chin et al. (2021) and allow the widths of the different layers to be different:
instead of forcing all layers to have the same width (measured as the fraction of the width of activated
neurons to the maximum width of each layer). The original search space essentially couples all the sub-
networks to a manually specified supernet configuration, which implies a rather strong prior on the search
space. Our relaxed search space significantly weakens that coupling and yields a much more complex search
space over more diverse architectures, as the width of each layer width becomes a free search dimension, and
the number of possible subnetworks scales combinatorially.
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Settings. Our search space is largely adapted from the MobileNetv2 variant of the Slimmable networks
search space, and we search for the output width and the width of the expanded intermediate convolution
layers for all stages as well as the initial convolution channels. As in Yu & Huang (2019), we set the maximum
width w

(i)
max of each layer and allow the width to be chosen from w(i) = {0.125, 0.25, ..., 0.875, 1}×w

(i)
max along

each search dimension. Note that this is a significantly larger range than the search space originally proposed
(Yu et al., 2019), and the corresponding search space contains many more small networks not found in the
original search spaces, which are useful for additional devices with modest computational powers. Apart
from the restriction that the output channel width of i-th layer must match the input width of the (i+1)-th,
we place no further constraints on what width each layer may take. We train all models for 120 epochs
using SGD for the supernet weights W and Adam (Kingma & Ba, 2015) for the policy weights (ϕ and
θ), and we use a single set of hyperparameters for all our experiments without further task- or model-
specific hyperparameter tuning (see Appendix A.2 and A.3 for the implementation details). After the
supernet training, we closely follow Wang et al. (2021a) and Wang et al. (2021b) to run an adapted version
of genetic algorithm within the identified subspace defined by the learned boundaries to identify the set of
non-dominated Pareto-optimal architectures that trade between Top-1 accuracy and the number of FLOPs
(although a more sample efficient method, such Bayesian optimization methods adapted to discrete search
spaces and/or multiobjective optimization settings (Ru et al., 2021; Daulton et al., 2021; 2022), may be used
instead). For the width-only search space, we experiment on CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and
a downsampled variant of ImageNet (denoted as ImageNet-D) (Chrabaszcz et al., 2017), which is the full
ImageNet dataset but only with resolution downsampled from 224 × 224 to 32 × 32, thereby making it an
even more challenging task than the full-resolution ImageNet.

Results. We summarize the results in Fig. 3. On all datasets, we find that boundary learning yields
significant improvements of the Pareto front over vanilla supernet training with the recipe described in §2.

4.2 Weight-sharing NAS

MobileNetv2-like search space. Going beyond width-only search spaces, we further investigate
MobileNetv2-like search spaces that are more consistent with modern weight-sharing NAS methods that
further incorporate the depth and kernel size dimensions (Wang et al., 2021b;a). In addition to the width
dimensions in §4.1, we also incorporate dynamic kernel sizes (3 × 3 and 5 × 5) and dynamic depth per
stage, and the detailed specification may be found in Table 1. To simulate real-life NAS search spaces with
scarce prior knowledge, we design a search space that is orders of magnitude larger and more complex than
common search spaces featured in the literature and features significantly less handcrafting. Specifically,
unlike existing works that often only allow widths and depths to vary in narrow, carefully selected, and often
layer-specific ranges, we allow width configurations to vary widely, and we adopt the same range for the
possible depth for each stage. As a result, our search space does not rely on informed priors from human
trial-and-error, and thus is far more generalizable than previous bespoke search spaces defined using prior
knowledge which, as some previous works have shown (Tu et al., 2022), is likely task-specific and might not
necessarily transfer into novel tasks.

We report the results in the search space described in Table 1 in Fig. 4 where boundary learning has
significantly improved the supernet across FLOPs ranges. It is also noteworthy that the margin of gain in
ImageNet-D is particularly large, possibly due to the challenging nature of the task, which warrants a careful
search space design. We additionally show the progression of the Pareto fronts recovered as the second-stage
genetic algorithm proceeds in Fig. 12 in App. B, which demonstrates an anytime improvement of BL over
baseline during search.

MobileNetv3-like search space. We also conduct preliminary experiments on an even larger and more
challenging search space inspired by MobileNetv3 (Howard et al., 2019): in addition to the search dimensions
in Table 1, we also include the search for the activation function ({ReLU, swish}) and whether to use squeeze-
and-excite (SE) module (Hu et al., 2018) for Block 1-6, thereby adding a further 12 dimensions to the search
space – this is in contrast to the search spaces featured in previous works like Wang et al. (2021a) which
hard-code these design decisions manually. We show the results in Fig. 5, where we find the margin of
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Figure 5: Comparison of the Pareto fronts of top-1 accuracy vs. MFLOPs of architectures in the
MobileNetv3-like search spaces in CIFAR-10, CIFAR-100, and ImageNet-D.

improvement to be even larger in this search space: even though the elements introduced in MobileNetv3,
such as the SE module, have been shown to improve the performance significantly, the additional complexity
has a crippling effect on the naïve supernet training, causing it to perform even worse compared the results
reported in Fig. 3 and 4. On the other hand, boundary learning largely restored the supernet performance,
demonstrating its efficacy despite increased complexity.

Table 1: Specification of the search space used in weight-sharing NAS experiments in §4.2 Intermediate refers
to the possible widths of the expanded convolution module in inverted residual blocks. #SD denotes the
number of search dimensions of a stage.

Stage Intermediate Output Depth Kernel #SD
Head - 4-32 - 3, 5 2
Block1 12-96 2-16 1 3, 5 3
Block2 24-144 3-24 1-4 3, 5 7
Block3 24-144 3-24 1-4 3, 5 7
Block4 48-384 8-64 1-4 3, 5 7
Block5 72-576 12-96 1-4 3, 5 7
Block6 120-960 20-160 1-4 3, 5 7
Block7 240-1920 40-320 1 3, 5 3

4.3 Analysis of Learned Subspaces
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Figure 6: Evolution of the widths (expressed as a fraction of the max width of each layer) for the Max and
Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2. Shades denote
one standard deviation. The strength of the color denotes the depth of the search dimension (deeper search
dimensions have darker colors).
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Figure 7: Evolution of the depths and kernel sizes of expected Max and Min networks in MobileNetV2-like
and MobileNetV3-like search spaces described in §4.2.

To understand the effectiveness of boundary learning, we also analyze the boundaries learned and how they
evolve as the training progresses. Given the probabilistic nature of the policies, we compute the trajectories of
the expected max and min architectures by marginalizing the policy probabilities along each search dimension
alongside their standard deviation in Fig. 6 – 8 where we analyze the ImegeNet-D task. The reader is referred
to Appendix B for additional visualizations and analyses of more tasks and datasets.
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Figure 8: Evolution of the SE module presence (0
denotes absence of SE module for a stage and 1 de-
notes presence) and activation function choice for
the Max and Min networks in the MobileNetV3-like
space described in §4.2.

For the max architectures, we observe generally on
width and depth dimensions (Fig. 6 and 7a) that
the expected max architecture remains at the largest
possible values as the training progresses. We also
observe that the polices become increasingly confi-
dent over time, as shown by the decreasing standard
deviation of the sampled architectures over epochs.
It is intuitive that the ground-truth, deepest, and
widest network may be the best max network re-
gardless of what FLOPs range that we ultimately
are interested in since it acts as a teacher. This,
however, is not necessarily the case when additional
search dimensions are included in the search space
described in §4.2. Intuitively, while we expect a
wider and/or deeper network to have a larger learn-
ing capacity and hence to be a better teacher, it is
less obvious, for example, whether a network with larger kernel sizes will categorically perform better than
an alternative architecture with smaller kernel sizes. Similarly, in the MobileNetv3 search space, there is no
obvious a-priori reason to prefer an activation function over another. Indeed, we observe that from Fig. 7b
and 8. In these cases, the policy has learned a max architecture that is different from the ground-truth
maximum by adopting smaller, 3×3 kernel sizes at several initial stages. Interestingly, this corroborates
with the design of MobileNetv3, which also uses smaller kernel sizes at the shallower layers of the networks
and larger ones towards the end.

The min network can be seen as the performance lower bound, and we expect it to have a larger influence
on the overall supernet training. Indeed, we observe that in all cases, the policy has quickly learned to
enlarge the min network away from the smallest possible architecture in the search space, which is often
unreasonably small. Furthermore, we find that the policy has often learned a highly non-uniform lower
bound. While in some search dimensions, the learned min does not move from the initial values at all, in
other search dimensions, it shifts more aggressively. We find that the dimensions where the learned does
change often coincide with the more important dimensions from our domain knowledge. For example, in
search spaces where depths are included as search dimensions (Fig. 7a), the policy always opts to increase
depths first almost across all stages. This is reasonable, given the empirical findings suggesting that depths
are likely the most important search dimensions both in NAS (e.g., Shu et al. (2020) show that a narrower but
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deeper network generalizes better than a wider but shallower network of similar sizes in cell-based NAS). Our
analysis suggests that the policies have learned meaningful boundaries, often discovering patterns consistent
with domain knowledge but independently without prior information. This is crucial, as it validates the
potential of boundary learning in arbitrary, potentially unknown search spaces that we might be interested
in.

4.4 Ablation Studies

We also conduct ablation experiments by comparing i) learning both max and min networks vs. learning the
min networks only, ii) whether to back-propagate gradients from the Random architectures to the min and
max policies during training, iii) the comparison between boundary learning with baseline supernet training
with a longer number of epochs , iv) whether the benefit of BL persists when an alternative optimizer other
than SGD (we studied AdamW (Loshchilov & Hutter, 2018)) is used and v) sensitivity of BL w.r.t different
random seeds. We find that learning max and min modestly outperforms learning min only, and back-
propagating gradients from Random architectures generally worsen performance, likely due to the additional
noise introduced in the gradient estimates. We also find that while doubling the number of training epochs
improves supernet performance trained via the baseline protocol, it is still outperformed by boundary learning
presented in this section, even though the latter is approximately half as expensive. The readers are referred
to Appendix C for details.

5 Related Works

In this section, we give a detailed description of the related works, broadly categorized as either (i) aiming
to improve the supernet training pipeline or (ii) aiming to improve the search space itself.

Improvements on supernet training. Most of the endeavors in NAS have been trying to improve the
search methodology, and given the dominance of supernet-based methods in modern NAS, most previous
works have focused on improving supernet training. In particular, since the initial proposal of retraining-free
and finetuning-free supernet training strategy (Yu & Huang, 2019), various improvements have been proposed
in different stages of the pipeline (and in light of the vast literature, we only discuss the most relevant works
in this section): AttentiveNAS (Wang et al., 2021b) and Joslim (Chin et al., 2021) essentially propose non-
uniform sampling strategies for the Random architectures during training (i.e., a in Eq. (3) by focusing
on the Pareto-optimal architectures discovered so far or with a Bayesian optimization agent, respectively.
Several other works focusing on alternative goals have also proposed similar search space adaptation ideas:
For example, Neural Architecture Transfer (NAT) and NSGANetv2 (Lu et al., 2020; 2021) focus on the fast
adaptation of neural architecture for diverse tasks and/or many, potentially conflicting objectives. To address
the problem of large supernet search spaces and the consequent problem of insufficient exploration, the
authors proposed to focus on the promising subnetworks recommended by a predictor/evolutionary algorithm
instead of uniformly sampling from all subnetworks, thereby constraining the attention on a subspace of
promising sub-networks. However, similar to Wang et al. (2021a), if applied in the context of sandwich
sampling, these techniques invariably aim to improve the sampling strategy of the random architectures
(Eq. 3) network as opposed to the Min and Max architectures that we focus on. AlphaNet (Wang et al.,
2021a) replaces the KL divergence in the KD loss of Eq. (2) with an adaptive alpha divergence. NASViT
(Gong et al., 2022) extends the aforementioned training techniques to hybrid CNN-Vision Transformers
(ViT) search spaces and addresses the issue of gradient conflict. However, our work is search space-agnostic
and addresses a different aspect in the NAS pipeline, and thus is orthogonal and offers potentially combinable
benefits with respect to all of the aforementioned works, as we show in a series of preliminary experiments
where we both compare against and combine our method with some of the related works in Appendix B.

Improvements on search spaces. Following the recent discoveries of the sensitivity of NAS methods to
search spaces, there has also been a line of work that aims to improve the search space itself (our work falls
into this category): Earlier works (Liu et al., 2018; Perez-Rua et al., 2018; Ru et al., 2020) explore the ideas
of search space evolution and/or optimization within the query-based NAS paradigm, which is typically very
computationally expensive. More recently, Ci et al. (2021), Chen et al. (2021a) and Xia et al. (2022) consider
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search spaces evolution of CNNs and ViTs, but the methods proposed require training of multiple supernets.
Lastly, several previous works also explore search space adaptation on the fly similar to us: for example,
Hu et al. (2020) use an angle-based metric; Nayman et al. (2019) use expert advice; Noy et al. (2020) use
annealing; Chen et al. (2021b) gradually increase channel width. However, these methods are often heuristic-
or scheduling-based and are often search space-specific, whereas our method derives signal for search space
adaptation from the training loss directly along with the supernet weights. Other works, such as Zhao et al.
(2021) and Su et al. (2021), alleviate the training difficulty of supernets in large search spaces by dividing the
supernets into sub-supernets and training them separately. These approaches inevitably lead to a trade-off
between performance and efficiency as multiple supernets now need to be trained; in contrast, our method
retains the one-shot nature of supernet training and has little impact on the overall efficiency.

6 Conclusion

We propose a novel method that jointly learns and refines the search space boundary with supernet op-
timization in an end-to-end, differentiable manner by introducing learnable policy modules on top of the
supernet. Despite its simplicity, we show its effectiveness in a range of tasks where our method drastically
improves NAS performance in large and complicated search spaces, even though existing methods struggle.
Ultimately, we hope our work opens new possibilities in finding general-purpose NAS methods that function
in any search space, even without prior knowledge.

Limitations and future work. We note that although our method is conceptually generic, we have only
considered image classification tasks in CNN-based search space in this paper, and an immediate next step
is to extend the method to other search spaces (e.g., the one in Gong et al. (2022)) and other tasks (e.g.,
those in NAS-Bench-360 (Tu et al., 2022)). Furthermore, in designing the methodology, we also introduce
a number of hyperparameters in the pipeline, such as T, a0, ϵ0 in Eq. (7) and λ in Eq. (4). While we use a
consistent set of these hyperparameters throughout and do not tune them, their impact on the performance
and the way to potentially automate their choices remain to be investigated. We defer these to future work.
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A Implementation Details

Table 2: Specification of the largest search space used in the paper. Intermediate refers to the possible
widths of the expanded convolution module in inverted residual blocks. #SD denotes the number of search
dimensions of a stage. SE refers to the choice of whether to have a Squeeze-and-Excite module for that stage
and Activation denotes the choices of the activation function.

Stage Intermediate Output Depth Kernel SE Activation #SD
Head - 4-32 - 3, 5 - - 2
Block1 12-96 2-16 1 3, 5 True, False ReLU, Swish 5
Block2 24-144 3-24 1-4 3, 5 True, False ReLU, Swish 9
Block3 24-144 3-24 1-4 3, 5 True, False ReLU, Swish 9
Block4 48-384 8-64 1-4 3, 5 True, False ReLU, Swish 9
Block5 72-576 12-96 1-4 3, 5 True, False ReLU, Swish 9
Block6 120-960 20-160 1-4 3, 5 True, False ReLU, Swish 9
Block7 240-1920 40-320 1 3, 5 True, False ReLU, Swish 5

A.1 Search Spaces

The search spaces used in this paper are largely based on the MobileNet search spaces adapted from the
specification listed in Table 2.

Width-only. The width-only search space (§4.1 and the W search space in Fig. 2 only have Intermediate
and Output search dimensions activated, and the depth dimensions are fixed at values {−, 1, 2, 3, 4, 3, 3, 1}
from Head to Block7, respectively and kernel size is fixed at 3×3. SE is False, and activation is set to ReLU
for all stages. For the experiments done in Fig. 2, W+K denotes the search space with Intermediate, Output
and Kernel dimensions activated, W+D denotes the one with Intermediate, Output and Depth as searchable
dimensions and W+K+D denotes the one with all three as searchable dimensions.

Weight-sharing NAS. The MobileNetv2 search space described in Table 1 in the main text is a subspace
of 2 with SE and Activation set to False and ReLU, respectively. The MobileNetv3 search space has the
full space specification as described in Table 2.

A.2 Training Protocol

We train the supernets for 120 epochs for all experiments using the SGD optimizer with a Nesterov momen-
tum of 0.9. We first use a linear learning rate warm-up schedule for the first 5 epochs, with the learning rate
increased from 10−5 to 10−1, followed by a cosine annealing learning rate decay. We follow previous works
(Wang et al., 2021a;b) and apply a dropout of probability of 0.2 and drop connect probability of 0.2 on the
supernet for additional regularization. On CIFAR-10 and CIFAR-100 datasets, we use a weight decay of
5 × 10−4 for the non-batch normalization (BN) weights and 0 for the BN bias, a batch size of 256, and a
maximum learning rate of 0.1. On ImageNet-D, we use a weight decay of 10−5 for the non-BN weights and
0 for the BN weights, a batch size of 1024, and a maximum learning rate of 0.4. We use Adam optimizer for
the policy weights with a learning rate of 5× 10−4, weight decay of 0, and other parameters unmodified at
their default values.

A.3 Evaluation Protocol

After the training is complete, we search for the Pareto front between accuracy and FLOPs using a genetic
algorithm adapted from previous works (Yu et al., 2020; Wang et al., 2021b). Specifically, we i) randomly
sample 256 sub-networks (including the max and min, which are always sampled) from the supernet and
compute their FLOPs and their validation accuracy, and we select the architectures on the Pareto front for
this initial set of architectures; ii) we apply crossover (given two different parent subnetworks on the Pareto
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front a1 = [s(1)
1 , ..., s

(D)
1 ] and a2 = [s(1)

2 , ..., s
(D)
2 ], we build a3 where each search dimension is sampled from

the values in the two parent subnetworks: s
(3)
i ∼ Unif(s(1)

i , s
(2)
i )) and mutation (given a Pareto architecture

a, on each search dimension, we randomly change its value to another value with probability of 0.1). We fix
the crossover and mutation sizes to 128, thus generating a new set of 256 sub-networks. We then evaluate
the performance of the new sub-networks, repeat the second step for 20 epochs, and report the final Pareto
front at the end of the architecture selection stage.

B Additional Experimental Results
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Figure 9: Evolution of the widths (expressed as a fraction of the max width of each layer) for the Max and
Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2 for CIFAR-10
and CIFAR-100. Shades denote one standard deviation. The strength of the color denotes the depth of
the search dimension (deeper search dimensions have darker colors. Mbv2: MobileNetv2-like search space
(§4.2).
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Figure 10: Evolution of the depths (expressed as a fraction of the max width of each layer) for the Max and
Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2 for CIFAR-100.

Additional visualizations. In this section, we report additional experimental results by presenting visu-
alizations and analyses of the learned subspaces on more datasets (presented in Fig. 9 – 11). We observe that
most of the high-level trend described in §4.3 holds, such as the propensity for the policy to quickly increase
the width of the min network over time. One notable exception is that for the CIFAR datasets, the max
networks for all search dimensions, including the kernel size dimension, remain at the largest possible value,
unlike the ImageNet-D case where the kernel size of the max network decreases to 3×3 for some layers.

Further analysis of Pareto fronts. Complementary to the figures in the main text, we present additional
statistics of the Pareto fronts, measured in terms of hypervolume in Table 3. Specifically, we compute the
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Figure 11: Evolution of the kernel sizes (expressed as a fraction of the max width of each layer) for the
Max and Min networks as a function of training epochs in search spaces discussed in §4.1 and §4.2 for
CIFAR-100.
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Figure 12: Comparison of the Pareto fronts recovered over time (at {0 (start), 5, 10, 15 and 20 (termination)}-
th epochs, as signified by the different shades of the lines) of baseline sandwich sampling vs. when our
proposed BL is applied on MobileNetv2 search space.

hypervolume with the dimension sweep algorithm from Fonseca et al. (2006). Hypervolumes are computed
against a reference point – we automatically determine the reference point using the technique presented in
Ishibuchi et al. (2011). In practice, we achieve both using the hypervolume utilities in the BoTorch (Balandat
et al., 2020) package. From Table 3, we find that BL consistently improves the hypervolume of the Pareto
fronts, consistent with our visual observations.

CIFAR-10 CIFAR-100 ImageNet-D
MobileNetv2 Ref. point [79.0, 113.7] [50.1, 113.7] [12.5, 113.7]

Sandwich 1421.60 2364.66 2688.70
Sandwich+BL 1461.49 2437.56 3119.92

MobileNetv3 Ref. point [76.64, 115.8] [51.1, 90.5] [12.5, 113.7]
Sandwich 1429.48 1471.02 2688.70

Sandwich+BL 1749.16 1606.12 3119.92

Table 3: Hypervolume of the Pareto fronts (higher is better) obtained by Sandwich and Sandwich + BL
w.r.t the reference point (presented as 2-tuples in the format of [Accuracy, MFLOPs].

Progression of Pareto fronts. We show the progression of the Pareto fronts recovered at the {0, 5, 10,
15, 20}-th search epoch of both sandwich sampling with and without the proposed boundary learning in
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Figure 13: Comparison of our proposed method against AttentiveNAS (left) and AlphaNet (right) in
CIFAR-100 in the MobileNetv2 search space.

Fig. 12: the improvement of boundary learning is evident right from the beginning of the search, thereby
yielding an anytime performance benefit during the second stage of the NAS pipeline.
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Figure 14: Comparison of AlphaNet
vs AlphaNet + BL of CIFAR-100
on MobileNetv2 search space. It is
obvious that BL further improves
upon AlphaNet.

Comparison against additional methods. In this section, we in-
clude some preliminary experiments against additional methods, in-
cluding AttentiveNAS Wang et al. (2021b) and AlphaNet Wang et al.
(2021a). We show the results in Fig. 13: in the dataset and search
space combination we considered, we found AttentiveNAS to only lead
to very marginal improvement over the baseline sandwich sampling
strategy. We hypothesize that a possible reason for the marginal gain
of AttentiveNAS (Fig. 13(a)), in this case, is due to the fact that
while AttentiveNAS aims to adapt the search space by focusing on the
promising sub-networks seen so far, for a large and complex enough
search space, even achieving that is difficult given the extremely large
of possible candidate sub-networks. On the other hand, we find Al-
phaNet (Fig. 13(b)) to improve the baseline strategy over the entire
Pareto front, but BL nevertheless led to a greater extent of improve-
ment. In both cases, we find boundary learning to lead to a larger gain
compared to these baselines.

Additionally, as we discussed in §5 since BL uniquely targets a different aspect of the supernet training
pipeline (the min and the max architectures) than the existing techniques discussed, we argue BL may
be used in combination with them. As a proof of concept, we also show a preliminary result when BL
is orthogonally applied on top of AlphaNet in Fig. 14, a method that we observed to lead to consistent
improvement over baseline sandwich sampling – we defer a thorough investigation to future works.

C Ablation Studies

Learning the min only vs. learning both max and min. Our method is compatible with the setting
where only the min or max network is learned, and the other extremum is fixed. This could be useful when
partial prior knowledge about the search space exists. The simplification to accommodate the case where
only a single extremum is learned is straightforward: instead of learning two policies, we only learn one,
and we also adjust the sampling strategies for the regular random architectures accordingly. Given that
the results in the main text §4.3 suggests that the min network is more important for the overall training,
we conduct comparisons if only min is learned and max is fixed at the ground-truth largest network, and
we show the results in Fig. 15. We find that in both cases, learning both min and max still outperforms
min-only, even though in the MobileNetv2-like search space, the policy eventually converges to the largest
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Figure 15: Comparison of the Pareto fronts of top-1 accuracy vs MFLOPs of architectures in the
MobileNetv2-like search spaces in CIFAR-10 and CIFAR-100. Min+Max denotes boundary learning with
both min and max networks learned (identical to the results presented in the main text). MinOnly denotes
the case where only min network is learned.
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Figure 16: Comparison of the Pareto fronts of top-1 accuracy vs. MFLOPs of architectures in the
MobileNetv2-like search spaces in CIFAR-10 and CIFAR-100. w/o grad from rand denotes the bound-
ary learning with gradients to the policy updated from min and max networks only (identical to the results
presented in the main text). grad from rand denotes the case where random architecture gradients also
update the policy.

network in the search space (Fig. 6 to 8 in the main text). Finally, we find that learning the min only already
leads to a large improvement over the vanilla sandwich sampling baseline without boundary learning.
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Figure 17: Comparison against
baseline supernet training with 240
epochs in MobileNetv2-like space
(§4.2) on CIFAR-100

Effect of back-propagating gradients from random architec-
tures. We also investigate a variant of the boundary learning algo-
rithm presented in Algorithm 1 in the main text, but we also update
the gradients of the policy using random architectures. Recall that in
§3, we retain the uniform sampling strategy for the regular, random
architectures but condition on the max and min architectures learned,
and we use a Heaviside step function to determine the candidates to
be included on each search dimension for the sampling. By using a
straight-through estimator over the hard Heaviside step (i.e., we re-
tain the hard Heaviside step for the forward backpropagation but use
a hard sigmoid for back-propagation), we may retain the differentia-
bility and allow gradients to be passed from the random architectures
as well – the advantage of this approach is that it allows the policy to
be updated more frequently, and in cases such as large-batch training where the number of gradient updates
per epoch is small, the policies may converge faster than otherwise. We present the results in Fig. 16. We
found that although using the additional gradient information increases the convergence speed of the policy,
we obtain better Pareto fronts by using the gradients from min and max networks only, likely because the
random network gradients are noisy and may conflict with the gradients from max and/or min. Nonetheless,
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techniques to reduce gradient variance or to remedy gradient conflicts may be used; we defer a thorough
investigation to future work.

Comparing against longer training. To further demonstrate the effectiveness of boundary learning,
we also compare against baseline supernet training with a doubled number of training epochs (240), and
we show the results in Fig. 17: while longer training indeed improves the supernet performance, it is still
outperformed by boundary learning, which only trains for 120 epochs and is thus approximately half as
expensive.
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Figure 18: Comparison between baseline and BL in CIFAR-10 (left) and CIFAR-100 (right) of the Mo-
bileNetv2 search space when AdamW is used instead. It is evident that using AdamW leads to worse results
in general, but BL still improves significantly over the baseline.

Comparing against alternative optimizer choices. We have largely followed the supernet training
protocol from previous works and adopted the standard SGD with momentum optimizer. In this paragraph,
we investigate the robustness of the empirical gain of BL by using an alternative optimizer. As we show in
Fig. 18, we run both the baseline sandwich sampling and BL with an AdamW optimizer (Loshchilov & Hutter,
2018), which is essentially Adam (Kingma & Ba, 2015) with a decoupled weight decay – we modified the max
learning rate to 10−3 and the weight decay to 0.1 in AdamW, and left all other hyperparameters, including the
learning rate schedule, unchanged. We find that while using AdamW leads to some performance deterioration
compared to the main results with SGD, the extent of deterioration is roughly the same for baseline and
BL, meaning that the extent of gain of BL over the baseline in a relative scale is largely unchanged– the
experiment demonstrates the importance of hyperparameter selection in NAS, but at the same time also
confirms the robustness of empirical gain delivered by BL even when a sub-optimal hyperparameter setting
is applied.
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Figure 19: Effect of random seeds on the performance of BL in CIFAR-10 (left) and CIFAR-100 (right) of
the MobileNetv2 search space. Sandwich denotes the baseline sandwich sampling training.
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Dataset Sandwich BL Average±std
Seed 3407 3408 3409

CIFAR-10 1423.18 1473.50 1490.86 1487.48 1483.95±7.51
CIFAR-100 2366.57 2464.03 2412.13 2369.74 2415.30±38.6

Table 4: Hypervolumes of Pareto fronts of BL under different seeds vs. baseline sandwich training. The
reference point for CIFAR-10 is set at [79.0, -113.7] (Accuracy, MFLOPs), and is set at [50.1, 113.7] for
CIFAR-100.

Effect of random seeds. In this section, we run the proposed algorithm with multiple random seeds
to validate its robustness, and we demonstrate the results in Fig. 19, where we compare the Pareto front
obtained in different seeds and their comparison against the baseline sandwich sampling, and in Table 4,
where we quantitatively present the hypervolume in each case. We find that our proposed BL is largely robust
to the randomness induced by different seeds, and the performance is stable, consistently outperforming the
baselines.
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