
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMMUTE YOUR DOMAINS:
TRAJECTORY OPTIMALITY CRITERION
FOR MULTI-DOMAIN LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-domain learning, a single model is trained on diverse data domains to
leverage shared knowledge and improve generalization. The order in which the
data from these domains is used for training can significantly affect the model’s
performance on each domain. However, this dependence is under-studied. In this
paper, we investigate the influence of training order (or data mixing) in multi-
domain learning using the concept of Lie bracket of gradient vector fields. By
analyzing the infinitesimal effects of changing the training order, we identify
regions in the parameter space where altering the order between two training
domains can benefit the target loss. We validate the predictions of our theoretical
framework on the influence of training order (or data mixing) both on a toy example
and bilingual LLM pre-training.

1 INTRODUCTION

In real-world scenarios, training data may come from different sources that vary in quality, topics,
diversity, and other aspects. For example, the modern large language models are trained on data
collected from the curated list of domains that are comprised of web-crawled data, math, code,
academic papers, etc. The natural question arises: how to mix the data and when to use each of the
domains (early in the training or in the last stage)? There is no rigorous approach to this problem and
practitioners generally use handcrafted solutions.

One prominent example is the multilingual setting, where the data comes from different languages
that can also substantially differ in the amounts of available data. It has been demonstrated in (Choi
et al., 2024) that the sequence of domain exposure matters in the presence of dataset imbalances.
Specifically, training first with the prevalence of high-resource domains followed by an equal mix of
high- and low-resource domains yields better results. Motivated by these findings, we address the
problem of the domain order during the training for a fixed training budget.

Another relevant directions to our setting are multi-task training, domain adaption and curriculum
learning. For multi-task problems, we should balance the signals from different losses/problems
to get an optimal training trajectory. There is a big amount of literature on multi-task learning, we
mention just a few (Navon et al., 2022; Lee et al., 2022; Yu et al., 2020; Wang et al., 2021). Many
of them manipulate with the gradients to stir the training into non-conflicting direction. Different
from this papers, we do not interfere gradients of domains as we only concerned with the their order.
Domain adaptation concerned with the gradual distribution shift from the source to the target domain
(e.g. see (Kumar et al., 2020; He et al., 2023; Zhuang et al., 2024)). The order of the intermediate
or mixtures of the source and target domains have a great impact on the adaptation process. In the
present paper, we do not interpolate between domains, but, only consider interaction between them to
improve training trajectory.

More formally, we consider a scenario where the total amount of data for each domain is fixed,
but the order in which the examples from different domains are interleaved can be adjusted. This
setup is practical as, for example, we have vast amounts of web-crawled data and limited amounts of
high-quality data that we want to fully embrace. If we use the same proportion of high-quality data in
each batch it may lead to sub-optimal training and a common practice is to increase the proportion of
that data later in the training.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our key contributions are as follows:

• We introduce a theoretical framework to predict how changes in training order affect model
performance.

• Our method provides guidance on how to adjust domain-specific training weights at each
step of a training trajectory to achieve better model performance.

• We validate the predictions of our theoretical framework both on a toy example and bilingual
LLM pre-training.

2 MULTI-DOMAIN LEARNING

In multi-domain learning, where models are trained on data from multiple sources, the choice of
domain weights plays a crucial role in balancing the contribution of each domain during training.
The weights determine the importance of each domain and influence the model’s generalization
capabilities.

Particularly, given K supervised datasets with inputs (Xk)k and outputs (Yk)k, the target is to find
model parameters θ∗ which minimize datasets’ losses (L1(X1, Y1, θ), . . . , LK(XK , YK , θ)). The
common setups here include multi-objective optimization, in which one deals with the entire Pareto
front simultaneously, or loss averaging scenario. In the last one, the target is the weighted sum of the
datasets’ losses. The training process in this case is based on the reweighting of domain gradients:

θi+1 = θi − η
∑
k

wi
kE(xk,yk)∇θiLk(xk, yk, θi) (1)

where (xk, yk) is sampled from k-th dataset (Xk, Yk) and wi
k are the domain weights at time step i.

We can equivalently re-phrase (1) as sampling data from the domains into a batch with probabilities
wi

k (we set a constraint
∑

k w
i
k = 1) at step i. In practice, the usage of this formulation leads to a

better performance. Thus, we will follow it in our experiments.

3 VECTOR FIELDS AND THEIR COMMUTATORS

We assume that there are K domains, which define a tuple of loss functions (Lk)k on the space of
parameters Θ. Note that we consider the loss functions as something aggregated over the whole
dataset, rather than something depending on a training sample L′ = L′(θ, x, y). This space of
parameters is considered to be an open subset of Rn. The functions Lk are assumed to be C2-smooth,
and therefore have gradients (∇Lk)k, forming vector fields on Θ.
Remark. From the differential geometry viewpoint, the gradient is well-defined only in case of
prescribed Riemann metric on Θ, which in this paper we assume to be identity in standard Euclidean
coordinates on Rn, which means that ∇f = ( ∂

∂xi
f)i. It worth mention that though it is a standard

assumption, this choice of Riemann metric is not canonical. Also, it does not resemble all modern
training tricks. For example, variable learning rate should be considered as time-dependent scalar
Riemann metric; coordinate-wise gradient scaling in modern optimizers, like Adam (Kingma & Ba,
2014) or AdamW (Loshchilov & Hutter, 2017), – as time-dependent Riemann metric with diagonal
matrix. Thorough theoretical analysis of these cases is beyond the scope of this paper.

Training procedure for multi-domain learning requires at each step the choice of weights for each
domain, which is generally implemented as composing a batch from samples from different tasks.
Given the domain weights as function w(t) = (wk(t))k (we call it weight schedule) which we require
to be non-negative, right-continuous and satisfying

∑
k wk(t) = 1, at time t our loss would be the

weighted sum of domain losses Lk with weights wk(t). Therefore, the parameters θ(t) satisfy an
ODE

θ̇(t) = −
∑
k

wk(t)∇Lk(θ(t)). (2)

Recall also the definition of flow of a vector field v, that is a map Φ : R+ ×Θ → Θ satisfying

Φ̇(t, θ) = v(Φ(t, θ)) (3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) Gradient vector field ∇L1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) Gradient vector field ∇L2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c) Lie bracket [∇L1,∇L2]

Figure 1: Example of vector fields Lie bracket. (a), (b): the level curves and gradients for two
functions L1, L2. Vectors in (c) correspond to Lie bracket of gradient vector fields. In the green area,
the Lie bracket has positive dot products with both ∇L1 and ∇L2, and in purple area similar dot
products are negative. It means (see Corollary 3.2) that in these areas some reordering of the default
training would benefit both losses.

and say that flows Φ1,Φ2 commute if for any t1, t2, θ holds

(Φ1(t1) ◦ Φ2(t2))(θ) = (Φ2(t2) ◦ Φ1(t1))(θ).

If all flows for the vector fields (−∇Lk)k commute (that is, each pair of them commutes), then the
result of training using ODE (2) would only depend on the amount of used training data

(∫
wk(t)dt

)
k

in each domain, rather than on the entire weight schedule (wk)k. In other words, the training order
would not matter at all, for example, one would train on whole domains one by one in any order.

However, this doesn’t hold in practice as evidenced by the catastrophic forgetting. If we continue
training a model on a different task, its performance on the initial task generally degrades. Hence,
we should expect that the vector fields ∇Lk do not commute, and the training results depend on the
order or sampling proportion schedule. In Figure 1, we present such a situation.

3.1 TOY EXAMPLE

Suppose we have two domains, training loss functions of which are quadratic:

L1,2(θ) =
1

2
(θ − b1,2)

TA1,2(θ − b1,2)

where A1,2 are positive-definite matrices.

The learning on these domains defines vector fields vα(θ) = Aα(θ − bα), α = 1, 2 and therefore
flows Φα(t, θ) = bα + etAα(θ − bα). The composition of flow Φ1 with time t1 and flow Φ2 with
time t2 in different orders yield different results:

(Φ1(t1) ◦ Φ2(t2))(θ) = b1 + et1A1(b2 + et2A2(θ − b2)− b1) =

= et1A1et2A2θ + (1− et1A1)b1 + et1A1(1− et2A2)b2

(Φ2(t2) ◦ Φ1(t1))(θ) = b2 + et2A2(b1 + et1A1(θ − b1)− b2) =

= et2A2et1A1θ + (1− et2A2)b2 + et2A2(1− et1A1)b1

Note that when matrices A1 and A2 do not commute, et2A2et1A1 does not equal et1A1et2A2 , which
yields giving different dependency of the above formulae on θ. Moreover, even if A1 and A2

commute, the result of flow composition differ by a constant vector (1− et1A1)(1− et2A2)(b1 − b2).

The infinitesimal difference between Φ1(t1) ◦ Φ2(t2) and Φ2(t2) ◦ Φ1(t1) is

[v1, v2](θ) =
∂

∂t1

∂

∂t2
(Φ1(t1) ◦ Φ2(t2)− Φ2(t2) ◦ Φ1(t1))(θ) =

= [A1, A2]θ −A1A2b2 +A2A1b1

(4)

Here [v1, v2] stands for Lie bracket (commutator) of vector fields and [A1, A2] is matrix commutator
A1A2 −A2A1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 GENERAL CASE

Theorem 3.1. Commutator of the gradient flows for functions L1 and L2 up to second order equals

[Φ1(t1),Φ2(t2)] = t1t2 R(L1, L2) + o(t1t2) where (5)
R(L1, L2) = [∇L1,∇L2] = HessL2 ∇L1 −HessL1 ∇L2 (6)

where Hess means Hessian of a function, i.e. matrix of its second derivatives.

Proof. The first part [Φ1(t1),Φ2(t2)] = t1t2 [∇L1,∇L2] + o(t1t2) is a classic fact from differential
geometry (see e.g. (Lee, 2012), also Appendix D.1). The second part [∇L1,∇L2] = HessL2 ∇L1 −
HessL1 ∇L2 is the result of direct computation.

From this, we may answer, when the domain weight schedule w = (wk(t))k is locally optimal in
class of schedules with fixed total amount of domain data (

∫
wk(t)dt)k. Before doing this, we should

define, what kind of optimality do we pursue. Suppose, the overall target is to produce a better model
for some loss function L(θ). As in gradient-based optimization, we then use this function also as a
criterion for the training order optimization. Therefore, we call w = (wk(t))k locally optimal with
respect to L if any infinitesimal change in w (in class of schedules with same total domain sizes)
would degrade L.
Corollary 3.2. (a) Let L : Θ → R be a smooth function. Since the infinitesimal change in domain
training order alters θ in direction R(Li, Lj), the value L(θ) would change in direction

P(Li, Lj ;L)(θ(t)) = ⟨R(Li, Lj)(θ(t)),∇L(θ(t))⟩ =
= (∇L)T (HessLi ∇Lj −HessLj ∇Li).

(7)

Precisely, let w = (wk(t))k and wε = (wε
k(t))k be weight schedules, such that

wε
k(t) =



wi(t) + δ, if t ∈ [t0, t0 + ε) and k = i,

wj(t)− δ, if t ∈ [t0, t0 + ε) and k = j,

wi(t)− δ, if t ∈ [t0 + ε, t0 + 2ε) and k = i,

wj(t) + δ, if t ∈ [t0 + ε, t0 + 2ε) and k = j,

wk(t), otherwise,

then the trajectories θ, θε defined by weight schedules w, wε, satisfy

L(θε(t0 + 2ε))− L(θ(t0 + 2ε)) =
1

2
δ ε2 P(Li − Lj ,Σkwk(t0)Lk;L) + o(δ ε2). (8)

(b) For any locally optimal training schedule w = (wk(t))k with respect to loss function L, the
corresponding training trajectory θ(t) satisfies the following condition: for any step t for any i, j if

P(Li − Lj ,Σkwk(t)Lk;L)(θ(t)) ̸= 0,

then either wi(t) = 0 or wj(t) = 0.

Proof. Part (a) is again a direct computation (follows from the formula for integration of time-
dependent ODE, see Appendix D.2).

For part (b) suppose the contrary, and without loss of generality, suppose P(Li, Lj ;L)(θ(t)) > 0.
Take wε from part (a), with δ =

min(wi,wj)
2 > 0. This definition implies that wε is right-continuous

and non-negative, when ε is small enough, therefore, it is a valid training schedule. Denote by θε

the training trajectory of the modified flow. Then, by formula 8, we have L(θε(t+ 2ε))− L(θ(t+
2ε)) = − 1

2ε
2 δ P(Li − Lj ,Σkwk(t)Lk;L)(θ(t)) + o(ε2) which is negative for small ε, leading to

suboptimality of initial trajectory.

We note that for the setting with two domains, due to bilinearity and anti-symmetry of the Lie bracket,
our criterion says that when P(L1, L2;L) ̸= 0, it is better to train either mode one: entirely on the
first domain, or mode two: entirely on the second; but not to mix them. Moreover, from the (a)
part, it also follows that the shift from mode one to training on the second one may occur at time

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 6 8 10 12 14

5.5

6

6.5

7

L₂

L₁

Figure 2: Domain losses dynamics. Here X and Y axes correspond to values of L1 and L2 and
curves are trajectories for same constant weight schedule but different initial points. All trajectories
converge to a single point which corresponds to the global optimum of L1+L2

2 , though we see that
loss behavior is non-monotonous for some of the trajectories.

t only when P(L1, L2;L)(θ(t)) ≤ 0, and conversely, shift from mode two to mode one requires
P(L1, L2;L)(θ(t)) ≥ 0.

For a given trajectory, if it does not satisfy the optimality criterion from part (b) for some time step t,
the local change in the order would give a better trajectory.

As it is common, the optimality criterion does not explicitly convert into the algorithm constructing
the optimal trajectory. However, it can be applied for analysis an existing training trajectory. Given a
series of checkpoints during training, one can check, when the training weight schedule was far from
optimal, and make recommendation on the weigh schedule correction. We analyze the predictive
power of such recommendations in the following section. Also, potentially, the information from
P(Li, Lj ;L) may be used for online data mixing.

4 EXPERIMENTS

4.1 QUADRATIC OPTIMIZATION

Let us further analyze the toy example from the previous section. We independently sample two n×n
random matrices A1,2 with predefined power law (Xie et al., 2022) spectrum, and random vectors
b1,2. These datum generates loss functions L1 and L2. The weight schedule w(t) leads to trajectories
of the ODE (2). Note that despite the simplicity of this setting, even constant weight schedule may
produce non-trivial behavior. For example, the trajectory with constant weights w1(t) = w2(t) =

1
2

may have non-monotonous (see fig. 2) behavior of L1(θ(t)) and L2(θ(t)) (of course, w1L1 + w2L2

is monotonously decreasing). We want to validate the predictions from Theorem 3.1 on the influence
of altering the weight schedule.

We start from constructing the trajectory θ(t) of gradient descent optimization with constant weight
schedule (0.5, 0.5), corresponding to constant loss function

Lbasic =
L1 + L2

2
=

1

4

∑
i=1,2

(θ − bi)
TAi(θ − bi)

Suppose that we are given parameters θ = θ(t) at time t trained with the above weight schedule. Then,
we start training weights (1, 0) and (0, 1) (which means training completely on the first and completely
on the second domain respectively) for ∆t steps, obtaining points θ1 and θ2 respectively. From these
two points, we start training with weights (0, 1) and (1, 0) respectively, obtaining points θ12 and θ21.
The total amount of training data used to produce checkpoints θ12, θ21 and θbase = θ(t+ 2∆t) is

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: The predicted vs. observed excess loss, EL12/PL1,L2;L, for quadratic optimization example.

t
∆t 0.001 0.01 0.1

0.1 0.997± 0.001 0.972± 0.010 0.763± 0.053

0.3 0.997± 0.001 0.973± 0.008 0.766± 0.084

1.0 0.997± 0.001 0.974± 0.012 0.774± 0.135

3.0 0.998± 0.002 0.979± 0.022 0.834± 0.223

absolutely the same, but their evaluation would give different results. Theory predicts that

L(θ12)− L(θbase) ≃ L(θbase)− L(θ21) ≃
1

8
(∆t)2 P(L1, L2;L)(θ(t)) ≃

≃ 1

8
(∆t)2((θ − b1)

TA1 + (θ − b2)
TA2) (A1A2(θ − b2)−A2A1(θ − b1))

We take results from training with different starting steps t and intervention lengths ∆t and compute
the values of L1, L2 for θ12, θ21 and θbase. For i = 1, 2, we define the excess loss EL12

i =
Li(θ12) − Li(θbase), and similarly EL21

i = Li(θ21) − Li(θbase). In Table 1, we compare the
predicted and actual values of the excess losses.

4.2 BILINGUAL LLM PRE-TRAINING

3.2 3.3 3.4 3.5 3.6 3.7 3.8

2.8

2.9

3

3.1

3.2

3.3

3.4

I:  (0.35,0.65)
II: (0.65,0.35)
I:  (0.35,0.65)
II: (0.65,0.35)
I:  (0.35,0.65)
II: (0.65,0.35)
I:  (0.35,0.65)
II: (0.65,0.35)

I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)
I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)
I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)
I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)

NLL
English

NLL
Russian

Figure 3: The results of intervening into domain weight schedule for bilingual LLM training. The
blue points constitute loss values (negative log likelihoods for English and Russian data) for a
training trajectory with constant domain weight schedule w(t) = (0.5, 0.5), from a checkpoint at
step 4000 (right, top) to step 28000 (bottom, left). The red points correspond to weight schedules
from formula (9). The total amount of English and Russian tokens used for training is constant across
each red curve: equal of 5000, 8000, 11000 and 14000 batches for each language for ●, ✚, ■ and ★,
respectively; only the degree of intervention ∆w changes from 0.15 for annotated points to 0.45 for
the most distant points.

We try to answer, how does the order of training on different domains influences the LLM’s per-
formance. To do it, we take a small GPT-2 architecture and pretrain it in two languages. As the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Commutation results for LLM. Losses L1, L2 are NLL on English and Russian domains.
Here EL12

i columns mean the excess loss Li(θ12) − Li(θbase) which measures the influence of
reordering domains during training. The latter two columns are values P(L2, L1;Li), which (up to
rescaling) are the proxy for EL21

i and −EL12
i .

t L1 L2 EL12
1 EL12

2 EL21
1 EL21

2 P2,1;1 P2,1;2

2000 3.44 3.04 -0.0191 0.0286 0.0352 -0.0289 0.0195 -0.0289
8000 3.32 2.92 -0.0201 0.0179 0.0129 -0.0211 -0.0020 -0.0074
14000 3.25 2.86 -0.0065 0.0169 0.0168 -0.0151 0.0014 -0.0048
20000 3.21 2.81 -0.0038 0.0049 0.0131 -0.0079 0.0049 -0.0072

pre-training data, we take C4 (Raffel et al., 2020) dataset for English, and mC4 (Xue et al., 2020)
dataset for Russian. We follow the sampling-based paradigm, i.e. we take weights (w1, w2) satisfying
w1 + w2 = 1 and use them as the sampling probabilities for English and Russian datasets to form a
mini-batch.

The LLM pre-training is commonly performed using the Adam or AdamW optimizer (see e.g. (Tou-
vron et al., 2023; Bai et al., 2023)) due to its better stability. Despite that our theoretical results are
stated and proven for gradient descent (see remark in section 3), we follow the standard pre-training
pipeline with Adam. The results in this section show that our results can be applied for training with
Adam as well.

Using the same setting as in the previous section, we train a basic model with the weights (0.5, 0.5)
for t0 steps and get parameters θbase = θ(t0). Next, starting with the checkpoint θbase, we take ∆t
steps with the weights (0.5+∆w, 0.5−∆w) and (0.5−∆w, 0.5+∆w) in different order, obtaining
checkpoints θ12 and θ21. Therefore, checkpoint θt0,∆t,∆w

12 is obtained using the following training
schedule w12,t0,∆t,∆w(t):

w12,t0,∆t,∆w
1 (t) =


0.5, if t ∈ [0, t0),

0.5 + ∆w, if t ∈ [t0, t0 +∆t),

0.5−∆w, if t ∈ [t0 +∆t, t0 + 2∆t);

w12,t0,∆t,∆w
2 (t) =


0.5, if t ∈ [0, t0),

0.5−∆w, if t ∈ [t0, t0 +∆t),

0.5 + ∆w, if t ∈ [t0 +∆t, t0 + 2∆t).

(9)

Note that the total number of English tokens and respectively, Russian tokens used for training
checkpoints θ12, θ21 and θ(t+ 2∆t) are the same.

Because of the irreducibly noisy nature of stochastic optimization, we use rather large ∆t which is
4000 training steps with batch size of 512. The starting checkpoints for these interventions are from
training step 2000, 8000, 14000, 20000. We conducted experiments with three options for degree of
intervention ∆w: 0.15, 0.3 and 0.45. The results are in figure 3. We see that:

• Changes in weight schedule affect the training results even when the total amount of training
tokens for both languages is fixed;

• For small initial training step the large interventions have negative impact on training;
• For bigger training steps, the results of training with intervention form well-behaved Pareto

fronts;
• Generally, the checkpoint with the modified schedule is better, compared to the baseline, on

a language for which we increased the proportion at the end and worse for another language,
e.g. w12 is better on Russian and worse on English.

Next, we match these results with theoretical predictions. The excess loss formula (7) cannot be
computed directly, as the Hessian is computationally intractable. However, the Hessian-vector
product can be computed with about the same complexity as the gradient computation (precisely, one
needs two times more memory and two times more compute for this operation) (Pearlmutter, 1994;
Dagréou et al., 2024). To overcome the noise, we average over 100 batches for domain gradients

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.1 3.15 3.2 3.25 3.3 3.35 3.4

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

I:  (0.07,0.93)
II: (0.93,0.07)
I:  (0.07,0.93)
II: (0.93,0.07)
I:  (0.07,0.93)
II: (0.93,0.07)
I:  (0.07,0.93)
II: (0.93,0.07)

I:  w(t)=(0.93,0.07)
II: w(t)=(0.07,0.93)
I:  w(t)=(0.93,0.07)
II: w(t)=(0.07,0.93)
I:  w(t)=(0.93,0.07)
II: w(t)=(0.07,0.93)
I:  w(t)=(0.93,0.07)
II: w(t)=(0.07,0.93) NLL

English

NLL
Russian

Figure 4: The results of intervening into domain weight schedule for bi-lingual LLM training with
language imbalance. The blue points constitute loss values for a training trajectory with constant
domain weight schedule w(t) = (0.9, 0.1), from a checkpoint at step 4000 (right, top) to step 25000
(bottom, left). The red points correspond to weight schedules from formula (9). The total amount of
English and Russian tokens used for training is constant across each series of points: (9000, 1000),
(14400, 1600), (19800, 2200), (24200, 2800) for ●, ✚, ■ and ★, respectively; only the degree of
intervention ∆w changes from 0.03 for annotated points to 0.09 for the most distant points.

computation, and average over 100 batches for further Hessian-vector product computation. To
apply results from Section 3, we consider the (discreet time) gradient descent equation θ(t+ 1) =
θ(t)−γ

∑
k wk∇Lk(θ(t)), where γ is the learning rate, as a discretization of ODE 2 with additional

factor of γ in the right-hand side. Therefore, we adjust P(L1, L2;L) by γ2. The results are in table 2.
We see that for three of four checkpoints the direction of loss change from the intervention are
predicted correctly, though the absolute value is rather noisy. We provide the results of P(L1, L2;Li)
calculation for other checkpoints during training, in table 4 in Appendix.

The discrepancy between the predicted and actual values may come from: (1) the influence of Adam
optimizer, (2) the influence of stochasticity and noise in gradient computation, and (3) non-locality:
4000 + 4000 steps for intervention is significant, compared even to the whole length of pre-training
(28000 steps for the last checkpoint). Despite, we could not yet check it, we hypothesise that for
the checkpoints, where we have both P(L2, L1;L1) and P(L2, L1;L2) negative, a more subtle
experiment would show that the reordering may have positive effect both of English and Russian
performance simultaneously.

Computational complexity. We have shown that despite our theoretical analysis is local, the predictions
can be still valid on huge time windows (8000 time steps). Therefore, to employ the method in practice
(e.g. to apply for online data mixing), one does not need to recalculate P(Li − Lj ,Σkwk(t)Lk;L)
too often. The rough estimate gives that if we calculate it once in 1000 steps (these steps are with
batch size 512 for this experiment), and take as in this section, averaging over 600 examples for
gradient and Hessian-vector product calculation, the computational overhead would be less than half
of percent. However, for large amount of domains, it may become significant.

4.3 BI-LINGUAL LLM PRE-TRAINING WITH LANGUAGE IMBALANCE

In the previous section we have shown the influence of bi-lingual LLM scores on the domain weight
schedule. Also, the theoretical formula for predicting this influence is validated. However, for the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Excess losses and predicted excess losses for LLM pre-training with language imbalance.

t L1 L2 EL12
1 EL12

2 EL21
1 EL21

2 P2,1;1 P2,1;2

2000 3.26 3.70 -0.0006 0.0352 0.0037 -0.0394 0.0225 -0.1454
8000 3.18 3.48 -0.0010 0.0216 0.0023 -0.0297 0.0053 -0.0076
14000 3.12 3.33 -0.0012 0.0174 0.0009 -0.0233 0.0027 -0.0048
20000 3.09 3.22 -0.0017 0.0144 0.0007 -0.0199 0.0020 -0.0317

case of equal-sized domains the practical applicability of our method is limited: figure 3 suggests
that the order change can cause the shift of the point along the red curves, but it is unclear, whether
we could get a point with lower L = L1+L2

2 .

To address this, we perform a similar experiment but with domain imbalance: the model is trained
with 90% of English and 10% of Russian tokens. Exactly the same setting is repeated, checkpoint
θt0,∆t,∆w
12 is obtained using the following training schedule w12,t0,∆t,∆w(t):

w12,t0,∆t,∆w
1 (t) =


0.9, if t ∈ [0, t0),

0.9 + ∆w, if t ∈ [t0, t0 +∆t),

0.9−∆w, if t ∈ [t0 +∆t, t0 + 2∆t);

w12,t0,∆t,∆w
2 (t) =


0.1, if t ∈ [0, t0),

0.1−∆w, if t ∈ [t0, t0 +∆t),

0.1 + ∆w, if t ∈ [t0 +∆t, t0 + 2∆t).

(10)

The options for the degree of intervention ∆w are 0.03, 0.06 and 0.09. We show the results in figure 4
and match them with predicted in table 3.

It can be seen that the points in each group form almost vertical lines (with presence of outliers). It
means that by changing the training order we could get a significant increase in low-resource language
performance having negligible decrease in the high-resource language performance. Therefore, our
theory and this experiment justify that in the situation of language imbalance, it is better to increase
the proportion of low-resource language only at the end of the pre-training.

5 RELATED WORK

The multi-domain learning addresses the problem of designing a model such that it can properly
handle examples coming from different data sources with varied characteristics, thus, improving its
generalization or applicability. To learn simultaneously on several domains, we need to solve a multi-
objective problem (Maurer et al., 2016; Désidéri, 2012) or average the losses across domains with
some weights wk (Kokkinos, 2017). The classic approach to choosing the weights is scalarization,
where weights are set to some constants. However, the choice of these constants is generally a hard
optimization problem (Royer et al., 2024). Another option is adaptive methods that dynamically
adapt the weights, i.e. use some weight schedule during training. These methods are divided into
loss-based and gradient-based. Loss-based methods compute wk(t) to make the training uniform
among different losses, see e.g. (Liu et al., 2021). Gradient-based methods use gradient information
for each domain to re-compute weights needing several backward operations for each step, see e.g.
(Javaloy & Valera, 2021; Lin et al., 2019; Chen et al., 2018; 2020).

In our work, we rely on the Lie bracket computation of loss vector fields to conduct our analysis. It
was previously used by (Dherin, 2023) for backward error analysis in a continual learning scenario.
The work (Marcotte et al., 2024) in some sense complements our work by trying to find, what is
invariant (rather than changed) under the altering in domain weights. To do it, they construct a Lie
algebra generated by domain gradient vector fields and find the conservation laws. The computation
of the Lie bracket in our case leads to the need for Hesian-vector product computation. We note
that Hessian computations occur in various fields of Machine Learning, including optimization (Liu
& Nocedal, 1989; Nocedal & Wright, 1999), loss landscape analysis (Cooper, 2018), uncertainty

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

estimation (Daxberger et al., 2021), and bi-level optimization (Chen et al., 2022; Franceschi et al.,
2018).

The influence of data from different domains on a model’s performance is also an active research
topic. The common approach here is to utilize influence functions (Koh & Liang, 2017), or some of
their approximations, like TracIn (Pruthi et al., 2020; Schioppa et al., 2022). Note that despite the
visual similarity of the influence formula (Koh & Liang, 2017) and our formula 8, the difference is
that our formula has Hessian rather than inverse Hessian.

6 CONCLUSION

With the rise of Large Language Models (LLM), it becomes clear that the data is crucial to the LLMs’
success. Much research is devoted to analyzing best practices for dataset collection, namely cleaning,
filtering, domain and language proportion, etc. Much less attention is paid to the training order,
while practical evidence shows that the dataset order matters. We believe that one reason is that the
researchers usually use the simplified theoretical understanding of the training process, supposing
that the data is sampled from the overall data distribution throughout training. Meanwhile, in the case
of the highly long training process on the diverse multi-domain multi-lingual dataset, distribution
stability is unlikely to be achieved. Therefore, a novel theoretical framework closer to the realistic
setting is needed. In this work, we step in this direction, proposing a theoretically motivated method
to analyze and predict the influence of the training order in a multi-domain setup. We demonstrate the
soundness of our ideas in both toy examples and realistic experiments. Our results on multi-lingual
LLM pre-training illustrate the importance of the raised problem and the ability of our theoretical
framework to explain the observed variation in the training results depending on the dataset order
only.

6.1 LIMITATIONS

Firstly, the method does not give an explicit algorithm to produce an optimal weight schedule. It just
answers, to which direction should we shift an existing sub-optimal one to improve it.

Secondly, our method currently does not handle the difference between optimizers, see remark in
section 3. However, it is known that the choice of the optimizer can influence the training dynamics
and lead to regions with different loss landscape (Jiang et al., 2024). Modifications of optimizers
for multi-domain and multi-task learning (Yang et al., 2023) also would change the commutator
formulae.

More importantly, we currently do not properly handle the stochasticity of the training process. The
training process is better described as a flow of stochastic differential equation dθ = −∇L(θ) dt+

Ω
1
2 (θ) dW , where W is the Wiener process. Here Ω(θ) measures the noise intensity of the stochastic

gradient and is often crucial for learning. As we have shown, the infinitesimal difference in the
order of different domains would result in bias in the drift term (Theorem 3.1), but also it would
change noise intensity in the diffusion term. The formal derivation of this dependency (using Ito
or Stratonovitch paradigms, and Chen-Strichartz formula, see e.g. (Baudoin, 2004)), as well as its
empirical validation, is our further direction.

7 REPRODUCIBILITY STATEMENT

For our example with quadratic optimization, the experiment details are in Appendix B. Also, we
provide all the necessary code to reproduce.

Details of LLM pre-training experiment are in Appendix C. We do not provide the complete pre-
training codebase (based on Megatron-Deepspeed repository) because of it’s irrelevance, but provide
the scripts for the training interventions, for reference. The code for checkpoint analysis (including
Hessian-vector product formulae) is provided.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Fabrice Baudoin. An introduction to the geometry of stochastic flows. World Scientific, 2004.

Can Chen, Xi Chen, Chen Ma, Zixuan Liu, and Xue Liu. Gradient-based bi-level optimization for
deep learning: A survey. arXiv preprint arXiv:2207.11719, 2022.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Dami Choi, Derrick Xin, Hamid Dadkhahi, Justin Gilmer, Ankush Garg, Orhan Firat, Chih-Kuan
Yeh, Andrew M Dai, and Behrooz Ghorbani. Order matters in the presence of dataset imbalance
for multilingual learning. Advances in Neural Information Processing Systems, 36, 2024.

Yaim Cooper. The loss landscape of overparameterized neural networks. arXiv preprint
arXiv:1804.10200, 2018.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute hessian-vector
products? In The Third Blogpost Track at ICLR 2024, 2024.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

Benoit Dherin. Implicit biases in multitask and continual learningfrom a backward error analysis
perspective. In NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning, 2023.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pp. 1568–1577. PMLR, 2018.

Yifei He, Haoxiang Wang, Bo Li, and Han Zhao. Gradual domain adaptation: Theory and algorithms,
2023.

Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. arXiv
preprint arXiv:2103.02631, 2021.

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li. How does adaptive optimization impact local neural
network geometry? Advances in Neural Information Processing Systems, 36, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6129–6138, 2017.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain
adaptation. ArXiv, abs/2002.11361, 2020. URL https://api.semanticscholar.org/
CorpusID:211506808.

11

https://api.semanticscholar.org/CorpusID:211506808
https://api.semanticscholar.org/CorpusID:211506808


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John M Lee. Smooth manifolds. Springer, 2012.

Seanie Lee, Hae Beom Lee, Juho Lee, and Sung Ju Hwang. Sequential reptile: Inter-task gradient
alignment for multilingual learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=ivQruZvXxtz.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning.
Advances in neural information processing systems, 32, 2019.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne
Zhang. Towards impartial multi-task learning. In ICLR. iclr, 2021.

I Loshchilov and F Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Abide by the law and follow the flow:
Conservation laws for gradient flows. Advances in neural information processing systems, 36,
2024.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. Journal of Machine Learning Research, 17(81):1–32, 2016.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 16428–16446. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/navon22a.html.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Amelie Royer, Tijmen Blankevoort, and Babak Ehteshami Bejnordi. Scalarization for multi-task and
multi-domain learning at scale. Advances in Neural Information Processing Systems, 36, 2024.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8179–8186, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
F1vEjWK-lH_.

Zeke Xie, Qian-Yuan Tang, Yunfeng Cai, Mingming Sun, and Ping Li. On the power-law hessian
spectrums in deep learning. arXiv preprint arXiv:2201.13011, 2022.

12

https://openreview.net/forum?id=ivQruZvXxtz
https://proceedings.mlr.press/v162/navon22a.html
https://proceedings.mlr.press/v162/navon22a.html
https://openreview.net/forum?id=F1vEjWK-lH_
https://openreview.net/forum?id=F1vEjWK-lH_


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 4: P12;i mean the predicted infinitesimal excess loss P (L1, L2;Li).

t P12;1 P12;2

2000 0.0195 -0.0289
4000 0.0056 -0.0344
6000 -0.0001 -0.0127
8000 -0.0020 -0.0074
10000 0.0010 -0.0038
12000 0.0009 -0.0050
14000 0.0014 -0.0048
16000 0.0040 -0.0039
18000 -0.0054 -0.0067
20000 0.0049 -0.0072
22000 -0.0043 -0.0149
24000 -0.0004 -0.0141

(a) balanced domains

t P12;1 P12;2

2000 0.0225 -0.1454
4000 0.0059 -0.0600
6000 -0.0233 -0.0216
8000 0.0053 -0.0076
10000 0.0043 -0.0167
12000 -0.0029 -0.0080
14000 0.0027 -0.0048
16000 0.0106 -0.0184
18000 0.0004 -0.0221
20000 0.0020 -0.0317
22000 -0.0040 -0.0226
24000 0.0060 -0.0396

(b) domain imbalance

L Xue, N Constant, A Roberts, M Kale, R Al-Rfou, A Siddhant, A Barua, and C Raffel. mt5: A
massively multilingual pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934,
2020.

Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and
Guibing Guo. Adatask: A task-aware adaptive learning rate approach to multi-task learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 10745–10753, 2023.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 5824–
5836. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf.

Zhan Zhuang, Yu Zhang, and Ying Wei. Gradual domain adaptation via gradient flow. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=iTTZFKrlGV.

A ADDITIONAL RESULTS FOR BI-LINGUAL LLM

Predicted excess loss for other checkpoints of bi-lingual LLM pre-training (experiments from sec-
tions 4.2,4.3) are in table 4.

B TOY EXAMPLE DETAILS

To sample matrices A1, A2, we first determine their dimension 100, and put eigenvalues Λ = (λj)
99
j=0

according to power law λj = 0.7j , and then conjugate them with a random orthogonal matrices
C1, C2: Ai = CT

i Diag(Λ)C. Vectors b1, b2 are sampled from standard Gaussian distribution with
unit standard deviation in each direction.

For table 1, we sample starting point θ from Gaussian distribution, and analytically compute the
flow of ODE 2 for L = L1+L2

2 by time t and t + 2∆t. Then we compute flow for similar ODE
for loss functions L1, L2 and apply them in order to get θ12(t). Excess loss will be the difference
L(θ12(t))− L(θ(t+ 2∆t)). We compare it with prediction P (L1, L2;L). In the table we present
the median and 90− 10 percentile range.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://openreview.net/forum?id=iTTZFKrlGV
https://openreview.net/forum?id=iTTZFKrlGV


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C LLM PRE-TRAINING DETAILS

Our setup follows classical GPT-2 model pre-training, using Megatron-Deepspeed repository1. C4
and mC4 datasets are publicly available. We used mBERT tokenizer. Training was performed with
global batch size 512, and sequence length 1024. We used Adam optimizer with β1 = 0.9 and
β2 = 0.999. The learning rate was set to 1.5× 10−4.

The Hessian-vector products were calculated using reverse-on-reverse method from (Dagréou et al.,
2024). For the final values of gradients and Hessian-vector products, we averaged over 600 random
samples for each domain.

D FORMULAE DERIVATION

D.1 PROOF OF THEOREM

Φ1(t1)x = x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21)

Φ2(t2) ◦ Φ1(t1)x = Φ2(t2)(x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21))

= x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21)+

+ t2v2(x+ t1v1(x) +
t21
2
v̇1(x)v(x) + o(t21))+

+
t22
2
v̇2(x+ t1v1(x) +

t21
2
v̇1(x)v(x) + o(t21))·

· v2(x+ t1v1(x) +
t21
2
v̇1(x)v(x) + o(t21)) + o(t22) =

= x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21)+

+ t2v2(x) + t1t2v̇2(x)v1(x) + o(t1t2)+

+
t22
2
v̇2(x)v2(x) + o(t22)

Φ1(t1) ◦ Φ2(t2)x− Φ2(t2) ◦ Φ1(t1)x = t1t2(v̇1(x)v2(x)− v̇2(x)v1(x)) =

= t1t2(HessL1∇L2 −HessL2∇L1) + o(t1t2)

D.2 INTEGRATION FORMULA FOR COROLLARY 3.2(A)

θ(t0 + τ) =θ(t0) +
∑
k

(∫ τ

0

wk(t0 + τ1)dτ1

)
∇Lk(θ0)+

+
∑
k1,k2

(∫ τ

0

∫ τ1

0

wk1
(t0 + τ1)wk2

(t0 + τ2)dτ1dτ2

)
HessLk1

∇Lk2
+ o(τ2)

1https://github.com/microsoft/Megatron-DeepSpeed

14

https://github.com/microsoft/Megatron-DeepSpeed

	Introduction
	Multi-Domain Learning
	Vector Fields and Their Commutators
	Toy example
	General case

	Experiments
	Quadratic optimization
	Bilingual LLM pre-training
	Bi-lingual LLM pre-training with language imbalance

	Related Work
	Conclusion
	Limitations

	Reproducibility Statement
	Additional results for bi-lingual LLM
	Toy example details
	LLM pre-training details
	Formulae derivation
	Proof of theorem
	Integration formula for corollary 3.2(a)


