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ABSTRACT

In multi-domain learning, a single model is trained on diverse data domains to
leverage shared knowledge and improve generalization. The order in which the
data from these domains is used for training can significantly affect the model’s
performance on each domain. However, this dependence is under-studied. In this
paper, we investigate the influence of training order (or data mixing) in multi-
domain learning using the concept of Lie bracket of gradient vector fields. By
analyzing the infinitesimal effects of changing the training order, we identify
regions in the parameter space where altering the order between two training
domains can benefit the target loss. We validate the predictions of our theoretical
framework on the influence of training order (or data mixing) both on a toy example
and bilingual LLM pre-training.

1 INTRODUCTION

In real-world scenarios, training data may come from different sources that vary in quality, topics,
diversity, and other aspects. For example, the modern large language models are trained on data
collected from the curated list of domains that are comprised of web-crawled data, math, code,
academic papers, etc. The natural question arises: how to mix the data and when to use each of the
domains (early in the training or in the last stage)? There is no rigorous approach to this problem and
practitioners generally use handcrafted solutions.

One prominent example is the multilingual setting, where the data comes from different languages
that can also substantially differ in the amounts of available data. It has been demonstrated in (Choi
et al., 2024) that the sequence of domain exposure matters in the presence of dataset imbalances.
Specifically, training first with the prevalence of high-resource domains followed by an equal mix of
high- and low-resource domains yields better results. Motivated by these findings, we address the
problem of the domain order during the training for a fixed training budget.

Another relevant directions to our setting are multi-task training, domain adaption and curriculum
learning. For multi-task problems, we should balance the signals from different losses/problems
to get an optimal training trajectory. There is a big amount of literature on multi-task learning, we
mention just a few (Navon et al., 2022; Lee et al., 2022; Yu et al., 2020; Wang et al., 2021). Many
of them manipulate with the gradients to stir the training into non-conflicting direction. Different
from this papers, we do not interfere gradients of domains as we only concerned with the their order.
Domain adaptation concerned with the gradual distribution shift from the source to the target domain
(e.g. see (Kumar et al., 2020; He et al., 2023; Zhuang et al., 2024)). The order of the intermediate
or mixtures of the source and target domains have a great impact on the adaptation process. In the
present paper, we do not interpolate between domains, but, only consider interaction between them to
improve training trajectory.

More formally, we consider a scenario where the total amount of data for each domain is fixed,
but the order in which the examples from different domains are interleaved can be adjusted. This
setup is practical as, for example, we have vast amounts of web-crawled data and limited amounts of
high-quality data that we want to fully embrace. If we use the same proportion of high-quality data in
each batch it may lead to sub-optimal training and a common practice is to increase the proportion of
that data later in the training.
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Our key contributions are as follows:

• We introduce a theoretical framework to predict how changes in training order affect model
performance.

• Our method provides guidance on how to adjust domain-specific training weights at each
step of a training trajectory to achieve better model performance.

• We validate the predictions of our theoretical framework both on a toy example and bilingual
LLM pre-training.

2 MULTI-DOMAIN LEARNING

In multi-domain learning, where models are trained on data from multiple sources, the choice of
domain weights plays a crucial role in balancing the contribution of each domain during training.
The weights determine the importance of each domain and influence the model’s generalization
capabilities.

Particularly, given K supervised datasets with inputs (Xk)k and outputs (Yk)k, the target is to find
model parameters θ∗ which minimize datasets’ losses (L1(X1, Y1, θ), . . . , LK(XK , YK , θ)). The
common setups here include multi-objective optimization, in which one deals with the entire Pareto
front simultaneously, or loss averaging scenario. In the last one, the target is the weighted sum of the
datasets’ losses. The training process in this case is based on the reweighting of domain gradients:

θi+1 = θi − η
∑
k

wi
kE(xk,yk)∇θiLk(xk, yk, θi) (1)

where (xk, yk) is sampled from k-th dataset (Xk, Yk) and wi
k are the domain weights at time step i.

We can equivalently re-phrase (1) as sampling data from the domains into a batch with probabilities
wi

k (we set a constraint
∑

k w
i
k = 1) at step i. In practice, the usage of this formulation leads to a

better performance. Thus, we will follow it in our experiments.

3 VECTOR FIELDS AND THEIR COMMUTATORS

We assume that there are K domains, which define a tuple of loss functions (Lk)k on the space of
parameters Θ. Note that we consider the loss functions as something aggregated over the whole
dataset, rather than something depending on a training sample L′ = L′(θ, x, y). This space of
parameters is considered to be an open subset of Rn. The functions Lk are assumed to be C2-smooth,
and therefore have gradients (∇Lk)k, forming vector fields on Θ.
Remark. From the differential geometry viewpoint, the gradient is well-defined only in case of
prescribed Riemann metric on Θ, which in this paper we assume to be identity in standard Euclidean
coordinates on Rn, which means that ∇f = ( ∂

∂xi
f)i. It worth mention that though it is a standard

assumption, this choice of Riemann metric is not canonical. Also, it does not resemble all modern
training tricks. For example, variable learning rate should be considered as time-dependent scalar
Riemann metric; coordinate-wise gradient scaling in modern optimizers, like Adam (Kingma & Ba,
2014) or AdamW (Loshchilov & Hutter, 2017), – as time-dependent Riemann metric with diagonal
matrix. Thorough theoretical analysis of these cases is beyond the scope of this paper.

Training procedure for multi-domain learning requires at each step the choice of weights for each
domain, which is generally implemented as composing a batch from samples from different tasks.
Given the domain weights as function w(t) = (wk(t))k (we call it weight schedule) which we require
to be non-negative, right-continuous and satisfying

∑
k wk(t) = 1, at time t our loss would be the

weighted sum of domain losses Lk with weights wk(t). Therefore, the parameters θ(t) satisfy an
ODE

θ̇(t) = −
∑
k

wk(t)∇Lk(θ(t)). (2)

Recall also the definition of flow of a vector field v, that is a map Φ : R+ ×Θ → Θ satisfying

Φ̇(t, θ) = v(Φ(t, θ)) (3)

2
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(a) Gradient vector field ∇L1
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(b) Gradient vector field ∇L2
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(c) Lie bracket [∇L1,∇L2]

Figure 1: Example of vector fields Lie bracket. (a), (b): the level curves and gradients for two
functions L1, L2. Vectors in (c) correspond to Lie bracket of gradient vector fields. In the green area,
the Lie bracket has positive dot products with both ∇L1 and ∇L2, and in purple area similar dot
products are negative. It means (see Corollary 3.2) that in these areas some reordering of the default
training would benefit both losses.

and say that flows Φ1,Φ2 commute if for any t1, t2, θ holds

(Φ1(t1) ◦ Φ2(t2))(θ) = (Φ2(t2) ◦ Φ1(t1))(θ).

If all flows for the vector fields (−∇Lk)k commute (that is, each pair of them commutes), then the
result of training using ODE (2) would only depend on the amount of used training data

(∫
wk(t)dt

)
k

in each domain, rather than on the entire weight schedule (wk)k. In other words, the training order
would not matter at all, for example, one would train on whole domains one by one in any order.

However, this doesn’t hold in practice as evidenced by the catastrophic forgetting. If we continue
training a model on a different task, its performance on the initial task generally degrades. Hence,
we should expect that the vector fields ∇Lk do not commute, and the training results depend on the
order or sampling proportion schedule. In Figure 1, we present such a situation.

3.1 TOY EXAMPLE

Suppose we have two domains, training loss functions of which are quadratic:

L1,2(θ) =
1

2
(θ − b1,2)

TA1,2(θ − b1,2)

where A1,2 are positive-definite matrices.

The learning on these domains defines vector fields vα(θ) = Aα(θ − bα), α = 1, 2 and therefore
flows Φα(t, θ) = bα + etAα(θ − bα). The composition of flow Φ1 with time t1 and flow Φ2 with
time t2 in different orders yield different results:

(Φ1(t1) ◦ Φ2(t2))(θ) = b1 + et1A1(b2 + et2A2(θ − b2)− b1) =

= et1A1et2A2θ + (1− et1A1)b1 + et1A1(1− et2A2)b2

(Φ2(t2) ◦ Φ1(t1))(θ) = b2 + et2A2(b1 + et1A1(θ − b1)− b2) =

= et2A2et1A1θ + (1− et2A2)b2 + et2A2(1− et1A1)b1

Note that when matrices A1 and A2 do not commute, et2A2et1A1 does not equal et1A1et2A2 , which
yields giving different dependency of the above formulae on θ. Moreover, even if A1 and A2

commute, the result of flow composition differ by a constant vector (1− et1A1)(1− et2A2)(b1 − b2).

The infinitesimal difference between Φ1(t1) ◦ Φ2(t2) and Φ2(t2) ◦ Φ1(t1) is

[v1, v2](θ) =
∂

∂t1

∂

∂t2
(Φ1(t1) ◦ Φ2(t2)− Φ2(t2) ◦ Φ1(t1))(θ) =

= [A1, A2]θ −A1A2b2 +A2A1b1

(4)

Here [v1, v2] stands for Lie bracket (commutator) of vector fields and [A1, A2] is matrix commutator
A1A2 −A2A1.

3
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3.2 GENERAL CASE

Theorem 3.1. Commutator of the gradient flows for functions L1 and L2 up to second order equals

[Φ1(t1),Φ2(t2)] = t1t2 R(L1, L2) + o(t1t2) where (5)
R(L1, L2) = [∇L1,∇L2] = HessL2 ∇L1 −HessL1 ∇L2 (6)

where Hess means Hessian of a function, i.e. matrix of its second derivatives.

Proof. The first part [Φ1(t1),Φ2(t2)] = t1t2 [∇L1,∇L2] + o(t1t2) is a classic fact from differential
geometry (see e.g. (Lee, 2012), also Appendix D.1). The second part [∇L1,∇L2] = HessL2 ∇L1 −
HessL1 ∇L2 is the result of direct computation.

From this, we may answer, when the domain weight schedule w = (wk(t))k is locally optimal in
class of schedules with fixed total amount of domain data (

∫
wk(t)dt)k. Before doing this, we should

define, what kind of optimality do we pursue. Suppose, the overall target is to produce a better model
for some loss function L(θ). As in gradient-based optimization, we then use this function also as a
criterion for the training order optimization. Therefore, we call w = (wk(t))k locally optimal with
respect to L if any infinitesimal change in w (in class of schedules with same total domain sizes)
would degrade L.
Corollary 3.2. (a) Let L : Θ → R be a smooth function. Since the infinitesimal change in domain
training order alters θ in direction R(Li, Lj), the value L(θ) would change in direction

P(Li, Lj ;L)(θ(t)) = ⟨R(Li, Lj)(θ(t)),∇L(θ(t))⟩ =
= (∇L)T (HessLi ∇Lj −HessLj ∇Li).

(7)

Precisely, let w = (wk(t))k and wε = (wε
k(t))k be weight schedules, such that

wε
k(t) =



wi(t) + δ, if t ∈ [t0, t0 + ε) and k = i,

wj(t)− δ, if t ∈ [t0, t0 + ε) and k = j,

wi(t)− δ, if t ∈ [t0 + ε, t0 + 2ε) and k = i,

wj(t) + δ, if t ∈ [t0 + ε, t0 + 2ε) and k = j,

wk(t), otherwise,

then the trajectories θ, θε defined by weight schedules w, wε, satisfy

L(θε(t0 + 2ε))− L(θ(t0 + 2ε)) =
1

2
δ ε2 P(Li − Lj ,Σkwk(t0)Lk;L) + o(δ ε2). (8)

(b) For any locally optimal training schedule w = (wk(t))k with respect to loss function L, the
corresponding training trajectory θ(t) satisfies the following condition: for any step t for any i, j if

P(Li − Lj ,Σkwk(t)Lk;L)(θ(t)) ̸= 0,

then either wi(t) = 0 or wj(t) = 0.

Proof. Part (a) is again a direct computation (follows from the formula for integration of time-
dependent ODE, see Appendix D.2).

For part (b) suppose the contrary, and without loss of generality, suppose P(Li, Lj ;L)(θ(t)) > 0.
Take wε from part (a), with δ =

min(wi,wj)
2 > 0. This definition implies that wε is right-continuous

and non-negative, when ε is small enough, therefore, it is a valid training schedule. Denote by θε

the training trajectory of the modified flow. Then, by formula 8, we have L(θε(t+ 2ε))− L(θ(t+
2ε)) = − 1

2ε
2 δ P(Li − Lj ,Σkwk(t)Lk;L)(θ(t)) + o(ε2) which is negative for small ε, leading to

suboptimality of initial trajectory.

We note that for the setting with two domains, due to bilinearity and anti-symmetry of the Lie bracket,
our criterion says that when P(L1, L2;L) ̸= 0, it is better to train either mode one: entirely on the
first domain, or mode two: entirely on the second; but not to mix them. Moreover, from the (a)
part, it also follows that the shift from mode one to training on the second one may occur at time

4
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Figure 2: Domain losses dynamics. Here X and Y axes correspond to values of L1 and L2 and
curves are trajectories for same constant weight schedule but different initial points. All trajectories
converge to a single point which corresponds to the global optimum of L1+L2

2 , though we see that
loss behavior is non-monotonous for some of the trajectories.

t only when P(L1, L2;L)(θ(t)) ≤ 0, and conversely, shift from mode two to mode one requires
P(L1, L2;L)(θ(t)) ≥ 0.

For a given trajectory, if it does not satisfy the optimality criterion from part (b) for some time step t,
the local change in the order would give a better trajectory.

As it is common, the optimality criterion does not explicitly convert into the algorithm constructing
the optimal trajectory. However, it can be applied for analysis an existing training trajectory. Given a
series of checkpoints during training, one can check, when the training weight schedule was far from
optimal, and make recommendation on the weigh schedule correction. We analyze the predictive
power of such recommendations in the following section. Also, potentially, the information from
P(Li, Lj ;L) may be used for online data mixing.

4 EXPERIMENTS

4.1 QUADRATIC OPTIMIZATION

Let us further analyze the toy example from the previous section. We independently sample two n×n
random matrices A1,2 with predefined power law (Xie et al., 2022) spectrum, and random vectors
b1,2. These datum generates loss functions L1 and L2. The weight schedule w(t) leads to trajectories
of the ODE (2). Note that despite the simplicity of this setting, even constant weight schedule may
produce non-trivial behavior. For example, the trajectory with constant weights w1(t) = w2(t) =

1
2

may have non-monotonous (see fig. 2) behavior of L1(θ(t)) and L2(θ(t)) (of course, w1L1 + w2L2

is monotonously decreasing). We want to validate the predictions from Theorem 3.1 on the influence
of altering the weight schedule.

We start from constructing the trajectory θ(t) of gradient descent optimization with constant weight
schedule (0.5, 0.5), corresponding to constant loss function

Lbasic =
L1 + L2

2
=

1

4

∑
i=1,2

(θ − bi)
TAi(θ − bi)

Suppose that we are given parameters θ = θ(t) at time t trained with the above weight schedule. Then,
we start training weights (1, 0) and (0, 1) (which means training completely on the first and completely
on the second domain respectively) for ∆t steps, obtaining points θ1 and θ2 respectively. From these
two points, we start training with weights (0, 1) and (1, 0) respectively, obtaining points θ12 and θ21.
The total amount of training data used to produce checkpoints θ12, θ21 and θbase = θ(t+ 2∆t) is

5
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Table 1: The predicted vs. observed excess loss, EL12/PL1,L2;L, for quadratic optimization example.

t
∆t 0.001 0.01 0.1

0.1 0.997± 0.001 0.972± 0.010 0.763± 0.053

0.3 0.997± 0.001 0.973± 0.008 0.766± 0.084

1.0 0.997± 0.001 0.974± 0.012 0.774± 0.135

3.0 0.998± 0.002 0.979± 0.022 0.834± 0.223

absolutely the same, but their evaluation would give different results. Theory predicts that

L(θ12)− L(θbase) ≃ L(θbase)− L(θ21) ≃
1

8
(∆t)2 P(L1, L2;L)(θ(t)) ≃

≃ 1

8
(∆t)2((θ − b1)

TA1 + (θ − b2)
TA2) (A1A2(θ − b2)−A2A1(θ − b1))

We take results from training with different starting steps t and intervention lengths ∆t and compute
the values of L1, L2 for θ12, θ21 and θbase. For i = 1, 2, we define the excess loss EL12

i =
Li(θ12) − Li(θbase), and similarly EL21

i = Li(θ21) − Li(θbase). In Table 1, we compare the
predicted and actual values of the excess losses.

4.2 BILINGUAL LLM PRE-TRAINING

3.2 3.3 3.4 3.5 3.6 3.7 3.8

2.8

2.9

3

3.1

3.2

3.3

3.4

I:  (0.35,0.65)
II: (0.65,0.35)
I:  (0.35,0.65)
II: (0.65,0.35)
I:  (0.35,0.65)
II: (0.65,0.35)
I:  (0.35,0.65)
II: (0.65,0.35)

I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)
I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)
I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)
I:  w(t)=(0.65,0.35)
II: w(t)=(0.35,0.65)

NLL
English

NLL
Russian

Figure 3: The results of intervening into domain weight schedule for bilingual LLM training. The
blue points constitute loss values (negative log likelihoods for English and Russian data) for a
training trajectory with constant domain weight schedule w(t) = (0.5, 0.5), from a checkpoint at
step 4000 (right, top) to step 28000 (bottom, left). The red points correspond to weight schedules
from formula (9). The total amount of English and Russian tokens used for training is constant across
each red curve: equal of 5000, 8000, 11000 and 14000 batches for each language for ●, ✚, ■ and ★,
respectively; only the degree of intervention ∆w changes from 0.15 for annotated points to 0.45 for
the most distant points.

We try to answer, how does the order of training on different domains influences the LLM’s per-
formance. To do it, we take a small GPT-2 architecture and pretrain it in two languages. As the

6
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Table 2: Commutation results for LLM. Losses L1, L2 are NLL on English and Russian domains.
Here EL12

i columns mean the excess loss Li(θ12) − Li(θbase) which measures the influence of
reordering domains during training. The latter two columns are values P(L2, L1;Li), which (up to
rescaling) are the proxy for EL21

i and −EL12
i .

t L1 L2 EL12
1 EL12

2 EL21
1 EL21

2 P2,1;1 P2,1;2

2000 3.44 3.04 -0.0191 0.0286 0.0352 -0.0289 0.0195 -0.0289
8000 3.32 2.92 -0.0201 0.0179 0.0129 -0.0211 -0.0020 -0.0074
14000 3.25 2.86 -0.0065 0.0169 0.0168 -0.0151 0.0014 -0.0048
20000 3.21 2.81 -0.0038 0.0049 0.0131 -0.0079 0.0049 -0.0072

pre-training data, we take C4 (Raffel et al., 2020) dataset for English, and mC4 (Xue et al., 2020)
dataset for Russian. We follow the sampling-based paradigm, i.e. we take weights (w1, w2) satisfying
w1 + w2 = 1 and use them as the sampling probabilities for English and Russian datasets to form a
mini-batch.

The LLM pre-training is commonly performed using the Adam or AdamW optimizer (see e.g. (Tou-
vron et al., 2023; Bai et al., 2023)) due to its better stability. Despite that our theoretical results are
stated and proven for gradient descent (see remark in section 3), we follow the standard pre-training
pipeline with Adam. The results in this section show that our results can be applied for training with
Adam as well.

Using the same setting as in the previous section, we train a basic model with the weights (0.5, 0.5)
for t0 steps and get parameters θbase = θ(t0). Next, starting with the checkpoint θbase, we take ∆t
steps with the weights (0.5+∆w, 0.5−∆w) and (0.5−∆w, 0.5+∆w) in different order, obtaining
checkpoints θ12 and θ21. Therefore, checkpoint θt0,∆t,∆w

12 is obtained using the following training
schedule w12,t0,∆t,∆w(t):

w12,t0,∆t,∆w
1 (t) =


0.5, if t ∈ [0, t0),

0.5 + ∆w, if t ∈ [t0, t0 +∆t),

0.5−∆w, if t ∈ [t0 +∆t, t0 + 2∆t);

w12,t0,∆t,∆w
2 (t) =


0.5, if t ∈ [0, t0),

0.5−∆w, if t ∈ [t0, t0 +∆t),

0.5 + ∆w, if t ∈ [t0 +∆t, t0 + 2∆t).

(9)

Note that the total number of English tokens and respectively, Russian tokens used for training
checkpoints θ12, θ21 and θ(t+ 2∆t) are the same.

Because of the irreducibly noisy nature of stochastic optimization, we use rather large ∆t which is
4000 training steps with batch size of 512. The starting checkpoints for these interventions are from
training step 2000, 8000, 14000, 20000. We conducted experiments with three options for degree of
intervention ∆w: 0.15, 0.3 and 0.45. The results are in figure 3. We see that:

• Changes in weight schedule affect the training results even when the total amount of training
tokens for both languages is fixed;

• For small initial training step the large interventions have negative impact on training;
• For bigger training steps, the results of training with intervention form well-behaved Pareto

fronts;
• Generally, the checkpoint with the modified schedule is better, compared to the baseline, on

a language for which we increased the proportion at the end and worse for another language,
e.g. w12 is better on Russian and worse on English.

Next, we match these results with theoretical predictions. The excess loss formula (7) cannot be
computed directly, as the Hessian is computationally intractable. However, the Hessian-vector
product can be computed with about the same complexity as the gradient computation (precisely, one
needs two times more memory and two times more compute for this operation) (Pearlmutter, 1994;
Dagréou et al., 2024). To overcome the noise, we average over 100 batches for domain gradients

7
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English

NLL
Russian

Figure 4: The results of intervening into domain weight schedule for bi-lingual LLM training with
language imbalance. The blue points constitute loss values for a training trajectory with constant
domain weight schedule w(t) = (0.9, 0.1), from a checkpoint at step 4000 (right, top) to step 25000
(bottom, left). The red points correspond to weight schedules from formula (9). The total amount of
English and Russian tokens used for training is constant across each series of points: (9000, 1000),
(14400, 1600), (19800, 2200), (24200, 2800) for ●, ✚, ■ and ★, respectively; only the degree of
intervention ∆w changes from 0.03 for annotated points to 0.09 for the most distant points.

computation, and average over 100 batches for further Hessian-vector product computation. To
apply results from Section 3, we consider the (discreet time) gradient descent equation θ(t+ 1) =
θ(t)−γ

∑
k wk∇Lk(θ(t)), where γ is the learning rate, as a discretization of ODE 2 with additional

factor of γ in the right-hand side. Therefore, we adjust P(L1, L2;L) by γ2. The results are in table 2.
We see that for three of four checkpoints the direction of loss change from the intervention are
predicted correctly, though the absolute value is rather noisy. We provide the results of P(L1, L2;Li)
calculation for other checkpoints during training, in table 4 in Appendix.

The discrepancy between the predicted and actual values may come from: (1) the influence of Adam
optimizer, (2) the influence of stochasticity and noise in gradient computation, and (3) non-locality:
4000 + 4000 steps for intervention is significant, compared even to the whole length of pre-training
(28000 steps for the last checkpoint). Despite, we could not yet check it, we hypothesise that for
the checkpoints, where we have both P(L2, L1;L1) and P(L2, L1;L2) negative, a more subtle
experiment would show that the reordering may have positive effect both of English and Russian
performance simultaneously.

Computational complexity. We have shown that despite our theoretical analysis is local, the predictions
can be still valid on huge time windows (8000 time steps). Therefore, to employ the method in practice
(e.g. to apply for online data mixing), one does not need to recalculate P(Li − Lj ,Σkwk(t)Lk;L)
too often. The rough estimate gives that if we calculate it once in 1000 steps (these steps are with
batch size 512 for this experiment), and take as in this section, averaging over 600 examples for
gradient and Hessian-vector product calculation, the computational overhead would be less than half
of percent. However, for large amount of domains, it may become significant.

4.3 BI-LINGUAL LLM PRE-TRAINING WITH LANGUAGE IMBALANCE

In the previous section we have shown the influence of bi-lingual LLM scores on the domain weight
schedule. Also, the theoretical formula for predicting this influence is validated. However, for the
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Table 3: Excess losses and predicted excess losses for LLM pre-training with language imbalance.

t L1 L2 EL12
1 EL12

2 EL21
1 EL21

2 P2,1;1 P2,1;2

2000 3.26 3.70 -0.0006 0.0352 0.0037 -0.0394 0.0225 -0.1454
8000 3.18 3.48 -0.0010 0.0216 0.0023 -0.0297 0.0053 -0.0076
14000 3.12 3.33 -0.0012 0.0174 0.0009 -0.0233 0.0027 -0.0048
20000 3.09 3.22 -0.0017 0.0144 0.0007 -0.0199 0.0020 -0.0317

case of equal-sized domains the practical applicability of our method is limited: figure 3 suggests
that the order change can cause the shift of the point along the red curves, but it is unclear, whether
we could get a point with lower L = L1+L2

2 .

To address this, we perform a similar experiment but with domain imbalance: the model is trained
with 90% of English and 10% of Russian tokens. Exactly the same setting is repeated, checkpoint
θt0,∆t,∆w
12 is obtained using the following training schedule w12,t0,∆t,∆w(t):

w12,t0,∆t,∆w
1 (t) =


0.9, if t ∈ [0, t0),

0.9 + ∆w, if t ∈ [t0, t0 +∆t),

0.9−∆w, if t ∈ [t0 +∆t, t0 + 2∆t);

w12,t0,∆t,∆w
2 (t) =


0.1, if t ∈ [0, t0),

0.1−∆w, if t ∈ [t0, t0 +∆t),

0.1 + ∆w, if t ∈ [t0 +∆t, t0 + 2∆t).

(10)

The options for the degree of intervention ∆w are 0.03, 0.06 and 0.09. We show the results in figure 4
and match them with predicted in table 3.

It can be seen that the points in each group form almost vertical lines (with presence of outliers). It
means that by changing the training order we could get a significant increase in low-resource language
performance having negligible decrease in the high-resource language performance. Therefore, our
theory and this experiment justify that in the situation of language imbalance, it is better to increase
the proportion of low-resource language only at the end of the pre-training.

5 RELATED WORK

The multi-domain learning addresses the problem of designing a model such that it can properly
handle examples coming from different data sources with varied characteristics, thus, improving its
generalization or applicability. To learn simultaneously on several domains, we need to solve a multi-
objective problem (Maurer et al., 2016; Désidéri, 2012) or average the losses across domains with
some weights wk (Kokkinos, 2017). The classic approach to choosing the weights is scalarization,
where weights are set to some constants. However, the choice of these constants is generally a hard
optimization problem (Royer et al., 2024). Another option is adaptive methods that dynamically
adapt the weights, i.e. use some weight schedule during training. These methods are divided into
loss-based and gradient-based. Loss-based methods compute wk(t) to make the training uniform
among different losses, see e.g. (Liu et al., 2021). Gradient-based methods use gradient information
for each domain to re-compute weights needing several backward operations for each step, see e.g.
(Javaloy & Valera, 2021; Lin et al., 2019; Chen et al., 2018; 2020).

In our work, we rely on the Lie bracket computation of loss vector fields to conduct our analysis. It
was previously used by (Dherin, 2023) for backward error analysis in a continual learning scenario.
The work (Marcotte et al., 2024) in some sense complements our work by trying to find, what is
invariant (rather than changed) under the altering in domain weights. To do it, they construct a Lie
algebra generated by domain gradient vector fields and find the conservation laws. The computation
of the Lie bracket in our case leads to the need for Hesian-vector product computation. We note
that Hessian computations occur in various fields of Machine Learning, including optimization (Liu
& Nocedal, 1989; Nocedal & Wright, 1999), loss landscape analysis (Cooper, 2018), uncertainty

9
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estimation (Daxberger et al., 2021), and bi-level optimization (Chen et al., 2022; Franceschi et al.,
2018).

The influence of data from different domains on a model’s performance is also an active research
topic. The common approach here is to utilize influence functions (Koh & Liang, 2017), or some of
their approximations, like TracIn (Pruthi et al., 2020; Schioppa et al., 2022). Note that despite the
visual similarity of the influence formula (Koh & Liang, 2017) and our formula 8, the difference is
that our formula has Hessian rather than inverse Hessian.

6 CONCLUSION

With the rise of Large Language Models (LLM), it becomes clear that the data is crucial to the LLMs’
success. Much research is devoted to analyzing best practices for dataset collection, namely cleaning,
filtering, domain and language proportion, etc. Much less attention is paid to the training order,
while practical evidence shows that the dataset order matters. We believe that one reason is that the
researchers usually use the simplified theoretical understanding of the training process, supposing
that the data is sampled from the overall data distribution throughout training. Meanwhile, in the case
of the highly long training process on the diverse multi-domain multi-lingual dataset, distribution
stability is unlikely to be achieved. Therefore, a novel theoretical framework closer to the realistic
setting is needed. In this work, we step in this direction, proposing a theoretically motivated method
to analyze and predict the influence of the training order in a multi-domain setup. We demonstrate the
soundness of our ideas in both toy examples and realistic experiments. Our results on multi-lingual
LLM pre-training illustrate the importance of the raised problem and the ability of our theoretical
framework to explain the observed variation in the training results depending on the dataset order
only.

6.1 LIMITATIONS

Firstly, the method does not give an explicit algorithm to produce an optimal weight schedule. It just
answers, to which direction should we shift an existing sub-optimal one to improve it.

Secondly, our method currently does not handle the difference between optimizers, see remark in
section 3. However, it is known that the choice of the optimizer can influence the training dynamics
and lead to regions with different loss landscape (Jiang et al., 2024). Modifications of optimizers
for multi-domain and multi-task learning (Yang et al., 2023) also would change the commutator
formulae.

More importantly, we currently do not properly handle the stochasticity of the training process. The
training process is better described as a flow of stochastic differential equation dθ = −∇L(θ) dt+

Ω
1
2 (θ) dW , where W is the Wiener process. Here Ω(θ) measures the noise intensity of the stochastic

gradient and is often crucial for learning. As we have shown, the infinitesimal difference in the
order of different domains would result in bias in the drift term (Theorem 3.1), but also it would
change noise intensity in the diffusion term. The formal derivation of this dependency (using Ito
or Stratonovitch paradigms, and Chen-Strichartz formula, see e.g. (Baudoin, 2004)), as well as its
empirical validation, is our further direction.

7 REPRODUCIBILITY STATEMENT

For our example with quadratic optimization, the experiment details are in Appendix B. Also, we
provide all the necessary code to reproduce.

Details of LLM pre-training experiment are in Appendix C. We do not provide the complete pre-
training codebase (based on Megatron-Deepspeed repository) because of it’s irrelevance, but provide
the scripts for the training interventions, for reference. The code for checkpoint analysis (including
Hessian-vector product formulae) is provided.
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Table 4: P12;i mean the predicted infinitesimal excess loss P (L1, L2;Li).

t P12;1 P12;2

2000 0.0195 -0.0289
4000 0.0056 -0.0344
6000 -0.0001 -0.0127
8000 -0.0020 -0.0074
10000 0.0010 -0.0038
12000 0.0009 -0.0050
14000 0.0014 -0.0048
16000 0.0040 -0.0039
18000 -0.0054 -0.0067
20000 0.0049 -0.0072
22000 -0.0043 -0.0149
24000 -0.0004 -0.0141

(a) balanced domains

t P12;1 P12;2

2000 0.0225 -0.1454
4000 0.0059 -0.0600
6000 -0.0233 -0.0216
8000 0.0053 -0.0076
10000 0.0043 -0.0167
12000 -0.0029 -0.0080
14000 0.0027 -0.0048
16000 0.0106 -0.0184
18000 0.0004 -0.0221
20000 0.0020 -0.0317
22000 -0.0040 -0.0226
24000 0.0060 -0.0396

(b) domain imbalance
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A ADDITIONAL RESULTS FOR BI-LINGUAL LLM

Predicted excess loss for other checkpoints of bi-lingual LLM pre-training (experiments from sec-
tions 4.2,4.3) are in table 4.

B TOY EXAMPLE DETAILS

To sample matrices A1, A2, we first determine their dimension 100, and put eigenvalues Λ = (λj)
99
j=0

according to power law λj = 0.7j , and then conjugate them with a random orthogonal matrices
C1, C2: Ai = CT

i Diag(Λ)C. Vectors b1, b2 are sampled from standard Gaussian distribution with
unit standard deviation in each direction.

For table 1, we sample starting point θ from Gaussian distribution, and analytically compute the
flow of ODE 2 for L = L1+L2

2 by time t and t + 2∆t. Then we compute flow for similar ODE
for loss functions L1, L2 and apply them in order to get θ12(t). Excess loss will be the difference
L(θ12(t))− L(θ(t+ 2∆t)). We compare it with prediction P (L1, L2;L). In the table we present
the median and 90− 10 percentile range.
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C LLM PRE-TRAINING DETAILS

Our setup follows classical GPT-2 model pre-training, using Megatron-Deepspeed repository1. C4
and mC4 datasets are publicly available. We used mBERT tokenizer. Training was performed with
global batch size 512, and sequence length 1024. We used Adam optimizer with β1 = 0.9 and
β2 = 0.999. The learning rate was set to 1.5× 10−4.

The Hessian-vector products were calculated using reverse-on-reverse method from (Dagréou et al.,
2024). For the final values of gradients and Hessian-vector products, we averaged over 600 random
samples for each domain.

D FORMULAE DERIVATION

D.1 PROOF OF THEOREM

Φ1(t1)x = x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21)

Φ2(t2) ◦ Φ1(t1)x = Φ2(t2)(x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21))

= x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21)+

+ t2v2(x+ t1v1(x) +
t21
2
v̇1(x)v(x) + o(t21))+

+
t22
2
v̇2(x+ t1v1(x) +

t21
2
v̇1(x)v(x) + o(t21))·

· v2(x+ t1v1(x) +
t21
2
v̇1(x)v(x) + o(t21)) + o(t22) =

= x+ t1v1(x) +
t21
2
v̇1(x)v1(x) + o(t21)+

+ t2v2(x) + t1t2v̇2(x)v1(x) + o(t1t2)+

+
t22
2
v̇2(x)v2(x) + o(t22)

Φ1(t1) ◦ Φ2(t2)x− Φ2(t2) ◦ Φ1(t1)x = t1t2(v̇1(x)v2(x)− v̇2(x)v1(x)) =

= t1t2(HessL1∇L2 −HessL2∇L1) + o(t1t2)

D.2 INTEGRATION FORMULA FOR COROLLARY 3.2(A)

θ(t0 + τ) =θ(t0) +
∑
k

(∫ τ

0

wk(t0 + τ1)dτ1

)
∇Lk(θ0)+

+
∑
k1,k2

(∫ τ

0

∫ τ1

0

wk1
(t0 + τ1)wk2

(t0 + τ2)dτ1dτ2

)
HessLk1

∇Lk2
+ o(τ2)

1https://github.com/microsoft/Megatron-DeepSpeed

14

https://github.com/microsoft/Megatron-DeepSpeed

	Introduction
	Multi-Domain Learning
	Vector Fields and Their Commutators
	Toy example
	General case

	Experiments
	Quadratic optimization
	Bilingual LLM pre-training
	Bi-lingual LLM pre-training with language imbalance

	Related Work
	Conclusion
	Limitations

	Reproducibility Statement
	Additional results for bi-lingual LLM
	Toy example details
	LLM pre-training details
	Formulae derivation
	Proof of theorem
	Integration formula for corollary 3.2(a)


