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ABSTRACT

We propose a novel energy function for Dense Associative Memory (DenseAM)
networks, the log-sum-ReLU (LSR), inspired by optimal kernel density estima-
tion. Unlike the common log-sum-exponential (LSE) function, LSR is based on
the Epanechnikov kernel and enables exact memory retrieval with exponential
capacity without requiring exponential separation functions. Uniquely, it intro-
duces abundant additional emergent local minima while preserving perfect pattern
recovery–a characteristic previously unseen in DenseAM literature. Empirical re-
sults show LSR generates significantly more local minima and produces samples
with higher log-likelihood than LSE-based models, making it promising for both
memory storage and generative tasks.

1 Associative Memories and Energy Functions
Energy-based Associative Memory networks or AMs are models parameterized with M “memories”
in d dimensions, Ξ = {ξµ ∈ Rd, µ ∈ JMK}. A popular class of models from this family can be
described by an energy function defined on the state vector x ∈ X ⊆ Rd:

E(x;Ξ) = −Q

[
M∑
µ=1

F (βS (g(x), ξµ))

]
, (1)

where g : Rd → Rd is a vector operation (such as binarization, (layer) normalization), S : Rd ×
Rd → R is similarity function (e.g., dot-product, negative Euclidean distance), β > 0 denotes the
inverse temperature, F : R → R is a rapidly growing separation function (power, exponential) and
Q is a monotonic scaling function (logarithm, linear) (Hoover et al., 2024). With g as the sign-
function, ξµ ∈ {−1,+1}d, S(x,x′) = ⟨x,x′⟩ and F as the quadratic function, and Q as a linear
function, we recover the classical Hopfield model (Hopfield, 1982).

The output of the AM corresponds to one of the local minima of this energy function. A memory ξµ
is said to be retrieved if x ≈ ξµ corresponds to one of the local minima, and the memory capacity
of the AM corresponds to the largest number M⋆ of correctly retrieved memories. For the classical
AM, M⋆ ∼ O(d). With the introduction of rapidly increasing power separation function – that is,
F (x) = xp, p > 2 – the modern Dense Associative Memory (DenseAM) have a memory capacity
of M⋆ ∼ O(dp) (Krotov & Hopfield, 2016). An exponential separation function and a logarithmic
scaling function – F (x) = exp(x), Q(x) = log x – gives us the widely considered log-sum-exp
or LSE energy function (Demircigil et al., 2017; Ramsauer et al., 2021; Krotov & Hopfield, 2021)
along with exponential memory capacity M⋆ ∼ exp(d) (Lucibello & Mézard, 2024). Additionally,
hierarchical organizations of memories have been studied in Krotov (2021); Hoover et al. (2022).

In this work, we consider the following motivating question – can we achieve simultaneous mem-
orization and generalization? While the exp separation function leads to large memory capacity
in DenseAMs, memory capacity is not the only desiderata. The ability to create meaningful new
patterns and handle complex data distributions is equally important, which has led researchers to
explore alternative separation functions. Given that the gradient of LSE results in a softmax over
all the memories, Hu et al. (2023) and dos Santos et al. (2024) consider sparsified versions of the
softmax, resulting in new gradients for the LSE energy.1 Wu et al. (2024) instead learn new repre-
sentations for the memories to increase memory capacity, but still focus on the LSE energy (now in
the learned representation space).

1Sparsified softmax based gradients can be viewed as specific projections of the original gradient.
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Figure 1: LSR energy can create more memories than there are stored patterns under critical regimes
of β. Left: 1D LSR vs LSE energy landscape. Note that LSE is never capable of having more local
minima than the number of stored patterns. Right: 2D LSR energy landscape, where increasing β
creates novel local minima where basins intersect. Unsupported regions are shaded gray.

We instead consider the well-established connection between the energy and probability density
function. An energy function E : Rd → R induces a probability density function p : Rd →
R≥0 with p(x) = exp(−E(x))/

∫
z
exp(−E(z))dz. Conversely, given a density p, we have an

energy E(x) ∝ − log p(x), the negative log-likelihood, and minimizing the energy corresponds to
maximizing the log-likelihood (with respect to the corresponding density). Based on this connection,
with Q(·) = log(·), the exp(−E(x;Ξ)) =

∑
µ F (S(x, ξµ)) in eq. (1) (assuming g is identity) is

the corresponding (unnormalized) density at x. Assuming that the memories ξµ ∼ p are sampled
from an unknown ground truth density p, the exp(−E(x;Ξ)) is an unnormalized kernel density
estimate or KDE of p at x with the kernel F and bandwidth 1/β (Wand & Jones, 1994). Thus, the
LSE energy with F (x) = exp(x) and S(x,x′) = −1/2∥x− x′∥2 corresponds to the KDE of p with
the Gaussian kernel.

KDE is well studied in nonparametric statistics (Wand & Jones, 1994; Devroye & Lugosi, 2001),
and various forms of kernels have been explored. The quality of the estimates are well characterized
in terms of properties on the kernels; we will elaborate on this in the sequel. While the Gaussian
kernel is extremely popular for KDE (much like LSE in AM literature), there are various other
kernels which have better estimation abilities than the Gaussian kernel. Among the commonly used
kernels, the Epanechnikov kernel has the most favorable estimation quality (see section 2). In our
notation, this corresponds to a kernel F (x) = max(1 + x, 0) = ReLU (1 + x), a shifted ReLU
operation (again with S(x,x′) = −1/2∥x− x′∥2). This results in a novel energy function we name
log-sum-ReLU or LSR (see eq. (3)).

While the Epanechnikov kernel has the most favorable guarantees in KDE, it is not clear what such
guarantees in KDE mean for DenseAM. This is the main topic of this paper – what does the LSR
energy bring to the table? To this end, we make the following contributions:

• Novel ReLU-based energy function with exponential memory capacity. We propose a LSR
energy function for DenseAM utilizing the popular ReLU activation, built upon the connection
between energy functions and densities. We demonstrate exact retrieval and exponential memory
capacity of LSR energy, without the use of exp as the separation function.

• Simultaneous storage and emergence. We show that this LSR energy has a unique property
of simultaneously being able to retrieve all original memories (training data points) while also
creating many additional emergent2 local minima – the total number of local energy minima of
LSR can exceed the number of stored patterns in the DenseAM, a property absent with LSE.

• Memory-preserving generation. We explore using these abundant new local minima to sample
from a distribution, creating a DenseAM that simultaneously memorizes original memories and
generates new ones. See fig. 1 for an illustration.

2AM literature typically refers to unexpected minima as “spurious” local minima. We use the term “emer-
gent” to emphasize that these minima can be meaningful samples of an underlying distribution (see section 4.2)

2



New Frontiers in Associative Memory workshop at ICLR 2025

2 Kernel Density Estimation and the Choice of Kernels
We now provide brief overview of Kernel Density Estimation (KDE) considering the univari-
ate setting for simplicity; similar conclusion hold also in higher dimensions. Given a sam-
ple Ξ = {ξµ ∈ R, µ ∈ JMK} drawn from an unknown density f , the KDE is defined as

f̂h(ξ) = (Mh)−1
∑M

µ=1 K
(

ξ−ξµ
h

)
, where K(·) is the kernel function and h > 0 is the band-

width parameter. The kernel function is assumed to satisfy: (i) symmetry (i.e., K(−ξ) = K(ξ), for
all ξ ∈ R), (ii) positivity (i.e., K(ξ) ≥ 0, for all ξ ∈ R) and (iii) normalization (i.e.,

∫
K(ξ) dξ = 1).

Note immediately that for the purpose of KDE, the scale of the kernel function is not unique. That
is, for a given K(·), we can define K̃(·) = b−1K(·/b), for some b > 0. Then, one obtains the same
KDE by rescaling the choice of h. Hence, the shape of the kernel function plays a more important in
determining the choice of the kernel. We now introduce two parameters associated with the kernel,
µK :=

∫
ξ2K(ξ) dξ and σK :=

∫
K2(ξ) dξ that correspond to the scale and regularity of the ker-

nel. We will discuss below how the generalization error of KDE depends on the aforementioned
parameters.

The generalization error of f̂h(x) is measured by the Mean Integrated Squared Error (MISE),
given by MISE(h) = E[

∫
(f̂h(ξ)− f(ξ))2dξ]. Assuming f(ξ) is twice continuously differentiable,

a second-order Taylor expansion gives the leading terms of the MISE(h), which decomposes into
squared bias and variance terms: MISE(h) ≈ µ2

K

4 h4
∫
|f ′′

(ξ)|2dξ + σK

nh ; see Wand & Jones (1994,
Section 2.5) for details. This result shows that reducing h decreases bias but increases variance,
while increasing h smooths the estimate but introduces bias, highlighting the bias-variance trade-
off. The optimal mean-square is obtained by minimizing MISE(h) with respect to h. Doing so, we
obtain the optimal choice of h and the optimal generalization accuracy as

h∗ :=

(
σ2
K

nµ2
K

4∫
|f ′′(ξ)|2dξ

)1/5

and MISE(h∗) ≈
5

4

(√
µKσK

∫
|f ′′(ξ)|2dξ
n

)4/5

, (2)

respectively. From this, we see that the choice of the kernel K in the KDE, controls the generaliza-
tion error via the term

√
µKσK .

Thus, a natural question is to find the choice of kernel K(·) that results in the minimum MISE(h∗).
As discussed above, the scale of the kernel function is non-unique. Hence, the problem boils down
to minimizing σK (which is regularity parameter of the kernel, determining the shape), subjected
to µK = 1 (without loss of generality), over the class of normalized, symmetric, and positive
kernels. This problem is well-studied (see, for example, Epanechnikov (1969), Müller (1984), Wand
& Jones (1994, Section 2.7)), and as it turns out, the Epanechnikov kernel achieves the optimal
generalization error. The quantity, Eff(K) := σK/σKepan is hence referred to as the efficiency of
any kernel with respect to the Epanechnikov kernel. A description of choices for kernel functions
and their efficiency relative to the Epanechnikov kernel is provided in Section A.

3 A New Energy Function
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Figure 2: Visualizing the separation
functions F (βx) = exp(βx) (LSE) and
F (βx) = ReLU (1 + βx) (LSR) with
x = S(x,x′) for varying values of β.
We focus on S(x,x′) = −1/2∥x−x′∥2.

Given the motivation for using the Epanechnikov kernel
in KDE, we will explore the use of the corresponding
shifted-ReLU separation function ReLU (1 + x) in the
energy function instead of the widely used exponentia-
tion. Before we state the precise energy functions, we
compare and contrast the shapes of these separation func-
tions F (βx) in fig. 2 for varying values of the inverse
temperature β. Note that, as the β increases, both these
separation functions decay faster. However, as expected,
the shifted-ReLU separation linearly decays and then zeroes out.

Recall that the energy of the LSE ENERGY is given by ELSE(x) =

− 1
β log

∑M
µ=1 exp(−

β
2 ∥x− ξµ∥2). Based on the discussion on separation functions, our

proposed LSR ENERGY (which we also refer to as Epanechnikov energy) is given by

ELSR(x) = −
1

β
log

(
ϵ+

M∑
µ=1

ReLU

(
1− β

2
∥x− ξµ∥2

))
, (3)
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where ∥·∥ describes the Euclidean norm and β is an inverse temperature. The factor ϵ ≥ 0 in the
LSR energy is a small nonnegative constant, and ϵ > 0 ensures that every point in the space has finite
(albeit extremely large O(log(1/ϵ))) energy for all values of β. Indeed, with ϵ = 0, defining Sµ ≜
{x ∈ X : ∥x− ξµ∥ ≤

√
2/β}, it is easy to see that ∀x ∈ X\∪Mµ=1Sµ, ELSR(x) =∞. This is a result

of the finite-ness of the ReLU based separation function. Regions of infinite energy implies zero
probability density, which matches the finite support of the density estimate with the Epanechnikov
kernel. Based on the introduced LSR energy, we next highlight the following favourable properties;
see section B.3 for the proofs and technical details.

Theorem 1. Let r = minµ,ν∈JMK,µ̸=ν ∥ξµ − ξν∥ be the minimum Euclidean distance between any
two memories. Let Sµ(∆) = {x ∈ X : ∥x− ξµ∥ ≤ ∆} be a basin around the µth memory for some
basin radius ∆ ∈ (0, r). Then, with β = 2/(r −∆)2, for any µ ∈ JMK and any input x ∈ Sµ(∆),
the output of the DenseAM via energy gradient descent is exactly ξµ, implying that all memories
ξµ, µ ∈ JMK are retrievable. Furthermore, if the learning rate of the energy gradient descent is set
appropriately, then for any µ ∈ JMK and any x ∈ Sµ(∆), the memory is exactly retrieved with a
single energy gradient descent step (single step retrieval).

This above result states that, given a set of memories, and an appropriately selected β, there is a
distinct basin of attraction Sµ(∆) around each memory ξµ, and any input x from within that basin
exactly retrieves the memory as the output of the DenseAM.

Theorem 2. Consider a DenseAM parameterized with M memories ξ1, . . . , ξM sampled uniformly
from {−1,+1}D. Then, with probability at least δ ∈ (0, 1), and M ∼ O(

√
log(1/δ) exp(α2D/2))

for a positive α ∈ (0, 1), all memories are retrievable as per theorem 1 with the value of the minimum
pairwise distance r = minµ,ν∈JMK,µ̸=ν ∥ξµ − ξν∥ ≥

√
2d(1− α) and per-memory basin radius

∆ ∈ (0,
√
2d(1− α)) with a β ≥ 2/(

√
2d(1− α)−∆)2.

This result shows that the DenseAM equipped with this novel LSR energy has exponential memory
capacity similar to that of LSE energy (Ramsauer et al., 2021; Lucibello & Mézard, 2024). Finally,
we show that, for the DenseAM configured as per in Theorem 2 with exponential memory capacity
can also create potentially many new emergent local minima:

Theorem 3. Consider the configuration of the DenseAM in Theorem 2. For any input x ∈ X , let
B(x) ≜ {µ ∈ JMK : ∥x− ξµ∥ ≤

√
2/β}. For any x such that |B(x)| > 1, the energy descent

with the LSR energy will return a new emergent minima given by 1
|B(x)|

∑
µ∈B(x) ξµ.

Note that, with |B(x)| > 1, the output of the DenseAM is not equal to any of the original memories
{ξµ, µ ∈ JMK}. The region {x ∈ X : |B(x)| > 1} ⊂ X is precisely characterized as

(
∪µ∈JMKSµ

)
\(

∪µ∈JMKSµ(∆)
)

where Sµ is the region of finite energy around the µth memory and Sµ(∆) (defined
in Theorem 1) is the distinct attracting basin for the µth memory. This implies that this DenseAM
is capable of simultaneously retrieving all (up to exponentially many) memories while also creating
many emergent local minima. While we have not precisely characterized the total number of these
emergent local minima, this number is naively bounded from above by 2M .

4 Experiments
4.1 QUANTIFYING NOVEL MINIMA

To quantify the number of local minima induced by the LSR energy, we uniformly sample M pat-
terns from the d-dimensional unit hypercube to serve as memories Ξ. We can enumerate all possible
local minima of LSR energy by computing the centroid ξ̄K := 1

|K|
∑

µ∈K ξµ for all possible subsets
of memories K ⊆ JMK (including singleton sets, there are 2M possible subsets). For each centroid,
we first check that the centroid is suppported (i.e., that ELSR(ξ̄K) < ∞ at ϵ = 0), and then declare
that ξ̄K is a local minimum of the LSR energy if

∥∥∇ELSR(ξ̄K)
∥∥ < δ for small δ > 0. The results for

this analysis at different choices for M , β, and d are shown in fig. 3 (left), where β values are varied
across the interesting regime between fully overlapping support regions (a single local minimum in
the unit hypercube) to fully disjoint support regions around each memory.See also section B.1.

Under certain ranges of β, we observe that LSR can preserve the stored patterns while simultane-
ously creating orders of magnitude more “novel” memories (i.e., memories that do not appear in Ξ).
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Figure 3: (Left) Analyzing local minima in LSR energy reveals a number of novel memories several
orders of magnitude larger than M , the number of stored patterns, at critical values of β (note that
the y-axes are logscale). The novel memories emerge at overlapping support regions of the stored
patterns while still ensuring the stored patterns live at local minima. Smaller values of β have
a larger region of support on the unit hypercube. (Right) In regimes where LSR samples many
distinct memories, we also observe a log-likelihood comparable to, and even slightly higher than,
LSE under the true density function (mixture of k = 5 Gaussians, σ = 0.1 and d = 8). Specific
regions of β where LSR outperforms LSE on particular metrics are specified by the orange regions.

The peak number of novel memories consistently occurs when β is tuned such that approximately
60% of the original stored patterns remain recoverable and 20% of the unit hypercube is supported,
regardless of the choice of M and d.

4.2 QUALITY OF LOG-LIKELIHOOD VS. GAUSSIAN KERNEL

Let p(x) be a mixture of k Gaussians whose means µi ∼ U([0, 1]d) for i ∈ JkK are uniformly sam-
pled from the d-dimensional unit hypercube with scalar covariances such that p(x) = 1

k

∑k
i=1N (x |

µi, σ
2Id). We sample M points ξ1, . . . , ξM ∼ p(x) to serve as the stored patterns Ξ used to pa-

rameterize both the LSE and LSR energies from eq. (3). Define the support boundary induced by
pattern ξµ to be supp[ξµ] = {x | ∥x− ξµ∥2 = 2β−1}. Then, for E ∈ {ELSE, ELSR} and points
x
(0)
n , n ∈ JNK sampled near the support boundary of each stored pattern,3 samples can be generated

using gradient descent
x(t)
n = x(t−1)

n − α∇E(x(t−1)
n ), (4)

for some small step size α > 0 until convergence to a memory x⋆
n. Thus we have N samples

x⋆
1, . . . ,x

⋆
N on which we evaluate three metrics of interest in fig. 3 (right):

1. Average Log-Likelihood. Does LSR generate samples with higher log-likelihood under p(x)
than LSE?

2. Number of Unique Samples. How many more local minima can we empirically retrieve from
LSR compared to LSE?

3. Number of Original Memories Recoverable. Can LSR recover more of the stored patterns in
regimes where it also generates novel memories?

The results tell a consistent story. Despite LSE energy being a more natural choice to model the
underlying p(x) (given its inherent Gaussian mixture structure), LSR can outperform LSE in log-
likelihood while simultaneously generating more diverse samples and preserving the recoverability
of the stored patterns. See section B.2 for experimental details and extended discussion.

3We use the same initial points to seed the dynamics of both ELSR and ELSE. See section B.2 for details.
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A On Kernels

We show different kernels that are typically used for KDE and their efficiency relative to the
Epanechnikov kernel in fig. 4. See the explanation on optimal kernel density estimation in section 2
for more details.

B Experimental Details

B.1 DETAILS: QUANTIFYING NOVEL MINIMA

In this experiment we tested across a geometrically spaced range of β ∈ [2d−1, 2r−2
min], where rmin :=

minµ̸=ν ∥ξµ − ξν∥ is the minimum pairwise distance between any two stored patterns in the current
subset K ⊆ JMK. At the largest β, the support regions of the stored patterns are disjoint and the
only memories are the M stored patterns themselves; this configuration has a very small support
region (shown as the shaded green curve in fig. 3, which is computed by monte carlo sampling 1e6
points on the unit hypercube and computing the fraction of energies that are finite at ϵ = 0) as a
fraction of the unit hypercube. At the smallest tested β, only a single energy minimum is induced
at the centroid of all stored patterns with a region of support covering the whole unit hypercube. At
the largest tested β, all original memories are recoverable and there are no spurious memories.

B.2 DETAILS: QUALITY OF LOG-LIKELIHOOD

B.2.1 DETERMINING THE UNIQUENESS OF MINIMA

500 initial points are uniformly sampled from the support boundary around each memory before the
gradient descent process in eq. (4) is performed for 13000 steps at a cosine-decayed learning rate α
from 0.01→ 0.0001. However, even after this descent process, special care must be taken to ensure
that unique minima are correctly computed. When sampling from the energy function via discrete
gradient descent, there is necessarily some error introduced by the discrete step size α and floating
point precision. Generally, memory retrieval is said to converge when ∥∇xE(x)∥ < ϵ for some
small ϵ > 0, or when the number of iterations T exceeds some threshold at small α. When counting
the number of unique samples from the LSE energy, we perform spectral clustering on the graph
created by the generated samples, where two samples x⋆

A and x⋆
B are adjacent if ∥x⋆

A − x⋆
B∥ ≤ 2

β .
We choose a threshold of 1e−5 on the eigenvalues of the Laplacian.

When counting the uniqueness of the samples from the LSR energy, we perform the following trick
to exactly compute the fixed points of the dynamics. We first compute our “best guess” for the
fixed point by performing standard gradient descent according to eq. (4) for T steps, at which point
z := x(T ) is close (but not exactly equal) to the fixed point x⋆. We then pass z to algorithm 1 to
compute the fixed point exactly. With a good initial guess z, algorithm 1 converges after a single
iteration.

Finally, we choose to sample points near the support boundary of each stored pattern because this
maximizes the probability that we will end up in a spurious minimum. The size of spurious basins
in high dimension can be very small, and the probability of landing in them decreases rapidly with
increasing β (see the region of support plot in fig. 3). This, in addition to being computationally
limited to a small number of total samples on which we perform the memory retrieval in eq. (4)
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Figure 4: Different kernels used in KDE with their expression and KDE efficiency relative to the
Epanechnikov kernel (higher is better, see text for details). The center of each kernel is marked with
a red ⋆. To highlight the shape of the kernel, we have removed any scaling in the kernel expression.
Note that all above kernels except Gaussian have finite support. The Epanechnikov kernel has the
highest efficiency (100%). While the Gaussian kernel is extremely popular, and it is more efficient
(95.1%) than the Uniform kernel (92.9%), there are various other kernels with better efficiency.
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Algorithm 1: Fixed Point Computation for the LSR Memory

Input: Initial guess z, stored patterns {ξm}Mm=1, inverse temperature β
Output: Fixed point z⋆
zprev ← z+∞ // Initialize previous point
while zprev ̸= z do

zprev ← z

S(z)← {ξm ; ∥z− ξm∥2 ≤ 2
β } // Compute support centroids

z← 1
|S(z)|

∑
ξm∈S(z) ξm // Update to mean of support centroids

end
return z

B.3 THEORETICAL RESULTS

B.3.1 PROOF OF THEOREM 1

For any x ∈ X , let B(x) = {µ ∈ JMK : ∥x− ξµ∥2 ≤ 2/β}. Then the gradient of the LSR energy
in equation 3 is given by

∇xELSR(x) =

M∑
µ=1

(x− ξµ)1
[
∥x− ξµ∥2 ≤ 2

β

]
ϵ+

[∑M
ν=1 ReLU

(
1− β

2 ∥x− ξν∥2
)] (5)

=

∑
µ∈B(x)(x− ξµ)

ϵ+
[∑

ν∈B(x) ReLU
(
1− β

2 ∥x− ξν∥2
)] (6)

With β = 2/(r − ∆)2, B(x) = {µ ∈ JMK : ∥x− ξµ∥ ≤ (r − ∆)}. For any x ∈ Sµ(∆),
B(x) = {µ}. Thus the LSR energy gradient simplifies to

∀x ∈ Sµ(∆), ∇xELSR(x) =
(x− ξµ)

ϵ+ReLU
(
1− β

2 ∥x− ξµ∥2
) , (7)

which is exactly zero at x = ξµ, thus giving us the retrieval of the µth memory via energy gradient
descent.

Furthermore, again for x ∈ Sµ(∆) with a energy gradient descent learning rate set to η ← ϵ +

ReLU
(
1− β/2 ∥x− ξµ∥2

)
, the update is exactly η∇xELSR(x) = (x − ξµ). Thus a single step

gradient descent update to x with x− η∇xELSR(x) = x− (x− ξµ) = ξµ results in the retrieval of
the µth memory.

B.3.2 PROOF OF THEOREM 2

Lemma 1 (See Corollary 10 here). If x,x′ are chosen randomly from {−1,+1}D, then

Pr

[∣∣∣∣ ⟨x,x′⟩
∥x∥ ∥x′∥

∣∣∣∣ >
√

log c

D

]
<

1

c
. (8)

Lemma 2. For any x > −1, we have

x

1 + x
≤ log(1 + x) ≤ x. (9)

Proof. (Theorem 2.)

Given memories ξ1, . . . , ξM sampled randomly from X = {−1,+1}D, Lemma 1 states that for any
pair of memories ξµ, ξν , with a scalar c > 1, their cosine similarity is bounded from above as:

8
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Pr

[
⟨ξµ, ξν⟩
∥ξµ∥ ∥ξν∥

≤
√

log c

D

]
≥ Pr

[∣∣∣∣ ⟨ξµ, ξν⟩∥ξµ∥ ∥ξν∥

∣∣∣∣ ≤
√

log c

D

]
(10)

= 1− Pr

[∣∣∣∣ ⟨ξµ, ξν⟩∥ξµ∥ ∥ξν∥

∣∣∣∣ >
√

log c

D

]
(11)

≥
(
1− 1

c

)
. (12)

Thus, the maximum cosine similarity between any pairs of memories can be bounded as:

Pr

[(
max

µ,ν∈JMK,µ̸=ν

⟨ξµ, ξν⟩
∥ξµ∥ ∥ξν∥

)
≤
√

log c

D

]
= Pr

 ∧
µ,ν∈JMK,µ̸=ν

(
⟨ξµ, ξν⟩
∥ξµ∥ ∥ξν∥

≤
√

log c

D

)
(13)

≥
∏

µ,ν∈JMK,µ̸=ν

Pr

[
⟨ξµ, ξν⟩
∥ξµ∥ ∥ξν∥

≤
√

log c

D

]
(14)

≥
(
1− 1

c

)M2

. (15)

If we set log c = α2D for some α ∈ (0, 1), then the maximum cosine similarity between any
pair of memories is at most α, and the thus, the minimum pairwise Euclidean distance r =

minµ,ν∈JMK,µ̸=ν ∥ξµ − ξν∥ ≥
√
2d(1− α). Then with β = 2/(r −∆) ≥ 2/(

√
2d(1− α)−∆),

we are able to retrieve any memory ξµ with an x ∈ Sµ(∆) with ∆ <
√
2d(1− α) ≤ r.

Now what remains to be seen is the relationship between the selected value of log c = α2D and
the success probability δ = (1 − 1/c)1/M

2 . Plugging in the value of c = exp(α2D) in the success
probability, we have

exp(α2D) =
1

1− δ1/M2 ⇒ 1− δ
1/M2

= exp(−α2D) (16)

⇒M =

√√√√ log(1/δ)

log
(

1
1−exp(−α2D)

) . (17)

Using Lemma 2, and noting that 1
1−exp(−α2D) = 1 + exp(−α2D)

1−exp(−α2D) , we see that

exp(−α2D) ≤ log

(
1

1− exp(−α2D)

)
≤ exp(−α2D)

1− exp(−α2D)
=

1

exp(α2D)− 1
. (18)

Plugging this in eq. (17), we have

√
log(1/δ)(exp(α2D)− 1) ≤M ≤

√
log(1/δ)(exp(α2D)), (19)

giving us M ∼ O(
√
log(1/δ) exp(α2D/2)).

B.3.3 PROOF OF THEOREM 3

Proof. (Theorem 3.)

9
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For any x ∈ X , given the definition of B(x), recall that the gradient of the LSR energy is given in
eq. 5. When |B(x)| > 1, this gradient is zero when

x =
1

|B(x)|
∑

µ∈B(x)

ξµ,

the geometric mean of the memories corresponding to the set B(x).
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