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ABSTRACT

Physical dynamics simulation plays a crucial role in various real-world appli-
cations. In this paper, we explore the potential of leveraging Transformers by
framing the task as autoregressive next-graph prediction based on spatiotemporal
graph inputs. To achieve this, we propose Geometric Spatiotemporal Transform-
ers (GSTs), which adopt the expressive encoder-decoder architecture of traditional
Transformers. At the core of GSTs are equivariant spatiotemporal blocks that
alternate between spatial and temporal modules while preserving E(3) symme-
tries. Additionally, we introduce the Temporal Difference Graph (TDG), derived
from the difference between the last two frames of historical input, to capture
global dynamic patterns and mitigate cumulative errors in long-term prediction
tasks. Unlike existing Graph Neural Network (GNN) methods, GSTs can process
full input sequences of arbitrary lengths to effectively capture long-term context,
and address cumulative errors over long-term rollouts thanks to the TDG mecha-
nism. Our method achieves state-of-the-art performance across multiple challeng-
ing physical systems at various scales (molecular-, protein-, and macro-level),
demonstrating the robust dynamics simulation capabilities.

1 INTRODUCTION

Accurately simulating the dynamics of physical systems forms the cornerstone of numerous appli-
cations. For example, in drug discovery, molecular dynamics simulations provide profound insights
into the binding interactions between drug molecules and their target proteins (Salo-Ahen et al.,
2020). Plenty of methods (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2020) have emerged to
simulate physical dynamics as graph translation via Graph Neural Networks (GNNs), given that
many physical systems can be effectively represented as graphs. Further advancements have been
made by leveraging geometric GNNs (Satorras et al., 2021b; Fuchs et al., 2020; Huang et al., 2022),
which ensure the dynamics to be independent to any rotation, reflection, or translation transfor-
mations, thereby aligning seamlessly with E(3) symmetries inherent in physics. Building upon
geometric GNNs, several studies (Xu et al., 2023; Wu et al., 2024) adopt a spatiotemporal approach,
rather than the previous frame-to-frame setting, which leverages multiple frames to predict the next
one, thereby capturing long-term historical information and recovering non-Markovian interactions.

In this work, we investigate the potential of Transformers (Vaswani, 2017) for simulating graph-
based physical dynamics. While the Transformer architecture has become the de facto standard in
Natural Language Processing (NLP) and various other domains, its application in physical dynamics
simulations—particularly in graph-based contexts—remains underexplored. Given that both natural
languages and physical trajectories are sequential data, it is promising to leverage the success of
Transformers for physical dynamics representation and generation. However, notable differences
exist between the two tasks. From a data structure perspective, we need to process spatiotemporal
graphs rather than text sequences, and the objective shifts from next-token prediction to next-graph
prediction. Importantly, the model must conform to certain physical rules, such as E(3) symmetries,
to ensure generalizability across arbitrary coordinate systems. Additionally, addressing cumulative
errors is crucial for long-term simulations, necessitating specific design considerations for the model.

To effectively bridge these gaps, we propose Geometric Spatiotemporal Transformers (GSTs). By
inheriting the encoder-decoder architecture from the original Transformer, GSTs can accept spa-
tiotemporal inputs of arbitrary temporal length and predict long-term future graphs in an autoregres-
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Geometric Spatiotemporal Transformer

· · ·Input Concat. Concat. Concat. Concat.

G1:T G1:T+1 G1:T+2 G1:T+r

GT+1 GT+2 GT+r

Figure 1: Illustration of how Geometric Spatiotemporal Transformers (GST) work on molecular
dynamics. It processes full spatiotemporal inputs and predict future frames autoregressively.

sive manner, as illustrated in Fig. 1. The core of GST consists of E(3)-equivariant spatiotemporal
blocks, which alternate between spatial and temporal modules while preserving E(3) symmetries.
More importantly, to circumvent the issue of cumulative errors, we predict the difference from the
last frame rather than predicting the next frame directly, as estimating the difference between the cur-
rent frame and the next may be easier than making a direct prediction of the next frame. To achieve
this, we introduce a Temporal Difference Graph (TDG). Initialized as the difference between the last
two frames in the input layer, the TDG interacts with all other frames to gather global dynamical
patterns in the following layers and and is used alongside the last frame for next-frame prediction.
The encoder takes as input the initial trajectory and all predicted frames, while the decoder’s input
is further augmented with the TDG.

In contrast to existing methods (Satorras et al., 2021b; Wu et al., 2024), our GST exhibits several
crucial benefits. On one hand, as a derivative of the Transformer architecture, GST inherits its
strong expressivity and allows for more flexible settings. GST can process full input sequences
of variable lengths to capture long-term context or adapt to fixed-length inputs for efficiency. In
contrast, previous methods are limited to fixed-length input settings (Wu et al., 2024) or even one-
frame inputs (Satorras et al., 2021b). On the other hand, while current works primarily focus on
predicting a single frame (Wu et al., 2024), we are concerned with estimating long-term trajectories
to facilitate practical applications, which also confronts the cumulative error issue. To address this
problem, we leverage the TDG to focus more on the temporal difference prediction and perform
model training under a long-term autoregressive loss.

In summary, the contributions of this paper can be summarized as follows:

• We propose GST, a novel Transformer to simulate long-term physical dynamics autoregres-
sively. GST inherits the strong expressivity and flexible designs from original Transform-
ers, while promisingly respecting the spatiotemporal geometries and E(3) symmetries.

• We define TDG to reduce the impact of cumulative errors in long-term rollouts. Initialized
as the difference between the last two frames, the TDG interacts with all other frames to
capture global dynamics and is used alongside the last frame for next-frame prediction.

• We conduct extensive experiments on real-world datasets across three different scales:
molecules, proteins, and human motions. Results demonstrate that our model achieves su-
perior performance across various challenging settings and exhibits a larger gap in longer-
horizon rollout tasks compared to existing State-Of-The-Art (SOTA) models.

2 RELATED WORK

Physical Dynamics Simulation. The simulation of physical dynamics has garnered significant at-
tention due to its widespread applications in real-world scenarios. Early work (Wu et al., 2015;
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2017) combines physics engines with graphics engines, supplemented by deep learning techniques,
to achieve preliminary understanding and modeling of physical dynamics. Later the Interaction
Network (IN) (Battaglia et al., 2016) is proposed to employ GNN-like message passing to model
object interactions in physical systems. Inspired by IN, researchers increasingly recognized GNNs
as powerful tools for modeling physical dynamics, owing to their inherent ability to capture com-
plex relational structures. This realization spawned numerous extensions and improvements (Li
et al., 2020; Finzi et al., 2020). Some approaches also integrated ordinary differential equations
with GNNs to model complex dynamics (Sanchez-Gonzalez et al., 2019). However, these meth-
ods often overlooked the crucial role of physical symmetries. Consequently, a series of equivariant
GNN models encoding geometric information rapidly emerge (Thomas et al., 2018; Fuchs et al.,
2020; Huang et al., 2022). Despite these advancements, existing methods frequently suffer from
constraints such as fixed-length input requirements (Xu et al., 2023; Wu et al., 2024) or one-frame
input limitations (Satorras et al., 2021b). Moreover, many focus solely on single-frame predic-
tions (Han et al., 2022). In contrast, this paper presents a novel model capable of flexibly accommo-
dating variable-length or fixed-length inputs. Furthermore, we explore its performance on long-term
trajectory prediction tasks, addressing a critical gap in the current literature.

Deep Spatiotemporal Models. Deep spatiotemporal models have gained prominence across di-
verse real-world applications (Cini et al., 2024; Marisca et al., 2024; Li et al., 2024). In traffic
prediction, STGCN (Yu et al., 2017) and DCRNN (Li et al., 2017) leverage graph structures with
recurrent or convolutional layers. Attention-based architectures like Gaan (Zhang et al., 2018) and
AGL-STAN (Sun et al., 2022) capture temporal and spatial dependencies for traffic flow forecast-
ing and crime prediction. Transformer-based models such as MMST-ViT Lin et al. (2023), Multi-
SPANS(Zou et al., 2024), and MOIRAI (Woo et al., 2024) have been applied to various Spatiotem-
poral tasks including climate change-aware crop yield prediction, traffic forecasting, and general
time-series analysis. While effective in their domains, these models typically lack consideration
for 3D spatial symmetries inherent in physical systems, limiting their applicability to physical dy-
namics simulation. Addressing this, we adapt the standard Transformer architecture to 3D physical
dynamics simulation tasks. By introducing equivariant designs, we ensure conformity with E(3)
symmetries, bridging the gap between general spatiotemporal modeling and physical dynamics sim-
ulation.

3 OUR METHOD

In this section, we first introduce the necessary preliminaries related to physical dynamics simula-
tion. Then, we describe the framework of our model, which adopts an equivariant encoder-decoder
architecture, along with a temporal difference graph to reduce the cumulative errors in long-term
predictions. Fig. 2 illustrates the overall framework of our model.

3.1 NOTATIONS AND DEFINITIONS

The trajectory of a physical system (e.g. a molecule) over a temporal length T and with a time lag
of ∆t = 11, can be modeled as a spatiotemporal graph G1:T := {Gt = (Vt, E)}Tt=1, where different
frame Gt shares the same node identities (e.g. atoms) and edge connections (e.g. bonds), and the
i-th node vt,i at time t is associated with an invariant feature ht,i ∈ Rc (e.g. atom types) and an
equivariant 3D coordinate vector x⃗t,i ∈ R3. Particularly for ht, we further add temporal position
embedding with the sine function. We do not leverage edge features in this work. We hereafter
denote by the matrices Ht and X⃗t the collection of all node features and coordinates in Gt.

Task Formulation. As illustrated in Fig. 1, given the observed trajectory G1:T , our goal is to learn a
function ϕ that autoregressively predicts the long-term future frames GT+1:T+R over a duration of
R ≫ 1. This process can be formally expressed as follows:

GT+1 = ϕ(G1:T ), . . . ,GT+r = ϕ(G1:T+r−1), . . . ,GT+R = ϕ(G1:T+R−1). (1)
The above autoregressive prediction is also called the rollout process in the domain. In practice, we
only require to predict the 3D coordinates X⃗T+r, while the corresponding invariant features hT+r

can be computed manually.
1Here ∆t is chosen as 1 for simplicity, while it can be selected remarkably larger than 1 for the acceleration

of dynamics simulations in practice.
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ST-Block
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ST-Block

Equivariant
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K V Q

· · · · · · · · · X⃗T−1 X⃗T X⃗δ

· · · · · · · · · X⃗T−1 X⃗T

Mean Reduction −

Output

X⃗ ′
T X⃗ ′

δ+

X⃗T+1

(a) Equivariant Encoder-Decoder Block (b) Equivariant Spatio-Temporal Block

Figure 2: The overall architecture of GST. Initially, a ”Mean Reduction” operation is applied to the
historical trajectory X⃗1, ..., X⃗T . The entire historical trajectory is then input into an equivariant
encoder. After initializing X⃗δ with the last two frames, we concatenate the historical trajectory with
X⃗δ to form the input for the equivariant decoder. Temporal and spatial dependencies are captured
using Equivariant ST-Blocks and Equivariant Cross-attention modules. The final updated X⃗

′

T is
summed with X⃗

′

δ to generate the coordinates for the subsequent frame, X⃗T+1.

Equivariance. An important inductive bias to consider is that the function ϕ should be E(3)-
equivariant, ensuring that the dynamics remain independent of the observation perspective. This
means that if the input trajectory undergoes any arbitrary translation, reflection, or rotation transfor-
mation, the output of ϕ should undergo a corresponding transformation.

Comparisons with Previous Settings. One remarkable benefit of our function defined in Eq. (1)
is its ability to accommodate inputs of variable temporal length, enhancing flexibility for various
applications. It can take all the historical frames as input for modeling the complete context as
defined by default; in case of efficiency considerations, it can also be modified to accept only fixed-
length inputs, which degenerates to GT+r = ϕ(GT+r−L:T+r−1) using only previous L frames to
predict the next frame. On the contrary, previous methods such as EGNN (Satorras et al., 2021a),
GNS (Sanchez-Gonzalez et al., 2020), and ESTAG (Wu et al., 2024) can only admit the fixed-length
input setting. Furthermore, our task emphasizes long-term dynamics prediction, whereas existing
methods mostly focus on predicting only one future frame. The architecture of ϕ is specifically
designed and will be elaborated on in the following subsections.

3.2 THE PROPOSED GST MODEL

Inspired by the original Transformer framework (Vaswani, 2017), the architecture of our proposed
GST also consists of an encoder and a decoder, as displayed in Fig. 2. To predict GT+r, the encoder
takes as input the initial trajectory and all predicted frames, namely G1:T+r−1. The decoder’s input is
further augmented with an artificial graph Gδ , forming the input (G1:T+r−1,Gδ). Both the encoder
and the decoder employ a certain number of equivariant spatiotemporal blocks for representation
learning. The output from the encoder is integrated into the decoder through an equivariant cross-
attention layer. Further details are provided below.
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(1) Equivariant Encoder

The encoder is comprised of L equivariant spatiotemporal blocks. For each block, it alternates two
modules: equivariant spatial message passing and equivariant temporal self-attention passing. We
denote the t-th frame of the l-th layer as Ge,l

t (he,l
t , X⃗e,l

t ).

The spatial module leverages EGNN (Satorras et al., 2021a) to characterize the spatial geometry of
each frame individually, which is formally delineated as:

me,l
t,ij = φm

(
he,l
t,i , h

e,l
t,j ,
∥∥∥x⃗e,l

t,i − x⃗e,l
t,j

∥∥∥) ,
he,l+1
t,i = he,l

t,i + φh

he,l
t,i ,

∑
j∈N (i)

me,l
t,j

 ,

x⃗e,l+1
t,i = x⃗e,l

t,i +
1

|N (i)|
∑

j∈N (i)

φx

(
me,l

t,ij

)
·
(
x⃗e,l
t,i − x⃗e,l

t,j

)
,

(2)

where φm, φx and φh are Multi-Layer Perceptrons (MLPs), N (i) represents all neighboring nodes
of the i-th node. Particularly, me,l

t,ij is an E(3)-invariant message from node j to i, which can be used
to aggregate and update he,l

t,i features via φh; as for the update of x⃗e,l
t,i , φx is used to compute a 1D

scalar φx(m
e,l
t,ij) which is then left-multiplied with x⃗e,l

t,i − x⃗e,l
t,j to preserve directional information,

and the residual connections are added to allow translation equivariance.

The temporal module employs an equivariant self-attention mechanism to model inter-frame depen-
dencies and dynamical patterns for each node separately. One crucial benefit of using the attention
strategy is that it can naturally processes inputs of different lengths, which perfectly fits our goal.
Notably, in contrast to the conventional full-attention mechanism employed in traditional Trans-
former’s encoder, we adopt a causal attention paradigm to preserve temporal consistency. The ef-
ficacy of this causal attention strategy will be empirically validated through ablation studies. The
temporal message passing can be formally characterized as follows:

qe,l+1
t,i = φqe(h

e,l+1
t,i )

ke,l+1
s,i = φke(h

e,l+1
s,i )

ve,l+1
s,i = φve(h

e,l+1
s,i )

 =⇒ αe,l+1
ts,i = Softmax

(〈
qe,l+1
t,i , ke,l+1

s,i

〉)
, (3)

where φq , φk, φv , φxt and φht are all MLPs. The invariant features qt,i, ks,i and qs,i refer to the
query, key and value features, respectively, and αe,l+1

ts,i signifies the attention weight between the t-th
and s-th frames. With the derived attentions, we update the features by:

he,l+2
t,i = he,l+1

t,i + φht

(
he,l+1
t,i ,

t∑
s=1

αe,l+1
ts,i ve,l+1

s,i

)
,

x⃗e,l+2
t,i = x⃗e,l+1

t,i +

t∑
s=1

αe,l+1
ts,i · φxt

(
ve,l+1
s,i

)
·
(
x⃗e,l+1
t,i − x⃗e,l+1

s,i

)
.

(4)

Consequently, the encoder yields a refined and compressed representation of the sequential features,
encapsulating both spatial and temporal dependencies in a more compact and informative format.

(2) Equivariant Decoder

Similar to the encoder, our decoder also applies L equivariant spatiotemporal blocks. The main
difference is that the decoder processes not only the spatiotemporal graph but also the TDG Gδ .
Below we first define the concept of the TDG in prior to the introduction of the decoder architecture.

Temporal Difference Graph Gδ . Existing methods tend to amplify cumulative errors as the rollout
distance increases. We circumvent this issue by basing each prediction solely on the combination of
the last predicted frame and Gδ , significantly reducing error propagation in long-term predictions.
This approach is motivated by the strong local correlation observed between adjacent frames in
physical dynamics. Predicting the difference between the current frame and the next one may be
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easier than directly predicting the next frame. To do so, we first initialize TDG as Gδ = GT+r−1 −
GT+r−2, namely, for each node i,

hδ,i = hT+r−1,i − hT+r−2,i, x⃗δ,i = x⃗T+r−1,i − x⃗T+r−2,i. (5)

After the initialization, Gδ along with G1:T+r−1 will be fed into the decoder. Within the decoder, Gδ

is considered as a global graph which interacts with each other graph to gather the global information
to refine its node features layer by layer.

We now present the formulation of the spatiotemporal block. For conciseness, we denote the t-th
frame (including the TDG frame) of the l-th layer as Gd,l

t (hd,l
t , X⃗d,l

t ). The spatial module follows
the same mechanism as descried in Eq. (2) for all frames, including the TDG. In contrast, the tem-
poral module performs causal attention (Eqs. (3) and (4)) among all frames, excluding the TDG. In
particular, the update of the TDG in the temporal module is given by:

hd,l+2
δ,i = hd,l+1

δ,i + φht

(
hd,l+1
δ,i ,

T+r−1∑
s=1

αd,l+1
δs,i vd,l+1

s,i

)
.

x⃗d,l+2
δ,i = x⃗d,l+1

δ,i +

T+r−1∑
s=1

αd,l+1
δs,i · φxt

(
vd,l+1
s,i

)
·
(
x⃗d,l+1
δ,i − (x⃗d,l+1

s,i − x̄)
)
,

(6)

where αd,l+1
δs,i stands for the attention weight between Gδ and the s-th frame. Importantly, since

x⃗d,l+2
δ,i should be translation invariant, we have carried out mean reduction x⃗d,l+1

s,i − x̄ beforehand
for the update of x⃗d,l+2

δ,i , where x̄ is the mean of all nodes across all frames in G1:T .

Finally, we employ a cross-attention mechanism, utilizing (Gd,l+2
1:T+r−1,G

d,l+2
δ ) as the query to extract

useful information from the encoder-compressed sequence Ge,l+2
1:T+r−1. This formulation enables

the model to dynamically focus on relevant historical information, thereby enhancing the fidelity
and contextual relevance of spatiotemporal representations. This mechanism potentially leads to
improved model performance and generalization capabilities in capturing complex spatiotemporal
dynamics. The update procedure can be formally expressed as follows:

qd,l+2
t,i = φqd(h

d,l+2
t,i )

ke,l+2
s,i = φkd(h

e,l+2
s,i )

ve,l+2
s,i = φvd(h

e,l+2
s,i )

 =⇒ αd,l+2
ts,i = Softmax

(〈
qd,l+2
t,i , ke,l+2

t,i

〉)
, (7)

hd,l+3
t,i = hd,l+2

t,i + φht

(
hd,l+2
t,i ,

t∑
s=1

αd,l+2
ts,i ve,l+2

s,i

)
,

x⃗d,l+3
t,i = x⃗d,l+2

t,i +

t∑
s=1

αd,l+2
ts,i · φxt

(
ve,l+2
s,i

)
·
(
x⃗d,l+2
t,i − x⃗e,l+2

s,i

)
.

(8)

Note that when performing the cross-attention between Gd,l+2
δ and Ge,l+2

s , we will first accomplish
mean reduction for the coordinates in Ge,l+2

s .

(3) Long-Term MSE Loss

We denote the output of the decoder as x⃗′
T+r−1,i for the last frame and x⃗′

δ,i for the TDG. The
prediction of the next frame is given by x⃗′

T+r,i = x⃗′
T+r−1,i + x⃗′

δ,i. This predicted frame is then
concatenated into the original sequence, forming a new input for the model, and this process contin-
ues until we predict the final frame x⃗′

T+R.

We collect all the long-term predictions and employ Mean Squared Error (MSE) to compute predic-
tion errors, which can be formalized as:

L =

R∑
r=1

N∑
i=1

MSE(x⃗T+r,i, x⃗
′
T+r,i). (9)
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Table 1: Predicted MSE (×10−2) on MD17 dataset with 10 rollout steps. Results averaged across
three trials.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ST GNN 9.403±0.150 1.942±0.086 2.650±0.001 7.203±0.102 4.311±0.172 5.565±0.251 4.530±0.061 4.028±0.374

ST TFN 7.974±0.025 2.084±0.001 2.441±0.001 6.228±0.066 4.768±0.078 6.737±0.024 4.041±0.198 5.672±0.098

STGCN 8.079±0.001 1.993±0.004 2.786±0.001 6.464±0.001 5.829±0.001 6.739±0.001 4.724±0.001 6.119±0.001

ST SE(3)-Tr. 6.943±0.082 2.085±0.006 2.079±0.001 5.775±0.016 4.443±0.046 5.577±0.021 3.292±0.004 4.914±0.042

ST EGNN 7.945±0.040 3.764±1.834 1.385±0.001 4.661±0.084 4.226±0.752 6.214±0.232 3.405±0.178 3.303±0.291

AGL-STAN 11.885±0.697 5.813±0.278 3.052±0.286 21.715±0.617 2.248±0.198 4.871±0.928 1.909±0.053 1.697±0.329

EqMotion 8.433±0.001 4.724±0.001 4.275±0.001 6.787±0.001 6.538±0.001 7.227±0.001 4.922±0.001 6.369±0.001

ESTAG 2.553±0.414 1.524±0.142 0.977±0.001 2.758±0.794 2.278±0.211 2.239±0.576 1.733±0.591 1.600±0.237

GST-F 2.345±0.077 0.873±0.098 0.968±0.001 1.442±0.025 1.297±0.185 1.895±0.034 0.957±0.117 1.470±0.234

GST-V 2.196±0.075 0.480±0.050 0.940±0.001 1.762±0.054 0.988±0.016 1.733±0.031 1.002±0.063 1.087±0.055

To mitigate cumulative errors during the autoregressive inference, we implement a teacher-forcing
strategy in the training phase, implying that x⃗′

T+r,i is estimated through the input of the ground-
truth sequence rather than the predicted one. It is noteworthy that all baselines in this paper adhere
to same strategies during both training and testing phases, ensuring a fair analysis. A fundamental
characteristic of our GST is its E(3)-equivariance property, and the corresponding proof is provided
in Appendix A.

4 EXPERIMENTS

In this section, we evaluate the performance of GST on long-term prediction tasks across datasets
of varying scales, encompassing molecules (§ 4.1), human motions (§ 4.2), and proteins (§ 4.3).
To accelerate the dynamics simulations, we follow the sampling approach utilized in previous
works (Huang et al., 2022) to acquire the subset of the trajectories for training, validation and test-
ing. Specifically, we randomly select a starting point and subsequently sample T + 20 timestamps.
The initial T timestamps serve as input observations for the models, while the subsequent 10, 15,
and 20 timestamps are future frames to be predicted, depending on the specific task settings about
the rollout steps. In § 4.4, we conduct ablation studies to explore the impact of each component
on model performance. Additionally, we perform exploratory experiments to identify potentially
optimal encoder-decoder structures. More detailed experimental results are also provided in Ap-
pendix C.

Baselines and Metrics. We benchmark our method against the following baseline approaches,
including GNNs such as ST GNN (Gilmer et al., 2017), STGCN (Yu et al., 2017), and AGL-
STAN (Sun et al., 2022), as well as equivariant GNNs such as ST TFN (Thomas et al., 2018),
ST SE(3)-Tr. (Fuchs et al., 2020), ST EGNN (Satorras et al., 2021b), ST GMN (Huang et al., 2022),
Eqmotion (Xu et al., 2023), and ESTAG (Wu et al., 2024). Models prefixed with ”ST” indicate that
we have adapted them to accommodate multi-frame input by incorporating trivial spatio-temporal
aggregation, following the setup in Wu et al. (2024). We also report the performance for two versions
of the GST: GST-V and GST-F. GST-V (GST-Variable) receives variable-length historical frames as
input, while GST-F (GST-Fixed) adopts the same configuration as other baselines, accepting only
fixed-length historical frame inputs. As per Eq. (9), we employ the sum of MSEs across all predicted
frames during the rollout process as our evaluation metric.

4.1 MOLECULAR DYNAMICS

Dataset and Implementation. MD17 comprises dynamic trajectories generated by MD simulations
for eight distinct small molecules (e.g., aspirin, benzene, etc). We utilize atomic numbers as invariant
input features ht,i. Further details, including hyper-parameters are provided in Appendix B.1.

Results. Table 1 presents the performance of all models in MD17, with a rollout step of 10. The
following insights can be drawn from this table: 1. Our model achieves state-of-the-art performance
across all eight small molecules, demonstrating the superiority of our approach in long-term au-
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Figure 3: MSEs on MD17 up to 10 rollout steps (better zoom in).

toregressive prediction tasks. 2. GST-V outperforms GST-F on most molecules, underscoring the
capability of our proposed architecture to flexibly process and leverage extended historical informa-
tion, thereby enhancing prediction accuracy. 3. Our method outperforms the previous state-of-the-
art method ESTAG, for seven of the eight small molecules studied, with ethanol as the exception.
We posit that may be attributed to ethanol’s relatively simple structure, containing only three heavy
atoms (two carbon and one oxygen), may result in less discernible performance differences among
modeling approaches.

To provide a more intuitive understanding of the prediction accuracy across different models at each
step of the rollout process, we present Fig. 3, which illustrates the MSE for various models over a
10-step rollout. It clearly demonstrates that while our model may not achieve optimal performance
in the initial steps for some molecules, its advantages in mitigating long-range cumulative errors
become increasingly evident as the rollout progresses.

We also evaluate performance on MD17 using extended rollout steps of 15 and 20, allowing us to
assess longer-term predictions more effectively. Besides, we modify most baseline models to accept
full historical inputs by employing the temporal self-attention mechanism similar to our GNS, except
for AGL-STAN and Eqmotion due to architectural constraints. Detailed results and corresponding
analyses are presented in Tables 6 to 8 of Appendix C. GST consistently outperforms state-of-the-art
methods across almost all molecules, even under these more challenging conditions. Notably, the
performance gap widens for several molecules as rollout steps increase, providing strong evidence
of GST’s efficacy in mitigating cumulative errors and enhancing long-term simulation accuracy.

4.2 MOTION CAPTURE

Dataset and Implementation. We evaluate our model’s performance across various scenarios de-
picting 3D trajectories of human motion. We focus on two motions: Subject #35 (Walk) and Sub-
ject #102 (Basketball). The more details, including adaptive modifications to other baselines
and hyper-parameter settings, are presented in Appendix B.2.

Results. As illustrated in Table 2, our model achieves the best perofrmance across different long-
term rollout prediction tasks on the Motion Capture dataset. In this table, we denote predicted MSE
values exceeding 1000 with a dash (-) symbol. Additionally, we omit the results for Eqmotion,
as its predicted MSE values surpassed 1000 across all the settings. It is noteworthy that due to the
complexity and rapid changes inherent in motion capture, the predicted MSE for all models increases
rapidly as the rollout steps extends. Correspondingly, the performance gap between our method and
other baselines widens as the number of rollout steps increases. Furthermore, Fig. 4 showcases the
visualization of the predicted motions in Basketball and Walk by various methods.
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Table 2: Predicted MSE (×10−1) on Motion dataset with 10 rollout steps. We denote predicted
MSE values exceeding 1000 with a dash (-) symbol. Results averaged across three trials.

Method Walk Basketball

R=10 R=15 R=20 R=10 R=15 R=20

ST GNN 18.560±1.215 55.062±8.120 97.593±9.933 - - -
ST TFN 19.689±0.631 99.021±28.136 201.075±11.1 178.689±2.477 593.498±32.395 -
ST GCN 1.870±0.001 7.418±0.001 13.899±0.001 87.185±0.001 312.096±0.001 531.535±0.001

ST SE(3)-Tr. 8.196±1.000 44.096±7.873 164.483±9.169 183.933±6.797 580.178±12.324 -
ST EGNN 35.863±3.156 - - - - -

AGL-STAN 42.409±0.001 64.652±0.001 170.848±0.001 - - -
ESTAG 1.418±0.087 5.907±0.885 17.431±3.424 10.209±0.071 54.513±1.682 175.950±3.073

GST-F 0.931±0.097 4.192 ±0.765 11.439±2.408 9.712±0.203 49.754±0.587 155.296±9.479

GST-V 1.095±0.142 4.084±0.311 12.708±1.466 9.658±0.072 49.374±1.410 148.988±6.631

W
al

k
B

as
ke

tb
al

l

4 2 0 2 4
10

15

20

0
5
10

15

20

17.515.012.510.0 7.5 5.0 4
6

8
10

12
14

0
5
10

15

20

(a) ESTAG

4 2 0 2 4
7.5

10.0
12.5

15.0

0
5
10

15

20

17.515.012.510.0 7.5 5.0 4
6

8
10

12
14

0
5
10

15

20

(b) GST-F

4 2 0 2 4 6
8

10
12

14
16

0
5
10

15

20

17.515.012.510.0 7.5 5.0 4
6

8
10

12
14

0
5
10

15

20

(c) GST-V

4 2 0 2 4 6
8

10
12

14
16

0
5
10

15

20

17.515.012.510.0 7.5 5.0 4
6

8
10

12
14

0
5
10

15

20

(d) Groud Truth

Figure 4: Visualizations of predicted human motions: Walk (top) and Basketball (bottom).
4.3 PROTEIN DYNAMICS

Table 3: Predicted MSE (×10−2) on Protein
dataset with 10 rollout steps. Results averaged
across three trials. Standard deviations are omit-
ted due to their negligible magnitude.

Method R=10 R=15 R=20

ST GNN 2.196 3.108 4.202
ST GCN 2.285 3.700 5.733
ST EGNN 2.000 3.051 4.239
AGL-STAN 2.216 3.373 4.309
ST GMN 2.006 3.056 4.247
ESTAG 2.009 3.065 4.259

GST-F 2.008 3.063 4.258
GST-V 1.911 2.971 4.048

Dataset and Implementation. We leveraged
the MDAnalysis toolkit (Gowers et al., 2019) to
facilitate the exploration of model’s dynamics
simulation capabilities on the Adk equilibrium
trajectory dataset (Seyler & Beckstein, 2017).
To mitigate the computational burden associ-
ated with the large number of atoms in protein
data, we represented each residue solely by its
backbone atoms. The more details, including
adaptive modifications to other baselines and
hyper-parameter settings, are presented in Ap-
pendix B.3.

Results. Table 3 illustrates the performance of
all models on the protein dataset. Our GST con-
sistently achieves superior performance across
various long-term rollout prediction tasks with
rollout steps of 10, 15, and 20. This demon-
strates that even in systems with complex structures such as proteins, GST can still efficiently ex-
tract and utilize critical information from historical timestamps, enabling more accurate long-range
predictions.
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Table 4: Ablation studies (×10−3) on MD17 dataset with 10 rollout steps.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

w/o Equivariance 30.299 2.660 21.896 24.474 35.048 31.365 32.874 31.252
w/o TDG 7.849 1.150 1.991 5.321 7.000 7.227 3.301 4.379
Only TDG 2.714 1.303 1.167 2.143 1.480 1.940 1.262 1.121
Decoder-only 1.680 0.545 1.104 2.071 1.261 1.929 1.420 1.327
Full-Attention 2.206 0.543 0.980 2.009 0.934 1.889 1.035 1.095
Shared Parameters 1.757 0.665 1.018 1.902 1.478 1.548 1.284 1.172

GST-V 2.195 0.480 0.940 1.761 0.988 1.733 1.002 1.087

4.4 ABLATION STUDIES

To validate the contribution of each module to our GST’s overall performance and to explore the in-
tricacies of the Encoder-Decoder framework in physical dynamics scenarios, we conducted ablation
and exploratory experiments. The results are presented in Table 4.

Our observations and findings are as follows: 1. Disregarding equivariance led to a significant per-
formance degradation across all molecules (Row 1). This underscores the critical role of physical
symmetry in modeling 3D physical dynamics. 2. To assess the impact of the TDG, we remove
the TDG from the decoder (Row 2). The results indicate that the absence of TDG substantially
impairs model performance, suggesting a strong correlation between physical dynamics trajectories
and local frames of the input sequence, particularly the final two frames. 3. We experiment with
modifying the decoder input to solely include the TDG (Row 3). This modification resultes in a
notable performance decline, indicating the necessity of allowing TDG and original sequence to
interact, thereby extracting crucial temporal information. 4. To evaluate the benefits of the encoder-
decoder structure, we implement a decoder-only structurte (Row 4). The results demonstrate that the
encoder-decoder architecture outperforms the decoder-only variant for the majority of molecules. 5.
We adopt the masking strategy from standard Transformer, replacing the current causal-attention in
the encoder’s self-attention module with full-attention (Row 5). This substitution led to a slight per-
formance decrease for most molecules, suggesting that when performing self-attention on temporal
data, the model must adhere to objective physical laws, allowing the current frame to be updated
based solely on previous frames. 6. To ascertain whether the performance improvement is due to
the increased parameters introduced by the encoder-decoder architecture, we share parameters be-
tween the encoder and decoder modules, effectively halving the total parameters of the model (Row
6). We observe performance decreases for some molecules, but improvements for others. Notably,
when computing the average across all eight molecules, the shared-parameter version exhibited only
a marginal difference in performance compared to the original version. This further emphasizes the
potential of the encoder-decoder architecture in enhancing the model’s long-term prediction capa-
bilities.

5 CONCLUSION

In this paper, we introduce Geometric Spatiotemporal Transformers (GST), a novel framework that
integrates the original Transformer architecture with physical symmetries to simulate long-term
physical dynamics. Leveraging the inherent characteristics of the Transformer, GST efficiently pro-
cesses historical inputs of arbitrary length. The overall GST architecture ensures E(3)-equivariance,
effectively encoding physical symmetries and enhancing the modeling capability for 3D objects. The
incorporation of a Temporal Difference Graph (TDG) significantly mitigates cumulative errors gen-
erated during long-term rollouts process. Extensive experiments across various scales (molecules,
proteins, and human motions) and diverse rollout steps demonstrate GST’s superior performance in
physical dynamics simulation. We envision GST serving as a robust baseline in this field, with broad
applicability across various tasks, including drug discovery, robot control, and materials design.
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A EQUIVARIANCE OF GST

We know that the E(3) symmetry can be decomposed into the symmetry on the three-dimensional
translation group T(3) and the symmetry on the three-dimensional orthogonal group O(3). We will
prove these two separately below.

A.1 TRANSLATION EQUIVARIANCE OF GST

With mean reduction (Puny et al., 2021), translational variability can always be easily achieved. We
just need to prove that subsequent operations are translation invariant. In fact, there are only Eqs. (2)
and (4) to (6) require to prove its translation invariant. And we find that, all sums of the coefficients
of these coordinate terms is 1 + (−1) = 0, which indicates its translation invariance.

A.2 O(3)-EQUIVARIANCE OF GST

O(3)-equivariance of whole model. Since the equivariance can be understood that group actions
can be exchanged with mappings of any layer, so the equivariance of the entire model can be proved
by proving that the individual modules of the model are equivariant. In general, we only need to
prove the following three points:

1. O(3)-equivariance of spatial module.

2. O(3)-equivariance of temporal module.

3. O(3)-invariance of objective function.

Here we give the proof of O(3)-equivariance by the symbology from e3nn (Geiger & Smidt, 2022).
O(3) consists of rotation and inverse, implying O(3) = SO(3) × Ci, where SO(3) is the rotation
group and Ci = {e, i} denotes the inverse group. We thus specify the group representation of O(3)
as

ρ(l)(rm) := σ(l,p)(m)D(l)(r), (10)

where p ∈ {±1} called parity. σ(l)(m) = 1 for m = e (the identity) , σ(l)(m) = pl if m = i (the
inverse), and D(l)(r) is the Wigner-D matrix of l-degree. With Eq. (10) of l be the representation,
features be the solution of such equivariant constraint equation is call l-degree steerable features.
Moreover, we donate a l-degree vector as lo if p = −1 (inverse equivariant), and le if p = 1
(inverse invariant).

Example A.1 (Types of common equivariant/invariant features). Considering that the highest degree
of features in this article does not exceed 1, we only introduce four common cases: 0e, 0o, 1o, and
1e.

• Scalar (e.g. charges, distance and potential energy) is invariant to both rotation and inverse,
thus denoted by 0e.

• Pseudo-scalar (e.g. triple product of three 3-dimensional vectors, magnetic flux and helic-
ity) is invariant to rotation but equivariant to inverse, thus denoted by 0o.

• Vector (e.g. postion, velocity and acceleration) is equivariant to both rotation and inverse,
thus denoted by 1o.

• Pseudo-vector (e.g. angular momentum, torque and magnetic field vector) is equivariant to
rotation but invariant to inverse, thus denoted by 1e.

In the scope of consideration of this article, there are only two types of operations to change the
degree of features: (0e)·(1o) → (1o) and transforming (1o) into (0e) through norm ∥1o∥ → 0e.
From this perspective, proving the equivariance of a model requires only pointing out all the types
of variables. And it is worth noting that all inputs inside the function are invariants, which is denoted
as [0e, 0e, . . . ,0e] → 0e.

O(3)-equivariance of spatial module. To prove the spatial module is O(3)-equivariant, we only
require to prove message me,l

t,ij and updated node feature he,l+1
t,i are 0e-features and updated node
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positions x⃗e,l+1
t,i are 1o-features. Based on the symbology, we can easily see this by annotating

Eq. (2) follows:

me,l
t,ij︸ ︷︷ ︸
0e

= φm

(
he,l
t,i , h

e,l
t,j ,
∥∥∥x⃗e,l

t,i − x⃗e,l
t,j

∥∥∥)︸ ︷︷ ︸
[0e, 0e, ∥1o∥→0e]→0e

,

he,l+1
t,i︸ ︷︷ ︸
0e

= he,l
t,i︸︷︷︸
0e

+φh

(
he,l
t,i ,
∑

j∈N (i) m
e,l
t,j

)
︸ ︷︷ ︸

[0e, 0e]→0e

,

x⃗e,l+1
t,i︸ ︷︷ ︸
1o

= x⃗e,l
t,i︸︷︷︸
1o

+
1

|N (i)|
∑

j∈N (i) φx

(
me,l

t,ij

)
·
(
x⃗e,l
t,i − x⃗e,l

t,j

)
︸ ︷︷ ︸

0e · 1o→1o

,

(11)

O(3)-equivariance of temporal module. In fact, like most equivariant Graph Transformer models
except SE(3)-Transformer, the attention mechanism obtains 0e-features as follows:

qe,l+1
t,i︸ ︷︷ ︸
0e

= φqe(h
e,l+1
t,i )︸ ︷︷ ︸

[0e]→0e

ke,l+1
s,i︸ ︷︷ ︸
0e

= φke(h
e,l+1
s,i )︸ ︷︷ ︸

[0e]→0e

ve,l+1
s,i︸ ︷︷ ︸
0e

= φve(h
e,l+1
s,i )︸ ︷︷ ︸

[0e]→0e


=⇒ αe,l+1

ts,i︸ ︷︷ ︸
0e

= Softmax
(〈

qe,l+1
t,i , ke,l+1

s,i

〉)
︸ ︷︷ ︸

[0e, 0e]→0e

, (12)

After that, we only need to prove that updated node features he,l+1
t,i are 0e-features and updated

node positions x⃗e,l+1
t,i are 1o-features, just as we did for the O(3)-equivariance of spatial module.

The details are as follows:

he,l+2
t,i︸ ︷︷ ︸
0e

= he,l+1
t,i︸ ︷︷ ︸
0e

+φht

(
he,l+1
t,i ,

∑t
s=1 α

e,l+1
ts,i ve,l+1

s,i

)
︸ ︷︷ ︸

[0e,0e]→0e

,

x⃗e,l+2
t,i︸ ︷︷ ︸
1o

= x⃗e,l+1
t,i︸ ︷︷ ︸
1o

+
∑t

s=1 α
e,l+1
ts,i φxt

(
ve,l+1
s,i

)
·
(
x⃗e,l+1
t,i − x⃗e,l+1

s,i

)
︸ ︷︷ ︸

0e·0e·1o→1o

.
(13)

Note that the formula form may be slightly different when initialized, but we only need to discuss
the difference about translation equivariance/invariance, and we will not repeat the proof of rota-
tion/inverse equivariance/invariance here.

O(3)-invariance of objective function. Note that MSE(·) is a simple modulo length operator, so its
O(3)-invariance is obvious.

L︸︷︷︸
0e

=

R∑
r=1

N∑
i=1

MSE(x⃗∗
T+r,i, x⃗T+r,i) =

R∑
r=1

N∑
i=1

∥x⃗∗
T+r,i − x⃗T+r,i∥︸ ︷︷ ︸

∥1o∥→0e

, (14)

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS ON MD17 DATASET

The first column of Table 5 presents a unified set of hyper-parameters employed consistently across
all experimental evaluations on the MD17 datasets. These parameters are uniformly applied to both
our proposed GST model and all baseline methods. Both our GST and all other baselines are trained
and tested on a single NVIDIA A100-80G GPU. The number of training, validation and testing sets
are 500, 2000 and 2000, respectively.

In the MD17 dataset, each temporal graph contains up to 13 nodes. As for graph construction,
We compute pairwise distances between all atoms, designating those within a distance threshold λ

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Hyper-parameters of GST and other baseline methods. The temporal length T denotes
the length of initial timestamps, the time lag ∆t denotes the interval between two timestamps, the
hidden size denotes the size of hidden states, and the layer denotes the number of layers.

Hyper-parameter MD17 Protein Motion Capture

Learning Rate 5e-3 5e-5 5e-3
Epochs 500 500 500
Temporal Length T 10 10 10
Time Lag ∆t 10 5 1
Hidden Size 16 16 16
Layer 2 2 2

as first-order neighbors. Each atom forms edges with both its first- and second-order neighbors to
facilitate subsequent message passing.

B.2 IMPLEMENTATION DETAILS ON MOTION CAPTURE

The third column of Table 5 presents a unified set of hyper-parameters employed consistently across
all experimental evaluations on the motion capture datasets. These parameters are uniformly applied
to both our proposed GST model and all baseline methods. Both our GST and all other baselines
are trained and tested on a single NVIDIA A100-80G GPU. We adopt the setups and data splits
from the official code of (Wu et al., 2024). The subject #35 (Walk) contains 1100/600/600 trajec-
tories for training/validation/testing, while the subject #102 (Basketball) contains 600/300/300
trajectories for training/validation/testing.

In the Motion Capture dataset, each temporal graph contains up to 31 nodes. As for graph con-
struction, directly connected joint nodes are classified as first-order neighbors. Each joint node
establishes connections with both its first- and second-order neighbors to facilitate subsequent mes-
sage passing. The invariant input features h of all the joints are all 1s. In this experimental setup, we
set ∆t = 1, considering the substantial positional variations in motion data compared to MD17 and
protein datasets. This choice mitigates the exponential growth of cumulative errors in long-term pre-
dictions. A larger ∆t would lead to unacceptably high error magnitudes across all methods as rollout
steps increase, rendering the comparisons across different methods infeasible and compromising the
validity of our comparative analysis.

B.3 IMPLEMENTATION DETAILS ON PROTEIN DATASET

The second column of Table 5 presents a unified set of hyper-parameters employed consistently
across all experimental evaluations on the protein datasets. These parameters are uniformly applied
to both our proposed GST model and all baseline methods. Both our GST and all other baselines
are trained and tested on a single NVIDIA A100-80G GPU. The dataset is partitioned into training,
validation, and test sets with a ratio of 6:2:2, respectively. This partition resulted in 2,482 samples
for training, 827 for validation, and 827 for testing.

In the Protein dataset, each temporal graph contains 5325 nodes. We construct a 4-channel equivari-
ant 3D coordinate for the four backbone atoms (N, Cα, C, O) , combining it with the corresponding
atomic numbers as invariant input features h to represent a single node in the graph. This node
representation methodology is consistently applied across all baseline methods for comparative in-
tegrity. As for graph construction, we compute pairwise distances between all atoms, designating
those within a distance threshold λ as first-order neighbors. Each atom forms edges with its first-
order neighbor to facilitate subsequent message passing.
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C MORE EXPERIMENT RESULTS ON MD17

C.1 VARIABLE-INPUT FOR OTHER BASELINES

Table 6: Prediction error (×10−2) on MD17 dataset. Results averaged across 3 runs.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ST GNN-F 9.403±0.150 1.942±0.086 2.650±0.001 7.203±0.102 4.311±0.172 5.565±0.251 4.530±0.061 4.028±0.374

ST GNN-V 10.879±0.001 2.174±0.001 2.935±0.001 9.134±0.126 5.554±0.020 7.035±0.117 4.520±0.140 4.626±0.020

ST TFN-F 7.974±0.025 2.084±0.001 2.441±0.001 6.228±0.066 4.768±0.078 6.737±0.024 4.041±0.198 5.672±0.098

ST TFN-V 8.614±0.027 2.270±0.001 2.426±0.001 7.247±0.351 4.860±0.057 6.870±0.066 4.032±0.143 5.623±0.043

STGCN-F 8.079±0.001 1.993±0.004 2.786±0.001 6.464±0.001 5.829±0.001 6.739±0.001 4.724±0.001 6.119±0.001

STGCN-V 8.100±0.001 2.240±0.004 2.785±0.001 6.467±0.001 5.840±0.001 6.976±0.001 4.724±0.001 6.175±0.001

ST SE(3)-Tr.-F 6.943±0.082 2.085±0.006 2.079±0.001 5.775±0.016 4.443±0.046 5.577±0.021 3.292±0.004 4.914±0.042

ST SE(3)-Tr.-V 7.750±0.062 2.232±0.001 2.159±0.001 6.810±0.012 4.515±0.019 6.063±0.036 3.312±0.012 5.185±0.038

ST EGNN-F 7.945±0.040 3.764±1.834 1.385±0.001 4.661±0.084 4.226±0.752 6.214±0.232 3.405±0.178 3.303±0.291

ST EGNN-V 7.350±0.589 1.922±0.044 1.913±0.001 5.183±0.008 3.753±0.145 5.536±0.765 2.812±0.109 3.845±0.369

ESTAG-F 2.553±0.414 1.524±0.142 0.977±0.001 2.758±0.794 2.278±0.211 2.239±0.576 1.733±0.591 1.600±0.237

ESTAG-V 2.679±0.193 1.699±0.331 1.260±0.001 3.098±0.154 1.556±0.126 2.406±0.228 1.436±0.223 1.805±0.030

GST-F 2.345±0.077 0.873±0.098 0.968±0.001 1.442±0.025 1.297±0.185 1.895±0.034 0.957±0.117 1.470±0.234

GST-V 2.196±0.075 0.480±0.050 0.940±0.001 1.762±0.054 0.988±0.016 1.733±0.031 1.002±0.063 1.087±0.055
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Figure 5: Roll out on Naphthalene (from MD-17).

In Table 1 of the main text, all baseline meth-
ods employ fixed-length historical frame in-
puts, potentially leading to unfair comparisons.
To address this, we adapt most baseline meth-
ods to accept variable-length historical frame
inputs, ensuring a more equitable evaluation.
However, two methods were left unmodified:
AGL-STAN, due to its predefined fixed-size
convolutional layers, and Eqmotion, as modi-
fying it would require substantial changes to its
initial input, potentially significantly impacting
model performance. Consequently, we revise
all other baselines accordingly. Table 6 presents
the detailed experimental results, where the
suffix ”F” denotes ”fixed-length inputs” ver-
sion, and ”V” represents ”variable-length in-
puts” version.

The experimental results reveal that when models are modified to accept variable-length inputs,
ST EGNN experiences performance degradation on some molecules, while the other four methods
show varying degrees of performance decline across most molecules. This observation suggests
that these methods struggle to efficiently process and utilize variable-length historical information,
highlighting a limitation in their adaptability to more flexible input structures.

To provide a clear and intuitive comparison of different methods’ performance on the MD17 dataset,
Fig. 5 presents a visualization of the per-step prediction MSE values during long-term rollout for
the Naphthalene molecule. This visual representation facilitates a direct assessment of the various
approaches’ predictive accuracy over extended rollout steps.

C.2 EXPERIMENT ON MD17 WITH 15 AND 20 ROLLOUT STEPS

In addition to the results presented in the main text for the MD17 dataset with a rollout of 10 steps,
we further investigate the model performance with extended rollout lengths of 15 and 20 steps.
Tables 7 and 8 provide detailed results for these extended rollout scenarios. Analysis of these ta-
bles reveals that our proposed GST model maintains superior performance across the majority of
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molecules (8 / 8 for 15 rollout steps and 7 / 8 for 20 rollout steps) as the rollout length increases.
Moreover, we observe that the gap in average prediction MSE between GST and other baseline mod-
els widens for some molecules as the rollout length increases. These findings provide compelling
evidence of GST’s excellent performance in long-term physical dynamics simulation tasks, further
validating its effectiveness and robustness in challenging predictive scenarios.

Table 7: Predicted MSE (×10−2) on MD17 dataset with 15 rollout steps. Results averaged across
three trials.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ST GNN 21.591±0.218 4.162±0.043 5.127±0.001 17.921±0.350 9.311±1.146 12.922±2.272 8.292±0.056 6.942±0.770

ST TFN 18.264±0.050 4.729±0.001 4.436±0.075 15.429±0.301 9.301±0.138 14.429±0.205 6.528±0.112 11.733±0.148

STGCN 18.477±0.001 4.288±0.001 4.785±0.001 15.572±0.001 10.821±0.001 14.065±0.001 8.144±0.001 12.349±0.001

ST SE(3)-Tr. 16.518±0.095 4.726±0.020 3.796±0.001 14.615±0.025 8.321±0.041 12.071±0.098 5.796±0.123 10.286±0.086

ST EGNN 19.298±0.551 85.91±60.391 3.455±0.001 11.984±0.737 10.95 ±1.698 12.898±1.196 6.061±0.442 6.575±0.769

AGL-STAN 31.171±1.348 7.054±0.196 5.834±0.194 61.618±3.265 3.493±0.231 18.208±1.420 3.331±0.096 3.646±0.293

Eqmotion 28.426±0.001 41.291±0.001 32.310±0.001 24.564±0.001 18.694±0.001 23.711±0.001 12.649±0.001 17.329±0.001

ESTAG 8.801±1.030 3.001±0.515 2.584±0.001 5.648±0.771 2.968±1.007 7.109±0.724 3.473±1.153 4.713±0.475

GST-F 7.071±0.617 2.672±0.292 2.485±0.001 5.549±0.126 2.645±0.204 5.468±0.465 2.495±0.410 3.056±0.839

GST-V 6.881±0.755 1.905±0.009 2.551±0.001 4.705±0.107 2.784±0.432 5.162±0.220 2.166±0.251 2.419±0.208

Table 8: Predicted MSE (×10−2) on MD17 dataset with 20 rollout steps. Results averaged across
three trials.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ST GNN 39.298±1.003 6.909±0.310 8.101±0.001 35.272±0.565 24.729±4.049 18.066±1.511 13.540±0.708 10.506±0.976

ST TFN 33.855±0.097 8.378±0.021 6.561±0.023 30.603±0.098 13.525±0.285 24.963±0.051 10.024±1.426 20.743±0.186

STGCN 33.887±0.001 6.391±0.001 6.993±0.001 30.293±0.001 17.026±0.001 23.247±0.001 11.709±0.001 20.991±0.001

ST SE(3)-Tr. 30.851±0.093 8.313±0.011 5.862±0.001 28.374±0.047 13.070±0.145 20.501±0.327 13.673±7.056 17.507±0.058

ST EGNN 46.452±5.563 39.574±7.444 5.225±0.001 23.438±0.590 14.064 ±0.240 23.724±1.444 9.006±0.962 10.560±1.665

AGL-STAN 61.723±9.104 22.043±3.660 10.389±0.686 158.11±1.651 8.398±1.199 23.458±3.255 4.947±0.289 8.064±2.291

Eqmotion 191.846±0.001 801.551±0.001 836.737±0.001 103.339±0.001 87.615±0.001 113.888±0.001 135.910±0.001 144.932±0.001

ESTAG 21.068±1.472 7.377±1.410 4.317±0.001 13.538±2.102 7.124±1.962 12.668±2.574 5.270±0.614 7.323±0.635

GST-F 16.527±0.101 7.287±0.456 4.582±0.001 11.631±1.080 6.823±2.132 11.867±3.392 3.050±0.428 4.963±0.272

GST-V 17.405±1.891 5.376±0.501 5.028±0.001 11.448±1.120 5.617±2.350 10.372±0.511 3.288±0.130 4.588±0.794

D VISUALIZATION OF THE ATTENTION MAP

In Fig. 6, we present the visualization of the attention map for GST-V. The visualization shows
that most timesteps attend to a significant portion of the historical frames. This further validates
that GST-V effectively captures and integrates historical input information to enhance prediction
performance.
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Figure 6: Visualization of the attention map.
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