

ACCELERATING VISION TRANSFORMERS WITH DROP-IN DEPTHWISE CONVOLUTION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916

over the reshaped Value tensors (Figure 1). Our method works as a drop-in replacement, recovering the performance of the large-scale pretrained model with limited fine-tuning, showing minimal performance loss while achieving 17% to over 20% speedup.

The contributions of this work can be summarized as follows.

- We derive an efficient formulation that serves as a drop-in replacement for attention heads that learn particular convolution-like structures. We later show that head ensembling from He et al. (2024) can be made explicit and generalized to our setting, benefiting from the more efficient formulation.
- We propose a simple methodology to identify the heads to be approximated by convolution. We also validate the proposed heuristic against a more sophisticated solution that we reformulate for this context.
- We explicitly consider the problem of performance optimization in the context of pretrained foundation models, targeting a realistic deployment scenario, focusing on a popular edge platform device (Nvidia Orin Nano) and an appropriate inference framework (TensorRT). We later extend the analysis to multiple specialized platforms.

We believe that the work presented addresses numerous challenges that have been only partially covered in the literature. It also allows for casting the performance improvement of vision foundation models from a different perspective, which in the future might become part of more advanced pruning frameworks.

1 RELATED WORK

1.1 PRUNING OF TRANSFORMERS

The idea of reducing the complexity of a neural network by eliminating less important parameters, connections, and layers dates back to the early deep learning era (LeCun et al. (1989); Hassibi & Stork (1992)). Similar techniques, while applicable to BERT Devlin et al. (2019) style transformers (Sanh et al. (2020); Chen et al. (2020); Brix et al. (2020)), induce *unstructured* sparsity, often causing overhead due to irregular memory access. Some works partially address this via block sparsity (Lagunas et al. (2021); Xu et al. (2024)). Structured pruning of attention heads was explored in Michel et al. (2019), with Voita et al. (2019) introducing stochastic gating to select heads during training. Building on this, Behnke & Heafield (2020) identifies prunable heads early using confidence scores, while DSP Li et al. (2021) introduces explicit control over pruning ratios.

Some pruning methods for ViTs require access to training (Prasetyo et al. (2023); Lin et al. (2024)), others rely on distillation (Yu et al. (2022); Yang et al. (2023)). Many focus on pretrained DeiT models (Touvron et al. (2021)) for classification (Zheng et al. (2022); Yu et al. (2022); He et al. (2024); Lin et al. (2024)). SPViT He et al. (2024) prune MhSA blocks during fine-tuning into learned convolutional layers formulated under the sufficient condition of Cordonnier et al. (2020). That assumption implicitly collapses the block into a single convolution. In contrast, we derive a more general formulation applicable to pretrained foundation models, and later show how SPViT arises as a special case within our framework. Lambda-ViT (Lin et al. (2024)) gradually degenerates MhSA blocks to identity mappings, guided by a transfer-entropy measure. Both target DeiT backbones for classification tasks.

1.2 ATTENTION MODELING AS CONVOLUTION

Several works have investigated the similarity between convolution and spatial relationships learned by attention. (Raghu et al. (2021)) suggests substantial differences in learned patterns, though some shallow-layer heads focus on local features. The ability of attention to capture localized patterns is further explored in Jelassi et al. (2022), emphasizing the role of positional encoding in learning spatial connectivity. Cordonnier et al. (2020) constructively proves that, under strong assumptions, an MhSA block can implement a convolutional layer if each attention head attends to a distinct location within a region the size of a convolutional kernel. In practice, as stated by the authors, this stands only as a *sufficient* condition. We further discuss this in Section 2.2. An influential

108 contribution to our work Han et al. (2022) discusses the relationship between attention (local) and
 109 Depth-Wise (DW) convolution, highlighting key properties that we further develop in Section 2.3.1.
 110

111 **1.3 OTHER APPROACHES**
 112

113 **Token Reduction.** Several works aim to reduce the number of tokens processed by transform-
 114 ers via removal or aggregation. DynamicViT (Rao et al. (2021)) and A-ViT (Yin et al. (2022))
 115 dynamically select tokens to discard at each MhSA block. Token Pooling (Marin et al. (2021))
 116 and EVIT (Liang et al. (2022)) cluster tokens into centroids, while ToMe Bolya et al. (2023) uses
 117 bipartite matching to merge token pairs. (Lu et al. (2023)) applies a policy-net to group nearby to-
 118 kens by semantic class. These methods face limitations: token reduction disrupts spatial structure,
 119 making these methods unsuitable for dense prediction tasks like segmentation or depth estimation.
 120 Moreover, techniques relying on clustering, gather/scatter operations, or dynamic shapes often incur
 121 significant overhead on specialized inference frameworks.
 122

123 **Efficient Attenions.** Several contributions propose alternative formulations of the attention layer
 124 to mitigate computational complexity (Shen et al. (2021); Xiong et al. (2021); Yao et al. (2024)).
 125 However, these methods are generally not intended to serve as drop-in replacements in pretrained
 126 Vision Transformers, where preserving the pretrained weights and model behavior is essential and
 127 retraining from scratch is impractical. Therefore, they are unsuitable for scenarios like ours, which
 128 require compatibility with existing pretrained models with minimal fine-tuning effort.
 129

130 **Synergetic optimizations.** Alternative research directions include focusing on the algorithmic and
 131 implementation refinement of more intensive operations to take full advantage of hardware capabili-
 132 ties, a prominent example is Flash-Attention (Dao et al. (2022); Dao (2024)). It is also important to
 133 mention performance optimization by reduced-precision computation, combined with quantization
 134 techniques aimed at mitigating the effects of precision loss. Such techniques, with the additional
 135 use of optimized hardware (e.g, Nvidia Tensor Cores), are orthogonal to the types of approaches
 136 proposed in this work and can work in synergy to maximize speedup. We are not interested in
 137 alternative backbones such as EfficientFormer (Li et al. (2022)), the MobileViT family (Mehta &
 138 Rastegari (2022a;b); Wadekar & Chaurasia (2022)), and the recent EfficientViT (Cai et al. (2023)).
 139

140 **2 METHODOLOGY**
 141

142 **2.1 BACKGROUND**
 143

144 **Vision Transformers and MhSA.** The ViT input is defined by splitting an image $I \in \mathbb{R}^{H \times W \times 3}$
 145 into non-overlapping patches of size $p \times p$, flattening each patch into a vector in \mathbb{R}^{3p^2} and projecting
 146 it to a d -dimensional embedding. Assuming $\frac{H}{p} = \frac{W}{p} = \sqrt{n}$, this yields an input tensor $X \in \mathbb{R}^{n \times d}$
 147 of n patch embeddings, to which is added a positional encoding. Most implementations, including
 148 Dino-V2, prepend a `[cls]` token, which we ignore for now. The sequence is processed through
 149 transformer blocks alternating Multi-head Self-Attention (MhSA) and feed-forward layers.
 150

151 Let n_h be the number of attention heads, the MhSA is parametrized by $W^Q, W^K, W^V \in$
 152 $\mathbb{R}^{d_i \times (n_h * d_h)}$ and $W^O \in \mathbb{R}^{(d_h * n_h) \times d_o}$ where typically $d_i = d_o = d$ and $d_h * n_h = d$, as we
 153 assume from now on. Defining Query, Keys, and Values for the h -th head as:
 154

$$Q^h = XW_{[:,h,:]}^Q K^h = XW_{[:,h,:]}^K V^h = XW_{[:,h,:]}^V \quad (1)$$

155 For the h -th head, the attention is computed as:
 156

$$Att(X)^h = E(X)^h V^h \quad (2)$$

$$E(X)^h = softmax \left(\frac{Q^h K^{h\top}}{\sqrt{d_h}} \right) \quad (3)$$

157 where $E(X)^h \in \mathbb{R}^{n \times n}$ is the attention (energy) matrix. Concatenating the head outputs yields the
 158 full MhSA output:
 159

$$MhSA(X) = [Att^1(X) \parallel \dots \parallel Att^{n_h}(X)]W^O \quad (4)$$

160 with \parallel denoting concatenation along the embedding dimension.
 161

162 **Convolutional Layers.** A Convolutional layer with kernel size k is parametrized by weights
 163 $W^C \in \mathbb{R}^{k \times k \times c_i \times c_o}$. Expliciting the symmetric shift set of size $k \times k$ as $\Delta_k = \{(s, r) \in \mathbb{Z}^2 : -\lfloor k/2 \rfloor \leq s, r \leq \lfloor k/2 \rfloor\}$ (assuming a stride factor of 1), the output at location (i, j) for an input
 164 $X \in \mathbb{R}^{h \times w \times c_i}$ is defined as:
 165

$$Conv(X, W^C)_{i,j} = \sum_{r,s \in \Delta_k} W_{r,s}^C {}^\top X_{i+r, j+s} \quad (5)$$

166 Thus, convolution produces a weighted local aggregation of the $k \times k$ neighborhood centered at
 167 (i, j) . Similarly, depth-wise convolution performs local aggregation by applying a distinct spatial
 168 filter to each channel independently. With $W^D \in \mathbb{R}^{k \times k \times c_i}$, we write
 169

$$Conv_{DW}(X, W^D)_{i,j} = \sum_{(r,s) \in \Delta_k} W_{r,s}^D \odot X_{i+r, j+s} \quad (6)$$

170 where \odot denotes elementwise multiplication.
 171

172 2.2 CONVOLUTIONAL APPROXIMATION

173 In this section, we formalize how attention can be approximated by convolution, and present the
 174 efficient depthwise decomposition at the core of our method. We later show that the SPViT He et al.
 175 (2024) bottleneck block arises as a special case of our formulation, extended with head ensembling.
 176

177 2.2.1 DROP-IN DEPTHWISE FORMULATION.

178 Consider a single attention head as in Equation (2). For clarity, we reshape the input $X \in \mathbb{R}^{n \times d}$
 179 to $X \in \mathbb{R}^{m \times m \times d}$ with $m = \sqrt{n}$, recovering spatial structure. Accordingly, $E(X)^h \in \mathbb{R}^{n \times n}$ can
 180 be viewed as $E(X)^h \in \mathbb{R}^{(m \times m) \times (m \times m)}$, and the values as $V^h \in \mathbb{R}^{m \times m \times d_h}$. When writing two-
 181 dimensional indices, we always refer to these unflattened tensors. The explicit form of attention at
 182 location (i, j) is:
 183

$$Att(X)_{i,j}^h = \sum_{r,s \in \Delta_m} E^h(X)_{(i,j),(i+r,j+s)} V_{i+r, j+s}^h \quad (7)$$

184 where Δ_m denotes the full receptive field that spans the whole $E(X)^h$. This resembles convolution,
 185 with key differences: the spatial aggregation weights $E^h(X)_{(i,j),(i+r,j+s)}$ depend on both the
 186 input X and the query position (i, j) , and convolutional kernels are fixed parameters shared across
 187 locations.
 188

189 We approximate attention by assuming that some heads can be replaced by *input-independent kernels*
 190 restricted to a local neighborhood $\Delta_k \subset \Delta_m$. Formally, for head h we write:
 191

$$Att(X)_{i,j}^h \approx \sum_{(r,s) \in \Delta_k} K_{r,s}^h V_{i+r, j+s}^h \quad (8)$$

192 where $K^h \in \mathbb{R}^{k \times k}$ are trainable parameters learned during fine-tuning.
 193

194 **Full convolution formulation.** A direct implementation of Equation (8) is to fold K^h into the
 195 value projection W^V , producing a kernel $W^{Vh} \in \mathbb{R}^{k \times k \times d_i \times d_h}$:
 196

$$\tilde{Att}_C(X)^h = Conv(X, W^{Vh}) \quad (9)$$

$$W_{r,s}^{Vh} = K_{r,s}^h W_{[:,h,:]}^V, \quad (r, s) \in \Delta_k \quad (10)$$

200 This formulation, while being a faithful analogue of Eq. (8), is not appealing from a complexity
 201 standpoint, as assessed in Section 3.2.
 202

203 **Depthwise decomposition.** To reduce cost, we separate the pointwise value projection from the
 204 spatial aggregation. We first compute values $V^h = X W_{[:,h,:]}^V$, then apply a depthwise convolution
 205 with head-specific kernels $\vec{K}^h \in \mathbb{R}^{k \times k \times 1 \times d_h}$:
 206

$$\boxed{\tilde{Att}_{DW}(X)^h = Conv_{DW}(V^h, \vec{K}^h)} \quad (11)$$

Compared to the full convolution, the complexity is reduced from $O(k^2 d_i d_h)$ to $O(d_i d_h + k^2 d_h)$. In the full formulation (Equation (9)), each $K_{r,s}^h$ is shared across all d_h channels, enforcing a single spatial pattern. Depthwise kernels \vec{K}^h , instead, provide one $k \times k$ filter per channel, enabling distinct spatial aggregations. While channel-wise sharing could be easily implemented, we relax it without affecting performance. This layer can replace any subset of attention heads in the MhSA block (Eq. (4)). Its implementation is schematized in Figure 1 and thoroughly evaluated in the experimental section.

Head-ensembling. As detailed in Section A.1.1, the formulation of He et al. (2024) builds on the sufficient condition of Cordonnier et al. (2020), where each head attends to a distinct spatial location within a local neighborhood. This assumption implicitly enforces a degenerate head ensembling, causing the MhSA block to collapse into a single effective head. In contrast, we derive the ensembling explicitly and show that it extends beyond the full convolution setting. Specifically, by assigning learnable combination weights $\gamma \in \mathbb{R}^{n_h}$ to control the contribution of each head, the ensembled value and output projections become:

$$W^{Ve} = \sum_{h=1}^{n_h} \sigma(\gamma_h) W_{[:,h,:]}^V, \quad W^{Oe} = \sum_{h=1}^{n_h} \sigma(\gamma_h) W_{[:,h,:]}^O, \quad (12)$$

with $\sigma(\cdot)$ a softmax over heads. Crucially, this explicit ensembling extends naturally to our depthwise formulation:

$$\begin{aligned} \tilde{MhSA}_{DW}^e(X) &= Conv_{DW}(V^e, \vec{K}^e) W^{Oe} \\ \text{s.t. } V^e &= X W^{Ve} \end{aligned} \quad (13)$$

and \vec{K}^e denotes the depthwise convolution kernel as in Equation (11). In this view, He et al. (2024) arises as a *special case* of our framework. We henceforth distinguish between the ensembled formulation (Equation (13)) and the unensembled formulation (direct head replacement via Equation (11)).

2.3 LAYER SELECTION

Given a target of p_h heads to approximate with convolution, selection can be either scattered, replacing arbitrary heads across the model, or blockwise, replacing all n_h heads within p_b MhSA blocks. As shown in Sec. 3.3, the blockwise strategy yields higher inference efficiency, and we therefore adopt it as the default. Below, we introduce two criteria for defining the head set \mathcal{S} , both applicable to either selection mode.

2.3.1 PROPOSED CRITERION.

As briefly mentioned, the approximation for $E(X)^h$ introduced in Equation (8) is equivalent to real attention under the conditions of Locality (L), translation invariance (TI), and Input Invariance (II). For a receptive field Δ_k and displacement $(s, r) \in \Delta_k$, these are:

$$\left\{ \begin{array}{l} (\text{L}) : E(X)_{(i,j),(u,v)}^h \neq 0 \text{ only if } (u - i, v - j) \in \Delta_k \\ (\text{TI}) : E(X)_{(i,j),(i+s,j+r)}^h = E(X)_{(l,t),(l+s,t+r)}^h \quad \forall (i,j), (l,t) \end{array} \right. \quad (14a)$$

$$\left\{ \begin{array}{l} (\text{II}) : E(X)^h = E(Y)^h \quad \forall X, Y \end{array} \right. \quad (14b)$$

$$\left\{ \begin{array}{l} (\text{II}) : E(X)^h = E(Y)^h \quad \forall X, Y \end{array} \right. \quad (14c)$$

Criterion Definition We empirically establish the sum of the pointwise standard deviation of $E(X)^h$ as a simple and effective proxy for identifying convolutional-like heads. Concretely, for each head $h \in \{1, \dots, N_h\}$, where $N_h = n_h n_b$ is the cumulative number of heads across n_b blocks, we compute the pointwise standard deviation σ_{E^h} of $E(X)^h$ over N_s input samples. Direct computation of σ_{E^h} impractical, since accumulating $\bar{E}^h(X_i)$ for a reasonable input set (i.e., $N_s = 1000$) would require over 600GB of memory. We use Welford's algorithm Welford (1962) to compute σ_{E^h} online in a single pass. We then define a scalar score

$$\Sigma_h = \sum \sigma_{E^h}, \quad (15)$$

270 summing over all entries of E^h . We select as candidate heads the set $\mathcal{S}_h^{[p_h]}$ of the p_h heads with the
 271 smallest Σ_h . In the blockwise setting, we adopt the same criterion at block level. For each block
 272 $b \in \{1, \dots, n_b\}$ we compute the mean score across its n_h heads:

$$274 \quad \Sigma_b = \frac{1}{n_h} \sum_{h \in [n_h]} \Sigma_h, \quad (16)$$

275 and select the set $\mathcal{S}_b^{[p_b]}$ of p_b blocks with the smallest Σ_b .

276 **Rationale** By construction, $\Sigma_h = 0$ is both necessary and sufficient for the Input-Invariance prop-
 277 erty Equation (14c). In the limit $\Sigma_h \rightarrow 0$, the kernel collapses to its expectation $E^h(X) \rightarrow \mu_{E^h}$,
 278 eliminating dependence on the input. Our heuristic is driven by the observation that Input-Invariance
 279 is the most stringent property: once achieved, it forces the head to ignore input variation entirely
 280 and reduces to a positional-only operator. In this regime, $E^h(X)$ derives solely from the learned
 281 positional encodings shared across heads in standard ViTs. Positional attention mechanisms have
 282 been linked to spatial connectivity patterns (patch association; Jelassi et al. (2022)), capturing the
 283 locality and translation-like structure that underlies convolutional inductive biases. We therefore use
 284 Σ_h as a heuristic, motivated by the Input-Invariance principle, but ultimately empirical. In practice,
 285 we find it to be a simple and effective selection rule, with extensive experimental validation in the
 286 remainder of the paper and additional visualizations in the Appendix (Figure A.2).

290 2.3.2 STOCHASTIC GATING.

291 As an alternative to the presented criterion, we propose a comparison with a selection method derived
 292 from Differentiable Subset Pruning (DSP) Li et al. (2021). While DSP in origin prunes transformer
 293 heads, we can easily generalize it for our scope. For simplicity, we present this mechanism in the
 294 blockwise case, although it can be trivially extended to the scattered selection. We define a set
 295 of trainable parameters $w^b \in \mathbb{R}^{n_b}$, leveraging the $\text{topk}(\cdot)$ operator we can retrieve the largest p_b
 296 elements of w^b :

$$297 \quad \text{topk}(w^b, p_b)_i = \begin{cases} 1 & \text{if } i \in \mathcal{S}_b^{[p_b]} \\ 0 & \text{otherwise} \end{cases} \quad (17)$$

298 Defining $\bar{w}_i^b = \text{topk}(w^b, p_b)_i$, we can implement a simple gating mechanism to select the chosen
 299 operation during the forward pass:

$$300 \quad \bar{MhSA}^i(X) = (1 - \bar{w}_i^b) MhSA(X)^i + \bar{w}_i^b \tilde{MhSA}(X)^i \quad (18)$$

301 This formulation involves only a minimal increase in the number of parameters and no additional
 302 loss terms. Since the topk operator is non-differentiable, to learn w^b during training, the Gumbel
 303 top-k relaxation Kool et al. (2019) is used, an extension of the Gumbel softmax trick Jang et al.
 304 (2016), which provides a differentiable approximation \tilde{w}^b of the hard selection \bar{w}^b , controlled by a
 305 temperature τ . As $\tau \rightarrow 0$, \tilde{w}^b approaches \bar{w}^b . We begin training with a higher τ to enable gradient
 306 flow, then anneal it to 10^{-3} using the schedule from DSP (Section 3.3).

310 3 EXPERIMENTS AND COMPARISONS

311 3.1 EXPERIMENTAL SETUP

312 Unless otherwise specified, our analysis is based on the Dinov2 (Oquab et al. (2023)) model fine-
 313 tuned on various downstream tasks. This choice simplifies the discussion of the results. In Sec-
 314 tion 3.2, we show that similar results hold when using other vision foundation transformer back-
 315 bones.

316 **Benchmarking.** To reflect real deployment conditions, we mainly target TensorRT on Nvidia
 317 Jetson Orin Nano to profile inference performances. Unlike general-purpose frameworks (e.g.,
 318 PyTorch), TensorRT compiles models into optimized GPU kernels, highlighting real-world per-
 319 formance constraints. In the appendix, we further detail the profile setup (Section A.2.2) and later
 320 extend the analysis to a broader range of hardware and software architectures (Section A.4.1).

324 **Task Performance.** We evaluate fine-tuned models on semantic segmentation (COCO Lin et al.
 325 (2014), ADE20K Zhou et al. (2017)) and classification (ImageNet-1K Russakovsky et al. (2015)).
 326 To support drop-in convolutions, we remove the [cls] token from inputs. For segmentation, this has
 327 no impact; for classification, we use the mean of tokens as decoder input, with negligible perfor-
 328 mance loss. Convolutional layers use a fixed kernel size $k = 3$ for efficiency across all tasks.
 329

330 **3.2 CONVOLUTION ATTENTION RESULTS**

331 **3.2.1 HEAD-LEVEL PROFILING.**

334 Table 1: Comparison of different choices for the MhSA block. All results are measured for a single
 335 MhSA block with $n_h = 16$ heads and an input size of 24×24 patches (Equivalent to an image
 336 resolution of 336×336 for Dino-V2). Batch size is set as 1.

Attention	FLOPs (G)	Params (M)	Inference (ms)	Memory (MB)
MhSA (Eq. (4))	6.19	4.2	3.2	47.2
Conv _[all] (Eq. (9))	12.08	2.1	3.71	4.5
DW _[all] (Eq. (11))	2.43	2.11	1.26	6.75
SPViT-style (He et al. (2024))	0.75	2.1	0.641	4.5
Ens+DW (Eq. (13))	0.15	2.1	0.215	0.288

346 In Table 1, we profile a single multi-head attention block, providing a straightforward setting to
 347 quantify performance differences. Both in the unensembled setup (lines 2-3) or in the ensembled
 348 one (lines 4-5), it is clear that the depthwise formulation is advantageous, speeding up execution by a
 349 factor $3\times$ with respect to the full convolution. The ensembled formulation is significantly faster, al-
 350 though, as discussed later in this chapter, it results in a more significant performance drop. Memory
 351 usage patterns are less intuitive; the separable formulation has a slightly higher memory require-
 352 ment due to intermediate results and less effective buffer reuse, which is offset in the ensembled
 353 formulation.

354 **3.2.2 FULL MODEL PERFORMANCE.**

356 When not otherwise specified, we first perform fine-tuning on the target task with regular MhSA
 357 heads, replace the selected heads with convolutional layers, and perform a new fine-tuning for half
 358 of the training epochs. The complete experimental setup is detailed in the Appendix. In Table 2 we
 359 compare the results obtained with different options for the MhSA block. For all experiments, we use
 360 the standard deviation criterion proposed in Section 2.3 with the blockwise selection. Despite not
 361 aiming for state-of-the-art performance, the strength of DinoV2 features makes our baseline results
 362 highly competitive. Latency is reported only for the ViT backbone to avoid being affected by the
 363 design choices of the decoder.

364 **Evaluation** We first confirm that the depthwise formulation matches the performance of full
 365 convolution ($CL2-CL3$), in line with our analytical derivation, while delivering a substantial
 366 speedup in inference. Without head ensembling, the full convolution baseline is 7.5% slower than
 367 MhSA ($CL1$), whereas the depthwise variant achieves a 17.2% speedup. For a fair comparison with
 368 the ensembled setup, we match configurations of $|\mathcal{S}|$ with similar observed speedup $|\mathcal{S}|$: 12/24
 369 blocks for the unensembled case and 10/24 for the ensembled case. In this setting, depthwise
 370 unensembled ($CL3$) incurs a smaller accuracy drop (-0.08 vs. -0.98 mIoU) than the SPViT-style
 371 full-convolution ensemble, while still providing a modest speedup advantage. When combined with
 372 head ensembling ($CL5$), the depthwise formulation achieves an 18.8% speedup, but at the cost of
 373 a larger -1.6 mIoU drop. The same trade-off is observed when increasing $|\mathcal{S}|$ to 16/24 and 12/24
 374 ($CL6-CL7$). Comparable results are observed on the smaller ViT-B backbone ($CB1-CB3$) and on
 375 the ImageNet classification task ($IL1-IL5$), confirming the consistency of these observations across
 376 model scale and heterogeneous tasks. Additional results on ViT-B and on ADE20K dataset are
 377 reported in Table 3

378
 379 Table 2: Results on COCO and Imagenet with different formulations. Results are obtained finetuning
 380 Dino-V2, 336×336 input resolution. Inference performances are reported with batch-size=1.

ID	Task	ViT	Attention	$ \mathcal{S} $	mIoU	δ -mIoU	Infer (ms)	Speedup (%)
381 $CL1$ $CL2$ $CL3$ $CL4$ $CL5$ $CL6$ $CL7$ $CB1$ $CB2$ $CB3$	382 $COCO$	383 $Large$	MhSA	-	66.03	(baseline)	161.4	(baseline)
			Conv _[all]	12/24	65.84	-0.19	173.5	-7.49
			DW _[all]	12/24	65.95	-0.08	133.6	17.21
			SPViT-style	10/24	65.05	-0.98	133.3	17.40
			Ens + DW	10/24	64.81	-1.61	131.1	18.79
		387 $Base$	DW _[all]	16/24	64.64	-1.39	126.1	21.85
			Ens + DW	12/24	63.92	-2.11	124.5	22.87
		389 $Base$	MhSA	-	63.37	(baseline)	49.9	(baseline)
			DW _[all]	6/12	62.22	-1.16	40.8	18.10
			Ens + DW	6/12	60.55	-2.83	38.1	23.52
ID	Task	ViT	Attention	$ \mathcal{S} $	Top-1 Acc.	δ -Acc	Infer (ms)	Speedup (%)
391 $IL1$ $IL2$ $IL3$ $IL4$ $IL5$	392 $Imagenet$	393 $Large$	MhSA	-	86.22	(baseline)	161.4	(baseline)
			DW _[all]	12/24	85.45	-0.77	133.6	17.21
			Ens + DW	10/24	84.96	-1.26	131.1	18.79
			DW _[all]	16/24	84.88	-1.34	126.1	21.85
			Ens + DW	12/24	84.65	-1.57	124.5	22.87

397
 398
 399 **Generalization.** We evaluate the generalization of our approach to backbone models beyond Di-
 400 nov2 by considering CLIP (Radford et al. (2021)) and MAE (He et al. (2022)). Despite their different
 401 pretraining objectives, both models share the same underlying ViT architecture, allowing us to repli-
 402 cate our training setup without modification. For each model, we evaluate both the ViT-Base and
 403 ViT-Large variants, with patch sizes indicated by /16 and /14, respectively. Results are reported in
 404 Table 4. We use the unensembled formulation with blockwise selection, applying the Σ_b criterion
 405 to identify the block set. Observing the drop in mIoU relative to the same backbone without drop-in
 406 convolutions (i.e., $|\mathcal{S}| = -$), we observe results that mirror those obtained with Dinov2, further
 407 validating the generality of our drop-in formulation across different vision foundation models.

408
 409 Table 3: Results on different tasks using the
 410 Depthwise formulation.

Task	ViT	Attention	$ \mathcal{S} $	Acc.
413 $Imagenet$	414 $Base$	MhSA	-	83.76
		DW _[all]	6/12	82.00
416 $ADE20K$	417 $Base$	MhSA	-	53.83
		DW _[all]	6/12	51.70
	418 $Large$	MhSA	-	56.84
		DW _[all]	12/24	56.05

408
 409 Table 4: Evaluation of Depthwise formulation
 410 applied to MAE and CLIP fine-tuned on COCO
 411 Semantic segmentation.

Model	Backbone	$ \mathcal{S} $	mIoU	Infer (ms)
412 MAE	ViT-B/16	-	58.84	42.95
	ViT-B/16	6/12	57.91	35.04
	ViT-L/16	-	60.22	122.47
	ViT-L/16	12/24	59.81	102.23
413 $CLIP$	ViT-B/16	-	61.52	42.93
	ViT-B/16	6/12	59.06	35.07
	ViT-L/14	-	64.65	153.91
	ViT-L/14	12/24	62.17	128.38

421 3.3 SELECTION MECHANISM RESULTS

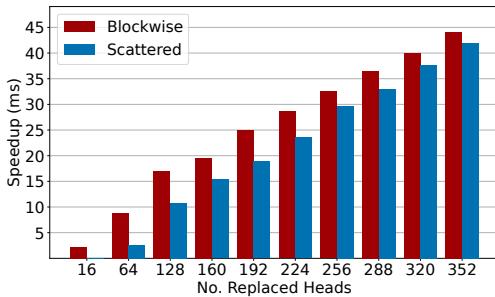
423 We first discuss the implications of blockwise and scattered selection. While for blockwise selection
 424 the exact subset $\mathcal{S}_b^{[p_b]}$ has no impact on the observed speedup, in the scattered setting the distribution
 425 of $\mathcal{S}_h^{[p_h]}$ is relevant. Scattered heads selection causes speedup to scale non-linearly with the number
 426 of selected heads due to overhead from memory and multiple kernels execution, which can offset
 427 gains. The impact on model performance is clearly observable in Figure 2, with the blockwise
 428 selection being consistently faster, while only implying a small performance drop (Table 5).
 429

430 **Comparison.** In Table 5 we compare the proposed selection heuristic (Section 2.3.1), with differ-
 431 entiable subset pruning (DSP) Section 2.3.2. For the latter, we evaluate both end-to-end training of
 432 selection gates (DSP-e2e, Equation (18)) and a two-stage variation (DSP-2S), where the learned set

432
433

Table 5: Comparison of selection mechanisms.

Crit.	Stages	BW	$ \mathcal{S} $	mIoU
Σ_b [LOWEST]	2		12/24	65.95
DSP - e2e	2	Yes	12/24	64.15
DSP - 2S	3		12/24	64.00
Σ_b [LOWEST]	2		17/24	63.77
DSP - e2e	2	Yes	17/24	58.25
DSP - 2S	3		17/24	64.20

(a) Comparision between Σ_b and DSP in Blockwise settingFigure 2: Speedup vs number of heads replaced in blockwise and scattered setups. Results on ViT-L (24 blocks, 16 heads per block 336×336).456
457
458
459
460
461

is reused in a new fine-tuning run with fixed selection, discarding the end-to-end weights. In the blockwise setup (Table 5a) with $|\mathcal{S}| = 12/24$ the Σ_b criterion outperforms the DSP, and DSP-2S reduces the gap only slightly, still trailing by nearly 2 mIoU points. A closer inspection (Figure 3), reveals that DSP often selects high-variance heads. Increasing to $|\mathcal{S}| = 17/24$ DSP-2S slightly surpasses Σ_b , while DSP-e2e suffers from severe training instabilities and degraded performance. In Table 5b (top section), this analysis is extended to the scattered selection, with a similar outcome which is further assessed in Section A.3.3.

462
463
464
465
466
467
468
469
470
471
472
473
474
475

Ablation. To further test our criterion, we also evaluate replacing the worst heads (highest Σ_{E^h}) in Table 5b. With only 7 blocks replaced, the performance drop already exceeds that of the best 12 blocks, and replacing the 12 worst blocks leads to severe degradation. Finally, we ablate the fine-tuning procedure (last row): a single-stage fine-tuning, where convolutions are applied directly, achieves performance close to the two-stage setup. Further ablations, such as fine-tuning only the convolutional kernel weights, are discussed in Section A.3.

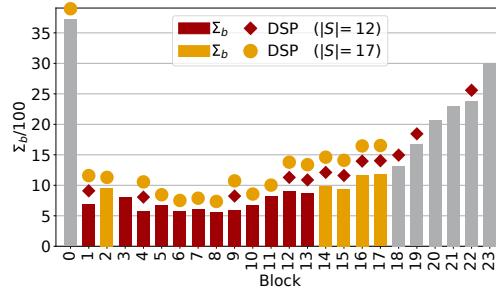
476
477

4 CONCLUSIONS AND FUTURE WORK

478
479
480
481
482
483
484
485

We assessed the effectiveness of a simple drop-in replacement for attention heads exhibiting convolution-like behavior in large-scale pretrained ViTs. The proposed framework achieved 17% speedup with minimal impact on downstream performance, highlighting that many pretrained heads can be approximated by efficient depthwise convolution without losing their functional role and thus largely preserving the power of pretrained weights. The investigated approach is not an alternative to existing pruning techniques, but rather as a component that can also be effective in combination with existing solutions. We will investigate this direction in future work. The selection criterion is another direction that requires further investigation. The proposed heuristic proved to be very effective, given its simplicity, yet there is clearly room to investigate more advanced selection criteria.

Crit.	Stages	BW	$ \mathcal{S} $	mIoU
Σ_h [LOWEST]	2		192/384	65.52
DSP - e2e	2	No	192/384	62.32
DSP - 2S	3		192/384	65.79
Σ_b [HIGHEST]	2		12/24	61.46
Σ_b [HIGHEST]	2	Yes	7/24	64.02
Σ_b [LOWEST]	1		12/24	65.63

(b) (top) Comparision between Σ_h and DSP in Scattered setting (bottom) Ablation of Σ_b : selection of the worst candidates (Σ_b [HIGHEST]) and 1-stage finetuning.Figure 3: Blocks selected using DSP and Σ_b criterion in blockwise setting.

486 REFERENCES
487

488 Maximiliana Behnke and Kenneth Heafield. Losing heads in the lottery: Pruning transformer. In
489 *The 2020 Conference on Empirical Methods in Natural Language Processing*, pp. 2664–2674.
490 Association for Computational Linguistics (ACL), 2020.

491 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
492 Hoffman. Token merging: Your ViT but faster. In *International Conference on Learning Repre-
493 sentations*, 2023.

494 Christopher Brix, Parnia Bahar, and Hermann Ney. Successfully applying the stabilized lottery
495 ticket hypothesis to the transformer architecture. In *Proceedings of the 58th Annual Meeting of
496 the Association for Computational Linguistics*, pp. 3909–3915, 2020.

497 Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
498 attention for high-resolution dense prediction. In *Proceedings of the IEEE/CVF International
499 Conference on Computer Vision*, pp. 17302–17313, 2023.

500 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
501 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
502 the International Conference on Computer Vision (ICCV)*, 2021.

503 Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
504 Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. *Advances in neural
505 information processing systems*, 33:15834–15846, 2020.

506 Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
507 attention and convolutional layers. In *International Conference on Learning Representations*,
508 2020. URL <https://openreview.net/forum?id=HJlnC1rKPB>.

509 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *Inter-
510 national Conference on Learning Representations (ICLR)*, 2024.

511 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
512 memory-efficient exact attention with IO-awareness. In *Advances in Neural Information Process-
513 ing Systems (NeurIPS)*, 2022.

514 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
515 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
516 the North American chapter of the association for computational linguistics: human language
517 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

518 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
519 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
520 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
521 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

522 Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
523 and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In
524 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12259–12269,
525 2021.

526 Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng, Jiaying Liu, and Jingdong Wang. On
527 the connection between local attention and dynamic depth-wise convolution. In *International
528 Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=L3_SsSNMmy.

529 Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
530 surgeon. *Advances in neural information processing systems*, 5, 1992.

531 Haoyu He, Jianfei Cai, Jing Liu, Zizheng Pan, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Prun-
532 ing self-attentions into convolutional layers in single path. *IEEE Transactions on Pattern Analysis
533 and Machine Intelligence*, 2024.

540 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 541 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 542 *vision and pattern recognition*, pp. 16000–16009, 2022.

543

544 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 545 *arXiv:1606.08415*, 2016.

546

547 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
 548 *preprint arXiv:1611.01144*, 2016.

549

550 Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
 551 *Advances in Neural Information Processing Systems*, 35:37822–37836, 2022.

552

553 Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them:
 554 The Gumbel-top-k trick for sampling sequences without replacement. In Kamalika Chaudhuri
 555 and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine*
 556 *Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 3499–3508. PMLR,
 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/kool19a.html>.

557

558 François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
 559 transformers. *arXiv preprint arXiv:2109.04838*, 2021.

560

561 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information*
 562 *processing systems*, 2, 1989.

563

564 Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. Differentiable subset pruning of transformer
 565 heads. *Transactions of the Association for Computational Linguistics*, 9:1442–1459, 2021.

566

567 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
 568 and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. *Advances in Neural*
 569 *Information Processing Systems*, 35:12934–12949, 2022.

570

571 Weicong Liang, Yuhui Yuan, Henghui Ding, Xiao Luo, Weihong Lin, Ding Jia, Zheng Zhang, Chao
 572 Zhang, and Han Hu. Expediting large-scale vision transformer for dense prediction without fine-
 573 tuning. *Advances in Neural Information Processing Systems*, 35:35462–35477, 2022.

574

575 Sihao Lin, Pumeng Lyu, Dongrui Liu, Tao Tang, Xiaodan Liang, Andy Song, and Xiaojun Chang.
 576 Mlp can be a good transformer learner. In *Proceedings of the IEEE/CVF Conference on Computer*
 577 *Vision and Pattern Recognition*, pp. 19489–19498, 2024.

578

579 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
 580 Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
 581 common objects in context. *CoRR*, abs/1405.0312, 2014. URL <http://arxiv.org/abs/1405.0312>.

582

583 Chenyang Lu, Daan de Geus, and Gijs Dubbelman. Content-aware token sharing for efficient se-
 584 mantic segmentation with vision transformers. In *Proceedings of the IEEE/CVF Conference on*
 585 *Computer Vision and Pattern Recognition*, pp. 23631–23640, 2023.

586

587 Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
 588 Oncel Tuzel. Token pooling in vision transformers. *arXiv preprint arXiv:2110.03860*, 2021.

589

590 Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-
 591 friendly vision transformer. In *International Conference on Learning Representations*, 2022a.

592

593 Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers,
 594 2022b.

595

596 Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-
 597 Nam Lim. Adavit: Adaptive vision transformers for efficient image recognition. In *Proceedings*
 598 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12309–12318,
 599 2022.

594 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? *Advances*
 595 *in neural information processing systems*, 32, 2019.
 596

597 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 598 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
 599 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 600 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 601 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 602 2023.

603 Yogi Prasetyo, Novanto Yudistira, and Agus Wahyu Widodo. Sparse then prune: Toward efficient
 604 vision transformers. *Available at SSRN* 4529273, 2023.

605 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 606 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 607 models from natural language supervision. In *International conference on machine learning*, pp.
 608 8748–8763. PMLR, 2021.

609

610 Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
 611 Do vision transformers see like convolutional neural networks? *Advances in neural information*
 612 *processing systems*, 34:12116–12128, 2021.

613

614 Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamiccvit:
 615 Efficient vision transformers with dynamic token sparsification. *Advances in neural information*
 616 *processing systems*, 34:13937–13949, 2021.

617

618 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 619 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
 620 ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision*
 (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

621

622 Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
 623 tuning. *Advances in neural information processing systems*, 33:20378–20389, 2020.

624

625 Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
 626 Attention with linear complexities. In *Proceedings of the IEEE/CVF winter conference on appli-*
cations of computer vision, pp. 3531–3539, 2021.

627

628 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 629 Herve Jegou. Training data-efficient image transformers & distillation through attention. In
 630 *International Conference on Machine Learning*, volume 139, pp. 10347–10357, July 2021.

631

632 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 633 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
634 tion processing systems, 30, 2017.

635

636 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
 637 self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In *Proceedings of*
the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5797–5808, 2019.

638

639 Shakti N. Wadekar and Abhishek Chaurasia. Mobilevitv3: Mobile-friendly vision transformer with
 640 simple and effective fusion of local, global and input features, 2022.

641

642 Barry Payne Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):419–420, 1962.

643

644 Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on*
645 computer vision (ECCV), pp. 3–19, 2018.

646

647 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
 648 Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
 649 *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 14138–14148, 2021.

648 Kaixin Xu, Zhe Wang, Chunyun Chen, Xue Geng, Jie Lin, Xulei Yang, Min Wu, Xiaoli Li, and Weisi
 649 Lin. Lpvit: Low-power semi-structured pruning for vision transformers. In *European Conference*
 650 *on Computer Vision*, pp. 269–287. Springer, 2024.

651

652 Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz. Global vision
 653 transformer pruning with hessian-aware saliency. In *Proceedings of the IEEE/CVF conference on*
 654 *computer vision and pattern recognition*, pp. 18547–18557, 2023.

655 Zhiyu Yao, Jian Wang, Haixu Wu, Jingdong Wang, and Mingsheng Long. Mobile attention: mobile-
 656 friendly linear-attention for vision transformers. In *Forty-first International Conference on Ma-*
 657 *chine Learning*, 2024.

658

659 Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
 660 Adaptive tokens for efficient vision transformer. In *Proceedings of the IEEE/CVF conference on*
 661 *computer vision and pattern recognition*, pp. 10809–10818, 2022.

662 Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, and Zhangyang
 663 Wang. Unified visual transformer compression. In *International Conference on Learning Repre-*
 664 *sentations*, 2022. URL <https://openreview.net/forum?id=9jsZiUgkCZP>.

665 Chuanyang Zheng, Kai Zhang, Zhi Yang, Wenming Tan, Jun Xiao, Ye Ren, Shiliang Pu, et al. Savit:
 666 Structure-aware vision transformer pruning via collaborative optimization. *Advances in Neural*
 667 *Information Processing Systems*, 35:9010–9023, 2022.

668

669 Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
 670 parsing through ade20k dataset. In *Proceedings of the IEEE Conference on Computer Vision and*
 671 *Pattern Recognition*, 2017.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A.1 ADDITIONAL DETAILS
703704 A.1.1 DERIVATION OF ENSEMBLED FORMULATION
705706 A closely related formulation is discussed in He et al. (2024), to derive it, we can rewrite Equation (4)
707 as:
708

709
$$MhSA(X) = \sum_{h \in [n_h]} Att^h(X) W_{[:,h,:]}^O \quad (\text{A.1})$$

710 If we apply the approximation \tilde{Att} from Equation (8) to all attention heads, we can rewrite explicitly
711 the approximated $MhSA$ output value at spatial location (i, j) as:
712

713
$$MhSA(X)_{i,j} = \sum_{h \in [n_h]} \left(\sum_{(r,s) \in \Delta_k} K_{r,s}^h X_{i+r, j+s} \right) W_{[:,h,:]}^V W_{[:,h,:]}^O \quad (\text{A.2})$$

714

715 The authors construct their formulation based on Cordonnier et al. (2020), which derives a *sufficient*
716 condition valid only in the case where each attention head attends at one and only one spatial location
717 in Δ_k , under the assumption that $k = n_h$. For ease of notation, we can imply this condition by
718 imposing:
719

720
$$K_{(s,r)}^h \neq 0 \leftrightarrow sk + r = h \quad (\text{A.3})$$

721
$$k = n_h$$

722 Only under a similar assumption, Equation (A.2) can be equivalent to:
723

724
$$MhSA_{i,j}^e = \left(\sum_{(s,r) \in \Delta_k} X_{i+s, j+r} \overline{W_{s,r}^V} \right) \overline{W^O} \quad (\text{A.4})$$

725
726
$$s.t \quad \begin{cases} \overline{W^V}_{s,r} = \sum_{h \in [n_h]} K_{s,r}^h W_{[:,h,:]}^V \\ \overline{W^O} = \sum_{h \in [n_h]} \sum_{(s,r) \in \Delta_k} K_{s,r}^h W_{[:,h,:]}^O \end{cases}$$

727

728 An assumption equivalent to Equation (A.3), imply $\overline{W^O} = W^O$ and $X_{i+s, j+r} \overline{W^V}_{s,r} =$
729 $X_{i+s, j+r} W_{[:,h,:]}^V$, ($h = sk + r$). In practice, this collapses the MhSA block to a single convolution,
730 therefore, the same implementation of Equation (11) can be applied to cast the innermost
731 product of Eq. (A.4). The authors of He et al. (2024) implicitly relax both conditions of Eq. (A.3)
732 and learn to ensemble the attention heads controlled by the weights $\sigma_h(K)$ where $\sigma_h(\cdot)$ defines the
733 softmax function applied over the heads dimension. We defer to the referring work for further
734 details. In Equation (A.4) the parameters $K \in \mathbb{R}^{n_h \times k \times k}$ control both the ensembling of the multiple
735 heads in a single one and the spatial aggregation through the convolution operation. By defining a
736 set of learnable parameters $\gamma \in \mathbb{R}^{n_h}$ to control the aggregation of heads projections, the formulation
737 of Equation (A.4) can be seen as a special case of our method presented in Section 2.2.1, with the
738 addition of an ensembling of the head projections controlled by a set of trainable parameters.
739740 A.2 EXPERIMENTAL SETUP
741742 A.2.1 DOWNSTREAM FINETUNING SETUP
743744 For all downstream tasks, we share a similar optimization setup, leveraging AdamW optimizer with
745 a Cosine annealing scheduler and linear warmup. For each task, we build a lightweight decoder
746 on top of pretrained Dino-V2, finetuning Dino while training the decoder from scratch. We assess
747 performance using established metrics from the literature: mean Intersection over Union (mIoU)
748 for semantic segmentation and top-1 accuracy, based on the highest-scoring prediction, for image
749 classification.
750751 **Semantic segmentation.** The semantic segmentation task is a good representative of dense prediction
752 tasks, and the complexities of formulations found in tasks like instance segmentation. We build
753 a simple convolutional decoder on top of Dino-v2 backbone to upscale the patch-level embeddings
754

756 from DINO to pixel-level embeddings. The decoder consists of 3 transposed convolution blocks,
 757 with Group Normalization Wu & He (2018) and GeLU activation Hendrycks & Gimpel (2016),
 758 to gradually recover the input resolution, and two additional convolution layers project pixel-level
 759 embeddings to the required number of channels. For all experiments on COCO, we use an input
 760 resolution of 336×336 and 192×192 output resolution. For ADE20K, the input and output res-
 761 olutions are instead 336×448 and 192×256 . We optimize the CrossEntropy loss function, first
 762 stage finetuning is conducted for 100 epochs with an effective batch-size of 1024, leveraging random
 763 resized crop and color jitter augmentation.

764

765 **Image Classification.** We follow the same design philosophy for the classification task on
 766 Imagenet-1K. As done in the DinoV2 paper, we build a minimal decoder with a single fully-
 767 connected layer to project d embedding dimension to 1000 classes logits. When `cls` token is not
 768 available, we use the average of all output tokens as a substitute. We optimize cross-entropy loss
 769 and use only random crop and horizontal flip as training-time augmentation. First-stage finetuning
 770 is conducted for 50 epochs.

771

772 **Finetuning with Convolution.** After the first finetuning stage, we replace the selected heads with
 773 the formulation of choice, query and key projection weights are discarded. The second finetuning
 774 stage is performed for half of the first stage epochs with half batch size and the same hyperparam-
 775 eters. For convolutional layers, we initialize kernel weights with a Gaussian distribution, having ob-
 776 served a slight speedup in convergence speed, and exclude kernel parameters from L2-regularization.

777

A.2.2 BENCHMARKING SETUP

778

779 **Nvidia Hardware.** To profile models on Nvidia devices, we use the classic workflow of exporting
 780 from pytorch to onnx format and then building the TensorRT engine leveraging Python APIs,
 781 serializing the produced engine to a file. For benchmarking, we leverage the provided `trtexec`
 782 utility, with the following set of arguments:

783

```
$ trtexec --loadEngine=model.onnx --useCudaGraph --noDataTransfers  

--useSpinWait --iterations=100 --avgRuns=100 --exportTimes=measure.json
```

786

787 For detailed head profiling (Table 1, Table A.4) we leverage the Nvidia DL Designer tool¹, providing the onnx
 788 model.

789

790 **Additional hardware.** To profile on Hailo8 we first compile onnx models to `.hef` (Hailo Executable
 791 Format) binaries leveraging the provided sdk, then run benchmarking on the target hardware with the included
 792 profiling utility. For CPU platforms, we directly run the onnx model with onnx Runtime, leveraging a custom
 793 python script. To avoid fluctuations due to the operating system scheduler, we pin the profiling process to a
 794 single core and execute with a real-time scheduling policy. This is achieved with the following syntax:

795

```
$ taskset -c 3 chrt -f 99 python3 benchmark_onnx.py <model_file>.onnx
```

796

A.3 ADDITIONAL EXPERIMENTS

799

A.3.1 FINETUNING CONVOLUTION ONLY

800

802 We briefly experimented with performing second-stage finetuning by freezing first-stage weights, except for
 803 the affected heads. The preliminary experiment, reported in Table A.1 performs surprisingly well, considering
 804 only 1/10 of the parameters are updated.

805

A.3.2 DEALING WITH [CLS] TOKEN

807

808 As mentioned in the discussion, to make Dino-V2 ViT backbone compatible with the convolutional formulation,
 809 we need to remove the [cls] token, which would not allow reshaping value tokens. This could be a concern,

¹<https://developer.nvidia.com/nsight-dl-designer>

810 Table A.1: Results on COCO for second-stage finetuning (ViT-L, Conv-DW) Frozen or Unfrozen
 811 Backbone

813 Task	814 Frozen BB	815 Train Params	816 Metric
COCO	NO	284.4M	65.95
COCO	YES	25.3M	65.12

817
 818 since [cls] is used in pretraining and typically in classification tasks. In Table A.2 we show a quick ablation on
 819 COCO and Imagenet tasks, for the former we observe no impact on mIoU metric, the latter has a small drop in
 820 Accuracy. In light of these results, we opted for the most direct approach, removing the [cls] from the model.
 821

822 Table A.2: Effect of [cls] token presence on different tasks
 823

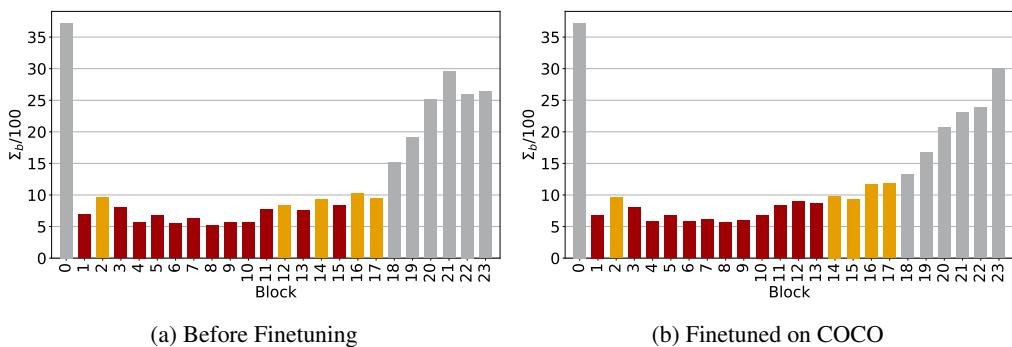
824 Task	825 ViT	826 Attention	827 [CLS]	828 Metric
COCO	Large	MhSA	NO	66.03
COCO	Large	MhSA	YES	66.03
Imagenet	Large	MhSA	NO	86.22
Imagenet	Large	MhSA	YES	86.35

830 In a preliminary stage, we considered the option of leveraging a set of parameters to control the flow of global
 831 information to the [cls] token, we did not pursue this direction because of the overhead.
 832

833 A.3.3 CONSIDERATIONS ON SELECTION CRITERIA

835 For the proposed criterion, we compute Σ_h (Equation (15)) and consequently Σ_b after the first stage finetuning,
 836 leverage $N_s = 1000$ samples from the training split of the corresponding dataset.
 837

838 **Effects of Finetuning.** We briefly discussed the possibility of single-stage finetuning, applying convolution
 839 over Dino weights, with no prior finetuning on the target task. For the experiment reported in Table 2, we
 840 observe promising results, while still relying on finetuned weights to apply Σ criterion. In Figure A.1, we
 841 report Σ_b distribution before and after finetuning on COCO, we can observe that selection using Σ criterion
 842 is not significantly affected by finetuning. With $n_b = 17$ the selection set would match, with $n_b = 12$ the
 843 selection differs by a single block. This suggests further potential to investigate single-stage finetuning.
 844



856 Figure A.1: Distribution of Σ_b before and after COCO finetuning. In red, the 12 selected blocks, in
 857 orange, the next 5 (selecting 17 blocks)

858
 859 **Visualizations.** In Section 2.3.1, we introduced the criterion based on standard deviation for selection
 860 of heads to be replaced. In Figure A.2 we propose an intuitive visualization to qualitatively appreciate the
 861 effect of σ_h on the attention kernels. We obtain the visualization by aligning each element of reshaped
 862 $\sigma_h \in \mathbb{R}^{(m \times m) \times (m \times m)}$ (i.e., each row of $E(X)^h$) by centering the query pixel at a fixed location (center
 863 pixel), and finally computing the mean value. This visualization allows us to highlight that the relationship
 864 between sigma and locality properties is independent of input.

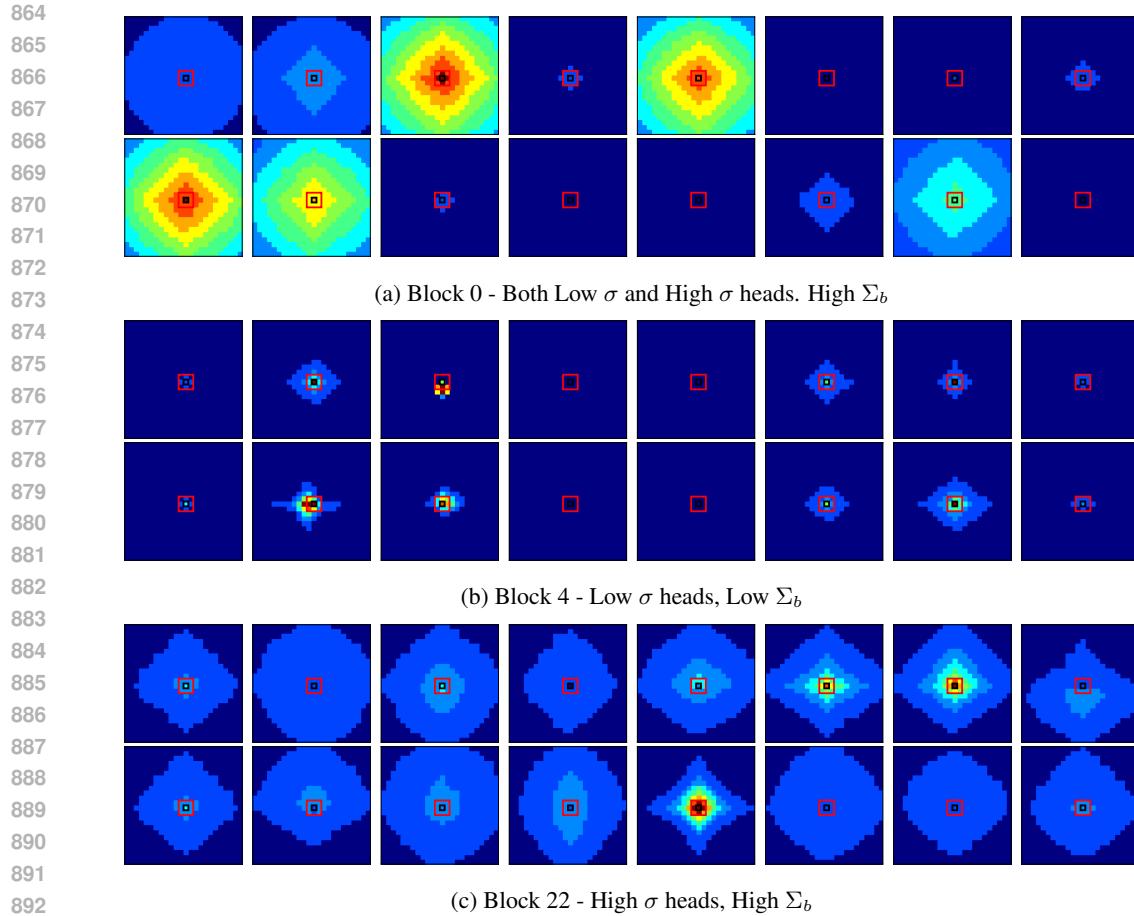


Figure A.2: Visualization of σ_h for different heads in Dino-V2 ViT-L finetuned on coco datasets. The visualization is obtained by aligning all σ_h around the central pixel and computing the average. Red square represents the size of the 3×3 convolutional kernel.

Contribution of Positional Encoding. In Section 2.3 we hinted that a key role is played by positional encoding in enforcing convolutional-like behavior when $\Sigma_h \rightarrow 0$. In an attempt to get an insight, in Section A.3.3 we visualize the correlation score between positional encoding vectors.

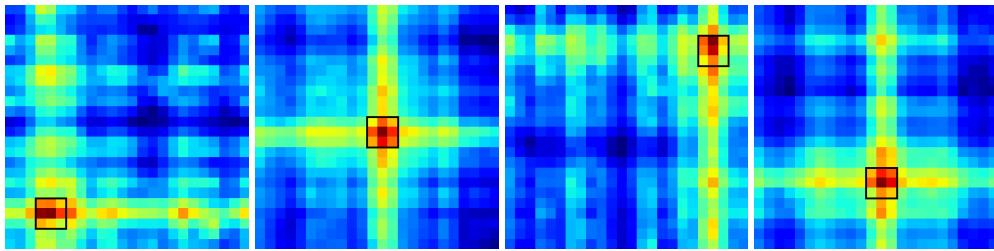
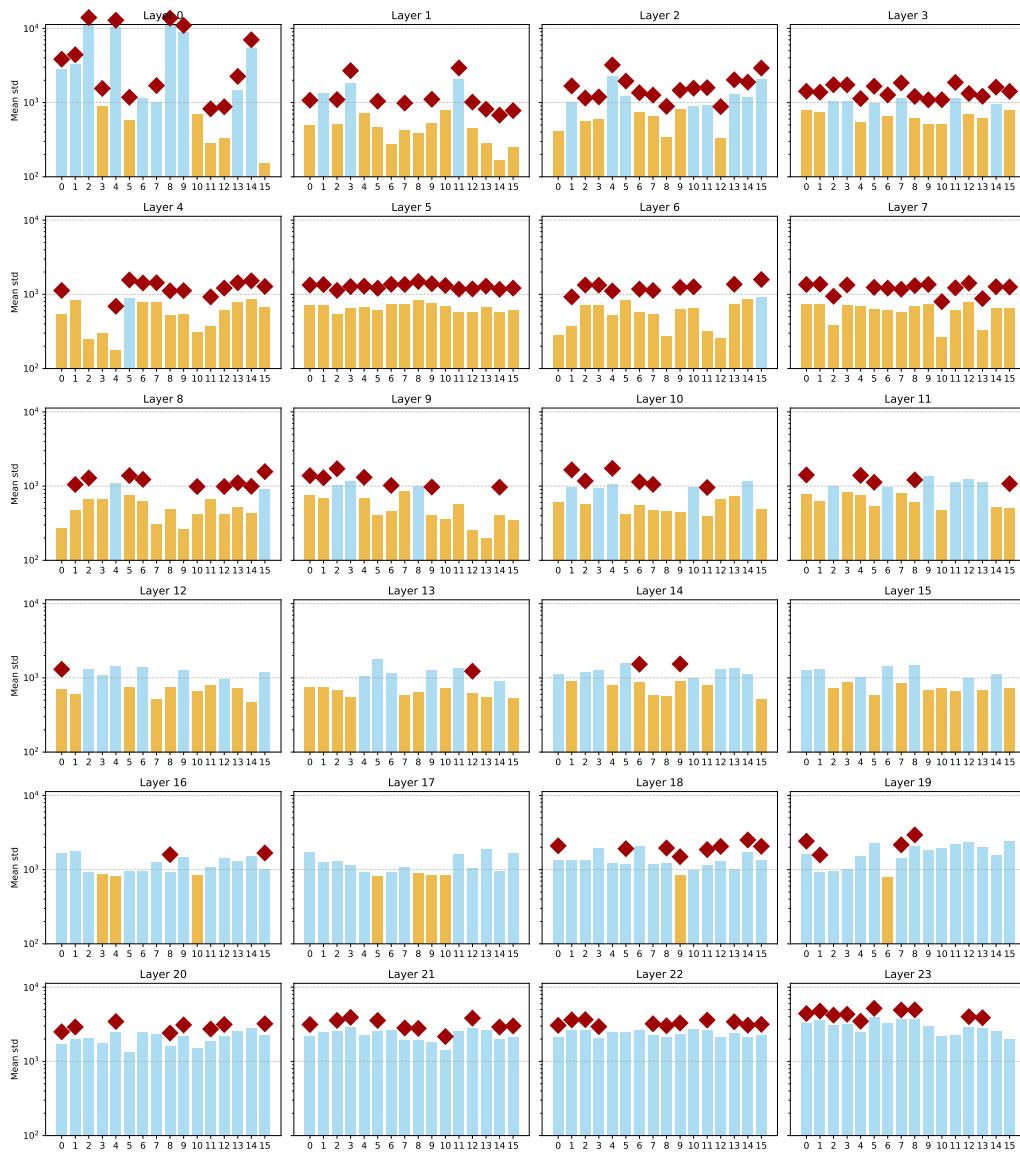


Figure A.3: Visualization of correlation between Dino-V2 positional embedding vectors at sample query locations.

This simple experiment provides insight into the strong spatial patterning and locality bias induced by positional encoding.

Distribution of selected Heads. In Section 3.3 we compared Σ and DSP criteria and discussed that in the blockwise setup, DSP tends to agree with Σ when performing competitively on the task ($n_b = 17$), as shown Figure 3. We extend this visualization to the scattered case in Figure A.4, in this case we note that although the two methods perform similarly (Table 5), the selected heads follow a different distribution. So far, we can only

918 speculate regarding this phenomenon: one hypothesis being that the heads selected by DSP may adapt to suit
 919 the convolution constraints, even if they are not met before fine-tuning.
 920



958 Figure A.4: Values of Σ_h for each individual head in Dino-V2 ViT-L, distribution after finetuning
 959 on COCO. Orange, 192 heads selected with the lowest Σ_h (i.e. scattered criteria). Red diamond
 960 indicates heads selected by DSP.
 961
 962

963 A.4 FURTHER PROFILING

964
 965 In Figure A.5, we observe the speedup trend as a function of the number of replaced blocks for both ensem-
 966 bled and unensembled formulations. In our experiments, we replaced up to 16 out of 24 blocks in the ViT-L
 967 backbone, achieving over a 20% speedup. In the future, an improved fine-tuning strategy could push the per-
 968 formance boundary, allowing the replacement of more blocks.
 969
 970

971 A.4.1 ADDITIONAL HARDWARE

972 Below, we propose to validate the computational benefits of the proposed method on platforms other than the
 973 Nvidia Jetson Orin. The platforms chosen are a second Nvidia board, the least powerful Nvidia Jetson Nano

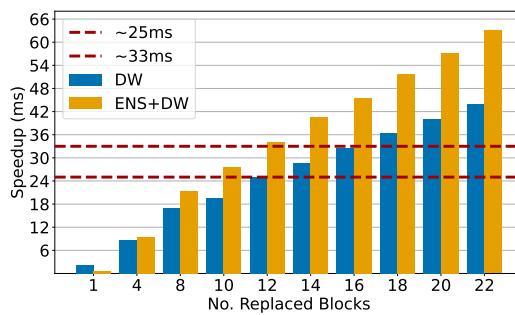


Figure A.5: Number of replaced blocks (blockwise) versus speedup for Depthwise formulations with and without ensembling. Results obtained on ViT-L, resolution 336 × 336.

(not to be confused with ORIN Nano), the Hailo-8 AI Accelerator, and CPU platforms ARM Cortex A53 (Mobile CPU) and Intel-Core i7-11700K (Desktop CPU).

Table A.3: Head-level profiling on different hardware platforms.

Heads	Mode	Orin (ms)	Nano (ms)	Hailo8 (ms)	A53 (ms)	i7 (ms)	Params (M)	FLOPS (G)
12	MhSA	0.75	8.41	1.39	11.02	334.67	1.41	2.362
12	DW	0.28	2.65	0.89	0.89	78.92	0.61	1.189
12	Ens+DW	0.09	0.28	0.30	0.30	7.27	0.05	0.1
16	MhSA	0.93	13.65	2.42	19.45	593.92	2.42	4.20
16	DW	0.32	4.11	1.14	4.22	143.93	1.08	2.11
16	Ens+DW	0.06	0.32	0.42	0.27	9.74	0.07	0.13

Similarly to Table 1, we benchmark the performance of a single attention block of n_h heads, comparing the full MhSA, our drop-in depthwise formulation (DW), and the depthwise convolution with the addition of head ensembling (Ens + DW). The results obtained confirm the soundness of the proposed approach on a broader set of inference platforms.

A.4.2 FP16 INFERENCE

TensorRT supports various numerical precisions, but exhaustive comparison is challenging. The compiler optimizes multi-head self-attention (MhSA) via Myelin, an obscure, undocumented backend². In FP16 mode, Myelin automatically replaces MhSA with Flash-AttentionV2 Dao (2024), later referred to as FMhSAV2, a specialized implementation leveraging specific Nvidia GPU features. Since this behavior cannot be disabled, evaluations are restricted to Nvidia Ampere GPUs and newer. In Table A.4 we compare performance in said scenario, showing that the discussed approximations outperform full self-attention even in this challenging scenario.

Table A.4: Head-level inference performance comparison at FP32 and FP16 precision.

Attention	Inference (ms)	Memory (MB)
MhSA (FP32)	3.2	47.2
Conv-DW (FP32)	1.26	6.75
Ens+DW (FP32)	0.215	0.288
FMhSAV2 (FP16)	1.14	5.62
Conv-DW (FP16)	0.86	3.38
Ens+DW (FP16)	0.271	1.27

A.4.3 USAGE OF LARGE LANGUAGE MODELS (LLMs)

The authors specify that the use of LLMs in the development of this work and this manuscript is limited and contingent as support in the writing (spell checking, suggestions on phrasing, and helping with L^AT_EX constructs).

²<https://github.com/NVIDIA/TensorRT/issues/2576>