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ABSTRACT

Pretrained vision foundation models deliver strong performance across tasks with
limited fine-tuning. However, their Vision Transformer (ViT) backbones impose
high inference costs, limiting deployment on resource-constrained devices. In this
work, we accelerate large-scale pretrained ViTs while preserving their feature ex-
traction capabilities by exploiting the intrinsic convolution-like behavior of some
attention heads. Specifically, we introduce an efficient depthwise convolution-
based layer that serves as a drop-in replacement for these heads. Additionally, we
propose simple strategies to identify which heads can be replaced and introduce
a fine-tuning procedure that recovers downstream task performance. Across both
image classification and segmentation tasks, our method achieves 17–20% infer-
ence speedup with minimal performance degradation. We validate the approach
through detailed derivations, extensive experiments, and efficiency benchmarks
on multiple low-power platforms. Implementation will be released publicly.

Large-scale-pretrained Vision Transformers (ViTs) (Dosovitskiy et al. (2021)) have emerged as a
powerful paradigm in modern machine learning. With minimal fine-tuning, they can perform com-
petitively on a wide range of downstream vision tasks. Dominating paradigms include DINO (Caron
et al. (2021); Oquab et al. (2023)), MAE (He et al. (2022)), and CLIP (Radford et al. (2021)). A
noticeable downside is the high inference cost of the ViT architecture, especially when targeting
inference on low-power edge devices. Although various methods have been proposed to reduce the
inference cost of ViTs, several challenges remain. Popular approaches leverage a reduction in token
counts (Bolya et al. (2023); Meng et al. (2022); Graham et al. (2021)), which disrupts the spatial
structure of the features and limits the applicability to dense prediction tasks (i.e, segmentation).
Another common occurrence is the reliance on dynamic conditional execution flow or dynamically
shaped tensors, seldom supported by high-performance inference frameworks. In addition, for fine-
tuned foundation models, it is fundamental to preserve the large-scale pretrained weights, which
is usually not the case in efficient transformer backbones (Cai et al. (2023); Mehta & Rastegari
(2022a); Wadekar & Chaurasia (2022)).

(a) Dot-product Attention

Reshape
DW-Conv

(b) Proposed Drop-in replacement

Figure 1: Illustration of the proposed drop-in approximation. We replace attention (a) with a
Depthwise convolution (b), which improves inference speed while reusing the pre-trained network
parameters for performance.

To address these challenges, in this paper, we propose an efficient, drop-in acceleration method for
foundation ViTs. Building on previous research (Section 1.2), we assume that several Multi-head
Self Attention (MhSA) Vaswani et al. (2017) heads learn highly localized, static patterns, with a
structure closely resembling convolution. We propose to replace a carefully selected set of com-
putationally intensive Self-Attention operators with a much more efficient depthwise convolution
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over the reshaped Value tensors (Figure 1). Our method works as a drop-in replacement, recover-
ing the performance of the large-scale pretrained model with limited fine-tuning, showing minimal
performance loss while achieving 17% to over 20% speedup.

The contributions of this work can be summarized as follows.

• We derive an efficient formulation that serves as a drop-in replacement for attention heads
that learn particular convolution-like structures. We later show that head ensembling from
He et al. (2024) can be made explicit and generalized to our setting, benefiting from the
more efficient formulation.

• We propose a simple methodology to identify the heads to be approximated by convolu-
tion. We also validate the proposed heuristic against a more sophisticated solution that we
reformulate for this context.

• We explicitly consider the problem of performance optimization in the context of pretrained
foundation models, targeting a realistic deployment scenario, focusing on a popular edge
platform device (Nvidia Orin Nano) and an appropriate inference framework (TensorRT).
We later extend the analysis to multiple specialized platforms.

We believe that the work presented addresses numerous challenges that have been only partially
covered in the literature. It also allows for casting the performance improvement of vision founda-
tion models from a different perspective, which in the future might become part of more advanced
pruning frameworks.

1 RELATED WORK

1.1 PRUNING OF TRANSFORMERS

The idea of reducing the complexity of a neural network by eliminating less important parameters,
connections, and layers dates back to the early deep learning era (LeCun et al. (1989); Hassibi &
Stork (1992)). Similar techniques, while applicable to BERT Devlin et al. (2019) style transformers
(Sanh et al. (2020); Chen et al. (2020); Brix et al. (2020)), induce unstructured sparsity, often causing
overhead due to irregular memory access. Some works partially address this via block sparsity (La-
gunas et al. (2021); Xu et al. (2024)). Structured pruning of attention heads was explored in Michel
et al. (2019), with Voita et al. (2019) introducing stochastic gating to select heads during training.
Building on this, Behnke & Heafield (2020) identifies prunable heads early using confidence scores,
while DSP Li et al. (2021) introduces explicit control over pruning ratios.

Some pruning methods for ViTs require access to training (Prasetyo et al. (2023); Lin et al. (2024)),
others rely on distillation (Yu et al. (2022); Yang et al. (2023)). Many focus on pretrained DeiT
models (Touvron et al. (2021)) for classification (Zheng et al. (2022); Yu et al. (2022); He et al.
(2024); Lin et al. (2024)). SPViT He et al. (2024) prune MhSA blocks during fine-tuning into learned
convolutional layers formulated under the sufficient condition of Cordonnier et al. (2020). That
assumption implicitly collapses the block into a single convolution. In contrast, we derive a more
general formulation applicable to pretrained foundation models, and later show how SPViT arises as
a special case within our framework. Lambda-ViT (Lin et al. (2024)) gradually degenerates MhSA
blocks to identity mappings, guided by a transfer-entropy measure. Both target DeiT backbones for
classification tasks.

1.2 ATTENTION MODELING AS CONVOLUTION

Several works have investigated the similarity between convolution and spatial relationships learned
by attention. (Raghu et al. (2021)) suggests substantial differences in learned patterns, though some
shallow-layer heads focus on local features. The ability of attention to capture localized patterns
is further explored in Jelassi et al. (2022), emphasizing the role of positional encoding in learning
spatial connectivity. Cordonnier et al. (2020) constructively proves that, under strong assumptions,
an MhSA block can implement a convolutional layer if each attention head attends to a distinct
location within a region the size of a convolutional kernel. In practice, as stated by the authors,
this stands only as a sufficient condition. We further discuss this in Section 2.2. An influential
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contribution to our work Han et al. (2022) discusses the relationship between attention (local) and
Depth-Wise (DW) convolution, highlighting key properties that we further develop in Section 2.3.1.

1.3 OTHER APPROACHES

Token Reduction. Several works aim to reduce the number of tokens processed by transform-
ers via removal or aggregation. DynamicViT (Rao et al. (2021)) and A-ViT (Yin et al. (2022))
dynamically select tokens to discard at each MhSA block. Token Pooling (Marin et al. (2021))
and EVIT (Liang et al. (2022)) cluster tokens into centroids, while ToMe Bolya et al. (2023) uses
bipartite matching to merge token pairs. (Lu et al. (2023) )applies a policy-net to group nearby to-
kens by semantic class. These methods face limitations: token reduction disrupts spatial structure,
making these methods unsuitable for dense prediction tasks like segmentation or depth estimation.
Moreover, techniques relying on clustering, gather/scatter operations, or dynamic shapes often incur
significant overhead on specialized inference frameworks.

Efficient Attentions. Several contributions propose alternative formulations of the attention layer
to mitigate computational complexity (Shen et al. (2021); Xiong et al. (2021); Yao et al. (2024)).
However, these methods are generally not intended to serve as drop-in replacements in pretrained
Vision Transformers, where preserving the pretrained weights and model behavior is essential and
retraining from scratch is impractical. Therefore, they are unsuitable for scenarios like ours, which
require compatibility with existing pretrained models with minimal fine-tuning effort.

Synergetic optimizations. Alternative research directions include focusing on the algorithmic and
implementation refinement of more intensive operations to take full advantage of hardware capabil-
ities, a prominent example is Flash-Attention (Dao et al. (2022); Dao (2024)). It is also important to
mention performance optimization by reduced-precision computation, combined with quantization
techniques aimed at mitigating the effects of precision loss. Such techniques, with the additional
use of optimized hardware (e.g, Nvidia Tensor Cores), are orthogonal to the types of approaches
proposed in this work and can work in synergy to maximize speedup. We are not interested in
alternative backbones such as EfficientFormer (Li et al. (2022)), the MobileViT family (Mehta &
Rastegari (2022a;b); Wadekar & Chaurasia (2022)), and the recent EfficientViT (Cai et al. (2023)).

2 METHODOLOGY

2.1 BACKGROUND

Vision Transformers and MhSA. The ViT input is defined by splitting an image I ∈ RH×W×3

into non-overlapping patches of size p×p, flattening each patch into a vector in R3p2

and projecting
it to a d-dimensional embedding. Assuming H

p = W
p =

√
n, this yields an input tensor X ∈ Rn×d

of n patch embeddings, to which is added a positional encoding. Most implementations, including
Dino-V2, prepend a [cls] token, which we ignore for now. The sequence is processed through
transformer blocks alternating Multi-head Self-Attention (MhSA) and feed-forward layers.

Let nh be the number of attention heads, the MhSA is parametrized by WQ,WK ,WV ∈
Rdi×(nh∗dh) and WO ∈ R(dh∗nh)×do where typically di = do = d and dh ∗ nh = d, as we
assume from now on. Defining Query, Keys, and Values for the h-th head as:

Qh = XWQ
[:,h,:]K

h = XWK
[:,h,:]V

h = XWV
[:,h,:] (1)

For the h-th head, the attention is computed as:

Att(X)h = E(X)hV h (2)

E(X)h = softmax

(
QhKh⊤

√
dh

)
(3)

where E(X)h ∈ Rn×n is the attention (energy) matrix. Concatenating the head outputs yields the
full MhSA output:

MhSA(X) = [Att1(X) ∥ . . . ∥Attnh(X)]WO (4)
with ∥ denoting concatenation along the embedding dimension.

3
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Convolutional Layers. A Convolutional layer with kernel size k is parametrized by weights
WC ∈ Rk×k×ci×co . Expliciting the symmetric shift set of size k × k as ∆k = {(s, r) ∈ Z2 :
−⌊k/2⌋ ≤ s, r ≤ ⌊k/2⌋} (assuming a stride factor of 1), the output at location (i, j) for an input
X ∈ Rh×w×ci is defined as:

Conv(X,WC)i,j =
∑

r,s∈∆k

WC
r,s

⊤
Xi+r,j+s (5)

Thus, convolution produces a weighted local aggregation of the k × k neighborhood centered at
(i, j). Similarly, depth-wise convolution performs local aggregation by applying a distinct spatial
filter to each channel independently. With WD ∈ Rk×k×ci , we write

ConvDW (X,WD)i,j =
∑

(r,s)∈∆k

WD
r,s ⊙Xi+r, j+s (6)

where ⊙ denotes elementwise multiplication.

2.2 CONVOLUTIONAL APPROXIMATION

In this section, we formalize how attention can be approximated by convolution, and present the
efficient depthwise decomposition at the core of our method. We later show that the SPViT He et al.
(2024) bottleneck block arises as a special case of our formulation, extended with head ensembling.

2.2.1 DROP-IN DEPTHWISE FORMULATION.

Consider a single attention head as in Equation (2). For clarity, we reshape the input X ∈ Rn×d

to X ∈ Rm×m×d with m =
√
n, recovering spatial structure. Accordingly, E(X)h ∈ Rn×n can

be viewed as E(X)h ∈ R(m×m)×(m×m), and the values as V h ∈ Rm×m×dh . When writing two-
dimensional indices, we always refer to these unflattened tensors. The explicit form of attention at
location (i, j) is:

Att(X)hi,j =
∑

r,s∈∆m

Eh(X)(i,j),(i+r,j+s)V
h
i+r,j+s (7)

where ∆m denotes the full receptive field that spans the whole E(X)h. This resembles convolu-
tion, with key differences: the spatial aggregation weights Eh(X)(i,j),(i+r,j+s) depend on both the
input X and the query position (i, j), and convolutional kernels are fixed parameters shared across
locations.

We approximate attention by assuming that some heads can be replaced by input-independent ker-
nels restricted to a local neighborhood ∆k ⊂ ∆m. Formally, for head h we write:

Att(X)hi,j ≈
∑

(r,s)∈∆k

Kh
r,s V

h
i+r, j+s (8)

where Kh ∈ Rk×k are trainable parameters learned during fine-tuning.

Full convolution formulation. A direct implementation of Equation (8) is to fold Kh into the
value projection WV , producing a kernel WV h ∈ Rk×k×di×dh :

∼
AttC(X)h = Conv(X,WV h) (9)

WV h
r,s = Kh

r,s W
V
[:,h,:], (r, s) ∈ ∆k (10)

This formulation, while being a faithful analogue of Eq. (8), is not appealing from a complexity
standpoint, as assessed in Section 3.2.

Depthwise decomposition. To reduce cost, we separate the pointwise value projection from the
spatial aggregation. We first compute values V h = XWV

[:,h,:], then apply a depthwise convolution

with head-specific kernels K⃗h ∈ Rk×k×1×dh :

∼
AttDW (X)h = ConvDW (V h, K⃗h) (11)
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Compared to the full convolution, the complexity is reduced from O(k2didh) to O(didh + k2dh).
In the full formulation (Equation (9)), each Kh

r,s is shared across all dh channels, enforcing a single
spatial pattern. Depthwise kernels K⃗h, instead, provide one k × k filter per channel, enabling
distinct spatial aggregations. While hannel-wise sharing could be easily implemented, we relax it
without affecting performance. This layer can replace any subset of attention heads in the MhSA
block (Eq. (4)). Its implementation is schematized in Figure 1 and thoroughly evaluated in the
experimental section.

Head-ensembling. As detailed in Section A.1.1, the formulation of He et al. (2024) builds on
the sufficient condition of Cordonnier et al. (2020), where each head attends to a distinct spatial
location within a local neighborhood. This assumption implicitly enforces a degenerate head en-
sembling, causing the MhSA block to collapse into a single effective head. In contrast, we derive
the ensembling explicitly and show that it extends beyond the full convolution setting. Specifically,
by assigning learnable combination weights γ ∈ Rnh to control the contribution of each head, the
ensembled value and output projections become:

WV e =

nh∑
h=1

σ(γh)W
V
[:,h,:], WOe =

nh∑
h=1

σ(γh)W
O
[:,h,:], (12)

with σ(·) a softmax over heads. Crucially, this explicit ensembling extends naturally to our depth-
wise formulation:

∼
MhSA

e

DW (X) = ConvDW (V e, K⃗e)WOe

s.t V e = XWV e
(13)

and K⃗e denotes the depthwise convolution kernel as in Equation (11). In this view, He et al. (2024)
arises as a special case of our framework. We henceforth distinguish between the ensembled formu-
lation (Equation (13)) and the unensembled formulation (direct head replacement via Equation (11)).

2.3 LAYER SELECTION

Given a target of ph heads to approximate with convolution, selection can be either scattered, replac-
ing arbitrary heads across the model, or blockwise, replacing all nh heads within pb MhSA blocks.
As shown in Sec. 3.3, the blockwise strategy yields higher inference efficiency, and we therefore
adopt it as the default. Below, we introduce two criteria for defining the head set S, both applicable
to either selection mode.

2.3.1 PROPOSED CRITERION.

As briefly mentioned, the approximation for E(X)h introduced in Equation (8) is equivalent to real
attention under the conditions of Locality (L), translation invariance (TI), and Input Invariance (II).
For a receptive field ∆k and displacement (s, r) ∈ ∆k, these are:

(L) : E(X)h(i,j),(u,v) ̸= 0 only if (u− i, v − j) ∈ ∆k (14a)

(TI) : E(X)h(i,j),(i+s,j+r) = E(X)h(l,t),(l+s,t+r) ∀(i, j), (l, t) (14b)

(II) : E(X)h = E(Y )h ∀X,Y (14c)

Criterion Definition We empirically establish the sum of the pointwise standard deviation of
E(X)h as a simple and effective proxy for identifying convolutional-like heads. Concretely, for
each head h ∈ {1, . . . , Nh}, where Nh = nhnb is the cumulative number of heads across nb blocks,
we compute the pointwise standard deviation σEh of E(X)h over Ns input samples. Direct compu-
tation of σEh impractical, since accumulating Eh(Xi) for a reasonable input set (i.e., Ns = 1000)
would require over 600GB of memory. We use Welford’s algorithm Welford (1962) to compute σEh

online in a single pass. We then define a scalar score

Σh =
∑

σEh , (15)
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summing over all entries of Eh. We select as candidate heads the set S [ph]
h of the ph heads with the

smallest Σh. In the blockwise setting, we adopt the same criterion at block level. For each block
b ∈ {1, . . . , nb} we compute the mean score across its nh heads:

Σb =
1

nh

∑
h∈[nh]

Σh, (16)

and select the set S [pb]
b of pb blocks with the smallest Σb.

Rationale By construction, Σh = 0 is both necessary and sufficient for the Input-Invariance prop-
erty Equation (14c). In the limit Σh → 0, the kernel collapses to its expectation Eh(X) → µEh ,
eliminating dependence on the input. Our heuristic is driven by the observation that Input-Invariance
is the most stringent property: once achieved, it forces the head to ignore input variation entirely
and reduces to a positional-only operator. In this regime, Eh(X) derives solely from the learned
positional encodings shared across heads in standard ViTs. Positional attention mechanisms have
been linked to spatial connectivity patterns (patch association; Jelassi et al. (2022)), capturing the
locality and translation-like structure that underlies convolutional inductive biases. We therefore use
Σh as a heuristic, motivated by the Input-Invariance principle, but ultimately empirical. In practice,
we find it to be a simple and effective selection rule, with extensive experimental validation in the
remainder of the paper and additional visualizations in the Appendix (Figure A.2).

2.3.2 STOCHASTIC GATING.

As an alternative to the presented criterion, we propose a comparison with a selection method derived
from Differentiable Subset Pruning (DSP) Li et al. (2021). While DSP in origin prunes transformer
heads, we can easily generalize it for our scope. For simplicity, we present this mechanism in the
blockwise case, although it can be trivially extended to the scattered selection. We define a set
of trainable parameters wb ∈ Rnb , leveraging the topk(·) operator we can retrieve the largest pb
elements of wb:

topk(wb, pb)i =

{
1 if i ∈ S [pb]

b

0 otherwise
(17)

Defining wb
i = topk(wb, pb)i, we can implement a simple gating mechanism to select the chosen

operation during the forward pass:

MhSA
i
(X) = (1− wb

i )MhSA(X)i + wb
i

∼
MhSA(X)i (18)

This formulation involves only a minimal increase in the number of parameters and no additional
loss terms. Since the topk operator is non-differentiable, to learn wb during training, the Gumbel
top-k relaxation Kool et al. (2019) is used, an extension of the Gumbel softmax trick Jang et al.
(2016), which provides a differentiable approximation w̃b of the hard selection wb, controlled by a
temperature τ . As τ → 0, w̃b approaches wb. We begin training with a higher τ to enable gradient
flow, then anneal it to 10−3 using the schedule from DSP (Section 3.3).

3 EXPERIMENTS AND COMPARISONS

3.1 EXPERIMENTAL SETUP

Unless otherwise specified, our analysis is based on the Dinov2 (Oquab et al. (2023)) model fine-
tuned on various downstream tasks. This choice simplifies the discussion of the results. In Sec-
tion 3.2, we show that similar results hold when using other vision foundation transformer back-
bones.

Benchmarking. To reflect real deployment conditions, we mainly target TensorRT on Nvidia
Jetson Orin Nano to profile inference performances. Unlike general-purpose frameworks (e.g.,
PyTorch), TensorRT compiles models into optimized GPU kernels, highlighting real-world perfor-
mance constraints. In the appendix, we further detail the profile setup (Section A.2.2) and later
extend the analysis to a broader range of hardware and software architectures (Section A.4.1).
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Task Performance. We evaluate fine-tuned models on semantic segmentation (COCO Lin et al.
(2014), ADE20K Zhou et al. (2017)) and classification (ImageNet-1K Russakovsky et al. (2015)).
To support drop-in convolutions, we remove the [cls] token from inputs. For segmentation, this has
no impact; for classification, we use the mean of tokens as decoder input, with negligible perfor-
mance loss. Convolutional layers use a fixed kernel size k = 3 for efficiency across all tasks.

3.2 CONVOLUTION ATTENTION RESULTS

3.2.1 HEAD-LEVEL PROFILING.

Table 1: Comparison of different choices for the MhSA block. All results are measured for a single
MhSA block with nh = 16 heads and an input size of 24 × 24 patches (Equivalent to an image
resolution of 336× 336 for Dino-V2). Batch size is set as 1.

Attention FLOPs (G) Params (M) Inference (ms) Memory (MB)
MhSA (Eq. (4)) 6.19 4.2 3.2 47.2

Conv[all] (Eq. (9)) 12.08 2.1 3.71 4.5
DW[all] (Eq. (11)) 2.43 2.11 1.26 6.75

SPViT-style (He et al. (2024)) 0.75 2.1 0.641 4.5
Ens+DW (Eq. (13)) 0.15 2.1 0.215 0.288

In Table 1, we profile a single multi-head attention block, providing a straightforward setting to
quantify performance differences. Both in the unensembled setup (lines 2-3) or in the ensembled
one (lines 4-5), it is clear that the depthwise formulation is advantageous, speeding up execution by a
factor 3× with respect to the full convolution. The ensembled formulation is significantly faster, al-
though, as discussed later in this chapter, it results in a more significant performance drop. Memory
usage patterns are less intuitive; the separable formulation has a slightly higher memory require-
ment due to intermediate results and less effective buffer reuse, which is offset in the ensembled
formulation.

3.2.2 FULL MODEL PERFORMANCE.

When not otherwise specified, we first perform fine-tuning on the target task with regular MhSA
heads, replace the selected heads with convolutional layers, and perform a new fine-tuning for half
of the training epochs. The complete experimental setup is detailed in the Appendix. In Table 2 we
compare the results obtained with different options for the MhSA block. For all experiments, we use
the standard deviation criterion proposed in Section 2.3 with the blockwise selection. Despite not
aiming for state-of-the-art performance, the strength of Dinov2 features makes our baseline results
highly competitive. Latency is reported only for the ViT backbone to avoid being affected by the
design choices of the decoder.

Evaluation We first confirm that the depthwise formulation matches the performance of full
convolution (CL2–CL3), in line with our analytical derivation, while delivering a substantial
speedup in inference. Without head ensembling, the full convolution baseline is 7.5% slower than
MhSA (CL1), whereas the depthwise variant achieves a 17.2% speedup. For a fair comparison with
the ensembled setup, we match configurations of |S| with similar observed speedup |S|: 12/24
blocks for the unensembled case and 10/24 for the ensembled case. In this setting, depthwise
unensembled (CL3) incurs a smaller accuracy drop (-0.08 vs. -0.98 mIoU) than the SPViT-style
full-convolution ensemble, while still providing a modest speedup advantage. When combined with
head ensembling (CL5), the depthwise formulation achieves an 18.8% speedup, but at the cost of
a larger -1.6 mIoU drop. The same trade-off is observed when increasing |S| to 16/24 and 12/24
(CL6–CL7). Comparable results are observed on the smaller ViT-B backbone (CB1–CB3) and on
the ImageNet classification task (IL1–IL5), confirming the consistency of these observations across
model scale and heterogeneous tasks. Additional results on ViT-B and on ADE20K dataset are
reported in Table 3

7
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Table 2: Results on COCO and Imagenet with different formulations. Results are obtained finetuning
Dino-V2, 336× 336 input resolution. Inference performances are reported with batch-size=1.

ID Task ViT Attention |S| mIoU δ-mIoU Infer (ms) Speedup (%)
CL1

COCO

Large

MhSA - 66.03 (baseline) 161.4 (baseline)

CL2 Conv[all] 12/24 65.84 -0.19 173.5 -7.49
CL3 DW[all] 12/24 65.95 -0.08 133.6 17.21
CL4 SPViT-style 10/24 65.05 -0.98 133.3 17.40
CL5 Ens + DW 10/24 64.81 -1.61 131.1 18.79

CL6 DW[all] 16/24 64.64 -1.39 126.1 21.85
CL7 Ens + DW 12/24 63.92 -2.11 124.5 22.87

CB1
Base

MhSA - 63.37 (baseline) 49.9 (baseline)
CB2 DW[all] 6/12 62.22 -1.16 40.8 18.10
CB3 Ens + DW 6/12 60.55 -2.83 38.1 23.52
ID Task ViT Attention |S| Top-1 Acc. δ-Acc Infer (ms) Speedup (%)
IL1

Imagenet Large

MhSA - 86.22 (baseline) 161.4 (baseline)

IL2 DW[all] 12/24 85.45 -0.77 133.6 17.21
IL3 Ens + DW 10/24 84.96 -1.26 131.1 18.79

IL4 DW[all] 16/24 84.88 -1.34 126.1 21.85
IL5 Ens + DW 12/24 84.65 -1.57 124.5 22.87

Generalization. We evaluate the generalization of our approach to backbone models beyond Di-
nov2 by considering CLIP (Radford et al. (2021)) and MAE (He et al. (2022)). Despite their different
pretraining objectives, both models share the same underlying ViT architecture, allowing us to repli-
cate our training setup without modification. For each model, we evaluate both the ViT-Base and
ViT-Large variants, with patch sizes indicated by /16 and /14, respectively. Results are reported in
Table 4. We use the unensembled formulation with blockwise selection, applying the Σb criterion
to identify the block set. Observing the drop in mIoU relative to the same backbone without drop-in
convolutions (i.e., |S| = −), we observe results that mirror those obtained with Dinov2, further
validating the generality of our drop-in formulation across different vision foundation models.

Table 3: Results on different tasks using the
Depthwise formulation.

Task ViT Attention |S| Acc.

Imagenet Base MhSA - 83.76
DW[all] 6/12 82.00

Task ViT Attention |S| mIoU

ADE20K
Base MhSA - 53.83

DW[all] 6/12 51.70

Large MhSA - 56.84
DW[all] 12/24 56.05

Table 4: Evaluation of Depthwise formulation
applied to MAE and CLIP fine-tuned on COCO
Semantic segmentation.

Model Backbone |S| mIoU Infer (ms)
MAE ViT-B/16 - 58.84 42.95
MAE ViT-B/16 6/12 57.91 35.04
MAE ViT-L/16 - 60.22 122.47
MAE ViT-L/16 12/24 59.81 102.23

CLIP ViT-B/16 - 61.52 42.93
CLIP ViT-B/16 6/12 59.06 35.07
CLIP ViT-L/14 - 64.65 153.91
CLIP ViT-L/14 12/24 62.17 128.38

3.3 SELECTION MECHANISM RESULTS

We first discuss the implications of blockwise and scattered selection. While for blockwise selection
the exact subset S [pb]

b has no impact on the observed speedup, in the scattered setting the distribution
of S [ph]

h is relevant. Scattered heads selection causes speedup to scale non-linearly with the number
of selected heads due to overhead from memory and multiple kernels execution, which can offset
gains. The impact on model performance is clearly observable in Figure 2, with the blockwise
selection being consistently faster, while only implying a small performance drop (Table 5).

Comparison. In Table 5 we compare the proposed selection heuristic (Section 2.3.1), with differ-
entiable subset pruning (DSP) Section 2.3.2. For the latter, we evaluate both end-to-end training of
selection gates (DSP-e2e, Equation (18)) and a two-stage variation (DSP-2S), where the learned set

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comparison of selection mechanisms.

Crit. Stages BW |S| mIoU
Σb[LOWEST] 2

Yes
12/24 65.95

DSP - e2e 2 12/24 64.15
DSP - 2S 3 12/24 64.00

Σb[LOWEST] 2
Yes

17/24 63.77
DSP - e2e 2 17/24 58.25
DSP - 2S 3 17/24 64.20

(a) Comparision between Σb and DSP in Blockwise
setting

Crit. Stages BW |S| mIoU
Σh[LOWEST] 2

No
192/384 65.52

DSP - e2e 2 192/384 62.32
DSP - 2S 3 192/384 65.79

Σb[HIGHEST] 2
Yes

12/24 61.46
Σb[HIGHEST] 2 7/24 64.02
Σb[LOWEST] 1 12/24 65.63

(b) (top) Comparision between Σh and DSP in Scat-
tered setting (bottom) Ablation of Σb: selection of the
worst candidates ( Σb[HIGHEST]) and 1-stage finetuning.
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Figure 2: Speedup vs number of heads replaced
in blockwise and scattered setups. Results on
ViT-L (24 blocks, 16 heads per block 336×336).
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is reused in a new fine-tuning run with fixed selection, discarding the end-to-end weights. In the
blockwise setup (Table 5a) with |S| = 12/24 the Σb criterion outperforms the DSP, and DSP-2S
reduces the gap only slightly, still trailing by nearly 2 mIoU points. A closer inspection (Figure 3),
reveals that DSP often selects high-variance heads. Increasing to |S| = 17/24 DSP-2S slightly
surpasses Σb, while DSP-e2e suffers from severe training instabilities and degraded performance.
In Table 5b (top section), this analysis is extended to the scattered selection, with a similar outcome
which is further assessed in Section A.3.3.

Ablation. To further test our criterion, we also evaluate replacing the worst heads (highest ΣEh )
in Table 5b. With only 7 blocks replaced, the performance drop already exceeds that of the best
12 blocks, and replacing the 12 worst blocks leads to severe degradation. Finally, we ablate the
fine-tuning procedure (last row): a single-stage fine-tuning, where convolutions are applied directly,
achieves performance close to the two-stage setup. Further ablations, such as fine-tuning only the
convolutional kernel weights, are discussed in Section A.3.

4 CONCLUSIONS AND FUTURE WORK

We assessed the effectiveness of a simple drop-in replacement for attention heads exhibiting
convolution-like behavior in large-scale pretrained ViTs. The proposed framework achieved 17%
speedup with minimal impact on downstream performance, highlighting that many pretrained heads
can be approximated by efficient depthwise convolution without losing their functional role and thus
largely preserving the power of pretrained weights. The investigated approach is not an alternative
to existing pruning techniques, but rather as a component that can also be effective in combination
with existing solutions. We will investigate this direction in future work. The selection criterion is
another direction that requires further investigation. The proposed heuristic proved to be very effec-
tive, given its simplicity, yet there is clearly room to investigate more advanced selection criteria.

9
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A.1 ADDITIONAL DETAILS

A.1.1 DERIVATION OF ENSEMBLED FORMULATION

A closely related formulation is discussed in He et al. (2024), to derive it, we can rewrite Equation (4)
as:

MhSA(X) =
∑

h∈[nh]

Atth(X)WO
[:,h,:] (A.1)

If we apply the approximation
∼
Att from Equation (8) to all attention heads, we can rewrite explicitly

the approximated MhSA output value at spatial location (i, j) as:

∼
MhSA(X)i,j =

∑
h∈[nh]

 ∑
(r,s)∈∆k

Kh
r,sXi+r,

j+s

WV
[:,h,:]W

O
[:,h,:] (A.2)

The authors construct their formulation based on Cordonnier et al. (2020), which derives a sufficient
condition valid only in the case where each attention head attends at one and only one spatial location
in ∆k, under the assumption that k = nh. For ease of notation, we can imply this condition by
imposing:

Kh
(s,r) ̸= 0 ↔ sk + r = h

k = nh

(A.3)

Only under a similar assumption, Equation (A.2) can be equivalent to:

∼
MhSA

e

i,j =

 ∑
(s,r)∈∆k

Xi+s,j+rWV
s,r

WO

s.t

{
WV

s,r =
∑

h∈[nh]
Kh

s,r W
V
[:,h,:]

WO =
∑

h∈[nh]

∑
(s,r)∈∆k

Kh
s,r W

O
[:,h,:]

(A.4)

An assumption equivalent to Equation (A.3), imply WO = WO and Xi+s,j+rWV
s,r =

Xi+s,j+rW
V
[:,h,:], (h = sk + r). In practice, this collapses the MhSA block to a single convo-

lution, therefore, the same implementation of Equation (11) can be applied to cast the innermost
product of Eq. (A.4). The authors of He et al. (2024) implicitly relax both conditions of Eq. (A.3)
and learn to ensemble the attention heads controlled by the weights σh(K) where σh(·) defines the
softmax function applied over the heads dimension. We defer to the referring work for further de-
tails. In Equation (A.4) the parameters K ∈ Rnh×k×k control both the ensembling of the multiple
heads in a single one and the spatial aggregation through the convolution operation. By defining a
set of learnable parameters γ ∈ Rnh to control the aggregation of heads projections, the formulation
of Equation (A.4) can be seen as a special case of our method presented in Section 2.2.1, with the
addition of an ensembling of the head projections controlled by a set of trainable parameters.

A.2 EXPERIMENTAL SETUP

A.2.1 DOWNSTREAM FINETUNING SETUP

For all downstream tasks, we share a similar optimization setup, leveraging AdamW optimizer with
a Cosine annealing scheduler and linear warmup. For each task, we build a lightweight decoder
on top of pretrained Dino-V2, finetuning Dino while training the decoder from scratch. We assess
performance using established metrics from the literature: mean Intersection over Union (mIoU)
for semantic segmentation and top-1 accuracy, based on the highest-scoring prediction, for image
classification.

Semantic segmentation. The semantic segmentation task is a good representative of dense predic-
tion tasks, and the complexities of formulations found in tasks like instance segmentation. We build
a simple convolutional decoder on top of Dino-v2 backbone to upscale the patch-level embeddings

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

from DINO to pixel-level embeddings. The decoder consists of 3 transposed convolution blocks,
with Group Normalization Wu & He (2018) and GeLU activation Hendrycks & Gimpel (2016),
to gradually recover the input resolution, and two additional convolution layers project pixel-level
embeddings to the required number of channels. For all experiments on COCO, we use an input
resolution of 336 × 336 and 192 × 192 output resolution. For ADE20K, the input and output res-
olutions are instead 336 × 448 and 192 × 256. We optimize the CrossEntropy loss function, first
stage finetuning is conducted for 100 epochs with an effective batch-size of 1024, leveraging random
resized crop and color jitter augmentation.

Image Classification. We follow the same design philosophy for the classification task on
Imagenet-1K. As done in the DinoV2 paper, we build a minimal decoder with a single fully-
connected layer to project d embedding dimension to 1000 classes logits. When cls token is not
available, we use the average of all output tokens as a substitute. We optimize cross-entropy loss
and use only random crop and horizontal flip as training-time augmentation. First-stage finetuning
is conducted for 50 epochs.

Finetuning with Convolution. After the first finetuning stage, we replace the selected heads with
the formulation of choice, query and key projection weights are discarded. The second finetuning
stage is performed for half of the first stage epochs with half batch size and the same hyperparame-
ters. For convolutional layers, we initialize kernel weights with a Gaussian distribution, having ob-
served a slight speedup in convergence speed, and exclude kernel parameters from L2-regularization.

A.2.2 BENCHMARKING SETUP

Nvidia Hardware. To profile models on Nvidia devices, we use the classic workflow of exporting
from pytorch to onnx format and then building the TensorRT engine leveraging Python APIs,
serializing the produced engine to a file. For benchmarking, we leverage the provided trtexec
utility, with the following set of arguments:

$ trtexec --loadEngine=model.onnx --useCudaGraph --noDataTransfers
--useSpinWait --iterations=100 --avgRuns=100 --exportTimes=measure.json

For detailed head profiling (Table 1, Table A.4) we leverage the Nnvidia DL Designer tool1, providing the onnx
model.

Additional hardware. To profile on HAILO8 we first compile onnx models to .hef (Hailo Executable
Format) binaries leveraging the provided sdk, then run benchmarking on the target hardware with the included
profiling utility. For CPU platforms, we directly run the onnx model with onnx Runtime, leveraging a custom
python script. To avoid fluctuations due to the operating system scheduler, we pin the profiling process to a
single core and execute with a real-time scheduling policy. This is achieved with the following syntax:

$ taskset -c 3 chrt -f 99 python3 benchmark onnx.py <model file>.onnx

A.3 ADDITIONAL EXPERIMENTS

A.3.1 FINETUNING CONVOLUTION ONLY

We briefly experimented with performing second-stage finetuning by freezing first-stage weights, except for
the affected heads. The preliminary experiment, reported in Table A.1 performs surprisingly well, considering
only 1/10 of the parameters are updated.

A.3.2 DEALING WITH [CLS] TOKEN

As mentioned in the discussion, to make Dino-V2 ViT backbone compatible with the convolutional formulation,
we need to remove the [cls] token, which would not allow reshaping value tokens. This could be a concern,

1https://developer.nvidia.com/nsight-dl-designer
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Table A.1: Results on COCO for second-stage finetuning (ViT-L, Conv-DW) Frozen or Unfrozen
Backbone

Task Frozen BB Train Params Metric
COCO NO 284.4M 65.95
COCO YES 25.3M 65.12

since [cls] is used in pretraining and typically in classification tasks. In Table A.2 we show a quick ablation on
COCO and Imagenet tasks, for the former we observe no impact on mIoU metric, the latter has a small drop in
Accuracy. In light of these results, we opted for the most direct approach, removing the [cls] from the model.

Table A.2: Effect of [cls] token presence on different tasks

Task ViT Attention [CLS] Metric
COCO Large MhSA NO 66.03
COCO Large MhSA YES 66.03

Imagenet Large MhSA NO 86.22
Imagenet Large MhSA YES 86.35

In a preliminary stage, we considered the option of leveraging a set of parameters to control the flow of global
information to the [cls] token, we did not pursue this direction because of the overhead.

A.3.3 CONSIDERATIONS ON SELECTION CRITERIA

For the proposed criterion, we compute Σh (Equation (15)) and consequently Σb after the first stage finetuning,
leverage Ns = 1000 samples from the training split of the corresponding dataset.

Effects of Finetuning. We briefly discussed the possibility of single-stage finetuning, applying convolution
over Dino weights, with no prior finetuning on the target task. For the experiment reported in Table 2, we
observe promising results, while still relying on finetuned weights to apply Σ criterion. In Figure A.1, we
report Σb distribution before and after finetuning on COCO, we can observe that selection using Σ criterion
is not significantly affected by finetuning. With nb = 17 the selection set would match, with nb = 12 the
selection differs by a single block. This suggests further potential to investigate single-stage finetuning.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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0
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b/1
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(a) Before Finetuning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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10
15
20
25
30
35

b/1
00

(b) Finetuned on COCO

Figure A.1: Distribution of Σb before and after COCO finetuning. In red, the 12 selected blocks, in
orange, the next 5 (selecting 17 blocks)

Visualizations. In Section 2.3.1, we introduced the criterion based on standard deviation for selection
of heads to be replaced. In Figure A.2 we propose an intuitive visualization to qualitatively appreciate the
effect of σh on the attention kernels. We obtain the visualization by aligning each element of reshaped
σh ∈ R(m×m)×(m×m) (i.e., each row of E(X)h) by centering the query pixel at a fixed location (center
pixel), and finally computing the mean value. This visualization allows us to highlight that the relationship
between sigma and locality properties is independent of input.
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(a) Block 0 - Both Low σ and High σ heads. High Σb

(b) Block 4 - Low σ heads, Low Σb

(c) Block 22 - High σ heads, High Σb

Figure A.2: Visualization of σh for different heads in Dino-V2 ViT-L finetund on coco datasets. The
visualization is obtained by aligning all σh around the central pixel and computing the average. Red
square represents the size of the 3× 3 convolutional kernel.

Contribution of Positional Encoding. In Section 2.3 we hinted that a key role is played by positional en-
coding in enforcing convolutional-like behavior when Σh → 0. In an attempt to get an insight, in Section A.3.3
we visualize the correlation score between positional encoding vectors.

Figure A.3: Visualization of correlation between Dino-V2 positional embedding vectors at sample
query locations.

This simple experiment provides insight into the strong spatial patterning and locality bias induced by positional
encoding.

Distribution of selected Heads. In Section 3.3 we compared Σ and DSP criteria and discussed that in the
blockwise setup, DSP tends to agree with Σ when performing competitively on the task (nb = 17), as shown
Figure 3. We extend this visualization to the scattered case in Figure A.4, in this case we note that although the
two methods perform similarly (Table 5), the selected heads follow a different distribution. So far, we can only
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speculate regarding this phenomenon: one hypothesis being that the heads selected by DSP may adapt to suit
the convolution constraints, even if they are not met before fine-tuning.
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Figure A.4: Values of Σh for each individual head in Dino-V2 ViT-L, distribution after finetuning
on COCO. Orange, 192 heads selected with the lowest Σh (i.e, scattered criteria). Red diamond
indicates heads selected by DSP.

A.4 FURTHER PROFILING

In Figure A.5, we observe the speedup trend as a function of the number of replaced blocks for both ensem-
bled and unensembled formulations. In our experiments, we replaced up to 16 out of 24 blocks in the ViT-L
backbone, achieving over a 20% speedup. In the future, an improved fine-tuning strategy could push the per-
formance boundary, allowing the replacement of more blocks.

A.4.1 ADDITIONAL HARDWARE

Below, we propose to validate the computational benefits of the proposed method on platforms other than the
Nvidia Jetson Orin. The platforms chosen are a second Nvidia board, the least powerful Nvidia Jetson Nano
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Figure A.5: Number of replaced blocks (blockwise) versus speedup for Depthwise formulations
with and without ensembling. Results obtained on ViT-L, resolution 336× 336.

(not to be confused with ORIN Nano), the HAILO-8 AI Accelerator, and CPU platforms ARM Cortex A53
(Mobile CPU) and Intel-Core i7-11700K (Desktop CPU).

Table A.3: Head-level profiling on different hardware platforms.

Heads Mode Orin (ms) Nano (ms) HAILO8 (ms) A53 (ms) i7 (ms) Params (M) FLOPS (G)
12 MhSA 0.75 8.41 1.39 11.02 334.67 1.41 2.362
12 DW 0.28 2.65 0.89 0.89 78.92 0.61 1.189
12 Ens+DW 0.09 0.28 0.30 0.30 7.27 0.05 0.1

16 MhSA 0.93 13.65 2.42 19.45 593.92 2.42 4.20
16 DW 0.32 4.11 1.14 4.22 143.93 1.08 2.11
16 Ens+DW 0.06 0.32 0.42 0.27 9.74 0.07 0.13

Similarly to Table 1, we benchmark the performance of a single attention block of nh heads, comparing the
full MhSA, our drop-in depthwise formulation (DW), and the depthwise convolution with the addition of head
ensembling (Ens + DW). The results obtained confirm the soundness of the proposed approach on a broader set
of inference platforms.

A.4.2 FP16 INFERENCE

TensorRT supports various numerical precisions, but exhaustive comparison is challenging. The compiler
optimizes multi-head self-attention (MhSA) via Myelin, an obscure, undocumented backend2. In FP16 mode,
Myelin automatically replaces MhSA with Flash-AttentionV2 Dao (2024), later referred to as FMhSAV2, a
specialized implementation leveraging specific Nvidia GPU features. Since this behavior cannot be disabled,
evaluations are restricted to Nvidia Ampere GPUs and newer. In Table A.4 we compare performance in said
scenario, showing that the discussed approximations outperform full self-attention even in this challenging
scenario.

Table A.4: Head-level inference performance comparison at FP32 and FP16 precision.

Attention Inference (ms) Memory (MB)
MhSA (FP32) 3.2 47.2
Conv-DW (FP32) 1.26 6.75
Ens+DW (FP32) 0.215 0.288

FMhSAV2 (FP16) 1.14 5.62
Conv-DW (FP16) 0.86 3.38
Ens+DW (FP16) 0.271 1.27

A.4.3 USAGE OF LARGE LANGUAGE MODELS (LLMS)

The authors specify that the use of LLMs in the development of this work and this manuscript is limited and con-
tingent as support in the writing (spell checking, suggestions on phrasing, and helping with LATEXconstructs).

2https://github.com/NVIDIA/TensorRT/issues/2576
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