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Abstract

With the widespread application of Large Language Models (LLMs) to various domains, con-
cerns regarding the trustworthiness of LLMs in safety-critical scenarios have been raised, due
to their unpredictable tendency to hallucinate and generate misinformation. Existing LLMs do
not have an inherent functionality to provide the users with an uncertainty/confidence metric
for each response it generates, making it difficult to evaluate trustworthiness. Although several
studies aim to develop uncertainty quantification methods for LLMs, they have fundamental
limitations, such as being restricted to classification tasks, requiring additional training and
data, considering only lexical instead of semantic information, and being prompt-wise but not
response-wise. A new framework is proposed in this paper to address these issues. Semantic
density extracts uncertainty/confidence information for each response from a probability distri-
bution perspective in semantic space. It has no restriction on task types and is "off-the-shelf" for
new models and tasks. Experiments on seven state-of-the-art LLMs, including the latest Llama
3 and Mixtral-8x22B models, on four free-form question-answering benchmarks demonstrate
the superior performance and robustness of semantic density compared to prior approaches.

1 Introduction

Large language models (LLMs) have revolutionalized many domains, such as conversational agents
[34], code generation [41], and mathematical discovery [39]. Given their ability for general reasoning
and adaptability to new tasks, LLMs are utilized increasingly in safety-critical applications, including
healthcare [42] and finance [50]. However, existing LLMs have an unpredictable tendency to
hallucinate [30], leading to misleading information and risky behaviors. Responses are generated
without quantitative indicators for their uncertainty/confidence, making it difficult to evaluate how
trustworthy they are. As a result, concerns have been raised about their safety [54], hindering a deeper
utilization of LLMs in risk-sensitive domains [5].

Although significant resources have been invested in LLM development, leading to a rapid pace
in new model releases, only little progress has been made in building an uncertainty quantification
framework for LLMs. An ideal outcome of such a system would be a quantitative metric associated
with each response that can be used as an uncertainty/confidence indicator. Users can then build on
this metric to evaluate the trustworthiness of LLM responses, e.g., establish an automatic system that
triggers a warning if the response confidence is below a pre-defined threshold.

Following this line of thought, several techniques have been proposed in the literature to extract the
uncertainty/confidence score from LLMs. In addition to the baselines that directly ask the LLM
itself to evaluate its own answers [44, 21], one further step was to integrate traditional uncertainty
estimation/calibration methods into LLMs [6, 51, 53]. However, due to the nature of these traditional
methods, they only work on classification problems, not free-form natural language generation (NLG)
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tasks, which are more general and challenging. Another direction was to fine-tune the original model
[25] or train an additional layer or classifier [3, 28] to output uncertainty/confidence indicators for
the responses. The main drawback is that these approaches are not "off-the-shelf" for new tasks and
models: additional task-specific training labels of the ground-truth confidence are needed, and the
training needs to be done in a model-specific manner, limiting their applicability.

Most importantly, prior work still treats LLM outputs as traditional auto-regressive predictions [29],
i.e., the generated responses are simply handled as sequences of tokens/words, considering only their
lexical uncertainty/confidence. However, due to the unique nature of free-form NLG, tokens that
are lexically different may be semantically similar. In most LLM applications, decisions depend on
the semantics of responses, and the same semantics can be stated using different words or sentence
structures, leading to different lexical tokens. Therefore, uncertainty/confidence in semantic space is
a more essential indicator for trustworthiness of LLM responses than lexical uncertainty/confidence.

Semantic entropy [22] is the state-of-the-art (SOTA) technique in semantic uncertainty [27]. However,
its current design has two intrinsic limitations. First, the returned uncertainty score is prompt-wise,
i.e., the semantic entropy is calculated for each prompt, instead of each response. Considering
that LLMs can generate diverse responses for the same prompt, using the same uncertainty score
for different responses is problematic [26]. Second, semantic entropy only considers semantic
equivalence, which is a binary one-cut measurement, i.e., it only returns whether two responses are
considered semantically equivalent or not, without reporting how semantically different the responses
are. It does not make use of the more fine-grained semantic differences among the responses, which
encode information that can make uncertainty quantification more precise.

To fill these gaps, a framework is developed in this paper for a new uncertainty/confidence metric,
semantic density (SD), that can quantify the confidence of LLM responses in semantic space.
Semantic density analyzes the output probability distribution from a semantic perspective and extracts
a confidence indicator analogous to probability density. The proposed semantic density metric has
the following advantages: (1) The returned confidence metric is response-wise, making it possible
to evaluate the trustworthiness of each specific response; (2) it takes the fine-grained semantic
differences among responses into account, which makes uncertainty quantification more precise; (3)
it does not need any further training or fine-tuning of the original LLM; it is an "off-the-shelf" tool
that can be directly applied to any pre-trained LLMs without modifying them; and (4) it does not pose
any restrictions on the problem type; in particular, it works for general free-form generation tasks.

The performance of the semantic density metric was compared with six existing uncer-
tainty/confidence quantification methods designed for LLMs across four question-answering bench-
mark datasets. All the approaches were tested on seven SOTA LLMs, including the latest Llama 3
and Mixtral-8x22B models. Semantic density performed significantly better than the alternatives
across the board, suggesting that it forms a promising foundation for evaluating the trustworthiness
of LLM responses. The source codes for reproducing the experimental results reported in this paper
are provided at: https://github.com/cognizant-ai-labs/semantic-density-paper.

2 Related Work

In the LLM literature, the terms "uncertainty" and "confidence" are used in a mixed manner. A
number of studies [51, 25, 12, 4, 16] treat uncertainty and confidence as two facets of a single
concept, i.e., lower confidence on one particular response corresponds to higher uncertainty (or lower
certainty). Other studies try to further differentiate "uncertainty" from "confidence" [26] and only use
"uncertainty" to describe the entire output distribution instead of a specific response [22, 1]. Both
perspectives fall in the same research area of "uncertainty quantification/estimation" [17, 26, 9, 16],
and the goals of most existing uncertainty/confidence metrics are indeed the same: to provide a
quantitative indicator of the trustworthiness of LLM responses. For better coverage and clarity, this
paper uses "uncertainty quantification" as a general term to describe work related to the assessment
of uncertainty or confidence of LLMs, and "uncertainty/confidence" to refer to multiple metrics
with mixed term definitions. The proposed semantic density is thus an indicator of response-wise
"confidence".

Although the main focus of the LLM community is still on developing new models with better
performance, a number of studies aim at measuring uncertainty/confidence in LLMs. This section
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summarizes their basic ideas and potential limitations, which are then targeted in the development of
semantic density.

The first direction is to ask the LLM to evaluate the uncertainty/confidence of its own responses.
Tian et al. [44] performed an empirical study showing that the inherent conditional probabilities are
poorly calibrated in existing LLMs with RLHF (reinforcement learning from human feedback), and
that verbal confidence estimates provided by the LLMs are better calibrated. Kadavath et al. [21]
developed an approach where the LLM was asked to evaluate the correctness of its own answer, in the
form of the probability "P(True)" that its own answer is correct. An additional “value” head was also
trained to predict "P(True)", but it turned out not to generalize well to out-of-distribution datasets. In
general, the performance of model self-evaluation is not as good as other more advanced uncertainty
quantification methods [22].

A second direction is to integrate traditional uncertainty quantification methods into LLMs. The
effectiveness of temperature scaling [13] for calibrating the output token probabilities of LLMs was
verified in Desai and Durrett [6] and Xiao et al. [51]. Ye et al. [53] utilize conformal prediction
to quantify the uncertainty of LLMs. However, these approaches are limited to NLP classification
tasks; in contrast, the proposed semantic density can be applied to the more general and challenging
free-form generation tasks.

A third direction is to perform supervised learning, either by fine-tuning the original LLM or adding
an additional layer/classifier, to create uncertainty/confidence indicators. For example Lin et al. [25]
fine-tuned the GPT-3 model to verbally express its own confidence level, and Azaria and Mitchell [3]
trained an additional classifier to return the truthful probability of each generated response, based on
the hidden layer activations of the LLM. Liu et al. [28] proposed the LitCab framework, in which a
single linear layer is trained over the LLM’s last hidden layer representations to predict a bias term,
and the model’s logits are then altered accordingly to update the response confidence. Since these
methods are model-specific and need additional task-specific training labels, they cannot be readily
applied to new models and tasks. In comparison, as an unsupervised method, semantic density is
"off-the-shelf" for any new models and tasks, without the need for additional data or modifications to
the original LLMs.

A common limitation of all the above methods is that they only consider the lexical information,
and do not take into account the semantic relationships between responses. Yet semantics is critical
in analyzing LLM outputs. As a fourth direction, semantic entropy [22] is a SOTA technique
that quantifies semantic uncertainty for LLMs. It works by grouping the generated samples based
on their semantic equivalence, and then generating an entropy-based indicator as an uncertainty
metric. Although its performance is promising compared to the other approaches, as discussed
in Section 1, it has two intrinsic limitations: (1) The generated semantic entropy is prompt-wise
instead of response-wise, and (2) only a one-cut equivalence relationship is considered during
semantic analysis. The second issue was considered in a recent follow-up [33] that tries to improve
semantic entropy. However, it did not resolve the first issue, and the proposed uncertainty metric is
still prompt-wise, limiting its utility when different responses are sampled given the same prompt.
The proposed semantic density improves over these two aspects by providing a response-specific
confidence indicator and analyzing the semantic relationship in a fine-grained manner.

Besides the above four major directions, uncertainty quantification for LLMs has been explored from
other angles as well. Lin et al. [26] tested several simple baselines, among which a straightforward
measurement of semantic dispersion is robust in evaluating selective response generation. Similarly,
Manakul et al. [30] proposed a framework with several variants that use sampling consistency for
detecting hallucinations. These two studies assume a very restricted condition in which the original
sampling likelihoods of each response are not used; thus, the uncertainty/confidence information
extracted by these methods is limited. Duan et al. [7] proposes a mechanism to shift attention to
more relevant components at both token and sentence levels for better uncertainty quantification.
Their approach was applied to prompt-wise uncertainty metrics only. The study by Ling et al. [27]
focused on a specific in-context learning setting, aiming to decompose the uncertainty of LLMs into
that caused by demonstration quality and that caused by model configuration. These experiments
were limited to classification problems. Similarly, Hou et al. [15] decomposed the uncertainty into
data uncertainty and model uncertainty in a prompt-wise approach. Xiao and Wang [52] studied
the connections between hallucination and predictive uncertainty, showing that higher uncertainty
is positively correlated with a higher chance of hallucination. This study validates the importance
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of a reliable uncertainty measurement in detecting hallucinations of LLMs. Finally, Huang et al.
[17] perform an explorative study using simple baselines on uncertainty measurement for LLMs,
highlighting the need for more advanced uncertainty quantification methods developed exclusively
for LLMs. This is the goal for the current paper as well.

3 Methodology

This section first defines the LLM uncertainty quantification problem, then describes the design
principles and technical details of each algorithmic component, and concludes with a summary of
the entire framework. The semantic space defined in Section 3.2 forms a theoretical foundation for
semantic density. It can be implemented either explicitly through an embedding model or implicitly
through an inference model; the latter is the approach used in this paper (details in Section 3.5).

3.1 Problem Statement

Given a pre-trained LLM, an input prompt x, and an output sequence y = [y1, y2, · · · , yL], where L
is the number of tokens in y, the target is to produce a confidence metric that is positively correlated
with the probability of y to be true. Note that this metric should be response-wise, i.e., it is calculated
for a specific y given x. The metric can be used as a quantitative indicator for whether a specific
response y can be trusted.

3.2 Semantic Space

Theoretically, a semantic space can be any metric space such that a distance function is properly
defined to measure the semantic similarity between any two output responses, given the input prompt.
Note that such a space is prompt-specific, i.e., each prompt results in a specific semantic space in
which the distance function measures the contextual semantic similarity between two responses,
treating the prompt as a common context.

More concretely, an oracle semantic space S is assumed to be a Euclidean space where each point is
a D-dimensional vector that represents a contextual embedding of response y given prompt x:

v = E(y|x), (1)

where v ∈ RD, and E(·|·) is an encoder that generates text embeddings with the following properties:

1. All the generated embedding vectors are normalized to have a norm of
1

2
:

||v|| = 1

2
, for v = E(y|x), ∀x,y. (2)

Whereas most existing text embedding models normalize the output vectors to have a norm of 1
[32], they are rescaled to 1

2 without changing their direction to make it simpler to integrate them
into the kernel function (as explained in Section 3.4).

2. Given a prompt x and two resulting responses yi and yj , with vi = E(yi|x) and vj = E(yj |x),
the following constraints exist for three extreme cases:

||vi − vj || =


0, if yi and yj are semantically equivalent given context x√

2
2 , if yi and yj are semantically irrelevant given context x

1, if yi and yj are semantically contradictory given context x.

(3)

Given the norm requirement in Eq. 2, the above three cases also correspond to vi = vj , vi ⊥ vj
and vi = −vj , respectively. Note that ||vi − vj || is not restricted to the above three values. It can
be any value within [0, 1], depending on the semantic similarity between yi and yj given x.

3. Given a prompt x and three resulting responses yi, yj and yk, with vi = E(yi|x), vj = E(yj |x)
and vk = E(yk|x),

||vi − vj || < ||vi − vk||, if yi is semantically closer to yj than to yk, given context x. (4)

4



3.3 Semantic Density Estimator

Given the semantic space S defined in Section 3.2, the underlying probability distribution from which
the LLM samples in S provides critical information: If a response is semantically close to many
highly probable samples, it should be more trustworthy compared to a response that is semantically
distant from the major sampling possibilities. A classical technique for estimating probability density
is kernel density estimation (KDE) [40, 36]. However, the standard KDE only works for continuous
variables, whereas the LLM outputs are discrete, i.e., sequences of tokens selected from a finite
vocabulary. One possible way to extend KDE to accommodate LLM outputs is to build a density
estimator as

p̂(y∗|x) =

M∑
i=1

fiK(v∗ − vi) =
1∑M
i=1 ni

M∑
i=1

niK(v∗ − vi), (5)

where x is the input prompt, y∗ is the target response, i.e., the response that needs confidence
estimation, and v∗ = E(y∗|x). In total,

∑M
i=1 ni reference responses are sampled to facilitate the

density estimation, where M is the number of unique samples. Each yi represents a unique sample;
ni is the number of occurrences of yi during sampling, fi = ni∑M

i=1 ni
is the relative frequency of yi

during sampling, and K(·) is a kernel function.

The design of Eq. 5 is similar to an early variant of KDE [37] that was used to handle integer data.
However, it has the drawback that it incorporates no knowledge about the sampling probabilities for
each yi. It thus requires a large number of samplings, including a sufficient number of duplicated
results, to obtain the relative frequency as an empirical approximation of the sampling probability.
This cost becomes prohibitive for LLMs given how expensive LLM inference generally is.

In contrast with the inherently unknown probability distributions in standard KDE, the output token
probabilities can be explicitly calculated in LLM sampling, and with this information, a more sample-
efficient estimator can be developed. Given a prompt x and a resulting response y∗, the semantic
density of y∗ is defined as

SD(y∗|x) =
1∑M

i=1 p(yi|x)

M∑
i=1

p(yi|x)K(v∗ − vi), (6)

where v∗ = E(y∗|x), and vi = E(yi|x) for i = 1, 2, · · · ,M . The M unique responses yi are the
reference responses based on which the semantic density of y∗ is estimated. K(·) is a kernel function
which will be specified in Section 3.4, and p(yi|x) (for i = 1, 2, · · · ,M ) is the probability for the orig-
inal LLM to generate sequence yi given x. That is, p(yi|x) =

∏Li

j=1 p(yi,j |yi,1, yi,2, · · · , yi,j−1,x),
where Li is the number of tokens in yi and p(yi,j |·) is the conditional probability to generate token
yi,j . Note that in cases where p(y∗|x) is available, y∗ can also be used as one of the M reference
responses.

One advantage of the semantic density estimator of Eq. 6 is that each result yi only needs to be
sampled once; their relative frequency fi can then be estimated as fi = p(yi|x)∑M

i=1 p(yi|x)
. Given a

sampling budget of M reference responses, it is therefore desirable that these M samples are unique
(duplications will be removed before calculating Eq. 6) and have high sampling probabilities, so that
they can cover more sampling regions in the semantic space. In the current implementation, diverse
beam search [46], which tends to generate diverse and highly probable responses, is used to sample
the M unique reference responses.

In practice, length-normalized probability [31, 29] is usually used to correct the length bias in
sequence probability. Moreover, temperature scaling [13, 6, 51] is a simple yet effective method
for calibrating the token probabilities during sampling. Both methods can be seamlessly integrated
into semantic density: The p(yi|x) in Eq. 6 can be replaced with Li

√
p(yi|x), and the temperature

changed during sampling to calibrate each p(yi,j |·).

3.4 Dimension-invariant Kernel

In a standard KDE setup, a commonly used kernel for multi-variate cases is the Epanechnikov kernel
[8, 11], which was proved to be the most efficient in terms of asymptotic mean integrated squared
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error [47]. Its original form is

K(v) =
Γ(2 + D

2 )

π
D
2

(1− ||v||2)1||v||≤1, (7)

where D is the dimension of vector v, Γ(·) is the gamma function, ||v|| is the 2-norm of v, and
1condition equals 1 if the condition is true, 0 otherwise.

In the semantic density estimator use case, one drawback of the original Epanechnikov kernel is
that the normalization coefficient Γ(2+ D

2 )

π
D
2

changes with the dimension D of v. As a result, semantic
densities calculated using embeddings with different dimensionalities are incomparable. This issue
may limit the flexibility in selecting embedding methodologies for semantic density calculation.
However, the normalization coefficient can be removed to make the kernel function simpler and more
flexible, without affecting the performance of confidence measurement. The kernel function of Eq. 6
thus becomes

K(v∗ − vi) = (1− ||v∗ − vi||2)1||v∗−vi||≤1. (8)
Although the resulting kernel function does not meet the normalization requirement in standard KDE,
it fits confidence estimation well. As long as the norm requirements in Eq. 2, 3 and 4 are fulfilled,
any embedding models can be used to generate v, regardless of the embedding dimensionalities. The
outcome of the kernel function is always within [0, 1], and a kernel value of 1, 1

2 , and 0 correspond to
semantically equivalent, irrelevant, and contradictory responses, respectively. As a result, the semantic
density is also within [0, 1], with 1 as the highest semantic density a response can obtain, indicating
that all the reference responses are semantically equivalent to it; analogously, it obtains a semantic
density of 0 when all reference responses are semantically contradictory to it. This consistency in the
value range makes practical applications of semantic density convenient: Practitioners can set a fixed
threshold on semantic density to detect unreliable responses.

3.5 Semantic Distance Measurement via the Natural Language Inference (NLI) Model

Although most of the existing text-embedding models work in the semantic space defined in Sec-
tion 3.2, they do not perform well in measuring semantic similarities [32]. Moreover, they can only
consider input texts as a whole instead of doing a contextual encoding on part of the input, i.e., they
can only obtain E(x + y) instead of E(y|x), where x + y means a concatenation of x and y.

The natural language inference (NLI) classification model[14] has proven to be effective in analyzing
the semantic relationship between LLM responses with the prompt as context [22]. Given a pair of
texts, an NLI model performs a classification task and outputs the probabilities for them to be seman-
tically equivalent ("entailment" class), irrelevant ("neutral" class), or contradictory ("contradiction"
class). Given the output class probabilities, the expectation of ||v∗ − vi|| can be obtained as

E(||v∗ − vi||2) = 12 · pc(y∗,yi|x) + (
√

2
2 )2 · pn(y∗,yi|x) + 02 · pe(y∗,yi|x),

= pc(y∗,yi|x) + 1
2 · pn(y∗,yi|x)

(9)

where pc(y∗,yi|x), pn(y∗,yi|x) and pe(y∗,yi|x) are the probabilities for y∗ and yi to be semanti-
cally contradictory ("c" for "contradiction" class), irrelevant ("n" for "neutral" class) and equivalent
("e" for "entailment" class), respectively, given context x. During implementation, each response y
will be concatenated with its prompt x (with prompt placed before the response) to form one text,
i.e., x + y. Each input of the NLI model will then be a pair of these texts, analyzing the semantic
relationship between two responses given the prompt. The expected value of ||v∗ − vi||2 can then be
used in Eq. 8 to obtain the kernel function output.

3.6 Summary of the Semantic Density Framework

Algorithm 1 describes how the semantic density metric is deployed on a given task and model. The
procedure consists of four main steps, i.e., sampling the reference responses, analyzing semantic
relationships, calculating the kernel function, and calculating the semantic density.

Computational Cost: In terms of computational cost, only the first two steps involve model
inferences. The first step utilizes diverse beam search, in which the group number equals M with
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Algorithm 1 Procedure for deploying semantic density
Require:

y∗: target response that needs confidence measurement
x: original prompt for generating y∗
M : number of unique reference responses to be sampled given x

Ensure:
SD(y∗|x): semantic density for y∗ given x

Step 1: Reference Response Sampling:
1: sample M unique reference responses yi (for i = 1, 2, · · · ,M ) with prompt x on the original LLM using

diverse beam search, and record each corresponding length-normalized sampling probability Li
√

p(yi|x)
Step 2: Semantic Relationship Analysis:
2: for i = 1 to M do
3: obtain pc(y∗,yi|x) and pn(y∗,yi|x) using NLI classification model

4: calculate expectation E(||v∗ − vi||2) = pc(y∗,yi|x) +
1

2
· pn(y∗,yi|x)

Step 3: Kernel Function Calculation:
5: for i = 1 to M do
6: calculate kernel function value using the expectation of ||v∗ − vi||2, given by:

K(v∗ − vi) = (1− E(||v∗ − vi||2))1E(||v∗−vi||)≤1

Step 4: Semantic Density Calculation:
7: calculate semantic density: SD(y∗|x) = 1∑M

i=1
Li
√

p(yi|x)

∑M
i=1

Li
√

p(yi|x)K(v∗ − vi)

one beam in each group, and thus only M inferences need to be done by the original LLM. The
second step requires another M or 2M inferences by the NLI classification model, depending on
whether the relationship analysis is performed in a bi-directional manner. Considering the fact that
NLI models are usually significantly smaller than LLMs (e.g., the Deberta-large-mnli model [14]
used in the implementation in this paper only has 1.5 billion parameters), the computational cost is
therefore mainly determined by the LLM inferences in the first step.

4 Experiments

This section first evaluates the performance of semantic density by comparing it with six existing
uncertainty/confidence metrics over various LLMs and benchmarks. After that, two empirical studies
are performed to investigate the robustness of semantic density when the number of reference
responses and sampling strategy for target response are varied.

4.1 Performance Evaluation

Following the usual evaluation approach in the literature [22], the uncertainty/confidence metric is
used as a quantitative indicator of how likely the response is going to be correct. Uncertainty values
above a threshold are taken as incorrect while those below are taken as correct (and vice versa for
confidence scores). For each threshold, the true positive rate vs. false positive rate is then measured.
The area under this curve, namely area under receiver operator characteristic curve (AUROC), is
calculated for each uncertainty/confidence metric. The AUROC score equals the probability that a
randomly chosen incorrect response has a higher uncertainty than a randomly chosen correct response
(and vice versa for confidence). A perfect uncertainty/confidence metric would have an AUROC
score of 1 while a random metric would have 0.5. As an additional performance metric, the area
under the Precision-Recall curve (AUPR) is also calculated. The average AUPR scores over two
setups, i.e., using either correct or incorrect samples as the positive class, are reported. Note that a
higher semantic density corresponds to a higher confidence.

The performance of semantic density (SD) was compared with six existing LLM uncertainty quan-
tification methods: semantic entropy (SE) [22], P(True) [21], degree (Deg) [26], length-normalized
likelihood (NL) [31], length-normalized entropy (NE) [29] and predictive entropy (PE) [21]. These
methods were applied to seven SOTA open-source LLMs: Llama-2-13B [45], Llama-2-70B [45],
Llama-3-8B [2], Llama-3-70B [2], Mistral-7B [18], Mixtral-8x7B [19] and Mixtral-8x22B [43].
Each LLM was tested on four free-form question-answering datasets commonly used in the literature:
CoQA [38], TriviaQA [20], SciQ [48] and Natural Questions (NQ) [23]. For each question, 10
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Table 1: Performance of different uncertainty/confidence metrics across various LLMs and datasets

CoQA

AUROC SD SE[22] P(True)[21] Deg[26] NL[31] NE[29] PE[21]

Llama-2-13B 0.783 0.633 0.594 0.734 0.709 0.629 0.647
Llama-2-70B 0.783 0.621 0.576 0.721 0.716 0.617 0.647
Llama-3-8B 0.738 0.599 0.593 0.795 0.676 0.608 0.604
Llama-3-70B 0.789 0.608 0.670 0.729 0.698 0.587 0.641
Mistral-7B 0.788 0.627 0.667 0.737 0.704 0.614 0.632

Mixtral-8x7B 0.786 0.626 0.589 0.728 0.708 0.617 0.651
Mixtral-8x22B 0.791 0.614 0.614 0.726 0.700 0.604 0.649

TriviaQA

AUROC SD SE P(True) Deg NL NE PE

Llama-2-13B 0.848 0.672 0.589 0.824 0.675 0.574 0.556
Llama-2-70B 0.829 0.677 0.556 0.787 0.714 0.582 0.566
Llama-3-8B 0.866 0.662 0.647 0.796 0.834 0.636 0.622
Llama-3-70B 0.828 0.663 0.654 0.764 0.828 0.611 0.596
Mistral-7B 0.866 0.690 0.589 0.828 0.745 0.615 0.536

Mixtral-8x7B 0.846 0.685 0.562 0.797 0.795 0.644 0.605
Mixtral-8x22B 0.829 0.686 0.604 0.762 0.801 0.644 0.607

SciQ

AUROC SD SE P(True) Deg NL NE PE

Llama-2-13B 0.757 0.570 0.572 0.727 0.693 0.513 0.574
Llama-2-70B 0.746 0.643 0.584 0.713 0.637 0.554 0.615
Llama-3-8B 0.780 0.611 0.564 0.731 0.686 0.597 0.651
Llama-3-70B 0.771 0.613 0.556 0.706 0.724 0.558 0.520
Mistral-7B 0.771 0.618 0.568 0.736 0.669 0.565 0.528

Mixtral-8x7B 0.773 0.612 0.585 0.716 0.726 0.612 0.658
Mixtral-8x22B 0.775 0.620 0.602 0.719 0.715 0.602 0.628

NQ

AUROC SD SE P(True) Deg NL NE PE

Llama-2-13B 0.689 0.581 0.592 0.686 0.588 0.571 0.640
Llama-2-70B 0.676 0.545 0.531 0.691 0.567 0.573 0.620
Llama-3-8B 0.710 0.583 0.517 0.706 0.601 0.603 0.615
Llama-3-70B 0.723 0.577 0.643 0.714 0.631 0.603 0.615
Mistral-7B 0.680 0.597 0.523 0.676 0.640 0.635 0.631

Mixtral-8x7B 0.729 0.599 0.576 0.720 0.654 0.603 0.608
Mixtral-8x22B 0.709 0.577 0.504 0.704 0.638 0.625 0.680

responses were generated using group beam search and used as reference responses in calculating
SD, SE, Deg, NE, and PE (note that P(True) and NL do not need reference responses). Each unique
response among these 10 will also be used as a target response, i.e., the response that needs an uncer-
tainty/confidence estimation, in calculating the AUROC scores of uncertainty/confidence metrics.
Detailed experimental configuration and parametric setup is described in Appendix A.1.

Table 1 and Table A2 (in Appendix A.4) show the AUROC and AUPR scores of each uncer-
tainty/confidence metric across different models and datasets, with the best entry in each configuration
highlighted in boldface. SD performs best in 26 out of 28 cases for AUROC and 27 out of 28 cases
for AUPR, demonstrating that it is reliable and robust as a confidence metric for LLM responses. For
AUROC, in two cases it is outperformed by Deg. After investigation, the inherent sequence likelihood
returned by the original LLM was badly calibrated in these two cases. Deg is the only method that
ignores the likelihood information during its calculation, making its performance unaffected by this
negative factor. However, for the other 26 cases, SD is able to utilize the likelihood information to
its advantage and outperform Deg. Appendix A.5 includes the results of another variant of SE [10],
which is comparable to the original version. SD outperforms it in all the test cases.

To confirm that the observed performance differences in Table 1 are statistically significant, a paired
t-test (paired by LLM and dataset) was performed between SD and the other metrics (Table A1 in
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Figure 1: AUROC scores of semantic density with one to 10 reference responses. Each subfigure
corresponds to the dataset indicated by the subfigure heading. Each curve corresponds to the base
LLM identified in the legend below the subfigures. Providing more reference responses generally
increases the reliability of semantic density, but in most cases only four samples are sufficient.

Appendix A.2). The p-values are consistently below 10−6, indicating that the performance gains of
SD are strongly statistically significant.

The experiments reported above use the same setup as Kuhn et al. [22] to evaluate the correctness of
responses: If the Rouge-L [24] between one response and the reference answer is larger than 0.3, then
the response is deemed as correct. In order to investigate the influence of the correctness-checking
criterion, the threshold of Rouge-L was varied between 0.1 and 1.0; the resulting performance of
different uncertainty/confidence metrics are shown in Figure A1. SD consistently outperforms other
methods under the different Rouge-L thresholds. Moreover, when the Rouge-L threshold increases,
the AUROC scores generally increase for SD whereas they decrease for most other methods. Since a
higher Rouge-L threshold means stricter correctness checking, the experimental performance gain of
SD may be even larger if such checking is further improved (e.g. by using a more capable LLM).

To further evaluate the generalizability of SD in other types of tasks, an empirical study using
a summarization task (DUC-2004 [35]) was performed. Appendix A.6 shows the performance
comparisons among different uncertainty/confidence metrics. SD performs best in most test cases,
demonstrating good generalizability.

4.2 Robustness of Semantic Density

Two additional empirical studies were performed to evaluate the robustness of semantic density when
the number of reference responses varies or the sampling strategy for target response changes.

In the first study, the number of reference responses was reduced from 10, which is a standard setup
for existing methods [22], to one, which is the extreme minimum case. Figure 1 shows the resulting
AUROC scores, covering the same four datasets and seven LLMs. Although performance indeed
decreases with fewer reference responses, the decrease is minor as long as the number of references
is at least four. This result suggests that semantic density can provide reasonable performance even
with a very limited budget for reference sampling.

In real-world applications, users may have different preferences when generating responses: Some
may prefer a greedy sampling strategy while others may need diverse responses. The second study
thus investigated how each uncertainty/confidence metric performs when the target response is
sampled using different such strategies. The diverse beam search method inherently utilizes different
strategies for each beam group: The first group performs a greedy beam search while later groups
encourage more diverse responses. Following Section 4.1, the AUROC scores were calculated for
target responses from each group separately, and the results averaged over the four datasets.

As the results in Figure 2 show, semantic density exhibits consistently good AUROC scores across
different beam groups. Thus, it is robust against both more greedy and more diverse sampling
strategies, thus covering a range of possible user preferences. In contrast, other approaches either
perform consistently worse compared to semantic density across different beam groups, or their
performance is unstable when the sampling strategy changes.
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Figure 2: AUROC scores over the different beam groups. The plots show the average AUROC
scores over the four datasets for the different beam groups in diverse beam search. A smaller group
index corresponds to the group with a more greedy generation strategy, while the group with a larger
index tends to be more diverse during response generation. Each subfigure corresponds to one of the
seven LLMs, as indicated by the subfigure heading. Each curve represents one uncertainty/confidence
metric indicated by the legend at the lower right. Semantic density exhibits consistently better and
stable performance across different groups, compared to other methods.

5 Discussion and Future work

In terms of the broader societal impact of this work, the proposed semantic density provides a general
way to evaluate the trustworthiness of responses generated by LLMs. This ability should have a
positive impact on real-world applications that are safety-critical, such as healthcare and finance.
Practitioners can utilize semantic density as an off-the-shelf indicator to filter out unreliable responses.

One limitation of semantic density is that it needs access to the output probabilities of generated
tokens, which may not be available in some proprietary LLMs. In such a case, the more expensive
variant in Eq. 5 can be considered as an alternative. Since semantic density does not require any
further access to the internal states or weights of the original LLMs, it is still widely applicable.
Another limitation is that most responses in the current experiments are at the sentence level. However,
an extension of semantic density to long-paragraph responses should be feasible. Following the
existing solutions [28, 10], a long response can be decomposed into sentence-level claims [28] or
factoids [10], and semantic density then applied to estimate the confidence of each claim/factoid.

The framework for measuring semantic density is modular, and therefore its main components can be
extended in future work. First, new sampling strategies that explicitly encourage a better coverage of
semantic space can be developed to generate reference responses. Such extensions should improve the
reliability of semantic density further. Second, text embedding methods that can measure contextual
semantic similarity between responses more reliably will be helpful as well. Third, kernel functions
specifically designed for the semantic space should allow the utilization of semantic relationships
more efficiently. Fourth, more precise methods for calibrating inherent token probabilities will form
a more reliable base for calculating semantic density.

6 Conclusion

This paper proposes semantic density as a practical new metric for measuring the confidence of LLM
responses. It overcomes the limitations of existing approaches by utilizing the semantic information
in an efficient and precise manner. It is response-specific, "off-the-shelf", and applicable to free-form
generation tasks. Experimental comparisons with six existing uncertainty/confidence metrics across
seven SOTA LLMs and four benchmark datasets suggest that it is accurate, robust, and general, and
can therefore help deploy LLMs in safety-critical domains.
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Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, and Karin Verspoor (Eds.).
Association for Computational Linguistics, Brussels, Belgium, 212–223. https://doi.org/
10.18653/v1/W18-6322

[32] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek,
Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav
Shyam, Boris Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr,
Felipe Petroski Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov,
Joanne Jang, Peter Welinder, and Lilian Weng. 2022. Text and Code Embeddings by Contrastive
Pre-Training. arXiv:2201.10005 [cs.CL]

[33] Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. 2024. Kernel Lan-
guage Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities.
arXiv:2405.20003 [cs.LG] https://arxiv.org/abs/2405.20003

[34] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao,
Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman,
Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus,
Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges,
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan
Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei

13

https://openreview.net/forum?id=8s8K2UZGTZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://doi.org/10.18653/v1/2024.naacl-long.184
https://openreview.net/forum?id=jH67LHVOIO
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://arxiv.org/abs/2405.20003


Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang,
Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan
Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros,
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,
Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning,
Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew,
Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina,
Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco,
Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin
Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew
Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de
Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea
Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt,
David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Kata-
rina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski
Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan
Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[35] Paul Over. 2004. DUC 2004: Documents, Tasks, and Measures. https://duc.nist.gov/
duc2004/

[36] Emanuel Parzen. 1962. On Estimation of a Probability Density Function and Mode. The Annals
of Mathematical Statistics 33, 3 (1962), 1065 – 1076. https://doi.org/10.1214/aoms/
1177704472

[37] Balaji Rajagopalan and Upmanu Lall. 1995. A kernel estimator for discrete distributions.
Journal of Nonparametric Statistics 4, 4 (1995), 409–426. https://doi.org/10.1080/
10485259508832629 arXiv:https://doi.org/10.1080/10485259508832629

[38] Siva Reddy, Danqi Chen, and Christopher D. Manning. 2019. CoQA: A Conversational Question
Answering Challenge. Transactions of the Association for Computational Linguistics 7 (2019),
249–266. https://doi.org/10.1162/tacl_a_00266

[39] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. 2024. Mathematical discoveries from
program search with large language models. Nature 625, 7995 (2024), 468–475. https:
//doi.org/10.1038/s41586-023-06924-6

[40] Murray Rosenblatt. 1956. Remarks on Some Nonparametric Estimates of a Density Function.
The Annals of Mathematical Statistics 27, 3 (1956), 832 – 837. https://doi.org/10.1214/
aoms/1177728190

[41] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,

14

https://duc.nist.gov/duc2004/
https://duc.nist.gov/duc2004/
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1080/10485259508832629
https://doi.org/10.1080/10485259508832629
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190


Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models
for Code. arXiv:2308.12950 [cs.CL]

[42] Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark,
Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed
Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska,
Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara
Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan
Karthikesalingam, and Vivek Natarajan. 2023. Towards Expert-Level Medical Question An-
swering with Large Language Models. arXiv:2305.09617 [cs.CL]

[43] Mistral AI team. 2024. https://mistral.ai/news/mixtral-8x22b/

[44] Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao,
Chelsea Finn, and Christopher Manning. 2023. Just Ask for Calibration: Strategies for Eliciting
Calibrated Confidence Scores from Language Models Fine-Tuned with Human Feedback. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,
Singapore, 5433–5442. https://doi.org/10.18653/v1/2023.emnlp-main.330

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang,
Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

[46] Ashwin Vijayakumar, Michael Cogswell, Ramprasaath Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2018. Diverse Beam Search for Improved Description of Complex
Scenes. Proceedings of the AAAI Conference on Artificial Intelligence 32, 1 (Apr. 2018).
https://doi.org/10.1609/aaai.v32i1.12340

[47] M.P. Wand and M.C. Jones. 1994. Kernel Smoothing. Taylor & Francis. https://books.
google.com/books?id=GTOOi5yE008C

[48] Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017. Crowdsourcing Multiple Choice
Science Questions. arXiv:1707.06209 [cs.HC]

[49] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations. Association for
Computational Linguistics, Online, 38–45. https://www.aclweb.org/anthology/2020.
emnlp-demos.6

[50] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. 2023. BloombergGPT: A Large
Language Model for Finance. arXiv:2303.17564 [cs.LG]

[51] Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie Neiswanger, Ruslan Salakhutdinov, and Louis-
Philippe Morency. 2022. Uncertainty Quantification with Pre-trained Language Models: A

15

https://mistral.ai/news/mixtral-8x22b/
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.1609/aaai.v32i1.12340
https://books.google.com/books?id=GTOOi5yE008C
https://books.google.com/books?id=GTOOi5yE008C
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Large-Scale Empirical Analysis. In Findings of the Association for Computational Linguistics:
EMNLP 2022, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association for
Computational Linguistics, Abu Dhabi, United Arab Emirates, 7273–7284. https://doi.
org/10.18653/v1/2022.findings-emnlp.538

[52] Yijun Xiao and William Yang Wang. 2021. On Hallucination and Predictive Uncertainty in
Conditional Language Generation. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, Paola Merlo, Jorg
Tiedemann, and Reut Tsarfaty (Eds.). Association for Computational Linguistics, Online,
2734–2744. https://doi.org/10.18653/v1/2021.eacl-main.236

[53] Fanghua Ye, Yang MingMing, Jianhui Pang, Longyue Wang, Derek F Wong, Yilmaz Emine,
Shuming Shi, and Zhaopeng Tu. 2024. Benchmarking LLMs via Uncertainty Quantification.
arXiv preprint arXiv:2401.12794 (2024).

[54] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. 2023. A Survey of Large Language Models. arXiv:2303.18223 [cs.CL]

16

https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2021.eacl-main.236


A Appendix

A.1 Experimental Setup

This section provides the details of the experimental setup for reproducing the results presented
in Section 4. The source codes for reproducing the reported experimental results are provided at:
https://github.com/cognizant-ai-labs/semantic-density-paper.

Base LLMs: For all the seven base LLMs, the open-source versions in Huggingface
Transformers library [49] were used in the experiments. More specifically, the fol-
lowing versions are used: meta-llama/Llama-2-13b-hf, meta-llama/Llama-2-70b-hf,
meta-llama/Meta-Llama-3-8B, meta-llama/Meta-Llama-3-70B, mistralai/Mistral-7B
-v0.1, mistralai/Mixtral-8x7B-v0.1, and mistralai/Mixtral-8x22B-v0.1. When run-
ning diverse beam search in generating the responses, the generate() function is used with
diversity_penalty=1.0, a default temperature of 1.0, and the num_beam_groups equals the
number of beams so that each group has exactly one beam.

Correctness Checking: Following the setup in Kuhn et al. [22], for all the reported experimental
results except Figure A1, a response is considered to be correct if the Rouge-L [24] between it and
any of the reference answers is larger than 0.3, after trimming the redundant continuations.

Datasets: The details of the datasets are as follows:

• CoQA: The coqa-dev-v1.0 version is used with 1596 questions randomly selected for the
experiments, using the Huggingface datasets.train_test_split function with a seed value
of 10. The prompt format follows the same setup as in Kuhn et al. [22].

• TriviaQA: The dataset is loaded with the Huggingface datasets API. 1705 questions were
randomly selected from the validation split for the experiments, using the Huggingface
datasets.train_test_split function with a seed value of 10. A 10-shot prompt format
is used following the setup in Kuhn et al. [22].

• SciQ: The test split from https://github.com/launchnlp/LitCab is used in the experiments. It
contains 990 questions. A 10-shot prompt format is used following the setup in Kuhn et al. [22].

• NQ: The test split from https://github.com/launchnlp/LitCab is used in the experiments. 1800
questions were randomly selected using the Huggingface datasets.train_test_
split function with a seed value of 10. A 10-shot prompt format is used following the setup in
Kuhn et al. [22].

• DUC-2004: All the 500 samples in task 1 [35] is used in the experiments. The dataset
is downloaded from https://www.kaggle.com/datasets/sandeep16064/duc2004. The following
prompt is used for all the experiments: "This is a bot that summarizes the following
paragraph using one sentence. \n Paragraph: {document} \n Summary:".

Uncertainty/Confidence Metrics: The same exact target response and reference responses are
used for all the tested methods. For SD, SE, and Deg, the microsoft/deberta-large-mnli model
from Huggingface Transformers library [49] is used as the NLI classification model. Following Kuhn
et al. [22], the probabilities for "contradiction", "neutral" and "entailment" are averaged bidirectionally.
The parametric setup for the uncertainty metrics tested in Section 4 is summarized as follows:

• semantic density (SD): The same exact steps as described in Algorithm 1 were implemented,
with a fixed temperature of 0.1 applied to rescale the value of each token probability during
postprocessing.

• semantic entropy (SE): The original implementation and parametric setup from
https://github.com/lorenzkuhn/semantic_uncertainty was used.

• P(True): The original few-shot prompt format from Kadavath et al. [21] is used.

• degree (Deg): The "entailment" probability returned by the NLI model (averaged bidirectionally)
is used as the similarity between two responses, which is then used as the diagonal element in the
degree matrix.
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• length-normalized likelihood (NL): The original form as in Murray and Chiang [31] was imple-
mented.

• length-normalized entropy (NE): The implementation from https://github.com/lorenzkuhn
/semantic_uncertainty was used.

• predictive entropy (PE): The implementation from https://github.com/lorenzkuhn/semantic
_uncertainty was used.

Compute Resources: All the experiments in Section 4 were running on an AWS P4de instance
with 96 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz, 1152GB memory and 8 NVIDIA
A100 (80GB). The GPU memory required to run the experiments is dependent on the base LLMs, as
detailed below:

• Llama-2-13B: ∼30GB GPU memory.

• Llama-2-70B: ∼140GB GPU memory.

• Llama-3-8B: ∼20GB GPU memory.

• Llama-3-70B: ∼140GB GPU memory.

• Mistral-7B: ∼20GB GPU memory.

• Mixtral-8x7B: ∼110GB GPU memory.

• Mixtral-8x22B: ∼300GB GPU memory.

The exact computation time was affected by many factors, e.g., the current workload of the machine,
the prompt length of the question, the generated response length, whether the cache option is turned
on to store the model states of LLMs, etc.

A.2 Results of Statistical Tests

Table A1 shows the p-values of the paired t-tests as described in Section 4.1.

Table A1: Statistical significance of SD’s advantage over other methods (p-values of paired t-tests)

SD vs. SE P(True) Deg NL NE PE

4.83E-17 1.71E-15 1.16E-7 4.62E-14 2.35E-15 4.63E-13

A.3 Performances with Different Correctness Thresholds

Figure A1 shows the performance changes of the uncertainty/confidence metrics with different
Rouge-L thresholds when checking the correctness of responses. SD performs the best overall across
these different criteria.

A.4 Performance Evaluation Using AUPR

During this evaluation, each uncertainty/confidence metric was used as a quantitative detector in two
cases: 1) detecting incorrect responses, 2) detecting correct responses. The AUPR scores for both
cases were calculated. Table A2 shows the average AUPR scores for them. Again, SD performs the
best overall.

A.5 Performance of Another Variant of Semantic Entropy

Table A3 shows the performance of a follow-up variant of semantic entropy [10]. The performance
of this variant is comparable with the original semantic entropy, with several cases worse than the
original version. The proposed semantic density outperforms this variant in all test cases.
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Figure A1: Performance Evaluation over Different Correctness Checking Criteria. The Rouge-
L threshold for checking response correctness is set as 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0, respectively.
Each subfigure corresponds to one combination of base LLM and dataset, indicated by the subfigure
heading. Each curve corresponds to the performance of one uncertainty/confidence metric identified
in the legend at the very top and bottom. For each subfigure, the horizontal axis indicates the Rouge-L
threshold, and the vertical axis indicates the AUROC score. Overall, semantic density exhibits best
performance under different Rouge-L thresholds. The experimental performance of SD increases
when the correctness-checking criterion becomes stricter (a higher Rouge-L threshold), while most
other methods show opposite trends.
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Table A2: Performance evaluation using AUPR-average metric

CoQA

AUPR SD SE P(True) Deg NL NE PE

Llama-2-13B 0.766 0.605 0.589 0.724 0.692 0.617 0.632
Llama-2-70B 0.766 0.587 0.566 0.710 0.686 0.602 0.628
Llama-3-8B 0.718 0.581 0.579 0.779 0.665 0.598 0.595

Llama-3-70B 0.765 0.572 0.641 0.714 0.658 0.566 0.606
Mistral-7B 0.773 0.600 0.652 0.730 0.680 0.599 0.618

Mixtral-8x7B 0.768 0.592 0.580 0.719 0.686 0.599 0.636
Mixtral-8x22B 0.772 0.581 0.605 0.715 0.672 0.585 0.632

TriviaQA

AUPR SD SE P(True) Deg NL NE PE

Llama-2-13B 0.839 0.651 0.589 0.807 0.662 0.570 0.550
Llama-2-70B 0.822 0.637 0.543 0.775 0.670 0.572 0.552
Llama-3-8B 0.855 0.636 0.636 0.781 0.815 0.638 0.616

Llama-3-70B 0.817 0.609 0.629 0.750 0.769 0.594 0.573
Mistral-7B 0.857 0.668 0.586 0.813 0.720 0.607 0.529

Mixtral-8x7B 0.835 0.653 0.546 0.782 0.763 0.628 0.591
Mixtral-8x22B 0.815 0.630 0.573 0.747 0.740 0.616 0.586

SciQ

AUPR SD SE P(True) Deg NL NE PE

Llama-2-13B 0.744 0.567 0.559 0.695 0.686 0.511 0.556
Llama-2-70B 0.733 0.626 0.574 0.694 0.630 0.549 0.604
Llama-3-8B 0.768 0.605 0.560 0.714 0.684 0.590 0.646

Llama-3-70B 0.755 0.597 0.551 0.690 0.722 0.548 0.518
Mistral-7B 0.759 0.612 0.559 0.717 0.664 0.561 0.530

Mixtral-8x7B 0.759 0.612 0.570 0.702 0.726 0.605 0.645
Mixtral-8x22B 0.753 0.604 0.588 0.703 0.700 0.589 0.628

NQ

AUPR SD SE P(True) Deg NL NE PE

Llama-2-13B 0.656 0.561 0.552 0.642 0.589 0.544 0.598
Llama-2-70B 0.655 0.539 0.525 0.648 0.580 0.547 0.591
Llama-3-8B 0.663 0.555 0.512 0.644 0.596 0.563 0.572

Llama-3-70B 0.700 0.562 0.608 0.655 0.638 0.570 0.580
Mistral-7B 0.654 0.573 0.519 0.637 0.623 0.586 0.586

Mixtral-8x7B 0.700 0.590 0.555 0.692 0.650 0.576 0.583
Mixtral-8x22B 0.687 0.571 0.509 0.671 0.645 0.596 0.647

Table A3: Performance of the semantic entropy variant

AUROC CoQA TriviaQA SciQ NQ

Llama-2-13B 0.587 0.726 0.576 0.576
Llama-2-70B 0.570 0.696 0.596 0.555
Mistral-7B 0.606 0.736 0.587 0.582

Meta-Llama-3-8B 0.571 0.694 0.582 0.563
Meta-Llama-3-70B 0.572 0.734 0.613 0.568

Mixtral-8x7B 0.567 0.699 0.576 0.612
Mixtral-8x22B 0.562 0.690 0.592 0.565
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Table A4: Performance of different uncertainty metrics for summarization task

DUC 2004

AUROC SD SE Deg NL NE PE

Llama-2-13B 0.622 0.612 0.606 0.594 0.601 0.521
Llama-2-70B 0.552 0.579 0.549 0.520 0.575 0.534
Llama-3-8B 0.597 0.529 0.590 0.538 0.538 0.521
Llama-3-70B 0.593 0.513 0.592 0.489 0.515 0.433
Mistral-7B 0.679 0.537 0.660 0.673 0.551 0.549

Mixtral-8x7B 0.640 0.532 0.620 0.636 0.576 0.497
Mixtral-8x22B 0.649 0.625 0.639 0.574 0.630 0.532

A.6 Performace Evaluation in a Summarization Task

This experiment used Task 1 of DUC-2004 dataset [35], which is a single-document summarization
task. The LLMs are prompted to summarize the document using one sentence. Table A4 presents the
results. SD performs the best in six out of seven test cases, demonstrating its good generalizability to
tasks other than question-answering.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of this work are accurately reflected in the abstract and
Section 1.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in

the paper.
• The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how much

the results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation as long as it is clear that these goals are

not attained by the paper.
2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There are several discussions about the limitations of the proposed semantic density
in the current manuscript: (1) The second paragraph of Section 5 discusses the potential limitation
regarding the applicability in some restricted cases; (2) the third paragraph in Section 4.1 discusses
a negative factor that may impair the performance of the proposed method; (3) section 4.2 studies
other factors that may impact the performance of semantic density, and found it to be robust to
these factors; (4) the computational efficiency is considered in algorithmic design (the second last
paragraph of Section 3.3) and discussed in Section 3.6; (5) scalability to LLMs with different sizes
are empirically evaluated in Section 4.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was only

tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach. For

example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by review-

ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: There are no new theorems proposed in this work.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented by

formal proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed description about each algorithmic step of the proposed semantic
density is provided in Section 3.6. The detailed guidelines about the experimental configurations
are provided in Appendix A.1. Source codes are provided in the supplementary material (as an
attached zip file).
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways. For

example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.
• While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Source codes to reproduce all the experimental results in this paper are provided
in the supplementary material (as an attached zip file). Appendix A.1 provides all the detailed
information needed to reproduce the experimental results, including instructions on data access
and preparation, configurations of the proposed method and all other baselines.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).
• The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how to

access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new proposed

method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized versions

(if applicable).
• Providing as much information as possible in supplemental material (appended to the paper)

is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Section 4 provides a clear description of the experimental settings that are sufficient
for readers to fully understand the results. Appendix A.1 provides all the configuration details of
the experiments. Source codes to reproduce all the experimental results in this paper are provided
in the supplementary material (as an attached zip file).
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Statistical tests have been run and reported in Section 4.1 to verify that the perfor-
mance differences between semantic density and other methods are statistically significant, with
detailed p-values reported in Appendix A.2.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
• The method for calculating the error bars should be explained (closed form formula, call to a

library function, bootstrap, etc.)
• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
• For asymmetric distributions, the authors should be careful not to show in tables or figures

symmetric error bars that would yield results that are out of range (e.g. negative error rates).
• If error bars are reported in tables or plots, The authors should explain in the text how they

were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: The compute resources used by the experiments in this paper are described in the
"Compute Resources" paragraph of Appendix A.1.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conforms with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: The first paragraph of Section 5 discusses the broader societal impact of the work.
Since the proposed method intends to improve the trustworthiness of LLMs, there is no obvious
negative societal impacts.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
• The conference expects that many papers will be foundational research and not tied to

particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
• The authors should consider possible harms that could arise when the technology is being

used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.
• If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors should

describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do not

require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: All the models, datasets and source codes used in this work have been properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to the

asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limitations,
etc.
• The paper should discuss whether and how consent was obtained from people whose asset is

used.
• At submission time, remember to anonymize your assets (if applicable). You can either create

an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or

other labor should be paid at least the minimum wage in the country of the data collector.
15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-

jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.
• We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.
• For initial submissions, do not include any information that would break anonymity (if

applicable), such as the institution conducting the review.
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