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Abstract

Invariance to a broad array of image corruptions, such as warping, noise, or
color shifts, is an important aspect of building robust models in computer vision.
Recently, several new data augmentations have been proposed that significantly
improve performance on ImageNet-C, a benchmark of such corruptions. However,
there is still a lack of basic understanding on the relationship between data augmen-
tations and test-time corruptions. To this end, we develop a feature space for image
transforms, and then use a new measure in this space between augmentations and
corruptions called the Minimal Sample Distance to demonstrate a strong correlation
between similarity and performance. We then investigate recent data augmentations
and observe a significant degradation in corruption robustness when the test-time
corruptions are sampled to be perceptually dissimilar from ImageNet-C in this fea-
ture space. Our results suggest that test error can be improved by training on percep-
tually similar augmentations, and data augmentations may not generalize well be-
yond the existing benchmark. We hope our results and tools will allow for more ro-
bust progress towards improving robustness to image corruptions. We provide code
at https://github.com/facebookresearch/augmentation-corruption.

1 Introduction

Robustness to distribution shift, i.e. when the train and test distributions differ, is an important feature
of practical machine learning models. Among many forms of distribution shift, one particularly
relevant category for computer vision are image corruptions. For example, test data may come from
sources that differ from the training set in terms of lighting, camera quality, or other features. Post-
processing transforms, such as photo touch-up, image filters, or compression effects are commonplace
in real-world data. Models developed using clean, undistorted inputs typically perform dramatically
worse when confronted with these sorts of image corruptions [8, 13]. The subject of corruption
robustness has a long history in computer vision [1, 6, 28] and recently has been studied actively with
the release of benchmark datasets such as ImageNet-C [13].

One particular property of image corruptions is that they are low-level distortions in nature. Corrup-
tions are transformations of an image that affect structural information such as colors, textures, or
geometry [5] and are typically free of high-level semantics. Therefore, it is natural to expect that data
augmentation techniques, which expand the training set with random low-level transformations, can
help learn robust models. Indeed, data augmentation has become a central technique in several recent
methods [14, 20, 25] that achieve large improvements on ImageNet-C and related benchmarks.

One caveat for data augmentation based approaches is the test corruptions are expected to be unknown
at training time. If the corruptions are known, they may simply be applied to the training set as data
augmentations to trivially adapt to the test distribution. Instead, an ideal robust model needs to be
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Figure 1: A toy experiment. We train multiple models on CIFAR-10 [17] using different augmenta-
tion schemes. Each scheme is based on a single basic image transformation type and enhanced by
overlaying random instantiations of the transformation for each input image following Hendrycks
et al. [14]. We compare these models on the CIFAR-10 test set corrupted by the motion blur, a
corruption used in the ImageNet-C corruption benchmark [13]. None of the augmentation schemes
contains motion blur; however, the models trained with geometric-based augmentations significantly
outperform the baseline model trained on the clean images while color-based augmentations show
no gains. We note the geometric augmentations can produce a result visually similar to a blur by
overlaying copies of shifted images3.

robust to any valid corruption, including ones unseen in any previous benchmark. Of course, in
practice the robustness of a model can only be evaluated approximately by measuring its corruption
error on a representative corruption benchmark. To avoid trivial adaptation to the benchmark,
recent works manually exclude test corruptions from the training augmentations. However, with a
toy experiment presented in Figure 1, we argue that this strategy alone might not be enough and
that visually similar augmentation outputs and test corruptions can lead to significant benchmark
improvements even if the exact corruption transformations are excluded.

This observation raises two important questions. One, how exactly does the similarity between train
time augmentations and corruptions of the test set affect the error? And two, if the gains are due to
the similarity, they may not translate into better robustness to other possible corruptions, so how
well will data augmentations generalize beyond a given benchmark? In this work, we take a step
towards answering these questions, with the goal of better understanding the relationship between
data augmentation and test-time corruptions. Using a feature space on image transforms and a new
measure called Minimal Sample Distance (MSD) on this space, we are able to quantify the distance
between augmentation schemes and classes of corruption transformation. With our approach, we
empirically show an intuitive yet surprisingly overlooked finding:

Augmentation-corruption perceptual similarity is a strong predictor of corruption error.

Based on this finding, we perform additional experiments to show that data augmentation
aids corruption robustness by increasing perceptual similarity between a (possibly small) fraction
of the training data and the test set. To further support our claims, we introduce a set of new
corruptions, called CIFAR/ImageNet-C, to test the degree to which common data augmentation
methods generalize from the original CIFAR/ImageNet-C. To choose these corruptions, we expand
the set of natural corruptions and sample new corruptions that are far away from CIFAR/ImageNet-C
in our feature space for measuring perceptual similarity. We then demonstrate that augmentation
schemes designed specifically to improve robustness show significantly degraded performance on
CIFAR/ImageNet-C. Some augmentation schemes still show some improvement over baseline, which
suggests meaningful progress towards general corruption robustness is being made, but different
augmentation schemes exhibit different degrees of generalization capability. As an implication,
caution is needed for fair robustness evaluations when additional data augmentation is introduced.

These results suggest a major challenge that is often overlooked in the study of corruption robustness:
generalization is often poor. Since perceptual similarity can predict performance, for any fixed finite
set of test corruptions, improvements on that set may generalize poorly to dissimilar corruptions. We

3Example transforms are for illustrative purpose only and are exaggerated. Base image © Sehee Park.
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hope that these results, tools, and benchmarks will help researchers better understand why a given
augmentation scheme has good corruption error and whether it should be expected to generalize to
dissimilar corruptions. On the positive side, our experiments show that generalization does emerge
among perceptually similar transforms, and that only a small fraction of sampled augmentations need
to be similar to a given corruption. Section 6 discusses these points in more depth.

2 Related Work

Corruption robustness benchmarks and analysis. ImageNet-C [13] is a corruption dataset often
used as a benchmark in robustness studies. Other corruption datasets [15, 27] collect corrupted
images from real world sources and thus have a mixture of semantic distribution shifts and perceptual
transforms. Corruption robustness differs from adversarial robustness [31], which seeks invariance to
small, worst case distortions. One notable difference is that improving corruption robustness often
slightly improves regular test error, instead of harming it. Yin et al. [38] analyzes corruption robustness
in the context of transforms’ frequency spectra; this can also influence corruption error independently
from perceptual similarity. Here we study the relationship between augmentations and corruptions
more generically, and explore the relationship between perceptual similarity and generalization to new
corruptions. Dao et al. [3] and Wu et al. [36] study the theory of data augmentation for regular test
error. Hendrycks et al. [15] and Taori et al. [33] study how the performance on synthetic corruption
transforms generalizes to performance on corruption datasets collected from the real world. Here we
do not address this issue directly but touch upon it in the discussion.

Improving corruption robustness. Data augmentations designed to improve robustness include
AugMix [14], which composites common image transforms, Patch Gaussian [20], which applies
Gaussian noise in square patches, and ANT [25], which augments with an adversarially learned noise
distribution. AutoAugment [2] learns augmentation policies that optimize clean error but has since
been shown to improve corruption error [38]. Mixup [40] can improve robustness [18], but its label
augmentation complicates the dependence on image augmentation. Stylized-ImageNet [9], which
applies style transfer to input images, can also improve robustness. DeepAugment [15], which applies
augmentations to a deep representation of an image, can also give large improvements in robustness.
Noisy Student [37] and Assemble-ResNet [18] combine data augmentation with new models and
training procedures and greatly enhance corruption robustness. In addition to training-time methods,
there are approaches that adapt to unseen corruptions at test time, e.g. using self-supervised tasks
[30], entropy minimization [35], or with a focus on privacy and data transmission efficiency [19].
While we do not directly address these approaches here, our methods potentially provide tools that
could be used to measure shifting distributions in an online regime.

3 Perceptual similarity for augmentations and corruptions

First, we study the importance of similarity between augmentations and corruptions for improving
performance on those corruptions. To do so, we need a means to compare augmentations and
corruptions. Both types of transforms are perceptual in nature, meaning they affect low-level image
structure while leaving high-level semantic information intact, so we expect a good distance to be a
measure of perceptual similarity. Then, we need to find the appropriate measure of distance between
the augmentation and corruption distributions. We will argue below that distributional equivalence is
not appropriate in the context of corruption robustness, and instead introduce the minimal sample
distance, a simple measure that does capture a relevant sense of distribution distance.

Measuring similarity between perceptual transforms. We define a perceptual transform as a
transform that acts on low-level image structure but not high-level semantic information. As such,
we expect two transforms should be similar if their actions on this low-level structure are similar,
independent of algorithmic or per-pixel differences between them. A closely related, well-studied
problem is the perceptual similarity between images. A common approach is to train a neural network
on a classification task and use intermediate layers as a feature space for measuring distances [42].
We adapt this idea to obtain a feature space for measuring distances between perceptual transforms.

We start with a feature extractor for images, which we call f̂(x). To train the model from which we
will extract features, we assume access to a dataset D of image label pairs (x, y) associated with a
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Figure 2: (a) Schematic comparison of MMD to MSD. MMD measures the distance between
distribution centers and is only small if the augmentation overlaps with a corruption. MSD measures
to the nearest sampled point in the set of samples (marked by a star) and is small even for broad
distributions that overlap with multiple corruptions. (b) We test on images corrupted with impulse
noise, and train on images augmented with a mixture of impulse noise and motion blur. As the mixing
fraction of impulse noise decreases, MMD between the augmentation and corruption grows linearly
while MSD and error stay low until nearly 0% mixing fraction.

classification task. The model should be trained using only default data augmentation for the task in
question so that the feature extractor is independent of the transforms we will use it to study. In order
to obtain a very simple measure, we use just the last hidden layer of the network as a feature space.

A perceptual transform t(x) may be encoded by applying it to all images in D, encoding the
transformed images, and averaging the features over these images. For efficiency, we find it sufficient
to average over only a randomly sampled subset of images DS in D. In Section 4.1 we discuss the
size of DS . The random choice of images is a property of the feature extractor, and so remains
fixed when encoding multiple transforms. This reduces variance when computing distances between
two transforms. The transform feature extractor is given by f(t) = Ex∈DS

[f̂(t(x)) − f̂(x)]. The
perceptual similarity between an augmentation and a corruption can be taken as the L2 distance on
this feature space f .

Minimal sample distance. We now seek to compare the distribution of an augmentation scheme pa
to a distribution of a corruption benchmark pc. If the goal was to optimize error on a known corruption
distribution, exact equivalence of distributions is the correct measure to minimize. But since the goal
is robustness to general, unknown corruption distributions, a good augmentation scheme should be
equivalent to no single corruption distribution.

To illustrate this behavior, consider a toy problem where we have access to the corruption transforms
at training time. A very rough, necessary-but-insufficient measure of distributional similarity is
dMMD(pa, pc) = ||Ea∼pa

[f(a)]− Ec∼pc
[f(c)]||. This is the maximal mean discrepancy on a fixed,

finite feature space, so for brevity we will refer to it as MMD. We still employ the featurization f(t),
since we are comparing transforms and not images, unlike in typical domain adaptation. Consider
two corruption distributions, here impulse noise and motion blur, and an augmentation scheme that is
a mixture of the two corruption distributions. Figure 2b shows MMD between the augmentation and
impulse noise corruption scales linearly with mixing fraction, but error on impulse noise remains low
until the mixing fraction is almost 0% impulse noise. This implies distributional similarity is a poor
predictor of corruption error. Indeed, low dMMD with any one corruption distribution suggests the
augmentation overlaps it significantly, so the augmentation is unlikely to aid dissimilar corruptions.

Our expectation for the behavior of the error in Figure 2b is that networks can often successfully
memorize rare examples seen during training, so that only a very small fraction of sampled images
need impulse noise augmentations to perform well on impulse noise corruptions. An appropriate
distance should then measure how close augmentation samples can come to the corruption distribution,
even if the density of those samples is low. We thus propose a very simple measure called minimal
sample distance (MSD), which is just the perceptual similarity between an average corruption and the
closest augmentation from a finite set of samples A ∼ pa:

dMSD(pa, pc) = min
a∈A∼pa

||f(a)− Ec∼pc
[f(c)]|| . (1)
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Figure 3: Example relationships between MSD and corruption error. ρ is the Spearman rank
correlation. MSD correlates well with error across all four categories of corruption in CIFAR-10-C.
For completeness, we also show brightness, a negative example where correlation is poor.

A schematic comparison of MMD and MSD is shown in Figure 2a. While both MMD and MSD
are small for an augmentation scheme that is distributionally similar to a corruption distribution,
only MSD remains small for a broad distribution that occasionally produces samples near multiple
corruption distributions. Figure 2b shows MSD, like test error, is small for most mixing fractions in
the toy problem described above. Note the measure’s need to accommodate robustness to general,
unknown corruption distributions has led it to be asymmetric, so it differs from more formal distance
metrics that may be used to predict generalization error, such as the Wasserstein distance [43].

4 Perceptual similarity is predictive of corruption error

We are now equipped to measure how important this augmentation-corruption similarity is for
corruption error. For a large number of augmentation schemes, we will measure both the MSD to a
corruption distribution and the corruption error of a model trained with that scheme. We will find a
correlation between MSD and corruption error, which provides evidence that networks generalize
across perceptually similar transforms. Then, we will calculate MSD for augmentation schemes in the
literature that have been shown to improve error on corruption benchmarks. We will find a correlation
between MSD and error here as well, suggesting their success is in part explained by their perceptual
similarity to the benchmark. This implies there may be a risk of poor generalization to different
benchmarks, since we would not expect this improvement to transfer to a dissimilar corruption.

4.1 Experimental setup

Corruptions. We use CIFAR-10-C [13], which is a common benchmark used for studying cor-
ruption robustness. It consists of 15 corruptions, each further split into five different severities
of transformation, applied to the CIFAR-10 test set. The 15 corruptions fall into four categories:
per-pixel noise, blurring, synthetic weather effects, and digital transforms. We treat each corruption
at each severity as a separate distribution for the sake of calculating MSD and error; however, for
simplicity we average errors and distances over severity to present a single result per corruption.

Space of augmentation schemes. To build each sampled augmentation transform, we will com-
posite a set of base augmentations. For base augmentations, we consider the nine common image
transforms used in Hendrycks et al. [14]. There are five geometric transforms and four color trans-
forms. By taking all subsets of these base augmentations, we obtain 29 = 512 unique augmentation
schemes, collectively called the augmentation powerset. Also following Hendrycks et al. [14], we
composite transforms in two ways: by applying one after another, or by applying them to copies of the
image and then linearly superimposing the results. Examples of both augmentations and corruptions
are provided in Appendix F.

Computing similarity and corruption error. A WideResNet-40-2 [39] model is pre-trained on
CIFAR-10 using default augmentation and training parameters from Hendrycks et al. [14]. WideRes-
Net is a common baseline model used when studying data augmentation on CIFAR-10 [2, 14, 40]. Its
last hidden layer is used as the feature space. For MSD, we average over 100 images, 100 corruptions,
and minimize over 100k augmentations. With this number of corruptions and images, we find that
the average standard deviation in distance between an augmentation and the averaged corruptions is
roughly five percent of the mean, which is smaller than the typical feature in our results found below,
given in Figure 3. We also find that using VGG [29] instead of WideResNet for the feature extractor
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Figure 4: Example relationships between base augmentations and corruptions. Including solarize
reduces MSD on the perceptually similar impulse noise corruption. Including x translation reduces
MSD on the perceptually similar motion blur corruption. MSD is not decreased for dissimilar
augmentation-corruption pairs.

gives similar results. Details for these calculations are in Appendix C. Images for calculating MSD
are from the training set and do not have default training augmentation. A WideResNet-40-2 with the
same training parameters is used for corruption error evaluation.

4.2 Analysis

MSD correlates with corruption error. First, we establish the correlation between MSD and
corruption error on the augmentation powerset. MSD shows strong correlation with corruption
error across corruptions types in all four categories of CIFAR-10-C, and for a large majority of
CIFAR-10-C corruptions in general: 12 of 15 have Spearman rank correlation greater than 0.6. Figure
3 shows the relationship between distance and corruption error on six example corruptions, including
one negative example for which correlation is low. A complete set of plots is below in Figure 5. This
corruption, brightness, may give poor results because it is a single low-level image statistic that can
vary significantly from image to image, and thus may not be well represented by our feature extractor.
Appendix B has a few supplemental experiments. First, we we confirm MMD correlates poorly with
corruption error, as expected. In particular, we expect broad augmentation schemes produce samples
similar to a larger set of corruptions, leading to both lower MSD and lower corruption error but
higher MMD. Second, we repeat our experiment but do not train on the augmentations, instead only
adapting the batch norm statistics of a pre-trained model to them. We still find a strong correlation,
suggesting our methods are compatible with the results of Schneider et al. [26], which shows such an
adaptation of the batch norm statistics to a corruption can improve corruption error.

An example of perceptual similarity. Here we illustrate the perceptual nature of the similarity
measure, using an example with two base augmentations and two corruptions. The augmentation
solarize and the corruption impulse noise both insert bright pixels into the image, though in different
ways. Linear superpositions of the augmentation x translation are visually similar to a blur, such as
the corruption motion blur. Figure 4 shows MSD vs error where augmentation schemes that include
solarize and x translation are colored. It is clear that including an augmentation greatly decreases
MSD to its perceptually similar corruption, while having little effect on MSD to its perceptually
dissimilar corruption.

MSD and corruption error in real augmentation methods. The augmentation powerset may
be used as a baseline for comparing real data augmentation schemes. Figure 5 shows MSD-error
correlations for Patch Gaussian [20], AutoAugment [2], and Augmix [14], along with the cloud of
augmentation powerset points for all 15 CIFAR-10-C corruptions. The real augmentation schemes
follow the same general trend that lower error predicts lower MSD. A few intuitive correlations are
also captured in Figure 5. Patch Gaussian has low MSD to noise corruptions. AutoAugment, which
contains contrast and Gaussian blurring augmentations in its sub-policies, has low MSD with contrast
and defocus blur. A negative example is fog, on which MSD to AutoAugment is not predictive of
corruption error.

This correlation suggests generalization may be poor beyond an existing benchmark, since an aug-
mentation scheme may be perceptually similar to one benchmark but not another. For augmentations
and corruptions that are explicitly the same, such as contrast in AutoAugment and ImageNet-C, this
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Figure 5: Correlations for augmentation schemes from the literature. Patch Gaussian is similar to
noise, while AutoAugment is similar to contrast and blur, as expected from their formulation. Glass
blur acts more like a noise corruption than a blur for these augmentation schemes, likely because
it randomly permutes pixels. As a negative example, MSD does not correlate well with error for
AutoAugment on fog. *AugMix here refers to just the augmentation distribution in Hendrycks et al.
[14], not the proposed Jensen-Shannon divergence loss.

is typically accounted for by removing such transforms from the augmentation scheme when testing
corruption robustness4. But in addition to these explicit similarities, Figure 5 shows quantitatively
that perceptual similarity between non-identical augmentations and corruptions is also strongly
predictive of corruption error. This includes possibly unexpected similarities, such as between Patch
Gaussian and glass blur, which introduces random pixel-level permutations as noise. This suggests
that perceptually similar augmentations and corruptions should be treated with the same care as
identical transforms. In particular, tools such as MSD help us determine why an augmentation scheme
improves corruption error, so we can better understand if new methods will generalize beyond their
tested benchmarks. Next we test this generalization by finding corruptions dissimilar to ImageNet-C.

5 ImageNet-C: benchmarking with dissimilar corruptions

We now introduce a set of corruptions, called ImageNet-C, that are perceptually dissimilar to
ImageNet-C in our transform feature space, and we will show that several augmentation schemes
have degraded performance on the new dataset. We emphasize that the dataset selection method
uses only default data augmentation and was fixed before we looked at the results for different
augmentations, so we are not adversarially selecting against the tested augmentation schemes.

Dataset construction. Here we present an overview of the dataset construction method. We build
30 new corruptions in 10 severities, from which the 10 most dissimilar corruptions will be chosen. We
adapt common filters and noise distributions available online [10, 16] to produce human interpretable
images. The transforms include warps, blurs, color distortions, noise additions, and obscuring
effects. Examples of the new corruptions and exact details of the construction method are provided in
Appendices D and F.

4For this analysis, we wish to treat explicit transform similarity and perceptual transform similarity on the
same footing, so we choose not to remove these overlapping augmentations.
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Figure 6: Example CIFAR-10-C and ImageNet-C corruptions. While still human interpretable, new
corruptions are sampled to be dissimilar from CIFAR-10/ImageNet-C. Base images © Sehee Park
and Chenxu Han.

To assure that the new dataset is no harder than ImageNet-C, we restrict the average corruption error
of the new dataset to be similar to that of ImageNet-C for default augmentation. We then generate
many potential datasets and measure the average shift in distance to ImageNet-C that each corruption
contributes. Note that while MSD is a measure between augmentations and corruptions, here we
are comparing corruptions to other corruptions and thus use MMD in our transform feature space.
ImageNet-C then consists of the 10 corruptions types with the largest average shift in distance. Like
ImageNet-C, each has five different severities, with severities chosen so that the average error matches
ImageNet-C for default augmentation. Example transforms from ImageNet-C and CIFAR-10-C are
shown in Figure 6. This procedure in our feature space produces corruptions intuitively dissimilar
from ImageNet-C and CIFAR-10-C.

Results. We test AutoAugment [2], Patch Gaussian [20], AugMix [14], ANT3x3 [25], Stylized-
ImageNet [9], and DeepAugment [15] on our new datasets and show results in Table 1. CIFAR-10
models are WideResNet-40-2 with training parameters from Hendrycks et al. [14]. ImageNet [4]
models are ResNet-50 [12] with training parameters from Goyal et al. [11]. Stylized-ImageNet is
trained jointly with ImageNet for half the epochs and starts from a model pre-trained on ImageNet,
following Geirhos et al. [9]. Models use default data augmentation as well as the augmentation being
tested, except ImageNet color jittering is not used. All corruptions are applied in-memory instead of
loaded from a compressed file; this can affect results especially on high frequency corruptions.

Since Section 4 suggests several augmentation schemes are perceptually similar to ImageNet-C
corruptions, we might expect these methods to have worse error on the new corruptions. Indeed, every
augmentation scheme performs worse. Different augmentation schemes also degrade by significantly
different amounts, from +0.7% for AutoAugment to +7.3% for PatchGaussian, which changes their
ranking by corruption error and leads to inconsistency of generalization. In Table 2, we compare
performance on several robust models[7, 21, 22, 32, 34, 37, 41] that are not primarily augmentation-
based and see no similar pattern of degradation, further suggesting that augmentation-corruption
dissimilarity is the cause of the higher error.

Errors of individual corruptions in ImageNet-C are also revealing. For all augmentation schemes,
there is significant improvement on blue sample noise5 but little improvement on sparkles or inverse
sparkles. Only AutoAugment does well on checkerboard, perhaps because only AutoAugment’s
geometric transforms produce empty space, similar to checkerboard’s occluded regions. These
examples suggest a slightly different benchmark could yield significantly different results. Indeed,
for a hypothetical benchmark that excluded blue sample noise and checkerboard, AutoAugment
and Patch Gaussian have 57.3% and 57.2% error respectively, little better than baseline of 57.4%.
AugMix fairs only a little better with 54.3% error. Even DeepAugment+AugMix, which is in general
a strong augmentation scheme, shows a big discrepancy in performance across different corruptions,
improving single frequency noise by 31%, but inverse sparkles by only 2.3%. Generalization to
dissimilar corruptions is thus both inconsistent and typically quite poor. Single benchmarks and
aggregate corruption scores are likely not enough for careful evaluation of robustness to unknown
corruptions, and it is important to study why proposed augmentations succeed to better understand
how well they might generalize.

5This corruption is conceptually similar with impulse noise but also gives a large distance; this may be a
failure mode of our measure, maybe since impulse noise has bright pixels and blue noise sample has dark pixels.
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Table 1: Test error for several data augmentation methods on CIFAR-10-C and ImageNet-10-C, for
which every method performs worse than on ImageNet-C or CIFAR-10-C. The increase in error differs
significantly between different augmentation methods. Descriptions of the abbreviations and standard
deviations for individual corruptions are in Appendix D. ‘Baseline’ refers to default augmentation
only. Averages are over five runs for ImageNet and ten for CIFAR-10. *ANT, DeepAugment(DA) and
DeepAugment+AugMix (DA+AM) use the pre-trained model provided with the associated papers
and have different training parameters.

IN-C IN-C ImageNet-C Corruptions
Aug Err Err ∆IN-C BSmpl Plsm Ckbd CSin SFrq Brwn Prln Sprk ISprk Rfrac

Baseline 58.1±0.4 57.7±0.2 -0.4 68.6 71.7 49.4 84.7 79.0 37.5 34.3 32.4 76.7 42.8
AA 55.0±0.2 55.7±0.3 +0.7 54.8 68.3 43.8 86.5 78.8 34.5 33.8 36.1 77.1 43.8
SIN 52.4±0.1 55.8±0.3 +3.4 54.7 69.8 52.8 79.6 69.2 37.8 35.3 37.0 77.3 44.1

AugMix 49.2±0.7 52.4±0.2 +3.2 43.2 72.2 46.1 76.3 67.4 38.8 32.4 32.3 76.4 39.2
PG 49.3±0.2 56.6±0.4 +7.3 60.3 74.1 48.5 82.1 76.7 38.9 34.6 32.1 76.5 42.1

ANT* 48.8 53.9 +5.1 35.8 75.5 56.9 76.4 63.7 41.0 35.2 35.0 76.1 43.3
DA* 46.6 51.0 +4.4 41.7 73.3 53.9 74.6 50.9 37.2 30.3 32.9 74.7 40.9

DA+AM* 41.0 48.3 +7.3 34.9 67.9 49.8 69.7 48.0 35.2 30.6 32.9 74.3 39.8
C10-C C10-C CIFAR-10-C Corruptions

Aug Err Err ∆C10-C BSmpl Brwn Ckbd CBlur ISprk Line P&T Rppl Sprk TCA
Baseline 27.0±0.6 27.1±0.5 +0.1 42.9 27.2 23.3 11.8 43.3 26.2 11.3 21.6 21.0 42.9

AA 19.4±0.2 21.0±0.4 +1.6 17.7 17.5 17.6 9.5 40.4 23.6 10.7 23.5 17.5 31.8
AugMix 11.1±0.2 16.0±0.3 +5.9 9.8 27.8 13.4 5.9 30.3 18.0 8.3 12.1 15.5 19.2

PG 17.0±0.3 23.8±0.5 +6.8 9.0 30.1 21.6 12.8 35.4 20.6 8.8 21.5 19.3 59.5

Table 2: Comparison of errors on ImageNet-C and ImageNet-C for several robust models: WSL
(weakly supervised ResNeXt-101-32x8d [21, 22]), EN (EfficientNet-B0 [32]), NS (Noisy Student
EN-B0 [37]), ViT-S (Transformer [7, 34]), ResNeSt (ResNeSt-50d, [41]), using pre-trained models
provided with the respective papers. These models do not rely primarily on data augmentation to be
robust, and there is no consistent degradation on ImageNet-C. This is additional evidence that the
worse performance in Table 1 does not occur because ImageNet-C is harder generally.

WSL EN NS ViT-S ResNeSt
IN-C Err 38.1 55.7 52.1 44.5 44.4
IN-C Err 39.2 53.4 52.2 41.1 41.6

It may be surprising that Stylized-ImageNet also degrades, given that it is intuitively very different
from every corruption. While our measure works for augmentations, it does not cover all possible
methods that improve robustness, such as more complicated algorithms like Stylized-ImageNet.
Stylized-ImageNet degradation may be due to other reasons. For instance, it primarily augments
texture information and may help mostly with higher frequency corruptions, as can be seen by
its improvement on single frequency noise and cocentric sine waves; ImageNet-C has fewer such
corruptions than ImageNet-C. ImageNet-C is thus a useful tool for understanding the interaction
between training procedure and corruption distribution, even beyond perceptual similarity.

Nevertheless, note that it is the intuitively broader augmentation schemes, such as AutoAugment,
AugMix, Stylized-ImageNet, and DeepAugment that generalize better to ImageNet-C. The impor-
tance of breadth has also been explored elsewhere[15, 38], but in the previous sections we have
provided new quantitative evidence for why this may be true: broad augmentation schemes may be
perceptually similar to more types of corruptions, and thus more likely to be perceptually similar to a
new corruption. Moreover, AugMix and DeepAugment still improve over baseline on ImageNet-C,
so there is reason to be optimistic that robustness to unknown corruptions is an achievable goal, as
long as evaluation is treated carefully.

6 Discussion

Societal Impact. Our method for finding dissimilar corruptions could in principle be used to
adversarially attack computer vision systems, such as those in content moderation or self-driving
cars. Moreover, our ultimate goal is to help improve robustness in computer vision, and such robust
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systems may be used in detrimentals ways, for example in autonomous weapons or surveillance.
However, we expect better evaluation of robust models to have definite benefits as well. In the long
run, such an understanding should help defend against adversarial attacks. Our tools could also be
used to challenge purportedly robust systems that are actually dangerously unreliable, such as an
autonomous driving system that is robust to common corruption benchmarks yet fails to be robust to
a dissimilar but important corruption, e.g., maybe glare. For instance, is the model employing data
augmentation that is perceptually similar to the corruptions being used to report good robustness? Is
the set of validation corruptions sufficiently broad that we would expect reasonable generalization to
an unseen corruption? If we generate a dissimilar set of corruptions using the procedure we develop
here, does the model still perform well on the new corruptions? Quantitative ways to answer these
questions may provide a means to verify the robust performance of a model before it encounters and
potentially fails on a critical, previously unseen corruption.

Corruption robustness as a secondary learning task. We have provided evidence that data aug-
mentation may not generalize well beyond a given corruption benchmark. To explore this further,
consider an analogy to a regular learning problem. We may think of corruption robustness in the
presence of data augmentation as a sort of secondary task layered on the primary classification task:
the set of data augmentations is the training set, the set of corruptions is the test set, and the goal is
to achieve invariance of the underlying primary task. In this language, the ‘datasets’ involved are
quite small: ImageNet-C has only 15 corruption types, and several augmentation schemes composite
only around 10 basic transforms. In this case, standard machine learning practice would dictate a
training/validation/test set split; it is only the size and breadth of modern vision datasets that has
allowed this to be neglected in certain cases recently. But the effective dataset size of a corruption
robustness problem is tiny, so having a held-out test set seems necessary. To emphasize, this is not
a test set of the underlying classification task, for which generalization has been studied by Recht
et al. [23, 24]. Instead, it is a test set of corruption transforms themselves. This means there would be
validation/test split of dissimilar transformations, both applied to the ImageNet validation set6.

Real-world corruption robustness. Recently, Hendrycks et al. [15] and Taori et al. [33] study how
performance on corruption transforms generalizes to real-world corruptions and come to conflicting
conclusions. Though we do not study real-world corruptions, we have proposed a mechanism that
may explain the conflict: performance will generalize between transforms and real-world corruptions
if they are perceptually similar, but will likely not if they are dissimilar. Since Hendrycks et al.
[15] and Taori et al. [33] draw on different real-world and synthetic corruptions, it may be that the
perceptual similarity between datasets differs in the two analyses. This also suggests a way to find
additional corruption transforms that correlate with real-world corruptions: transforms should be
sought that have maximal perceptual similarity with real-world corruptions.

Generalization does occur. We have encountered two features of data augmentation that may
explain why it can be such a powerful tool for corruption robustness, despite the issues discussed
above. First, within a class of perceptually similar transforms, generalization does occur. This means
each simple data augmentation may confer robustness to many complicated corruptions, as long as
they share perceptual similarity. Second, dissimilar augmentations in an augmentation scheme often
causes little to no loss in performance, as long as a similar augmentation is also present. We briefly
study this in Appendix A by demonstrating that adding many dissimilar augmentations increases
error much less than adding a few similar augmentations decreases it. These two features suggest
broad augmentation schemes with many dissimilar augmentations may confer robustness to a large
class of unknown corruptions. More generally, we think data augmentation is a promising direction
of study for corruption robustness, as long as significant care is taken in evaluation.

Acknowledgements and Funding Disclosure

Eric Mintun would like to thank Matthew Leavitt, Sho Yaida, and Achal Dave for discussions during
the development of this work. Additionally, he would like to acknowledge the Facebook AI residency
program for providing excellent training and support in AI research. The authors received no external
funding and have no competing interests.

6The validation set provided in Hendrycks & Dietterich [13] consists of perceptually similar transforms to
ImageNet-C and would not be expected to work well for the validation discussed here.

10



References
[1] Bruna, J. and Mallat, S. Invariant scattering convolution networks. IEEE transactions on pattern

analysis and machine intelligence, 35(8):1872–1886, 2013.

[2] Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le, Q. V. AutoAugment: Learning
augmentation strategies from data. In CVPR, 2019.

[3] Dao, T., Gu, A., Ratner, A. J., Smith, V., De Sa, C., and Ré, C. A kernel theory of modern data
augmentation. Proceedings of machine learning research, 97:1528, 2019.

[4] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

[5] Ding, K., Ma, K., Wang, S., and Simoncelli, E. P. Image quality assessment: Unifying structure
and texture similarity. IEEE transactions on pattern analysis and machine intelligence, 2020.

[6] Dodge, S. and Karam, L. A study and comparison of human and deep learning recognition
performance under visual distortions. In ICCCN, 2017.

[7] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth
16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[8] Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., and Wichmann, F. A.
Generalisation in humans and deep neural networks. In NeurIPS, 2018.

[9] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel, W.
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy
and robustness. In ICLR, 2019.

[10] Gladman, S. J. Filterpedia, 2016. URL https://github.com/FlexMonkey/Filterpedia.

[11] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia,
Y., and He, K. Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[12] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In CVPR,
2016.

[13] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corrup-
tions and perturbations. In ICLR, 2018.

[14] Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Lakshminarayanan, B. AugMix:
A simple data processing method to improve robustness and uncertainty. In ICLR, 2019.

[15] Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T.,
Parajuli, S., Guo, M., Song, D., Steinhardt, J., and Gilmer, J. The many faces of robustness: A
critical analysis of out-of-distribution generalization. arXiv preprint arXiv:2006.16241, 2020.

[16] Huxtable, J. JH Labs Java Image Processing, 2006. URL http://www.jhlabs.com/ip/
filters/.

[17] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

[18] Lee, J., Won, T., and Hong, K. Compounding the performance improvements of assembled
techniques in a convolutional neural network. arXiv preprint arXiv:2001.06268, 2020.

[19] Liang, J., Hu, D., and Feng, J. Do we really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In International Conference on Machine Learning,
pp. 6028–6039. PMLR, 2020.

[20] Lopes, R. G., Yin, D., Poole, B., Gilmer, J., and Cubuk, E. D. Improving robustness without
sacrificing accuracy with Patch Gaussian augmentation. arXiv preprint arXiv:1906.02611,
2019.

11

https://github.com/FlexMonkey/Filterpedia
http://www.jhlabs.com/ip/filters/
http://www.jhlabs.com/ip/filters/


[21] Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., and
van der Maaten, L. Exploring the limits of weakly supervised pretraining. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 181–196, 2018.

[22] Orhan, A. E. Robustness properties of Facebook’s ResNeXt WSL models. arXiv preprint
arXiv:1907.07640, 2019.

[23] Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do CIFAR-10 classifiers generalize to
CIFAR-10? arXiv preprint arXiv:1806.00451, 2018.

[24] Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do ImageNet classifiers generalize to
ImageNet? In ICML, 2019.

[25] Rusak, E., Schott, L., Zimmermann, R., Bitterwolf, J., Bringmann, O., Bethge, M., and Brendel,
W. A simple way to make neural networks robust against diverse image corruptions. arXiv
preprint arXiv:2001.06057, 2020.

[26] Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., and Bethge, M. Improving
robustness against common corruptions by covariate shift adaptation. In NeurIPS, 2020.

[27] Shankar, V., Dave, A., Roelofs, R., Ramanan, D., Recht, B., and Schmidt, L. Do image
classifiers generalize across time? arXiv preprint arXiv:1906.02168, 2019.

[28] Simard, P. Y., LeCun, Y. A., Denker, J. S., and Victorri, B. Transformation invariance in pattern
recognition—tangent distance and tangent propagation. In Neural networks: tricks of the trade,
pp. 239–274. Springer, 1998.

[29] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

[30] Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., and Hardt, M. Test-time training with self-
supervision for generalization under distribution shifts. In International Conference on Machine
Learning, pp. 9229–9248. PMLR, 2020.

[31] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R.
Intriguing properties of neural networks. In ICLR, 2014.

[32] Tan, M. and Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks.
In ICML, 2019.

[33] Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., and Schmidt, L. Measuring robustness
to natural distribution shifts in image classification. In NeurIPS, 2020.

[34] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. Training data-
efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877,
2020.

[35] Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Darrell, T. Tent: Fully test-time adaptation
by entropy minimization. ICLR, 2021.

[36] Wu, S., Zhang, H. R., Valiant, G., and Ré, C. On the generalization effects of linear transforma-
tions in data augmentation. In ICML, 2020.

[37] Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. Self-training with Noisy Student improves
imagenet classification. In CVPR, 2020.

[38] Yin, D., Lopes, R. G., Shlens, J., Cubuk, E. D., and Gilmer, J. A Fourier perspective on model
robustness in computer vision. In NeurIPS, 2019.

[39] Zagoruyko, S. and Komodakis, N. Wide residual networks. In BMVC, 2016.

[40] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical risk
minimization. In ICLR, 2018.

12



[41] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., Sun, Y., He, T., Muller, J., Manmatha,
R., Li, M., and Smola, A. ResNeSt: Split-Attention Networks. arXiv preprint arXiv:2004.08955,
2020.

[42] Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. The unreasonable effectiveness
of deep features as a perceptual metric. In CVPR, 2018.

[43] Zilly, J., Zilly, H., Richter, O., Wattenhofer, R., Censi, A., and Frazzoli, E. The Frechet Distance
of training and test distribution predicts the generalization gap. OpenReview preprint, 2019.
URL https://openreview.net/forum?id=SJgSflHKDr.

13

https://openreview.net/forum?id=SJgSflHKDr

	Introduction
	Related Work
	Perceptual similarity for augmentations and corruptions
	Perceptual similarity is predictive of corruption error
	Experimental setup
	Analysis

	ImageNet-C: benchmarking with dissimilar corruptions
	Discussion

